xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Implements the AMDGPU specific subclass of TargetSubtarget.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPUSubtarget.h"
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPUInstructionSelector.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPURegisterBankInfo.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "GCNSubtarget.h"
21 #include "R600Subtarget.h"
22 #include "SIMachineFunctionInfo.h"
23 #include "Utils/AMDGPUBaseInfo.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/MachineScheduler.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/IntrinsicsAMDGPU.h"
30 #include "llvm/IR/IntrinsicsR600.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include <algorithm>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-subtarget"
38 
39 #define GET_SUBTARGETINFO_TARGET_DESC
40 #define GET_SUBTARGETINFO_CTOR
41 #define AMDGPUSubtarget GCNSubtarget
42 #include "AMDGPUGenSubtargetInfo.inc"
43 #undef AMDGPUSubtarget
44 
45 static cl::opt<bool> EnablePowerSched(
46   "amdgpu-enable-power-sched",
47   cl::desc("Enable scheduling to minimize mAI power bursts"),
48   cl::init(false));
49 
50 static cl::opt<bool> EnableVGPRIndexMode(
51   "amdgpu-vgpr-index-mode",
52   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
53   cl::init(false));
54 
55 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
56                            cl::desc("Enable the use of AA during codegen."),
57                            cl::init(true));
58 
59 static cl::opt<unsigned> NSAThreshold("amdgpu-nsa-threshold",
60                                       cl::desc("Number of addresses from which to enable MIMG NSA."),
61                                       cl::init(3), cl::Hidden);
62 
63 GCNSubtarget::~GCNSubtarget() = default;
64 
65 GCNSubtarget &
66 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
67                                               StringRef GPU, StringRef FS) {
68   // Determine default and user-specified characteristics
69   //
70   // We want to be able to turn these off, but making this a subtarget feature
71   // for SI has the unhelpful behavior that it unsets everything else if you
72   // disable it.
73   //
74   // Similarly we want enable-prt-strict-null to be on by default and not to
75   // unset everything else if it is disabled
76 
77   SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,");
78 
79   // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default
80   if (isAmdHsaOS())
81     FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
82 
83   FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
84 
85   // Disable mutually exclusive bits.
86   if (FS.contains_insensitive("+wavefrontsize")) {
87     if (!FS.contains_insensitive("wavefrontsize16"))
88       FullFS += "-wavefrontsize16,";
89     if (!FS.contains_insensitive("wavefrontsize32"))
90       FullFS += "-wavefrontsize32,";
91     if (!FS.contains_insensitive("wavefrontsize64"))
92       FullFS += "-wavefrontsize64,";
93   }
94 
95   FullFS += FS;
96 
97   ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
98 
99   // Implement the "generic" processors, which acts as the default when no
100   // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to
101   // the first amdgcn target that supports flat addressing. Other OSes defaults
102   // to the first amdgcn target.
103   if (Gen == AMDGPUSubtarget::INVALID) {
104      Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS
105                                         : AMDGPUSubtarget::SOUTHERN_ISLANDS;
106   }
107 
108   if (!hasFeature(AMDGPU::FeatureWavefrontSize32) &&
109       !hasFeature(AMDGPU::FeatureWavefrontSize64)) {
110     // If there is no default wave size it must be a generation before gfx10,
111     // these have FeatureWavefrontSize64 in their definition already. For gfx10+
112     // set wave32 as a default.
113     ToggleFeature(AMDGPU::FeatureWavefrontSize32);
114   }
115 
116   // We don't support FP64 for EG/NI atm.
117   assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
118 
119   // Targets must either support 64-bit offsets for MUBUF instructions, and/or
120   // support flat operations, otherwise they cannot access a 64-bit global
121   // address space
122   assert(hasAddr64() || hasFlat());
123   // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets
124   // that do not support ADDR64 variants of MUBUF instructions. Such targets
125   // cannot use a 64 bit offset with a MUBUF instruction to access the global
126   // address space
127   if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) {
128     ToggleFeature(AMDGPU::FeatureFlatForGlobal);
129     FlatForGlobal = true;
130   }
131   // Unless +-flat-for-global is specified, use MUBUF instructions for global
132   // address space access if flat operations are not available.
133   if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) {
134     ToggleFeature(AMDGPU::FeatureFlatForGlobal);
135     FlatForGlobal = false;
136   }
137 
138   // Set defaults if needed.
139   if (MaxPrivateElementSize == 0)
140     MaxPrivateElementSize = 4;
141 
142   if (LDSBankCount == 0)
143     LDSBankCount = 32;
144 
145   if (TT.getArch() == Triple::amdgcn) {
146     if (LocalMemorySize == 0)
147       LocalMemorySize = 32768;
148 
149     // Do something sensible for unspecified target.
150     if (!HasMovrel && !HasVGPRIndexMode)
151       HasMovrel = true;
152   }
153 
154   AddressableLocalMemorySize = LocalMemorySize;
155 
156   if (AMDGPU::isGFX10Plus(*this) &&
157       !getFeatureBits().test(AMDGPU::FeatureCuMode))
158     LocalMemorySize *= 2;
159 
160   // Don't crash on invalid devices.
161   if (WavefrontSizeLog2 == 0)
162     WavefrontSizeLog2 = 5;
163 
164   HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
165   HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9;
166 
167   TargetID.setTargetIDFromFeaturesString(FS);
168 
169   LLVM_DEBUG(dbgs() << "xnack setting for subtarget: "
170                     << TargetID.getXnackSetting() << '\n');
171   LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: "
172                     << TargetID.getSramEccSetting() << '\n');
173 
174   return *this;
175 }
176 
177 void GCNSubtarget::checkSubtargetFeatures(const Function &F) const {
178   LLVMContext &Ctx = F.getContext();
179   if (hasFeature(AMDGPU::FeatureWavefrontSize32) ==
180       hasFeature(AMDGPU::FeatureWavefrontSize64)) {
181     Ctx.diagnose(DiagnosticInfoUnsupported(
182         F, "must specify exactly one of wavefrontsize32 and wavefrontsize64"));
183   }
184 }
185 
186 AMDGPUSubtarget::AMDGPUSubtarget(Triple TT) : TargetTriple(std::move(TT)) {}
187 
188 bool AMDGPUSubtarget::useRealTrue16Insts() const {
189   return hasTrue16BitInsts() && EnableRealTrue16Insts;
190 }
191 
192 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
193                            const GCNTargetMachine &TM)
194     : // clang-format off
195     AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
196     AMDGPUSubtarget(TT),
197     TargetTriple(TT),
198     TargetID(*this),
199     InstrItins(getInstrItineraryForCPU(GPU)),
200     InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
201     TLInfo(TM, *this),
202     FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
203   // clang-format on
204   MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
205   EUsPerCU = AMDGPU::IsaInfo::getEUsPerCU(this);
206   CallLoweringInfo = std::make_unique<AMDGPUCallLowering>(*getTargetLowering());
207   InlineAsmLoweringInfo =
208       std::make_unique<InlineAsmLowering>(getTargetLowering());
209   Legalizer = std::make_unique<AMDGPULegalizerInfo>(*this, TM);
210   RegBankInfo = std::make_unique<AMDGPURegisterBankInfo>(*this);
211   InstSelector =
212       std::make_unique<AMDGPUInstructionSelector>(*this, *RegBankInfo, TM);
213 }
214 
215 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
216   if (getGeneration() < GFX10)
217     return 1;
218 
219   switch (Opcode) {
220   case AMDGPU::V_LSHLREV_B64_e64:
221   case AMDGPU::V_LSHLREV_B64_gfx10:
222   case AMDGPU::V_LSHLREV_B64_e64_gfx11:
223   case AMDGPU::V_LSHLREV_B64_e32_gfx12:
224   case AMDGPU::V_LSHLREV_B64_e64_gfx12:
225   case AMDGPU::V_LSHL_B64_e64:
226   case AMDGPU::V_LSHRREV_B64_e64:
227   case AMDGPU::V_LSHRREV_B64_gfx10:
228   case AMDGPU::V_LSHRREV_B64_e64_gfx11:
229   case AMDGPU::V_LSHRREV_B64_e64_gfx12:
230   case AMDGPU::V_LSHR_B64_e64:
231   case AMDGPU::V_ASHRREV_I64_e64:
232   case AMDGPU::V_ASHRREV_I64_gfx10:
233   case AMDGPU::V_ASHRREV_I64_e64_gfx11:
234   case AMDGPU::V_ASHRREV_I64_e64_gfx12:
235   case AMDGPU::V_ASHR_I64_e64:
236     return 1;
237   }
238 
239   return 2;
240 }
241 
242 /// This list was mostly derived from experimentation.
243 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const {
244   switch (Opcode) {
245   case AMDGPU::V_CVT_F16_F32_e32:
246   case AMDGPU::V_CVT_F16_F32_e64:
247   case AMDGPU::V_CVT_F16_U16_e32:
248   case AMDGPU::V_CVT_F16_U16_e64:
249   case AMDGPU::V_CVT_F16_I16_e32:
250   case AMDGPU::V_CVT_F16_I16_e64:
251   case AMDGPU::V_RCP_F16_e64:
252   case AMDGPU::V_RCP_F16_e32:
253   case AMDGPU::V_RSQ_F16_e64:
254   case AMDGPU::V_RSQ_F16_e32:
255   case AMDGPU::V_SQRT_F16_e64:
256   case AMDGPU::V_SQRT_F16_e32:
257   case AMDGPU::V_LOG_F16_e64:
258   case AMDGPU::V_LOG_F16_e32:
259   case AMDGPU::V_EXP_F16_e64:
260   case AMDGPU::V_EXP_F16_e32:
261   case AMDGPU::V_SIN_F16_e64:
262   case AMDGPU::V_SIN_F16_e32:
263   case AMDGPU::V_COS_F16_e64:
264   case AMDGPU::V_COS_F16_e32:
265   case AMDGPU::V_FLOOR_F16_e64:
266   case AMDGPU::V_FLOOR_F16_e32:
267   case AMDGPU::V_CEIL_F16_e64:
268   case AMDGPU::V_CEIL_F16_e32:
269   case AMDGPU::V_TRUNC_F16_e64:
270   case AMDGPU::V_TRUNC_F16_e32:
271   case AMDGPU::V_RNDNE_F16_e64:
272   case AMDGPU::V_RNDNE_F16_e32:
273   case AMDGPU::V_FRACT_F16_e64:
274   case AMDGPU::V_FRACT_F16_e32:
275   case AMDGPU::V_FREXP_MANT_F16_e64:
276   case AMDGPU::V_FREXP_MANT_F16_e32:
277   case AMDGPU::V_FREXP_EXP_I16_F16_e64:
278   case AMDGPU::V_FREXP_EXP_I16_F16_e32:
279   case AMDGPU::V_LDEXP_F16_e64:
280   case AMDGPU::V_LDEXP_F16_e32:
281   case AMDGPU::V_LSHLREV_B16_e64:
282   case AMDGPU::V_LSHLREV_B16_e32:
283   case AMDGPU::V_LSHRREV_B16_e64:
284   case AMDGPU::V_LSHRREV_B16_e32:
285   case AMDGPU::V_ASHRREV_I16_e64:
286   case AMDGPU::V_ASHRREV_I16_e32:
287   case AMDGPU::V_ADD_U16_e64:
288   case AMDGPU::V_ADD_U16_e32:
289   case AMDGPU::V_SUB_U16_e64:
290   case AMDGPU::V_SUB_U16_e32:
291   case AMDGPU::V_SUBREV_U16_e64:
292   case AMDGPU::V_SUBREV_U16_e32:
293   case AMDGPU::V_MUL_LO_U16_e64:
294   case AMDGPU::V_MUL_LO_U16_e32:
295   case AMDGPU::V_ADD_F16_e64:
296   case AMDGPU::V_ADD_F16_e32:
297   case AMDGPU::V_SUB_F16_e64:
298   case AMDGPU::V_SUB_F16_e32:
299   case AMDGPU::V_SUBREV_F16_e64:
300   case AMDGPU::V_SUBREV_F16_e32:
301   case AMDGPU::V_MUL_F16_e64:
302   case AMDGPU::V_MUL_F16_e32:
303   case AMDGPU::V_MAX_F16_e64:
304   case AMDGPU::V_MAX_F16_e32:
305   case AMDGPU::V_MIN_F16_e64:
306   case AMDGPU::V_MIN_F16_e32:
307   case AMDGPU::V_MAX_U16_e64:
308   case AMDGPU::V_MAX_U16_e32:
309   case AMDGPU::V_MIN_U16_e64:
310   case AMDGPU::V_MIN_U16_e32:
311   case AMDGPU::V_MAX_I16_e64:
312   case AMDGPU::V_MAX_I16_e32:
313   case AMDGPU::V_MIN_I16_e64:
314   case AMDGPU::V_MIN_I16_e32:
315   case AMDGPU::V_MAD_F16_e64:
316   case AMDGPU::V_MAD_U16_e64:
317   case AMDGPU::V_MAD_I16_e64:
318   case AMDGPU::V_FMA_F16_e64:
319   case AMDGPU::V_DIV_FIXUP_F16_e64:
320     // On gfx10, all 16-bit instructions preserve the high bits.
321     return getGeneration() <= AMDGPUSubtarget::GFX9;
322   case AMDGPU::V_MADAK_F16:
323   case AMDGPU::V_MADMK_F16:
324   case AMDGPU::V_MAC_F16_e64:
325   case AMDGPU::V_MAC_F16_e32:
326   case AMDGPU::V_FMAMK_F16:
327   case AMDGPU::V_FMAAK_F16:
328   case AMDGPU::V_FMAC_F16_e64:
329   case AMDGPU::V_FMAC_F16_e32:
330     // In gfx9, the preferred handling of the unused high 16-bits changed. Most
331     // instructions maintain the legacy behavior of 0ing. Some instructions
332     // changed to preserving the high bits.
333     return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
334   case AMDGPU::V_MAD_MIXLO_F16:
335   case AMDGPU::V_MAD_MIXHI_F16:
336   default:
337     return false;
338   }
339 }
340 
341 // Returns the maximum per-workgroup LDS allocation size (in bytes) that still
342 // allows the given function to achieve an occupancy of NWaves waves per
343 // SIMD / EU, taking into account only the function's *maximum* workgroup size.
344 unsigned
345 AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
346                                                  const Function &F) const {
347   const unsigned WaveSize = getWavefrontSize();
348   const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
349   const unsigned WavesPerWorkgroup =
350       std::max(1u, (WorkGroupSize + WaveSize - 1) / WaveSize);
351 
352   const unsigned WorkGroupsPerCU =
353       std::max(1u, (NWaves * getEUsPerCU()) / WavesPerWorkgroup);
354 
355   return getLocalMemorySize() / WorkGroupsPerCU;
356 }
357 
358 // FIXME: Should return min,max range.
359 //
360 // Returns the maximum occupancy, in number of waves per SIMD / EU, that can
361 // be achieved when only the given function is running on the machine; and
362 // taking into account the overall number of wave slots, the (maximum) workgroup
363 // size, and the per-workgroup LDS allocation size.
364 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
365   const Function &F) const {
366   const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
367   const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
368   if (!MaxWorkGroupsPerCu)
369     return 0;
370 
371   const unsigned WaveSize = getWavefrontSize();
372 
373   // FIXME: Do we need to account for alignment requirement of LDS rounding the
374   // size up?
375   // Compute restriction based on LDS usage
376   unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
377 
378   // This can be queried with more LDS than is possible, so just assume the
379   // worst.
380   if (NumGroups == 0)
381     return 1;
382 
383   NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
384 
385   // Round to the number of waves per CU.
386   const unsigned MaxGroupNumWaves = divideCeil(MaxWorkGroupSize, WaveSize);
387   unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
388 
389   // Number of waves per EU (SIMD).
390   MaxWaves = divideCeil(MaxWaves, getEUsPerCU());
391 
392   // Clamp to the maximum possible number of waves.
393   MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
394 
395   // FIXME: Needs to be a multiple of the group size?
396   //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
397 
398   assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
399          "computed invalid occupancy");
400   return MaxWaves;
401 }
402 
403 unsigned
404 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
405   const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
406   return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
407 }
408 
409 std::pair<unsigned, unsigned>
410 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
411   switch (CC) {
412   case CallingConv::AMDGPU_VS:
413   case CallingConv::AMDGPU_LS:
414   case CallingConv::AMDGPU_HS:
415   case CallingConv::AMDGPU_ES:
416   case CallingConv::AMDGPU_GS:
417   case CallingConv::AMDGPU_PS:
418     return std::pair(1, getWavefrontSize());
419   default:
420     return std::pair(1u, getMaxFlatWorkGroupSize());
421   }
422 }
423 
424 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
425   const Function &F) const {
426   // Default minimum/maximum flat work group sizes.
427   std::pair<unsigned, unsigned> Default =
428     getDefaultFlatWorkGroupSize(F.getCallingConv());
429 
430   // Requested minimum/maximum flat work group sizes.
431   std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
432     F, "amdgpu-flat-work-group-size", Default);
433 
434   // Make sure requested minimum is less than requested maximum.
435   if (Requested.first > Requested.second)
436     return Default;
437 
438   // Make sure requested values do not violate subtarget's specifications.
439   if (Requested.first < getMinFlatWorkGroupSize())
440     return Default;
441   if (Requested.second > getMaxFlatWorkGroupSize())
442     return Default;
443 
444   return Requested;
445 }
446 
447 std::pair<unsigned, unsigned> AMDGPUSubtarget::getEffectiveWavesPerEU(
448     std::pair<unsigned, unsigned> Requested,
449     std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
450   // Default minimum/maximum number of waves per execution unit.
451   std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
452 
453   // If minimum/maximum flat work group sizes were explicitly requested using
454   // "amdgpu-flat-workgroup-size" attribute, then set default minimum/maximum
455   // number of waves per execution unit to values implied by requested
456   // minimum/maximum flat work group sizes.
457   unsigned MinImpliedByFlatWorkGroupSize =
458     getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
459   Default.first = MinImpliedByFlatWorkGroupSize;
460 
461   // Make sure requested minimum is less than requested maximum.
462   if (Requested.second && Requested.first > Requested.second)
463     return Default;
464 
465   // Make sure requested values do not violate subtarget's specifications.
466   if (Requested.first < getMinWavesPerEU() ||
467       Requested.second > getMaxWavesPerEU())
468     return Default;
469 
470   // Make sure requested values are compatible with values implied by requested
471   // minimum/maximum flat work group sizes.
472   if (Requested.first < MinImpliedByFlatWorkGroupSize)
473     return Default;
474 
475   return Requested;
476 }
477 
478 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
479     const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
480   // Default minimum/maximum number of waves per execution unit.
481   std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
482 
483   // Requested minimum/maximum number of waves per execution unit.
484   std::pair<unsigned, unsigned> Requested =
485       AMDGPU::getIntegerPairAttribute(F, "amdgpu-waves-per-eu", Default, true);
486   return getEffectiveWavesPerEU(Requested, FlatWorkGroupSizes);
487 }
488 
489 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
490   auto Node = Kernel.getMetadata("reqd_work_group_size");
491   if (Node && Node->getNumOperands() == 3)
492     return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
493   return std::numeric_limits<unsigned>::max();
494 }
495 
496 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
497   return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
498 }
499 
500 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
501                                            unsigned Dimension) const {
502   unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
503   if (ReqdSize != std::numeric_limits<unsigned>::max())
504     return ReqdSize - 1;
505   return getFlatWorkGroupSizes(Kernel).second - 1;
506 }
507 
508 bool AMDGPUSubtarget::isSingleLaneExecution(const Function &Func) const {
509   for (int I = 0; I < 3; ++I) {
510     if (getMaxWorkitemID(Func, I) > 0)
511       return false;
512   }
513 
514   return true;
515 }
516 
517 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
518   Function *Kernel = I->getParent()->getParent();
519   unsigned MinSize = 0;
520   unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
521   bool IdQuery = false;
522 
523   // If reqd_work_group_size is present it narrows value down.
524   if (auto *CI = dyn_cast<CallInst>(I)) {
525     const Function *F = CI->getCalledFunction();
526     if (F) {
527       unsigned Dim = UINT_MAX;
528       switch (F->getIntrinsicID()) {
529       case Intrinsic::amdgcn_workitem_id_x:
530       case Intrinsic::r600_read_tidig_x:
531         IdQuery = true;
532         [[fallthrough]];
533       case Intrinsic::r600_read_local_size_x:
534         Dim = 0;
535         break;
536       case Intrinsic::amdgcn_workitem_id_y:
537       case Intrinsic::r600_read_tidig_y:
538         IdQuery = true;
539         [[fallthrough]];
540       case Intrinsic::r600_read_local_size_y:
541         Dim = 1;
542         break;
543       case Intrinsic::amdgcn_workitem_id_z:
544       case Intrinsic::r600_read_tidig_z:
545         IdQuery = true;
546         [[fallthrough]];
547       case Intrinsic::r600_read_local_size_z:
548         Dim = 2;
549         break;
550       default:
551         break;
552       }
553 
554       if (Dim <= 3) {
555         unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
556         if (ReqdSize != std::numeric_limits<unsigned>::max())
557           MinSize = MaxSize = ReqdSize;
558       }
559     }
560   }
561 
562   if (!MaxSize)
563     return false;
564 
565   // Range metadata is [Lo, Hi). For ID query we need to pass max size
566   // as Hi. For size query we need to pass Hi + 1.
567   if (IdQuery)
568     MinSize = 0;
569   else
570     ++MaxSize;
571 
572   APInt Lower{32, MinSize};
573   APInt Upper{32, MaxSize};
574   if (auto *CI = dyn_cast<CallBase>(I)) {
575     ConstantRange Range(Lower, Upper);
576     CI->addRangeRetAttr(Range);
577   } else {
578     MDBuilder MDB(I->getContext());
579     MDNode *MaxWorkGroupSizeRange = MDB.createRange(Lower, Upper);
580     I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
581   }
582   return true;
583 }
584 
585 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
586   assert(AMDGPU::isKernel(F.getCallingConv()));
587 
588   // We don't allocate the segment if we know the implicit arguments weren't
589   // used, even if the ABI implies we need them.
590   if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
591     return 0;
592 
593   if (isMesaKernel(F))
594     return 16;
595 
596   // Assume all implicit inputs are used by default
597   const Module *M = F.getParent();
598   unsigned NBytes =
599       AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5 ? 256 : 56;
600   return F.getFnAttributeAsParsedInteger("amdgpu-implicitarg-num-bytes",
601                                          NBytes);
602 }
603 
604 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
605                                                  Align &MaxAlign) const {
606   assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
607          F.getCallingConv() == CallingConv::SPIR_KERNEL);
608 
609   const DataLayout &DL = F.getDataLayout();
610   uint64_t ExplicitArgBytes = 0;
611   MaxAlign = Align(1);
612 
613   for (const Argument &Arg : F.args()) {
614     const bool IsByRef = Arg.hasByRefAttr();
615     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
616     Align Alignment = DL.getValueOrABITypeAlignment(
617         IsByRef ? Arg.getParamAlign() : std::nullopt, ArgTy);
618     uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
619     ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
620     MaxAlign = std::max(MaxAlign, Alignment);
621   }
622 
623   return ExplicitArgBytes;
624 }
625 
626 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
627                                                 Align &MaxAlign) const {
628   if (F.getCallingConv() != CallingConv::AMDGPU_KERNEL &&
629       F.getCallingConv() != CallingConv::SPIR_KERNEL)
630     return 0;
631 
632   uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
633 
634   unsigned ExplicitOffset = getExplicitKernelArgOffset();
635 
636   uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
637   unsigned ImplicitBytes = getImplicitArgNumBytes(F);
638   if (ImplicitBytes != 0) {
639     const Align Alignment = getAlignmentForImplicitArgPtr();
640     TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
641     MaxAlign = std::max(MaxAlign, Alignment);
642   }
643 
644   // Being able to dereference past the end is useful for emitting scalar loads.
645   return alignTo(TotalSize, 4);
646 }
647 
648 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
649   return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
650                                   : AMDGPUDwarfFlavour::Wave64;
651 }
652 
653 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
654                                       unsigned NumRegionInstrs) const {
655   // Track register pressure so the scheduler can try to decrease
656   // pressure once register usage is above the threshold defined by
657   // SIRegisterInfo::getRegPressureSetLimit()
658   Policy.ShouldTrackPressure = true;
659 
660   // Enabling both top down and bottom up scheduling seems to give us less
661   // register spills than just using one of these approaches on its own.
662   Policy.OnlyTopDown = false;
663   Policy.OnlyBottomUp = false;
664 
665   // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
666   if (!enableSIScheduler())
667     Policy.ShouldTrackLaneMasks = true;
668 }
669 
670 void GCNSubtarget::mirFileLoaded(MachineFunction &MF) const {
671   if (isWave32()) {
672     // Fix implicit $vcc operands after MIParser has verified that they match
673     // the instruction definitions.
674     for (auto &MBB : MF) {
675       for (auto &MI : MBB)
676         InstrInfo.fixImplicitOperands(MI);
677     }
678   }
679 }
680 
681 bool GCNSubtarget::hasMadF16() const {
682   return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1;
683 }
684 
685 bool GCNSubtarget::useVGPRIndexMode() const {
686   return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
687 }
688 
689 bool GCNSubtarget::useAA() const { return UseAA; }
690 
691 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
692   return AMDGPU::IsaInfo::getOccupancyWithNumSGPRs(SGPRs, getMaxWavesPerEU(),
693                                                    getGeneration());
694 }
695 
696 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned NumVGPRs) const {
697   return AMDGPU::IsaInfo::getNumWavesPerEUWithNumVGPRs(this, NumVGPRs);
698 }
699 
700 unsigned
701 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratch) const {
702   if (getGeneration() >= AMDGPUSubtarget::GFX10)
703     return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
704 
705   if (HasFlatScratch || HasArchitectedFlatScratch) {
706     if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
707       return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
708     if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
709       return 4; // FLAT_SCRATCH, VCC (in that order).
710   }
711 
712   if (isXNACKEnabled())
713     return 4; // XNACK, VCC (in that order).
714   return 2; // VCC.
715 }
716 
717 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
718   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
719   return getBaseReservedNumSGPRs(MFI.getUserSGPRInfo().hasFlatScratchInit());
720 }
721 
722 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const {
723   // In principle we do not need to reserve SGPR pair used for flat_scratch if
724   // we know flat instructions do not access the stack anywhere in the
725   // program. For now assume it's needed if we have flat instructions.
726   const bool KernelUsesFlatScratch = hasFlatAddressSpace();
727   return getBaseReservedNumSGPRs(KernelUsesFlatScratch);
728 }
729 
730 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
731                                         unsigned NumSGPRs,
732                                         unsigned NumVGPRs) const {
733   unsigned Occupancy =
734     std::min(getMaxWavesPerEU(),
735              getOccupancyWithLocalMemSize(LDSSize, F));
736   if (NumSGPRs)
737     Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
738   if (NumVGPRs)
739     Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
740   return Occupancy;
741 }
742 
743 unsigned GCNSubtarget::getBaseMaxNumSGPRs(
744     const Function &F, std::pair<unsigned, unsigned> WavesPerEU,
745     unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const {
746   // Compute maximum number of SGPRs function can use using default/requested
747   // minimum number of waves per execution unit.
748   unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
749   unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
750 
751   // Check if maximum number of SGPRs was explicitly requested using
752   // "amdgpu-num-sgpr" attribute.
753   if (F.hasFnAttribute("amdgpu-num-sgpr")) {
754     unsigned Requested =
755         F.getFnAttributeAsParsedInteger("amdgpu-num-sgpr", MaxNumSGPRs);
756 
757     // Make sure requested value does not violate subtarget's specifications.
758     if (Requested && (Requested <= ReservedNumSGPRs))
759       Requested = 0;
760 
761     // If more SGPRs are required to support the input user/system SGPRs,
762     // increase to accommodate them.
763     //
764     // FIXME: This really ends up using the requested number of SGPRs + number
765     // of reserved special registers in total. Theoretically you could re-use
766     // the last input registers for these special registers, but this would
767     // require a lot of complexity to deal with the weird aliasing.
768     unsigned InputNumSGPRs = PreloadedSGPRs;
769     if (Requested && Requested < InputNumSGPRs)
770       Requested = InputNumSGPRs;
771 
772     // Make sure requested value is compatible with values implied by
773     // default/requested minimum/maximum number of waves per execution unit.
774     if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
775       Requested = 0;
776     if (WavesPerEU.second &&
777         Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
778       Requested = 0;
779 
780     if (Requested)
781       MaxNumSGPRs = Requested;
782   }
783 
784   if (hasSGPRInitBug())
785     MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
786 
787   return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs);
788 }
789 
790 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
791   const Function &F = MF.getFunction();
792   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
793   return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(),
794                             getReservedNumSGPRs(MF));
795 }
796 
797 static unsigned getMaxNumPreloadedSGPRs() {
798   using USI = GCNUserSGPRUsageInfo;
799   // Max number of user SGPRs
800   const unsigned MaxUserSGPRs =
801       USI::getNumUserSGPRForField(USI::PrivateSegmentBufferID) +
802       USI::getNumUserSGPRForField(USI::DispatchPtrID) +
803       USI::getNumUserSGPRForField(USI::QueuePtrID) +
804       USI::getNumUserSGPRForField(USI::KernargSegmentPtrID) +
805       USI::getNumUserSGPRForField(USI::DispatchIdID) +
806       USI::getNumUserSGPRForField(USI::FlatScratchInitID) +
807       USI::getNumUserSGPRForField(USI::ImplicitBufferPtrID);
808 
809   // Max number of system SGPRs
810   const unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX
811                                   1 + // WorkGroupIDY
812                                   1 + // WorkGroupIDZ
813                                   1 + // WorkGroupInfo
814                                   1;  // private segment wave byte offset
815 
816   // Max number of synthetic SGPRs
817   const unsigned SyntheticSGPRs = 1; // LDSKernelId
818 
819   return MaxUserSGPRs + MaxSystemSGPRs + SyntheticSGPRs;
820 }
821 
822 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const {
823   return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(),
824                             getReservedNumSGPRs(F));
825 }
826 
827 unsigned GCNSubtarget::getBaseMaxNumVGPRs(
828     const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const {
829   // Compute maximum number of VGPRs function can use using default/requested
830   // minimum number of waves per execution unit.
831   unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
832 
833   // Check if maximum number of VGPRs was explicitly requested using
834   // "amdgpu-num-vgpr" attribute.
835   if (F.hasFnAttribute("amdgpu-num-vgpr")) {
836     unsigned Requested =
837         F.getFnAttributeAsParsedInteger("amdgpu-num-vgpr", MaxNumVGPRs);
838 
839     if (hasGFX90AInsts())
840       Requested *= 2;
841 
842     // Make sure requested value is compatible with values implied by
843     // default/requested minimum/maximum number of waves per execution unit.
844     if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
845       Requested = 0;
846     if (WavesPerEU.second &&
847         Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
848       Requested = 0;
849 
850     if (Requested)
851       MaxNumVGPRs = Requested;
852   }
853 
854   return MaxNumVGPRs;
855 }
856 
857 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const {
858   return getBaseMaxNumVGPRs(F, getWavesPerEU(F));
859 }
860 
861 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
862   const Function &F = MF.getFunction();
863   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
864   return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU());
865 }
866 
867 void GCNSubtarget::adjustSchedDependency(
868     SUnit *Def, int DefOpIdx, SUnit *Use, int UseOpIdx, SDep &Dep,
869     const TargetSchedModel *SchedModel) const {
870   if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
871       !Def->isInstr() || !Use->isInstr())
872     return;
873 
874   MachineInstr *DefI = Def->getInstr();
875   MachineInstr *UseI = Use->getInstr();
876 
877   if (DefI->isBundle()) {
878     const SIRegisterInfo *TRI = getRegisterInfo();
879     auto Reg = Dep.getReg();
880     MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
881     MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
882     unsigned Lat = 0;
883     for (++I; I != E && I->isBundledWithPred(); ++I) {
884       if (I->modifiesRegister(Reg, TRI))
885         Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
886       else if (Lat)
887         --Lat;
888     }
889     Dep.setLatency(Lat);
890   } else if (UseI->isBundle()) {
891     const SIRegisterInfo *TRI = getRegisterInfo();
892     auto Reg = Dep.getReg();
893     MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
894     MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
895     unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
896     for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
897       if (I->readsRegister(Reg, TRI))
898         break;
899       --Lat;
900     }
901     Dep.setLatency(Lat);
902   } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) {
903     // Work around the fact that SIInstrInfo::fixImplicitOperands modifies
904     // implicit operands which come from the MCInstrDesc, which can fool
905     // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit
906     // pseudo operands.
907     Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency(
908         DefI, DefOpIdx, UseI, UseOpIdx));
909   }
910 }
911 
912 namespace {
913 struct FillMFMAShadowMutation : ScheduleDAGMutation {
914   const SIInstrInfo *TII;
915 
916   ScheduleDAGMI *DAG;
917 
918   FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
919 
920   bool isSALU(const SUnit *SU) const {
921     const MachineInstr *MI = SU->getInstr();
922     return MI && TII->isSALU(*MI) && !MI->isTerminator();
923   }
924 
925   bool isVALU(const SUnit *SU) const {
926     const MachineInstr *MI = SU->getInstr();
927     return MI && TII->isVALU(*MI);
928   }
929 
930   // Link as many SALU instructions in chain as possible. Return the size
931   // of the chain. Links up to MaxChain instructions.
932   unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
933                          SmallPtrSetImpl<SUnit *> &Visited) const {
934     SmallVector<SUnit *, 8> Worklist({To});
935     unsigned Linked = 0;
936 
937     while (!Worklist.empty() && MaxChain-- > 0) {
938       SUnit *SU = Worklist.pop_back_val();
939       if (!Visited.insert(SU).second)
940         continue;
941 
942       LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
943                  dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
944 
945       if (SU != From && From != &DAG->ExitSU && DAG->canAddEdge(SU, From))
946         if (DAG->addEdge(SU, SDep(From, SDep::Artificial)))
947           ++Linked;
948 
949       for (SDep &SI : From->Succs) {
950         SUnit *SUv = SI.getSUnit();
951         if (SUv != From && SU != &DAG->ExitSU && isVALU(SUv) &&
952             DAG->canAddEdge(SUv, SU))
953           DAG->addEdge(SUv, SDep(SU, SDep::Artificial));
954       }
955 
956       for (SDep &SI : SU->Succs) {
957         SUnit *Succ = SI.getSUnit();
958         if (Succ != SU && isSALU(Succ))
959           Worklist.push_back(Succ);
960       }
961     }
962 
963     return Linked;
964   }
965 
966   void apply(ScheduleDAGInstrs *DAGInstrs) override {
967     const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
968     if (!ST.hasMAIInsts())
969       return;
970     DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
971     const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
972     if (!TSchedModel || DAG->SUnits.empty())
973       return;
974 
975     // Scan for MFMA long latency instructions and try to add a dependency
976     // of available SALU instructions to give them a chance to fill MFMA
977     // shadow. That is desirable to fill MFMA shadow with SALU instructions
978     // rather than VALU to prevent power consumption bursts and throttle.
979     auto LastSALU = DAG->SUnits.begin();
980     auto E = DAG->SUnits.end();
981     SmallPtrSet<SUnit*, 32> Visited;
982     for (SUnit &SU : DAG->SUnits) {
983       MachineInstr &MAI = *SU.getInstr();
984       if (!TII->isMAI(MAI) ||
985            MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
986            MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64)
987         continue;
988 
989       unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
990 
991       LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
992                  dbgs() << "Need " << Lat
993                         << " instructions to cover latency.\n");
994 
995       // Find up to Lat independent scalar instructions as early as
996       // possible such that they can be scheduled after this MFMA.
997       for ( ; Lat && LastSALU != E; ++LastSALU) {
998         if (Visited.count(&*LastSALU))
999           continue;
1000 
1001         if (&SU == &DAG->ExitSU || &SU == &*LastSALU || !isSALU(&*LastSALU) ||
1002             !DAG->canAddEdge(&*LastSALU, &SU))
1003           continue;
1004 
1005         Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
1006       }
1007     }
1008   }
1009 };
1010 } // namespace
1011 
1012 void GCNSubtarget::getPostRAMutations(
1013     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
1014   Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
1015 }
1016 
1017 std::unique_ptr<ScheduleDAGMutation>
1018 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const {
1019   return EnablePowerSched ? std::make_unique<FillMFMAShadowMutation>(&InstrInfo)
1020                           : nullptr;
1021 }
1022 
1023 unsigned GCNSubtarget::getNSAThreshold(const MachineFunction &MF) const {
1024   if (getGeneration() >= AMDGPUSubtarget::GFX12)
1025     return 0; // Not MIMG encoding.
1026 
1027   if (NSAThreshold.getNumOccurrences() > 0)
1028     return std::max(NSAThreshold.getValue(), 2u);
1029 
1030   int Value = MF.getFunction().getFnAttributeAsParsedInteger(
1031       "amdgpu-nsa-threshold", -1);
1032   if (Value > 0)
1033     return std::max(Value, 2);
1034 
1035   return 3;
1036 }
1037 
1038 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
1039   if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
1040     return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
1041   return static_cast<const AMDGPUSubtarget &>(MF.getSubtarget<R600Subtarget>());
1042 }
1043 
1044 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
1045   if (TM.getTargetTriple().getArch() == Triple::amdgcn)
1046     return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
1047   return static_cast<const AMDGPUSubtarget &>(
1048       TM.getSubtarget<R600Subtarget>(F));
1049 }
1050 
1051 GCNUserSGPRUsageInfo::GCNUserSGPRUsageInfo(const Function &F,
1052                                            const GCNSubtarget &ST)
1053     : ST(ST) {
1054   const CallingConv::ID CC = F.getCallingConv();
1055   const bool IsKernel =
1056       CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL;
1057   // FIXME: Should have analysis or something rather than attribute to detect
1058   // calls.
1059   const bool HasCalls = F.hasFnAttribute("amdgpu-calls");
1060   // FIXME: This attribute is a hack, we just need an analysis on the function
1061   // to look for allocas.
1062   const bool HasStackObjects = F.hasFnAttribute("amdgpu-stack-objects");
1063 
1064   if (IsKernel && (!F.arg_empty() || ST.getImplicitArgNumBytes(F) != 0))
1065     KernargSegmentPtr = true;
1066 
1067   bool IsAmdHsaOrMesa = ST.isAmdHsaOrMesa(F);
1068   if (IsAmdHsaOrMesa && !ST.enableFlatScratch())
1069     PrivateSegmentBuffer = true;
1070   else if (ST.isMesaGfxShader(F))
1071     ImplicitBufferPtr = true;
1072 
1073   if (!AMDGPU::isGraphics(CC)) {
1074     if (!F.hasFnAttribute("amdgpu-no-dispatch-ptr"))
1075       DispatchPtr = true;
1076 
1077     // FIXME: Can this always be disabled with < COv5?
1078     if (!F.hasFnAttribute("amdgpu-no-queue-ptr"))
1079       QueuePtr = true;
1080 
1081     if (!F.hasFnAttribute("amdgpu-no-dispatch-id"))
1082       DispatchID = true;
1083   }
1084 
1085   // TODO: This could be refined a lot. The attribute is a poor way of
1086   // detecting calls or stack objects that may require it before argument
1087   // lowering.
1088   if (ST.hasFlatAddressSpace() && AMDGPU::isEntryFunctionCC(CC) &&
1089       (IsAmdHsaOrMesa || ST.enableFlatScratch()) &&
1090       (HasCalls || HasStackObjects || ST.enableFlatScratch()) &&
1091       !ST.flatScratchIsArchitected()) {
1092     FlatScratchInit = true;
1093   }
1094 
1095   if (hasImplicitBufferPtr())
1096     NumUsedUserSGPRs += getNumUserSGPRForField(ImplicitBufferPtrID);
1097 
1098   if (hasPrivateSegmentBuffer())
1099     NumUsedUserSGPRs += getNumUserSGPRForField(PrivateSegmentBufferID);
1100 
1101   if (hasDispatchPtr())
1102     NumUsedUserSGPRs += getNumUserSGPRForField(DispatchPtrID);
1103 
1104   if (hasQueuePtr())
1105     NumUsedUserSGPRs += getNumUserSGPRForField(QueuePtrID);
1106 
1107   if (hasKernargSegmentPtr())
1108     NumUsedUserSGPRs += getNumUserSGPRForField(KernargSegmentPtrID);
1109 
1110   if (hasDispatchID())
1111     NumUsedUserSGPRs += getNumUserSGPRForField(DispatchIdID);
1112 
1113   if (hasFlatScratchInit())
1114     NumUsedUserSGPRs += getNumUserSGPRForField(FlatScratchInitID);
1115 
1116   if (hasPrivateSegmentSize())
1117     NumUsedUserSGPRs += getNumUserSGPRForField(PrivateSegmentSizeID);
1118 }
1119 
1120 void GCNUserSGPRUsageInfo::allocKernargPreloadSGPRs(unsigned NumSGPRs) {
1121   assert(NumKernargPreloadSGPRs + NumSGPRs <= AMDGPU::getMaxNumUserSGPRs(ST));
1122   NumKernargPreloadSGPRs += NumSGPRs;
1123   NumUsedUserSGPRs += NumSGPRs;
1124 }
1125 
1126 unsigned GCNUserSGPRUsageInfo::getNumFreeUserSGPRs() {
1127   return AMDGPU::getMaxNumUserSGPRs(ST) - NumUsedUserSGPRs;
1128 }
1129 
1130 SmallVector<unsigned>
1131 AMDGPUSubtarget::getMaxNumWorkGroups(const Function &F) const {
1132   return AMDGPU::getIntegerVecAttribute(F, "amdgpu-max-num-workgroups", 3);
1133 }
1134