xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPURewriteOutArguments.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This pass attempts to replace out argument usage with a return of a
10 /// struct.
11 ///
12 /// We can support returning a lot of values directly in registers, but
13 /// idiomatic C code frequently uses a pointer argument to return a second value
14 /// rather than returning a struct by value. GPU stack access is also quite
15 /// painful, so we want to avoid that if possible. Passing a stack object
16 /// pointer to a function also requires an additional address expansion code
17 /// sequence to convert the pointer to be relative to the kernel's scratch wave
18 /// offset register since the callee doesn't know what stack frame the incoming
19 /// pointer is relative to.
20 ///
21 /// The goal is to try rewriting code that looks like this:
22 ///
23 ///  int foo(int a, int b, int* out) {
24 ///     *out = bar();
25 ///     return a + b;
26 /// }
27 ///
28 /// into something like this:
29 ///
30 ///  std::pair<int, int> foo(int a, int b) {
31 ///     return std::make_pair(a + b, bar());
32 /// }
33 ///
34 /// Typically the incoming pointer is a simple alloca for a temporary variable
35 /// to use the API, which if replaced with a struct return will be easily SROA'd
36 /// out when the stub function we create is inlined
37 ///
38 /// This pass introduces the struct return, but leaves the unused pointer
39 /// arguments and introduces a new stub function calling the struct returning
40 /// body. DeadArgumentElimination should be run after this to clean these up.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "AMDGPU.h"
45 #include "Utils/AMDGPUBaseInfo.h"
46 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/STLExtras.h"
49 #include "llvm/ADT/SmallSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/Analysis/MemoryLocation.h"
53 #include "llvm/IR/Argument.h"
54 #include "llvm/IR/Attributes.h"
55 #include "llvm/IR/BasicBlock.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <cassert>
73 #include <utility>
74 
75 #define DEBUG_TYPE "amdgpu-rewrite-out-arguments"
76 
77 using namespace llvm;
78 
79 static cl::opt<bool> AnyAddressSpace(
80   "amdgpu-any-address-space-out-arguments",
81   cl::desc("Replace pointer out arguments with "
82            "struct returns for non-private address space"),
83   cl::Hidden,
84   cl::init(false));
85 
86 static cl::opt<unsigned> MaxNumRetRegs(
87   "amdgpu-max-return-arg-num-regs",
88   cl::desc("Approximately limit number of return registers for replacing out arguments"),
89   cl::Hidden,
90   cl::init(16));
91 
92 STATISTIC(NumOutArgumentsReplaced,
93           "Number out arguments moved to struct return values");
94 STATISTIC(NumOutArgumentFunctionsReplaced,
95           "Number of functions with out arguments moved to struct return values");
96 
97 namespace {
98 
99 class AMDGPURewriteOutArguments : public FunctionPass {
100 private:
101   const DataLayout *DL = nullptr;
102   MemoryDependenceResults *MDA = nullptr;
103 
104   bool checkArgumentUses(Value &Arg) const;
105   bool isOutArgumentCandidate(Argument &Arg) const;
106 
107 #ifndef NDEBUG
108   bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const;
109 #endif
110 
111 public:
112   static char ID;
113 
114   AMDGPURewriteOutArguments() : FunctionPass(ID) {}
115 
116   void getAnalysisUsage(AnalysisUsage &AU) const override {
117     AU.addRequired<MemoryDependenceWrapperPass>();
118     FunctionPass::getAnalysisUsage(AU);
119   }
120 
121   bool doInitialization(Module &M) override;
122   bool runOnFunction(Function &F) override;
123 };
124 
125 } // end anonymous namespace
126 
127 INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE,
128                       "AMDGPU Rewrite Out Arguments", false, false)
129 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
130 INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE,
131                     "AMDGPU Rewrite Out Arguments", false, false)
132 
133 char AMDGPURewriteOutArguments::ID = 0;
134 
135 bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const {
136   const int MaxUses = 10;
137   int UseCount = 0;
138 
139   for (Use &U : Arg.uses()) {
140     StoreInst *SI = dyn_cast<StoreInst>(U.getUser());
141     if (UseCount > MaxUses)
142       return false;
143 
144     if (!SI) {
145       auto *BCI = dyn_cast<BitCastInst>(U.getUser());
146       if (!BCI || !BCI->hasOneUse())
147         return false;
148 
149       // We don't handle multiple stores currently, so stores to aggregate
150       // pointers aren't worth the trouble since they are canonically split up.
151       Type *DestEltTy = BCI->getType()->getPointerElementType();
152       if (DestEltTy->isAggregateType())
153         return false;
154 
155       // We could handle these if we had a convenient way to bitcast between
156       // them.
157       Type *SrcEltTy = Arg.getType()->getPointerElementType();
158       if (SrcEltTy->isArrayTy())
159         return false;
160 
161       // Special case handle structs with single members. It is useful to handle
162       // some casts between structs and non-structs, but we can't bitcast
163       // directly between them.  directly bitcast between them.  Blender uses
164       // some casts that look like { <3 x float> }* to <4 x float>*
165       if ((SrcEltTy->isStructTy() && (SrcEltTy->getStructNumElements() != 1)))
166         return false;
167 
168       // Clang emits OpenCL 3-vector type accesses with a bitcast to the
169       // equivalent 4-element vector and accesses that, and we're looking for
170       // this pointer cast.
171       if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy))
172         return false;
173 
174       return checkArgumentUses(*BCI);
175     }
176 
177     if (!SI->isSimple() ||
178         U.getOperandNo() != StoreInst::getPointerOperandIndex())
179       return false;
180 
181     ++UseCount;
182   }
183 
184   // Skip unused arguments.
185   return UseCount > 0;
186 }
187 
188 bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const {
189   const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs;
190   PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType());
191 
192   // TODO: It might be useful for any out arguments, not just privates.
193   if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() &&
194                  !AnyAddressSpace) ||
195       Arg.hasByValAttr() || Arg.hasStructRetAttr() ||
196       DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) {
197     return false;
198   }
199 
200   return checkArgumentUses(Arg);
201 }
202 
203 bool AMDGPURewriteOutArguments::doInitialization(Module &M) {
204   DL = &M.getDataLayout();
205   return false;
206 }
207 
208 #ifndef NDEBUG
209 bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const {
210   VectorType *VT0 = dyn_cast<VectorType>(Ty0);
211   VectorType *VT1 = dyn_cast<VectorType>(Ty1);
212   if (!VT0 || !VT1)
213     return false;
214 
215   if (VT0->getNumElements() != 3 ||
216       VT1->getNumElements() != 4)
217     return false;
218 
219   return DL->getTypeSizeInBits(VT0->getElementType()) ==
220          DL->getTypeSizeInBits(VT1->getElementType());
221 }
222 #endif
223 
224 bool AMDGPURewriteOutArguments::runOnFunction(Function &F) {
225   if (skipFunction(F))
226     return false;
227 
228   // TODO: Could probably handle variadic functions.
229   if (F.isVarArg() || F.hasStructRetAttr() ||
230       AMDGPU::isEntryFunctionCC(F.getCallingConv()))
231     return false;
232 
233   MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
234 
235   unsigned ReturnNumRegs = 0;
236   SmallSet<int, 4> OutArgIndexes;
237   SmallVector<Type *, 4> ReturnTypes;
238   Type *RetTy = F.getReturnType();
239   if (!RetTy->isVoidTy()) {
240     ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4;
241 
242     if (ReturnNumRegs >= MaxNumRetRegs)
243       return false;
244 
245     ReturnTypes.push_back(RetTy);
246   }
247 
248   SmallVector<Argument *, 4> OutArgs;
249   for (Argument &Arg : F.args()) {
250     if (isOutArgumentCandidate(Arg)) {
251       LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg
252                         << " in function " << F.getName() << '\n');
253       OutArgs.push_back(&Arg);
254     }
255   }
256 
257   if (OutArgs.empty())
258     return false;
259 
260   using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>;
261 
262   DenseMap<ReturnInst *, ReplacementVec> Replacements;
263 
264   SmallVector<ReturnInst *, 4> Returns;
265   for (BasicBlock &BB : F) {
266     if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back()))
267       Returns.push_back(RI);
268   }
269 
270   if (Returns.empty())
271     return false;
272 
273   bool Changing;
274 
275   do {
276     Changing = false;
277 
278     // Keep retrying if we are able to successfully eliminate an argument. This
279     // helps with cases with multiple arguments which may alias, such as in a
280     // sincos implemntation. If we have 2 stores to arguments, on the first
281     // attempt the MDA query will succeed for the second store but not the
282     // first. On the second iteration we've removed that out clobbering argument
283     // (by effectively moving it into another function) and will find the second
284     // argument is OK to move.
285     for (Argument *OutArg : OutArgs) {
286       bool ThisReplaceable = true;
287       SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores;
288 
289       Type *ArgTy = OutArg->getType()->getPointerElementType();
290 
291       // Skip this argument if converting it will push us over the register
292       // count to return limit.
293 
294       // TODO: This is an approximation. When legalized this could be more. We
295       // can ask TLI for exactly how many.
296       unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4;
297       if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs)
298         continue;
299 
300       // An argument is convertible only if all exit blocks are able to replace
301       // it.
302       for (ReturnInst *RI : Returns) {
303         BasicBlock *BB = RI->getParent();
304 
305         MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg),
306                                                        true, BB->end(), BB, RI);
307         StoreInst *SI = nullptr;
308         if (Q.isDef())
309           SI = dyn_cast<StoreInst>(Q.getInst());
310 
311         if (SI) {
312           LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n');
313           ReplaceableStores.emplace_back(RI, SI);
314         } else {
315           ThisReplaceable = false;
316           break;
317         }
318       }
319 
320       if (!ThisReplaceable)
321         continue; // Try the next argument candidate.
322 
323       for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) {
324         Value *ReplVal = Store.second->getValueOperand();
325 
326         auto &ValVec = Replacements[Store.first];
327         if (llvm::find_if(ValVec,
328               [OutArg](const std::pair<Argument *, Value *> &Entry) {
329                  return Entry.first == OutArg;}) != ValVec.end()) {
330           LLVM_DEBUG(dbgs()
331                      << "Saw multiple out arg stores" << *OutArg << '\n');
332           // It is possible to see stores to the same argument multiple times,
333           // but we expect these would have been optimized out already.
334           ThisReplaceable = false;
335           break;
336         }
337 
338         ValVec.emplace_back(OutArg, ReplVal);
339         Store.second->eraseFromParent();
340       }
341 
342       if (ThisReplaceable) {
343         ReturnTypes.push_back(ArgTy);
344         OutArgIndexes.insert(OutArg->getArgNo());
345         ++NumOutArgumentsReplaced;
346         Changing = true;
347       }
348     }
349   } while (Changing);
350 
351   if (Replacements.empty())
352     return false;
353 
354   LLVMContext &Ctx = F.getParent()->getContext();
355   StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName());
356 
357   FunctionType *NewFuncTy = FunctionType::get(NewRetTy,
358                                               F.getFunctionType()->params(),
359                                               F.isVarArg());
360 
361   LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n');
362 
363   Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage,
364                                        F.getName() + ".body");
365   F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc);
366   NewFunc->copyAttributesFrom(&F);
367   NewFunc->setComdat(F.getComdat());
368 
369   // We want to preserve the function and param attributes, but need to strip
370   // off any return attributes, e.g. zeroext doesn't make sense with a struct.
371   NewFunc->stealArgumentListFrom(F);
372 
373   AttrBuilder RetAttrs;
374   RetAttrs.addAttribute(Attribute::SExt);
375   RetAttrs.addAttribute(Attribute::ZExt);
376   RetAttrs.addAttribute(Attribute::NoAlias);
377   NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs);
378   // TODO: How to preserve metadata?
379 
380   // Move the body of the function into the new rewritten function, and replace
381   // this function with a stub.
382   NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList());
383 
384   for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) {
385     ReturnInst *RI = Replacement.first;
386     IRBuilder<> B(RI);
387     B.SetCurrentDebugLocation(RI->getDebugLoc());
388 
389     int RetIdx = 0;
390     Value *NewRetVal = UndefValue::get(NewRetTy);
391 
392     Value *RetVal = RI->getReturnValue();
393     if (RetVal)
394       NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++);
395 
396     for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) {
397       Argument *Arg = ReturnPoint.first;
398       Value *Val = ReturnPoint.second;
399       Type *EltTy = Arg->getType()->getPointerElementType();
400       if (Val->getType() != EltTy) {
401         Type *EffectiveEltTy = EltTy;
402         if (StructType *CT = dyn_cast<StructType>(EltTy)) {
403           assert(CT->getNumElements() == 1);
404           EffectiveEltTy = CT->getElementType(0);
405         }
406 
407         if (DL->getTypeSizeInBits(EffectiveEltTy) !=
408             DL->getTypeSizeInBits(Val->getType())) {
409           assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType()));
410           Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()),
411                                       { 0, 1, 2 });
412         }
413 
414         Val = B.CreateBitCast(Val, EffectiveEltTy);
415 
416         // Re-create single element composite.
417         if (EltTy != EffectiveEltTy)
418           Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0);
419       }
420 
421       NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++);
422     }
423 
424     if (RetVal)
425       RI->setOperand(0, NewRetVal);
426     else {
427       B.CreateRet(NewRetVal);
428       RI->eraseFromParent();
429     }
430   }
431 
432   SmallVector<Value *, 16> StubCallArgs;
433   for (Argument &Arg : F.args()) {
434     if (OutArgIndexes.count(Arg.getArgNo())) {
435       // It's easier to preserve the type of the argument list. We rely on
436       // DeadArgumentElimination to take care of these.
437       StubCallArgs.push_back(UndefValue::get(Arg.getType()));
438     } else {
439       StubCallArgs.push_back(&Arg);
440     }
441   }
442 
443   BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F);
444   IRBuilder<> B(StubBB);
445   CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs);
446 
447   int RetIdx = RetTy->isVoidTy() ? 0 : 1;
448   for (Argument &Arg : F.args()) {
449     if (!OutArgIndexes.count(Arg.getArgNo()))
450       continue;
451 
452     PointerType *ArgType = cast<PointerType>(Arg.getType());
453 
454     auto *EltTy = ArgType->getElementType();
455     unsigned Align = Arg.getParamAlignment();
456     if (Align == 0)
457       Align = DL->getABITypeAlignment(EltTy);
458 
459     Value *Val = B.CreateExtractValue(StubCall, RetIdx++);
460     Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace());
461 
462     // We can peek through bitcasts, so the type may not match.
463     Value *PtrVal = B.CreateBitCast(&Arg, PtrTy);
464 
465     B.CreateAlignedStore(Val, PtrVal, Align);
466   }
467 
468   if (!RetTy->isVoidTy()) {
469     B.CreateRet(B.CreateExtractValue(StubCall, 0));
470   } else {
471     B.CreateRetVoid();
472   }
473 
474   // The function is now a stub we want to inline.
475   F.addFnAttr(Attribute::AlwaysInline);
476 
477   ++NumOutArgumentFunctionsReplaced;
478   return true;
479 }
480 
481 FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() {
482   return new AMDGPURewriteOutArguments();
483 }
484