1 //===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This pass attempts to replace out argument usage with a return of a 10 /// struct. 11 /// 12 /// We can support returning a lot of values directly in registers, but 13 /// idiomatic C code frequently uses a pointer argument to return a second value 14 /// rather than returning a struct by value. GPU stack access is also quite 15 /// painful, so we want to avoid that if possible. Passing a stack object 16 /// pointer to a function also requires an additional address expansion code 17 /// sequence to convert the pointer to be relative to the kernel's scratch wave 18 /// offset register since the callee doesn't know what stack frame the incoming 19 /// pointer is relative to. 20 /// 21 /// The goal is to try rewriting code that looks like this: 22 /// 23 /// int foo(int a, int b, int* out) { 24 /// *out = bar(); 25 /// return a + b; 26 /// } 27 /// 28 /// into something like this: 29 /// 30 /// std::pair<int, int> foo(int a, int b) { 31 /// return std::make_pair(a + b, bar()); 32 /// } 33 /// 34 /// Typically the incoming pointer is a simple alloca for a temporary variable 35 /// to use the API, which if replaced with a struct return will be easily SROA'd 36 /// out when the stub function we create is inlined 37 /// 38 /// This pass introduces the struct return, but leaves the unused pointer 39 /// arguments and introduces a new stub function calling the struct returning 40 /// body. DeadArgumentElimination should be run after this to clean these up. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "AMDGPU.h" 45 #include "Utils/AMDGPUBaseInfo.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/STLExtras.h" 48 #include "llvm/ADT/SmallSet.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 52 #include "llvm/Analysis/MemoryLocation.h" 53 #include "llvm/IR/Argument.h" 54 #include "llvm/IR/Attributes.h" 55 #include "llvm/IR/BasicBlock.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DerivedTypes.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/User.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <cassert> 74 #include <utility> 75 76 #define DEBUG_TYPE "amdgpu-rewrite-out-arguments" 77 78 using namespace llvm; 79 80 static cl::opt<bool> AnyAddressSpace( 81 "amdgpu-any-address-space-out-arguments", 82 cl::desc("Replace pointer out arguments with " 83 "struct returns for non-private address space"), 84 cl::Hidden, 85 cl::init(false)); 86 87 static cl::opt<unsigned> MaxNumRetRegs( 88 "amdgpu-max-return-arg-num-regs", 89 cl::desc("Approximately limit number of return registers for replacing out arguments"), 90 cl::Hidden, 91 cl::init(16)); 92 93 STATISTIC(NumOutArgumentsReplaced, 94 "Number out arguments moved to struct return values"); 95 STATISTIC(NumOutArgumentFunctionsReplaced, 96 "Number of functions with out arguments moved to struct return values"); 97 98 namespace { 99 100 class AMDGPURewriteOutArguments : public FunctionPass { 101 private: 102 const DataLayout *DL = nullptr; 103 MemoryDependenceResults *MDA = nullptr; 104 105 bool checkArgumentUses(Value &Arg) const; 106 bool isOutArgumentCandidate(Argument &Arg) const; 107 108 #ifndef NDEBUG 109 bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const; 110 #endif 111 112 public: 113 static char ID; 114 115 AMDGPURewriteOutArguments() : FunctionPass(ID) {} 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.addRequired<MemoryDependenceWrapperPass>(); 119 FunctionPass::getAnalysisUsage(AU); 120 } 121 122 bool doInitialization(Module &M) override; 123 bool runOnFunction(Function &F) override; 124 }; 125 126 } // end anonymous namespace 127 128 INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE, 129 "AMDGPU Rewrite Out Arguments", false, false) 130 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 131 INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE, 132 "AMDGPU Rewrite Out Arguments", false, false) 133 134 char AMDGPURewriteOutArguments::ID = 0; 135 136 bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const { 137 const int MaxUses = 10; 138 int UseCount = 0; 139 140 for (Use &U : Arg.uses()) { 141 StoreInst *SI = dyn_cast<StoreInst>(U.getUser()); 142 if (UseCount > MaxUses) 143 return false; 144 145 if (!SI) { 146 auto *BCI = dyn_cast<BitCastInst>(U.getUser()); 147 if (!BCI || !BCI->hasOneUse()) 148 return false; 149 150 // We don't handle multiple stores currently, so stores to aggregate 151 // pointers aren't worth the trouble since they are canonically split up. 152 Type *DestEltTy = BCI->getType()->getPointerElementType(); 153 if (DestEltTy->isAggregateType()) 154 return false; 155 156 // We could handle these if we had a convenient way to bitcast between 157 // them. 158 Type *SrcEltTy = Arg.getType()->getPointerElementType(); 159 if (SrcEltTy->isArrayTy()) 160 return false; 161 162 // Special case handle structs with single members. It is useful to handle 163 // some casts between structs and non-structs, but we can't bitcast 164 // directly between them. directly bitcast between them. Blender uses 165 // some casts that look like { <3 x float> }* to <4 x float>* 166 if ((SrcEltTy->isStructTy() && (SrcEltTy->getStructNumElements() != 1))) 167 return false; 168 169 // Clang emits OpenCL 3-vector type accesses with a bitcast to the 170 // equivalent 4-element vector and accesses that, and we're looking for 171 // this pointer cast. 172 if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy)) 173 return false; 174 175 return checkArgumentUses(*BCI); 176 } 177 178 if (!SI->isSimple() || 179 U.getOperandNo() != StoreInst::getPointerOperandIndex()) 180 return false; 181 182 ++UseCount; 183 } 184 185 // Skip unused arguments. 186 return UseCount > 0; 187 } 188 189 bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const { 190 const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs; 191 PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType()); 192 193 // TODO: It might be useful for any out arguments, not just privates. 194 if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() && 195 !AnyAddressSpace) || 196 Arg.hasByValAttr() || Arg.hasStructRetAttr() || 197 DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) { 198 return false; 199 } 200 201 return checkArgumentUses(Arg); 202 } 203 204 bool AMDGPURewriteOutArguments::doInitialization(Module &M) { 205 DL = &M.getDataLayout(); 206 return false; 207 } 208 209 #ifndef NDEBUG 210 bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const { 211 VectorType *VT0 = dyn_cast<VectorType>(Ty0); 212 VectorType *VT1 = dyn_cast<VectorType>(Ty1); 213 if (!VT0 || !VT1) 214 return false; 215 216 if (VT0->getNumElements() != 3 || 217 VT1->getNumElements() != 4) 218 return false; 219 220 return DL->getTypeSizeInBits(VT0->getElementType()) == 221 DL->getTypeSizeInBits(VT1->getElementType()); 222 } 223 #endif 224 225 bool AMDGPURewriteOutArguments::runOnFunction(Function &F) { 226 if (skipFunction(F)) 227 return false; 228 229 // TODO: Could probably handle variadic functions. 230 if (F.isVarArg() || F.hasStructRetAttr() || 231 AMDGPU::isEntryFunctionCC(F.getCallingConv())) 232 return false; 233 234 MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 235 236 unsigned ReturnNumRegs = 0; 237 SmallSet<int, 4> OutArgIndexes; 238 SmallVector<Type *, 4> ReturnTypes; 239 Type *RetTy = F.getReturnType(); 240 if (!RetTy->isVoidTy()) { 241 ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4; 242 243 if (ReturnNumRegs >= MaxNumRetRegs) 244 return false; 245 246 ReturnTypes.push_back(RetTy); 247 } 248 249 SmallVector<Argument *, 4> OutArgs; 250 for (Argument &Arg : F.args()) { 251 if (isOutArgumentCandidate(Arg)) { 252 LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg 253 << " in function " << F.getName() << '\n'); 254 OutArgs.push_back(&Arg); 255 } 256 } 257 258 if (OutArgs.empty()) 259 return false; 260 261 using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>; 262 263 DenseMap<ReturnInst *, ReplacementVec> Replacements; 264 265 SmallVector<ReturnInst *, 4> Returns; 266 for (BasicBlock &BB : F) { 267 if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back())) 268 Returns.push_back(RI); 269 } 270 271 if (Returns.empty()) 272 return false; 273 274 bool Changing; 275 276 do { 277 Changing = false; 278 279 // Keep retrying if we are able to successfully eliminate an argument. This 280 // helps with cases with multiple arguments which may alias, such as in a 281 // sincos implemntation. If we have 2 stores to arguments, on the first 282 // attempt the MDA query will succeed for the second store but not the 283 // first. On the second iteration we've removed that out clobbering argument 284 // (by effectively moving it into another function) and will find the second 285 // argument is OK to move. 286 for (Argument *OutArg : OutArgs) { 287 bool ThisReplaceable = true; 288 SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores; 289 290 Type *ArgTy = OutArg->getType()->getPointerElementType(); 291 292 // Skip this argument if converting it will push us over the register 293 // count to return limit. 294 295 // TODO: This is an approximation. When legalized this could be more. We 296 // can ask TLI for exactly how many. 297 unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4; 298 if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs) 299 continue; 300 301 // An argument is convertible only if all exit blocks are able to replace 302 // it. 303 for (ReturnInst *RI : Returns) { 304 BasicBlock *BB = RI->getParent(); 305 306 MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg), 307 true, BB->end(), BB, RI); 308 StoreInst *SI = nullptr; 309 if (Q.isDef()) 310 SI = dyn_cast<StoreInst>(Q.getInst()); 311 312 if (SI) { 313 LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n'); 314 ReplaceableStores.emplace_back(RI, SI); 315 } else { 316 ThisReplaceable = false; 317 break; 318 } 319 } 320 321 if (!ThisReplaceable) 322 continue; // Try the next argument candidate. 323 324 for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) { 325 Value *ReplVal = Store.second->getValueOperand(); 326 327 auto &ValVec = Replacements[Store.first]; 328 if (llvm::find_if(ValVec, 329 [OutArg](const std::pair<Argument *, Value *> &Entry) { 330 return Entry.first == OutArg;}) != ValVec.end()) { 331 LLVM_DEBUG(dbgs() 332 << "Saw multiple out arg stores" << *OutArg << '\n'); 333 // It is possible to see stores to the same argument multiple times, 334 // but we expect these would have been optimized out already. 335 ThisReplaceable = false; 336 break; 337 } 338 339 ValVec.emplace_back(OutArg, ReplVal); 340 Store.second->eraseFromParent(); 341 } 342 343 if (ThisReplaceable) { 344 ReturnTypes.push_back(ArgTy); 345 OutArgIndexes.insert(OutArg->getArgNo()); 346 ++NumOutArgumentsReplaced; 347 Changing = true; 348 } 349 } 350 } while (Changing); 351 352 if (Replacements.empty()) 353 return false; 354 355 LLVMContext &Ctx = F.getParent()->getContext(); 356 StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName()); 357 358 FunctionType *NewFuncTy = FunctionType::get(NewRetTy, 359 F.getFunctionType()->params(), 360 F.isVarArg()); 361 362 LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n'); 363 364 Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage, 365 F.getName() + ".body"); 366 F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc); 367 NewFunc->copyAttributesFrom(&F); 368 NewFunc->setComdat(F.getComdat()); 369 370 // We want to preserve the function and param attributes, but need to strip 371 // off any return attributes, e.g. zeroext doesn't make sense with a struct. 372 NewFunc->stealArgumentListFrom(F); 373 374 AttrBuilder RetAttrs; 375 RetAttrs.addAttribute(Attribute::SExt); 376 RetAttrs.addAttribute(Attribute::ZExt); 377 RetAttrs.addAttribute(Attribute::NoAlias); 378 NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs); 379 // TODO: How to preserve metadata? 380 381 // Move the body of the function into the new rewritten function, and replace 382 // this function with a stub. 383 NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList()); 384 385 for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) { 386 ReturnInst *RI = Replacement.first; 387 IRBuilder<> B(RI); 388 B.SetCurrentDebugLocation(RI->getDebugLoc()); 389 390 int RetIdx = 0; 391 Value *NewRetVal = UndefValue::get(NewRetTy); 392 393 Value *RetVal = RI->getReturnValue(); 394 if (RetVal) 395 NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++); 396 397 for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) { 398 Argument *Arg = ReturnPoint.first; 399 Value *Val = ReturnPoint.second; 400 Type *EltTy = Arg->getType()->getPointerElementType(); 401 if (Val->getType() != EltTy) { 402 Type *EffectiveEltTy = EltTy; 403 if (StructType *CT = dyn_cast<StructType>(EltTy)) { 404 assert(CT->getNumElements() == 1); 405 EffectiveEltTy = CT->getElementType(0); 406 } 407 408 if (DL->getTypeSizeInBits(EffectiveEltTy) != 409 DL->getTypeSizeInBits(Val->getType())) { 410 assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType())); 411 Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()), 412 { 0, 1, 2 }); 413 } 414 415 Val = B.CreateBitCast(Val, EffectiveEltTy); 416 417 // Re-create single element composite. 418 if (EltTy != EffectiveEltTy) 419 Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0); 420 } 421 422 NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++); 423 } 424 425 if (RetVal) 426 RI->setOperand(0, NewRetVal); 427 else { 428 B.CreateRet(NewRetVal); 429 RI->eraseFromParent(); 430 } 431 } 432 433 SmallVector<Value *, 16> StubCallArgs; 434 for (Argument &Arg : F.args()) { 435 if (OutArgIndexes.count(Arg.getArgNo())) { 436 // It's easier to preserve the type of the argument list. We rely on 437 // DeadArgumentElimination to take care of these. 438 StubCallArgs.push_back(UndefValue::get(Arg.getType())); 439 } else { 440 StubCallArgs.push_back(&Arg); 441 } 442 } 443 444 BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F); 445 IRBuilder<> B(StubBB); 446 CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs); 447 448 int RetIdx = RetTy->isVoidTy() ? 0 : 1; 449 for (Argument &Arg : F.args()) { 450 if (!OutArgIndexes.count(Arg.getArgNo())) 451 continue; 452 453 PointerType *ArgType = cast<PointerType>(Arg.getType()); 454 455 auto *EltTy = ArgType->getElementType(); 456 unsigned Align = Arg.getParamAlignment(); 457 if (Align == 0) 458 Align = DL->getABITypeAlignment(EltTy); 459 460 Value *Val = B.CreateExtractValue(StubCall, RetIdx++); 461 Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace()); 462 463 // We can peek through bitcasts, so the type may not match. 464 Value *PtrVal = B.CreateBitCast(&Arg, PtrTy); 465 466 B.CreateAlignedStore(Val, PtrVal, Align); 467 } 468 469 if (!RetTy->isVoidTy()) { 470 B.CreateRet(B.CreateExtractValue(StubCall, 0)); 471 } else { 472 B.CreateRetVoid(); 473 } 474 475 // The function is now a stub we want to inline. 476 F.addFnAttr(Attribute::AlwaysInline); 477 478 ++NumOutArgumentFunctionsReplaced; 479 return true; 480 } 481 482 FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() { 483 return new AMDGPURewriteOutArguments(); 484 } 485