1 //===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This pass attempts to replace out argument usage with a return of a 10 /// struct. 11 /// 12 /// We can support returning a lot of values directly in registers, but 13 /// idiomatic C code frequently uses a pointer argument to return a second value 14 /// rather than returning a struct by value. GPU stack access is also quite 15 /// painful, so we want to avoid that if possible. Passing a stack object 16 /// pointer to a function also requires an additional address expansion code 17 /// sequence to convert the pointer to be relative to the kernel's scratch wave 18 /// offset register since the callee doesn't know what stack frame the incoming 19 /// pointer is relative to. 20 /// 21 /// The goal is to try rewriting code that looks like this: 22 /// 23 /// int foo(int a, int b, int* out) { 24 /// *out = bar(); 25 /// return a + b; 26 /// } 27 /// 28 /// into something like this: 29 /// 30 /// std::pair<int, int> foo(int a, int b) { 31 /// return std::make_pair(a + b, bar()); 32 /// } 33 /// 34 /// Typically the incoming pointer is a simple alloca for a temporary variable 35 /// to use the API, which if replaced with a struct return will be easily SROA'd 36 /// out when the stub function we create is inlined 37 /// 38 /// This pass introduces the struct return, but leaves the unused pointer 39 /// arguments and introduces a new stub function calling the struct returning 40 /// body. DeadArgumentElimination should be run after this to clean these up. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "AMDGPU.h" 45 #include "Utils/AMDGPUBaseInfo.h" 46 #include "llvm/ADT/SmallSet.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 49 #include "llvm/IR/IRBuilder.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 57 #define DEBUG_TYPE "amdgpu-rewrite-out-arguments" 58 59 using namespace llvm; 60 61 static cl::opt<bool> AnyAddressSpace( 62 "amdgpu-any-address-space-out-arguments", 63 cl::desc("Replace pointer out arguments with " 64 "struct returns for non-private address space"), 65 cl::Hidden, 66 cl::init(false)); 67 68 static cl::opt<unsigned> MaxNumRetRegs( 69 "amdgpu-max-return-arg-num-regs", 70 cl::desc("Approximately limit number of return registers for replacing out arguments"), 71 cl::Hidden, 72 cl::init(16)); 73 74 STATISTIC(NumOutArgumentsReplaced, 75 "Number out arguments moved to struct return values"); 76 STATISTIC(NumOutArgumentFunctionsReplaced, 77 "Number of functions with out arguments moved to struct return values"); 78 79 namespace { 80 81 class AMDGPURewriteOutArguments : public FunctionPass { 82 private: 83 const DataLayout *DL = nullptr; 84 MemoryDependenceResults *MDA = nullptr; 85 86 Type *getStoredType(Value &Arg) const; 87 Type *getOutArgumentType(Argument &Arg) const; 88 89 public: 90 static char ID; 91 92 AMDGPURewriteOutArguments() : FunctionPass(ID) {} 93 94 void getAnalysisUsage(AnalysisUsage &AU) const override { 95 AU.addRequired<MemoryDependenceWrapperPass>(); 96 FunctionPass::getAnalysisUsage(AU); 97 } 98 99 bool doInitialization(Module &M) override; 100 bool runOnFunction(Function &F) override; 101 }; 102 103 } // end anonymous namespace 104 105 INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE, 106 "AMDGPU Rewrite Out Arguments", false, false) 107 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 108 INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE, 109 "AMDGPU Rewrite Out Arguments", false, false) 110 111 char AMDGPURewriteOutArguments::ID = 0; 112 113 Type *AMDGPURewriteOutArguments::getStoredType(Value &Arg) const { 114 const int MaxUses = 10; 115 int UseCount = 0; 116 117 SmallVector<Use *> Worklist; 118 for (Use &U : Arg.uses()) 119 Worklist.push_back(&U); 120 121 Type *StoredType = nullptr; 122 while (!Worklist.empty()) { 123 Use *U = Worklist.pop_back_val(); 124 125 if (auto *BCI = dyn_cast<BitCastInst>(U->getUser())) { 126 for (Use &U : BCI->uses()) 127 Worklist.push_back(&U); 128 continue; 129 } 130 131 if (auto *SI = dyn_cast<StoreInst>(U->getUser())) { 132 if (UseCount++ > MaxUses) 133 return nullptr; 134 135 if (!SI->isSimple() || 136 U->getOperandNo() != StoreInst::getPointerOperandIndex()) 137 return nullptr; 138 139 if (StoredType && StoredType != SI->getValueOperand()->getType()) 140 return nullptr; // More than one type. 141 StoredType = SI->getValueOperand()->getType(); 142 continue; 143 } 144 145 // Unsupported user. 146 return nullptr; 147 } 148 149 return StoredType; 150 } 151 152 Type *AMDGPURewriteOutArguments::getOutArgumentType(Argument &Arg) const { 153 const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs; 154 PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType()); 155 156 // TODO: It might be useful for any out arguments, not just privates. 157 if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() && 158 !AnyAddressSpace) || 159 Arg.hasByValAttr() || Arg.hasStructRetAttr()) { 160 return nullptr; 161 } 162 163 Type *StoredType = getStoredType(Arg); 164 if (!StoredType || DL->getTypeStoreSize(StoredType) > MaxOutArgSizeBytes) 165 return nullptr; 166 167 return StoredType; 168 } 169 170 bool AMDGPURewriteOutArguments::doInitialization(Module &M) { 171 DL = &M.getDataLayout(); 172 return false; 173 } 174 175 bool AMDGPURewriteOutArguments::runOnFunction(Function &F) { 176 if (skipFunction(F)) 177 return false; 178 179 // TODO: Could probably handle variadic functions. 180 if (F.isVarArg() || F.hasStructRetAttr() || 181 AMDGPU::isEntryFunctionCC(F.getCallingConv())) 182 return false; 183 184 MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 185 186 unsigned ReturnNumRegs = 0; 187 SmallDenseMap<int, Type *, 4> OutArgIndexes; 188 SmallVector<Type *, 4> ReturnTypes; 189 Type *RetTy = F.getReturnType(); 190 if (!RetTy->isVoidTy()) { 191 ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4; 192 193 if (ReturnNumRegs >= MaxNumRetRegs) 194 return false; 195 196 ReturnTypes.push_back(RetTy); 197 } 198 199 SmallVector<std::pair<Argument *, Type *>, 4> OutArgs; 200 for (Argument &Arg : F.args()) { 201 if (Type *Ty = getOutArgumentType(Arg)) { 202 LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg 203 << " in function " << F.getName() << '\n'); 204 OutArgs.push_back({&Arg, Ty}); 205 } 206 } 207 208 if (OutArgs.empty()) 209 return false; 210 211 using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>; 212 213 DenseMap<ReturnInst *, ReplacementVec> Replacements; 214 215 SmallVector<ReturnInst *, 4> Returns; 216 for (BasicBlock &BB : F) { 217 if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back())) 218 Returns.push_back(RI); 219 } 220 221 if (Returns.empty()) 222 return false; 223 224 bool Changing; 225 226 do { 227 Changing = false; 228 229 // Keep retrying if we are able to successfully eliminate an argument. This 230 // helps with cases with multiple arguments which may alias, such as in a 231 // sincos implementation. If we have 2 stores to arguments, on the first 232 // attempt the MDA query will succeed for the second store but not the 233 // first. On the second iteration we've removed that out clobbering argument 234 // (by effectively moving it into another function) and will find the second 235 // argument is OK to move. 236 for (const auto &Pair : OutArgs) { 237 bool ThisReplaceable = true; 238 SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores; 239 240 Argument *OutArg = Pair.first; 241 Type *ArgTy = Pair.second; 242 243 // Skip this argument if converting it will push us over the register 244 // count to return limit. 245 246 // TODO: This is an approximation. When legalized this could be more. We 247 // can ask TLI for exactly how many. 248 unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4; 249 if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs) 250 continue; 251 252 // An argument is convertible only if all exit blocks are able to replace 253 // it. 254 for (ReturnInst *RI : Returns) { 255 BasicBlock *BB = RI->getParent(); 256 257 MemDepResult Q = MDA->getPointerDependencyFrom( 258 MemoryLocation::getBeforeOrAfter(OutArg), true, BB->end(), BB, RI); 259 StoreInst *SI = nullptr; 260 if (Q.isDef()) 261 SI = dyn_cast<StoreInst>(Q.getInst()); 262 263 if (SI) { 264 LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n'); 265 ReplaceableStores.emplace_back(RI, SI); 266 } else { 267 ThisReplaceable = false; 268 break; 269 } 270 } 271 272 if (!ThisReplaceable) 273 continue; // Try the next argument candidate. 274 275 for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) { 276 Value *ReplVal = Store.second->getValueOperand(); 277 278 auto &ValVec = Replacements[Store.first]; 279 if (llvm::any_of(ValVec, 280 [OutArg](const std::pair<Argument *, Value *> &Entry) { 281 return Entry.first == OutArg; 282 })) { 283 LLVM_DEBUG(dbgs() 284 << "Saw multiple out arg stores" << *OutArg << '\n'); 285 // It is possible to see stores to the same argument multiple times, 286 // but we expect these would have been optimized out already. 287 ThisReplaceable = false; 288 break; 289 } 290 291 ValVec.emplace_back(OutArg, ReplVal); 292 Store.second->eraseFromParent(); 293 } 294 295 if (ThisReplaceable) { 296 ReturnTypes.push_back(ArgTy); 297 OutArgIndexes.insert({OutArg->getArgNo(), ArgTy}); 298 ++NumOutArgumentsReplaced; 299 Changing = true; 300 } 301 } 302 } while (Changing); 303 304 if (Replacements.empty()) 305 return false; 306 307 LLVMContext &Ctx = F.getParent()->getContext(); 308 StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName()); 309 310 FunctionType *NewFuncTy = FunctionType::get(NewRetTy, 311 F.getFunctionType()->params(), 312 F.isVarArg()); 313 314 LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n'); 315 316 Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage, 317 F.getName() + ".body"); 318 F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc); 319 NewFunc->copyAttributesFrom(&F); 320 NewFunc->setComdat(F.getComdat()); 321 322 // We want to preserve the function and param attributes, but need to strip 323 // off any return attributes, e.g. zeroext doesn't make sense with a struct. 324 NewFunc->stealArgumentListFrom(F); 325 326 AttributeMask RetAttrs; 327 RetAttrs.addAttribute(Attribute::SExt); 328 RetAttrs.addAttribute(Attribute::ZExt); 329 RetAttrs.addAttribute(Attribute::NoAlias); 330 NewFunc->removeRetAttrs(RetAttrs); 331 // TODO: How to preserve metadata? 332 333 // Move the body of the function into the new rewritten function, and replace 334 // this function with a stub. 335 NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList()); 336 337 for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) { 338 ReturnInst *RI = Replacement.first; 339 IRBuilder<> B(RI); 340 B.SetCurrentDebugLocation(RI->getDebugLoc()); 341 342 int RetIdx = 0; 343 Value *NewRetVal = UndefValue::get(NewRetTy); 344 345 Value *RetVal = RI->getReturnValue(); 346 if (RetVal) 347 NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++); 348 349 for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) 350 NewRetVal = B.CreateInsertValue(NewRetVal, ReturnPoint.second, RetIdx++); 351 352 if (RetVal) 353 RI->setOperand(0, NewRetVal); 354 else { 355 B.CreateRet(NewRetVal); 356 RI->eraseFromParent(); 357 } 358 } 359 360 SmallVector<Value *, 16> StubCallArgs; 361 for (Argument &Arg : F.args()) { 362 if (OutArgIndexes.count(Arg.getArgNo())) { 363 // It's easier to preserve the type of the argument list. We rely on 364 // DeadArgumentElimination to take care of these. 365 StubCallArgs.push_back(UndefValue::get(Arg.getType())); 366 } else { 367 StubCallArgs.push_back(&Arg); 368 } 369 } 370 371 BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F); 372 IRBuilder<> B(StubBB); 373 CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs); 374 375 int RetIdx = RetTy->isVoidTy() ? 0 : 1; 376 for (Argument &Arg : F.args()) { 377 if (!OutArgIndexes.count(Arg.getArgNo())) 378 continue; 379 380 PointerType *ArgType = cast<PointerType>(Arg.getType()); 381 382 Type *EltTy = OutArgIndexes[Arg.getArgNo()]; 383 const auto Align = 384 DL->getValueOrABITypeAlignment(Arg.getParamAlign(), EltTy); 385 386 Value *Val = B.CreateExtractValue(StubCall, RetIdx++); 387 Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace()); 388 389 // We can peek through bitcasts, so the type may not match. 390 Value *PtrVal = B.CreateBitCast(&Arg, PtrTy); 391 392 B.CreateAlignedStore(Val, PtrVal, Align); 393 } 394 395 if (!RetTy->isVoidTy()) { 396 B.CreateRet(B.CreateExtractValue(StubCall, 0)); 397 } else { 398 B.CreateRetVoid(); 399 } 400 401 // The function is now a stub we want to inline. 402 F.addFnAttr(Attribute::AlwaysInline); 403 404 ++NumOutArgumentFunctionsReplaced; 405 return true; 406 } 407 408 FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() { 409 return new AMDGPURewriteOutArguments(); 410 } 411