1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminates allocas by either converting them into vectors or by migrating 10 // them to local address space. 11 // 12 // Two passes are exposed by this file: 13 // - "promote-alloca-to-vector", which runs early in the pipeline and only 14 // promotes to vector. Promotion to vector is almost always profitable 15 // except when the alloca is too big and the promotion would result in 16 // very high register pressure. 17 // - "promote-alloca", which does both promotion to vector and LDS and runs 18 // much later in the pipeline. This runs after SROA because promoting to 19 // LDS is of course less profitable than getting rid of the alloca or 20 // vectorizing it, thus we only want to do it when the only alternative is 21 // lowering the alloca to stack. 22 // 23 // Note that both of them exist for the old and new PMs. The new PM passes are 24 // declared in AMDGPU.h and the legacy PM ones are declared here.s 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "AMDGPU.h" 29 #include "GCNSubtarget.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/Analysis/CaptureTracking.h" 33 #include "llvm/Analysis/InstSimplifyFolder.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/IntrinsicsAMDGPU.h" 40 #include "llvm/IR/IntrinsicsR600.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Transforms/Utils/SSAUpdater.h" 45 46 #define DEBUG_TYPE "amdgpu-promote-alloca" 47 48 using namespace llvm; 49 50 namespace { 51 52 static cl::opt<bool> 53 DisablePromoteAllocaToVector("disable-promote-alloca-to-vector", 54 cl::desc("Disable promote alloca to vector"), 55 cl::init(false)); 56 57 static cl::opt<bool> 58 DisablePromoteAllocaToLDS("disable-promote-alloca-to-lds", 59 cl::desc("Disable promote alloca to LDS"), 60 cl::init(false)); 61 62 static cl::opt<unsigned> PromoteAllocaToVectorLimit( 63 "amdgpu-promote-alloca-to-vector-limit", 64 cl::desc("Maximum byte size to consider promote alloca to vector"), 65 cl::init(0)); 66 67 // Shared implementation which can do both promotion to vector and to LDS. 68 class AMDGPUPromoteAllocaImpl { 69 private: 70 const TargetMachine &TM; 71 Module *Mod = nullptr; 72 const DataLayout *DL = nullptr; 73 74 // FIXME: This should be per-kernel. 75 uint32_t LocalMemLimit = 0; 76 uint32_t CurrentLocalMemUsage = 0; 77 unsigned MaxVGPRs; 78 79 bool IsAMDGCN = false; 80 bool IsAMDHSA = false; 81 82 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 83 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 84 85 /// BaseAlloca is the alloca root the search started from. 86 /// Val may be that alloca or a recursive user of it. 87 bool collectUsesWithPtrTypes(Value *BaseAlloca, Value *Val, 88 std::vector<Value *> &WorkList) const; 89 90 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 91 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 92 /// Returns true if both operands are derived from the same alloca. Val should 93 /// be the same value as one of the input operands of UseInst. 94 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 95 Instruction *UseInst, int OpIdx0, 96 int OpIdx1) const; 97 98 /// Check whether we have enough local memory for promotion. 99 bool hasSufficientLocalMem(const Function &F); 100 101 bool tryPromoteAllocaToVector(AllocaInst &I); 102 bool tryPromoteAllocaToLDS(AllocaInst &I, bool SufficientLDS); 103 104 public: 105 AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) { 106 const Triple &TT = TM.getTargetTriple(); 107 IsAMDGCN = TT.getArch() == Triple::amdgcn; 108 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 109 } 110 111 bool run(Function &F, bool PromoteToLDS); 112 }; 113 114 // FIXME: This can create globals so should be a module pass. 115 class AMDGPUPromoteAlloca : public FunctionPass { 116 public: 117 static char ID; 118 119 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 120 121 bool runOnFunction(Function &F) override { 122 if (skipFunction(F)) 123 return false; 124 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 125 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()) 126 .run(F, /*PromoteToLDS*/ true); 127 return false; 128 } 129 130 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 FunctionPass::getAnalysisUsage(AU); 135 } 136 }; 137 138 class AMDGPUPromoteAllocaToVector : public FunctionPass { 139 public: 140 static char ID; 141 142 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 143 144 bool runOnFunction(Function &F) override { 145 if (skipFunction(F)) 146 return false; 147 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 148 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()) 149 .run(F, /*PromoteToLDS*/ false); 150 return false; 151 } 152 153 StringRef getPassName() const override { 154 return "AMDGPU Promote Alloca to vector"; 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 FunctionPass::getAnalysisUsage(AU); 160 } 161 }; 162 163 unsigned getMaxVGPRs(const TargetMachine &TM, const Function &F) { 164 if (!TM.getTargetTriple().isAMDGCN()) 165 return 128; 166 167 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 168 unsigned MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 169 170 // A non-entry function has only 32 caller preserved registers. 171 // Do not promote alloca which will force spilling unless we know the function 172 // will be inlined. 173 if (!F.hasFnAttribute(Attribute::AlwaysInline) && 174 !AMDGPU::isEntryFunctionCC(F.getCallingConv())) 175 MaxVGPRs = std::min(MaxVGPRs, 32u); 176 return MaxVGPRs; 177 } 178 179 } // end anonymous namespace 180 181 char AMDGPUPromoteAlloca::ID = 0; 182 char AMDGPUPromoteAllocaToVector::ID = 0; 183 184 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 185 "AMDGPU promote alloca to vector or LDS", false, false) 186 // Move LDS uses from functions to kernels before promote alloca for accurate 187 // estimation of LDS available 188 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDSLegacy) 189 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 190 "AMDGPU promote alloca to vector or LDS", false, false) 191 192 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 193 "AMDGPU promote alloca to vector", false, false) 194 195 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 196 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 197 198 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 199 FunctionAnalysisManager &AM) { 200 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ true); 201 if (Changed) { 202 PreservedAnalyses PA; 203 PA.preserveSet<CFGAnalyses>(); 204 return PA; 205 } 206 return PreservedAnalyses::all(); 207 } 208 209 PreservedAnalyses 210 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 211 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ false); 212 if (Changed) { 213 PreservedAnalyses PA; 214 PA.preserveSet<CFGAnalyses>(); 215 return PA; 216 } 217 return PreservedAnalyses::all(); 218 } 219 220 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 221 return new AMDGPUPromoteAlloca(); 222 } 223 224 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 225 return new AMDGPUPromoteAllocaToVector(); 226 } 227 228 bool AMDGPUPromoteAllocaImpl::run(Function &F, bool PromoteToLDS) { 229 Mod = F.getParent(); 230 DL = &Mod->getDataLayout(); 231 232 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 233 if (!ST.isPromoteAllocaEnabled()) 234 return false; 235 236 MaxVGPRs = getMaxVGPRs(TM, F); 237 238 bool SufficientLDS = PromoteToLDS ? hasSufficientLocalMem(F) : false; 239 240 SmallVector<AllocaInst *, 16> Allocas; 241 for (Instruction &I : F.getEntryBlock()) { 242 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 243 // Array allocations are probably not worth handling, since an allocation 244 // of the array type is the canonical form. 245 if (!AI->isStaticAlloca() || AI->isArrayAllocation()) 246 continue; 247 Allocas.push_back(AI); 248 } 249 } 250 251 bool Changed = false; 252 for (AllocaInst *AI : Allocas) { 253 if (tryPromoteAllocaToVector(*AI)) 254 Changed = true; 255 else if (PromoteToLDS && tryPromoteAllocaToLDS(*AI, SufficientLDS)) 256 Changed = true; 257 } 258 259 // NOTE: tryPromoteAllocaToVector removes the alloca, so Allocas contains 260 // dangling pointers. If we want to reuse it past this point, the loop above 261 // would need to be updated to remove successfully promoted allocas. 262 263 return Changed; 264 } 265 266 struct MemTransferInfo { 267 ConstantInt *SrcIndex = nullptr; 268 ConstantInt *DestIndex = nullptr; 269 }; 270 271 // Checks if the instruction I is a memset user of the alloca AI that we can 272 // deal with. Currently, only non-volatile memsets that affect the whole alloca 273 // are handled. 274 static bool isSupportedMemset(MemSetInst *I, AllocaInst *AI, 275 const DataLayout &DL) { 276 using namespace PatternMatch; 277 // For now we only care about non-volatile memsets that affect the whole type 278 // (start at index 0 and fill the whole alloca). 279 // 280 // TODO: Now that we moved to PromoteAlloca we could handle any memsets 281 // (except maybe volatile ones?) - we just need to use shufflevector if it 282 // only affects a subset of the vector. 283 const unsigned Size = DL.getTypeStoreSize(AI->getAllocatedType()); 284 return I->getOperand(0) == AI && 285 match(I->getOperand(2), m_SpecificInt(Size)) && !I->isVolatile(); 286 } 287 288 static Value * 289 calculateVectorIndex(Value *Ptr, 290 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 291 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()); 292 if (!GEP) 293 return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext())); 294 295 auto I = GEPIdx.find(GEP); 296 assert(I != GEPIdx.end() && "Must have entry for GEP!"); 297 return I->second; 298 } 299 300 static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca, 301 Type *VecElemTy, const DataLayout &DL) { 302 // TODO: Extracting a "multiple of X" from a GEP might be a useful generic 303 // helper. 304 unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType()); 305 MapVector<Value *, APInt> VarOffsets; 306 APInt ConstOffset(BW, 0); 307 if (GEP->getPointerOperand()->stripPointerCasts() != Alloca || 308 !GEP->collectOffset(DL, BW, VarOffsets, ConstOffset)) 309 return nullptr; 310 311 unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy); 312 if (VarOffsets.size() > 1) 313 return nullptr; 314 315 if (VarOffsets.size() == 1) { 316 // Only handle cases where we don't need to insert extra arithmetic 317 // instructions. 318 const auto &VarOffset = VarOffsets.front(); 319 if (!ConstOffset.isZero() || VarOffset.second != VecElemSize) 320 return nullptr; 321 return VarOffset.first; 322 } 323 324 APInt Quot; 325 uint64_t Rem; 326 APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem); 327 if (Rem != 0) 328 return nullptr; 329 330 return ConstantInt::get(GEP->getContext(), Quot); 331 } 332 333 /// Promotes a single user of the alloca to a vector form. 334 /// 335 /// \param Inst Instruction to be promoted. 336 /// \param DL Module Data Layout. 337 /// \param VectorTy Vectorized Type. 338 /// \param VecStoreSize Size of \p VectorTy in bytes. 339 /// \param ElementSize Size of \p VectorTy element type in bytes. 340 /// \param TransferInfo MemTransferInst info map. 341 /// \param GEPVectorIdx GEP -> VectorIdx cache. 342 /// \param CurVal Current value of the vector (e.g. last stored value) 343 /// \param[out] DeferredLoads \p Inst is added to this vector if it can't 344 /// be promoted now. This happens when promoting requires \p 345 /// CurVal, but \p CurVal is nullptr. 346 /// \return the stored value if \p Inst would have written to the alloca, or 347 /// nullptr otherwise. 348 static Value *promoteAllocaUserToVector( 349 Instruction *Inst, const DataLayout &DL, FixedVectorType *VectorTy, 350 unsigned VecStoreSize, unsigned ElementSize, 351 DenseMap<MemTransferInst *, MemTransferInfo> &TransferInfo, 352 std::map<GetElementPtrInst *, Value *> &GEPVectorIdx, Value *CurVal, 353 SmallVectorImpl<LoadInst *> &DeferredLoads) { 354 // Note: we use InstSimplifyFolder because it can leverage the DataLayout 355 // to do more folding, especially in the case of vector splats. 356 IRBuilder<InstSimplifyFolder> Builder(Inst->getContext(), 357 InstSimplifyFolder(DL)); 358 Builder.SetInsertPoint(Inst); 359 360 const auto GetOrLoadCurrentVectorValue = [&]() -> Value * { 361 if (CurVal) 362 return CurVal; 363 364 // If the current value is not known, insert a dummy load and lower it on 365 // the second pass. 366 LoadInst *Dummy = 367 Builder.CreateLoad(VectorTy, PoisonValue::get(Builder.getPtrTy()), 368 "promotealloca.dummyload"); 369 DeferredLoads.push_back(Dummy); 370 return Dummy; 371 }; 372 373 const auto CreateTempPtrIntCast = [&Builder, DL](Value *Val, 374 Type *PtrTy) -> Value * { 375 assert(DL.getTypeStoreSize(Val->getType()) == DL.getTypeStoreSize(PtrTy)); 376 const unsigned Size = DL.getTypeStoreSizeInBits(PtrTy); 377 if (!PtrTy->isVectorTy()) 378 return Builder.CreateBitOrPointerCast(Val, Builder.getIntNTy(Size)); 379 const unsigned NumPtrElts = cast<FixedVectorType>(PtrTy)->getNumElements(); 380 // If we want to cast to cast, e.g. a <2 x ptr> into a <4 x i32>, we need to 381 // first cast the ptr vector to <2 x i64>. 382 assert((Size % NumPtrElts == 0) && "Vector size not divisble"); 383 Type *EltTy = Builder.getIntNTy(Size / NumPtrElts); 384 return Builder.CreateBitOrPointerCast( 385 Val, FixedVectorType::get(EltTy, NumPtrElts)); 386 }; 387 388 Type *VecEltTy = VectorTy->getElementType(); 389 390 switch (Inst->getOpcode()) { 391 case Instruction::Load: { 392 // Loads can only be lowered if the value is known. 393 if (!CurVal) { 394 DeferredLoads.push_back(cast<LoadInst>(Inst)); 395 return nullptr; 396 } 397 398 Value *Index = calculateVectorIndex( 399 cast<LoadInst>(Inst)->getPointerOperand(), GEPVectorIdx); 400 401 // We're loading the full vector. 402 Type *AccessTy = Inst->getType(); 403 TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); 404 if (AccessSize == VecStoreSize && cast<Constant>(Index)->isZeroValue()) { 405 if (AccessTy->isPtrOrPtrVectorTy()) 406 CurVal = CreateTempPtrIntCast(CurVal, AccessTy); 407 else if (CurVal->getType()->isPtrOrPtrVectorTy()) 408 CurVal = CreateTempPtrIntCast(CurVal, CurVal->getType()); 409 Value *NewVal = Builder.CreateBitOrPointerCast(CurVal, AccessTy); 410 Inst->replaceAllUsesWith(NewVal); 411 return nullptr; 412 } 413 414 // Loading a subvector. 415 if (isa<FixedVectorType>(AccessTy)) { 416 assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); 417 const unsigned NumLoadedElts = AccessSize / DL.getTypeStoreSize(VecEltTy); 418 auto *SubVecTy = FixedVectorType::get(VecEltTy, NumLoadedElts); 419 assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); 420 421 Value *SubVec = PoisonValue::get(SubVecTy); 422 for (unsigned K = 0; K < NumLoadedElts; ++K) { 423 Value *CurIdx = 424 Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); 425 SubVec = Builder.CreateInsertElement( 426 SubVec, Builder.CreateExtractElement(CurVal, CurIdx), K); 427 } 428 429 if (AccessTy->isPtrOrPtrVectorTy()) 430 SubVec = CreateTempPtrIntCast(SubVec, AccessTy); 431 else if (SubVecTy->isPtrOrPtrVectorTy()) 432 SubVec = CreateTempPtrIntCast(SubVec, SubVecTy); 433 434 SubVec = Builder.CreateBitOrPointerCast(SubVec, AccessTy); 435 Inst->replaceAllUsesWith(SubVec); 436 return nullptr; 437 } 438 439 // We're loading one element. 440 Value *ExtractElement = Builder.CreateExtractElement(CurVal, Index); 441 if (AccessTy != VecEltTy) 442 ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, AccessTy); 443 444 Inst->replaceAllUsesWith(ExtractElement); 445 return nullptr; 446 } 447 case Instruction::Store: { 448 // For stores, it's a bit trickier and it depends on whether we're storing 449 // the full vector or not. If we're storing the full vector, we don't need 450 // to know the current value. If this is a store of a single element, we 451 // need to know the value. 452 StoreInst *SI = cast<StoreInst>(Inst); 453 Value *Index = calculateVectorIndex(SI->getPointerOperand(), GEPVectorIdx); 454 Value *Val = SI->getValueOperand(); 455 456 // We're storing the full vector, we can handle this without knowing CurVal. 457 Type *AccessTy = Val->getType(); 458 TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); 459 if (AccessSize == VecStoreSize && cast<Constant>(Index)->isZeroValue()) { 460 if (AccessTy->isPtrOrPtrVectorTy()) 461 Val = CreateTempPtrIntCast(Val, AccessTy); 462 else if (VectorTy->isPtrOrPtrVectorTy()) 463 Val = CreateTempPtrIntCast(Val, VectorTy); 464 return Builder.CreateBitOrPointerCast(Val, VectorTy); 465 } 466 467 // Storing a subvector. 468 if (isa<FixedVectorType>(AccessTy)) { 469 assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); 470 const unsigned NumWrittenElts = 471 AccessSize / DL.getTypeStoreSize(VecEltTy); 472 const unsigned NumVecElts = VectorTy->getNumElements(); 473 auto *SubVecTy = FixedVectorType::get(VecEltTy, NumWrittenElts); 474 assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); 475 476 if (SubVecTy->isPtrOrPtrVectorTy()) 477 Val = CreateTempPtrIntCast(Val, SubVecTy); 478 else if (AccessTy->isPtrOrPtrVectorTy()) 479 Val = CreateTempPtrIntCast(Val, AccessTy); 480 481 Val = Builder.CreateBitOrPointerCast(Val, SubVecTy); 482 483 Value *CurVec = GetOrLoadCurrentVectorValue(); 484 for (unsigned K = 0, NumElts = std::min(NumWrittenElts, NumVecElts); 485 K < NumElts; ++K) { 486 Value *CurIdx = 487 Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); 488 CurVec = Builder.CreateInsertElement( 489 CurVec, Builder.CreateExtractElement(Val, K), CurIdx); 490 } 491 return CurVec; 492 } 493 494 if (Val->getType() != VecEltTy) 495 Val = Builder.CreateBitOrPointerCast(Val, VecEltTy); 496 return Builder.CreateInsertElement(GetOrLoadCurrentVectorValue(), Val, 497 Index); 498 } 499 case Instruction::Call: { 500 if (auto *MTI = dyn_cast<MemTransferInst>(Inst)) { 501 // For memcpy, we need to know curval. 502 ConstantInt *Length = cast<ConstantInt>(MTI->getLength()); 503 unsigned NumCopied = Length->getZExtValue() / ElementSize; 504 MemTransferInfo *TI = &TransferInfo[MTI]; 505 unsigned SrcBegin = TI->SrcIndex->getZExtValue(); 506 unsigned DestBegin = TI->DestIndex->getZExtValue(); 507 508 SmallVector<int> Mask; 509 for (unsigned Idx = 0; Idx < VectorTy->getNumElements(); ++Idx) { 510 if (Idx >= DestBegin && Idx < DestBegin + NumCopied) { 511 Mask.push_back(SrcBegin++); 512 } else { 513 Mask.push_back(Idx); 514 } 515 } 516 517 return Builder.CreateShuffleVector(GetOrLoadCurrentVectorValue(), Mask); 518 } 519 520 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) { 521 // For memset, we don't need to know the previous value because we 522 // currently only allow memsets that cover the whole alloca. 523 Value *Elt = MSI->getOperand(1); 524 const unsigned BytesPerElt = DL.getTypeStoreSize(VecEltTy); 525 if (BytesPerElt > 1) { 526 Value *EltBytes = Builder.CreateVectorSplat(BytesPerElt, Elt); 527 528 // If the element type of the vector is a pointer, we need to first cast 529 // to an integer, then use a PtrCast. 530 if (VecEltTy->isPointerTy()) { 531 Type *PtrInt = Builder.getIntNTy(BytesPerElt * 8); 532 Elt = Builder.CreateBitCast(EltBytes, PtrInt); 533 Elt = Builder.CreateIntToPtr(Elt, VecEltTy); 534 } else 535 Elt = Builder.CreateBitCast(EltBytes, VecEltTy); 536 } 537 538 return Builder.CreateVectorSplat(VectorTy->getElementCount(), Elt); 539 } 540 541 if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) { 542 if (Intr->getIntrinsicID() == Intrinsic::objectsize) { 543 Intr->replaceAllUsesWith( 544 Builder.getIntN(Intr->getType()->getIntegerBitWidth(), 545 DL.getTypeAllocSize(VectorTy))); 546 return nullptr; 547 } 548 } 549 550 llvm_unreachable("Unsupported call when promoting alloca to vector"); 551 } 552 553 default: 554 llvm_unreachable("Inconsistency in instructions promotable to vector"); 555 } 556 557 llvm_unreachable("Did not return after promoting instruction!"); 558 } 559 560 static bool isSupportedAccessType(FixedVectorType *VecTy, Type *AccessTy, 561 const DataLayout &DL) { 562 // Access as a vector type can work if the size of the access vector is a 563 // multiple of the size of the alloca's vector element type. 564 // 565 // Examples: 566 // - VecTy = <8 x float>, AccessTy = <4 x float> -> OK 567 // - VecTy = <4 x double>, AccessTy = <2 x float> -> OK 568 // - VecTy = <4 x double>, AccessTy = <3 x float> -> NOT OK 569 // - 3*32 is not a multiple of 64 570 // 571 // We could handle more complicated cases, but it'd make things a lot more 572 // complicated. 573 if (isa<FixedVectorType>(AccessTy)) { 574 TypeSize AccTS = DL.getTypeStoreSize(AccessTy); 575 TypeSize VecTS = DL.getTypeStoreSize(VecTy->getElementType()); 576 return AccTS.isKnownMultipleOf(VecTS); 577 } 578 579 return CastInst::isBitOrNoopPointerCastable(VecTy->getElementType(), AccessTy, 580 DL); 581 } 582 583 /// Iterates over an instruction worklist that may contain multiple instructions 584 /// from the same basic block, but in a different order. 585 template <typename InstContainer> 586 static void forEachWorkListItem(const InstContainer &WorkList, 587 std::function<void(Instruction *)> Fn) { 588 // Bucket up uses of the alloca by the block they occur in. 589 // This is important because we have to handle multiple defs/uses in a block 590 // ourselves: SSAUpdater is purely for cross-block references. 591 DenseMap<BasicBlock *, SmallDenseSet<Instruction *>> UsesByBlock; 592 for (Instruction *User : WorkList) 593 UsesByBlock[User->getParent()].insert(User); 594 595 for (Instruction *User : WorkList) { 596 BasicBlock *BB = User->getParent(); 597 auto &BlockUses = UsesByBlock[BB]; 598 599 // Already processed, skip. 600 if (BlockUses.empty()) 601 continue; 602 603 // Only user in the block, directly process it. 604 if (BlockUses.size() == 1) { 605 Fn(User); 606 continue; 607 } 608 609 // Multiple users in the block, do a linear scan to see users in order. 610 for (Instruction &Inst : *BB) { 611 if (!BlockUses.contains(&Inst)) 612 continue; 613 614 Fn(&Inst); 615 } 616 617 // Clear the block so we know it's been processed. 618 BlockUses.clear(); 619 } 620 } 621 622 // FIXME: Should try to pick the most likely to be profitable allocas first. 623 bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToVector(AllocaInst &Alloca) { 624 LLVM_DEBUG(dbgs() << "Trying to promote to vector: " << Alloca << '\n'); 625 626 if (DisablePromoteAllocaToVector) { 627 LLVM_DEBUG(dbgs() << " Promote alloca to vector is disabled\n"); 628 return false; 629 } 630 631 Type *AllocaTy = Alloca.getAllocatedType(); 632 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 633 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 634 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 635 ArrayTy->getNumElements() > 0) 636 VectorTy = FixedVectorType::get(ArrayTy->getElementType(), 637 ArrayTy->getNumElements()); 638 } 639 640 // Use up to 1/4 of available register budget for vectorization. 641 unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 642 : (MaxVGPRs * 32); 643 644 if (DL->getTypeSizeInBits(AllocaTy) * 4 > Limit) { 645 LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " << MaxVGPRs 646 << " registers available\n"); 647 return false; 648 } 649 650 // FIXME: There is no reason why we can't support larger arrays, we 651 // are just being conservative for now. 652 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or 653 // equivalent. Potentially these could also be promoted but we don't currently 654 // handle this case 655 if (!VectorTy) { 656 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 657 return false; 658 } 659 660 if (VectorTy->getNumElements() > 16 || VectorTy->getNumElements() < 2) { 661 LLVM_DEBUG(dbgs() << " " << *VectorTy 662 << " has an unsupported number of elements\n"); 663 return false; 664 } 665 666 std::map<GetElementPtrInst *, Value *> GEPVectorIdx; 667 SmallVector<Instruction *> WorkList; 668 SmallVector<Instruction *> UsersToRemove; 669 SmallVector<Instruction *> DeferredInsts; 670 SmallVector<Use *, 8> Uses; 671 DenseMap<MemTransferInst *, MemTransferInfo> TransferInfo; 672 673 const auto RejectUser = [&](Instruction *Inst, Twine Msg) { 674 LLVM_DEBUG(dbgs() << " Cannot promote alloca to vector: " << Msg << "\n" 675 << " " << *Inst << "\n"); 676 return false; 677 }; 678 679 for (Use &U : Alloca.uses()) 680 Uses.push_back(&U); 681 682 LLVM_DEBUG(dbgs() << " Attempting promotion to: " << *VectorTy << "\n"); 683 684 Type *VecEltTy = VectorTy->getElementType(); 685 unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8; 686 while (!Uses.empty()) { 687 Use *U = Uses.pop_back_val(); 688 Instruction *Inst = cast<Instruction>(U->getUser()); 689 690 if (Value *Ptr = getLoadStorePointerOperand(Inst)) { 691 // This is a store of the pointer, not to the pointer. 692 if (isa<StoreInst>(Inst) && 693 U->getOperandNo() != StoreInst::getPointerOperandIndex()) 694 return RejectUser(Inst, "pointer is being stored"); 695 696 Type *AccessTy = getLoadStoreType(Inst); 697 if (AccessTy->isAggregateType()) 698 return RejectUser(Inst, "unsupported load/store as aggregate"); 699 assert(!AccessTy->isAggregateType() || AccessTy->isArrayTy()); 700 701 // Check that this is a simple access of a vector element. 702 bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple() 703 : cast<StoreInst>(Inst)->isSimple(); 704 if (!IsSimple) 705 return RejectUser(Inst, "not a simple load or store"); 706 707 Ptr = Ptr->stripPointerCasts(); 708 709 // Alloca already accessed as vector. 710 if (Ptr == &Alloca && DL->getTypeStoreSize(Alloca.getAllocatedType()) == 711 DL->getTypeStoreSize(AccessTy)) { 712 WorkList.push_back(Inst); 713 continue; 714 } 715 716 if (!isSupportedAccessType(VectorTy, AccessTy, *DL)) 717 return RejectUser(Inst, "not a supported access type"); 718 719 WorkList.push_back(Inst); 720 continue; 721 } 722 723 if (isa<BitCastInst>(Inst)) { 724 // Look through bitcasts. 725 for (Use &U : Inst->uses()) 726 Uses.push_back(&U); 727 UsersToRemove.push_back(Inst); 728 continue; 729 } 730 731 if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 732 // If we can't compute a vector index from this GEP, then we can't 733 // promote this alloca to vector. 734 Value *Index = GEPToVectorIndex(GEP, &Alloca, VecEltTy, *DL); 735 if (!Index) 736 return RejectUser(Inst, "cannot compute vector index for GEP"); 737 738 GEPVectorIdx[GEP] = Index; 739 for (Use &U : Inst->uses()) 740 Uses.push_back(&U); 741 UsersToRemove.push_back(Inst); 742 continue; 743 } 744 745 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst); 746 MSI && isSupportedMemset(MSI, &Alloca, *DL)) { 747 WorkList.push_back(Inst); 748 continue; 749 } 750 751 if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) { 752 if (TransferInst->isVolatile()) 753 return RejectUser(Inst, "mem transfer inst is volatile"); 754 755 ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength()); 756 if (!Len || (Len->getZExtValue() % ElementSize)) 757 return RejectUser(Inst, "mem transfer inst length is non-constant or " 758 "not a multiple of the vector element size"); 759 760 if (!TransferInfo.count(TransferInst)) { 761 DeferredInsts.push_back(Inst); 762 WorkList.push_back(Inst); 763 TransferInfo[TransferInst] = MemTransferInfo(); 764 } 765 766 auto getPointerIndexOfAlloca = [&](Value *Ptr) -> ConstantInt * { 767 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 768 if (Ptr != &Alloca && !GEPVectorIdx.count(GEP)) 769 return nullptr; 770 771 return dyn_cast<ConstantInt>(calculateVectorIndex(Ptr, GEPVectorIdx)); 772 }; 773 774 unsigned OpNum = U->getOperandNo(); 775 MemTransferInfo *TI = &TransferInfo[TransferInst]; 776 if (OpNum == 0) { 777 Value *Dest = TransferInst->getDest(); 778 ConstantInt *Index = getPointerIndexOfAlloca(Dest); 779 if (!Index) 780 return RejectUser(Inst, "could not calculate constant dest index"); 781 TI->DestIndex = Index; 782 } else { 783 assert(OpNum == 1); 784 Value *Src = TransferInst->getSource(); 785 ConstantInt *Index = getPointerIndexOfAlloca(Src); 786 if (!Index) 787 return RejectUser(Inst, "could not calculate constant src index"); 788 TI->SrcIndex = Index; 789 } 790 continue; 791 } 792 793 if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) { 794 if (Intr->getIntrinsicID() == Intrinsic::objectsize) { 795 WorkList.push_back(Inst); 796 continue; 797 } 798 } 799 800 // Ignore assume-like intrinsics and comparisons used in assumes. 801 if (isAssumeLikeIntrinsic(Inst)) { 802 if (!Inst->use_empty()) 803 return RejectUser(Inst, "assume-like intrinsic cannot have any users"); 804 UsersToRemove.push_back(Inst); 805 continue; 806 } 807 808 if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) { 809 return isAssumeLikeIntrinsic(cast<Instruction>(U)); 810 })) { 811 UsersToRemove.push_back(Inst); 812 continue; 813 } 814 815 return RejectUser(Inst, "unhandled alloca user"); 816 } 817 818 while (!DeferredInsts.empty()) { 819 Instruction *Inst = DeferredInsts.pop_back_val(); 820 MemTransferInst *TransferInst = cast<MemTransferInst>(Inst); 821 // TODO: Support the case if the pointers are from different alloca or 822 // from different address spaces. 823 MemTransferInfo &Info = TransferInfo[TransferInst]; 824 if (!Info.SrcIndex || !Info.DestIndex) 825 return RejectUser( 826 Inst, "mem transfer inst is missing constant src and/or dst index"); 827 } 828 829 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 830 << *VectorTy << '\n'); 831 const unsigned VecStoreSize = DL->getTypeStoreSize(VectorTy); 832 833 // Alloca is uninitialized memory. Imitate that by making the first value 834 // undef. 835 SSAUpdater Updater; 836 Updater.Initialize(VectorTy, "promotealloca"); 837 Updater.AddAvailableValue(Alloca.getParent(), UndefValue::get(VectorTy)); 838 839 // First handle the initial worklist. 840 SmallVector<LoadInst *, 4> DeferredLoads; 841 forEachWorkListItem(WorkList, [&](Instruction *I) { 842 BasicBlock *BB = I->getParent(); 843 // On the first pass, we only take values that are trivially known, i.e. 844 // where AddAvailableValue was already called in this block. 845 Value *Result = promoteAllocaUserToVector( 846 I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, 847 Updater.FindValueForBlock(BB), DeferredLoads); 848 if (Result) 849 Updater.AddAvailableValue(BB, Result); 850 }); 851 852 // Then handle deferred loads. 853 forEachWorkListItem(DeferredLoads, [&](Instruction *I) { 854 SmallVector<LoadInst *, 0> NewDLs; 855 BasicBlock *BB = I->getParent(); 856 // On the second pass, we use GetValueInMiddleOfBlock to guarantee we always 857 // get a value, inserting PHIs as needed. 858 Value *Result = promoteAllocaUserToVector( 859 I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, 860 Updater.GetValueInMiddleOfBlock(I->getParent()), NewDLs); 861 if (Result) 862 Updater.AddAvailableValue(BB, Result); 863 assert(NewDLs.empty() && "No more deferred loads should be queued!"); 864 }); 865 866 // Delete all instructions. On the first pass, new dummy loads may have been 867 // added so we need to collect them too. 868 DenseSet<Instruction *> InstsToDelete(WorkList.begin(), WorkList.end()); 869 InstsToDelete.insert(DeferredLoads.begin(), DeferredLoads.end()); 870 for (Instruction *I : InstsToDelete) { 871 assert(I->use_empty()); 872 I->eraseFromParent(); 873 } 874 875 // Delete all the users that are known to be removeable. 876 for (Instruction *I : reverse(UsersToRemove)) { 877 I->dropDroppableUses(); 878 assert(I->use_empty()); 879 I->eraseFromParent(); 880 } 881 882 // Alloca should now be dead too. 883 assert(Alloca.use_empty()); 884 Alloca.eraseFromParent(); 885 return true; 886 } 887 888 std::pair<Value *, Value *> 889 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 890 Function &F = *Builder.GetInsertBlock()->getParent(); 891 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 892 893 if (!IsAMDHSA) { 894 Function *LocalSizeYFn = 895 Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 896 Function *LocalSizeZFn = 897 Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 898 899 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 900 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 901 902 ST.makeLIDRangeMetadata(LocalSizeY); 903 ST.makeLIDRangeMetadata(LocalSizeZ); 904 905 return std::pair(LocalSizeY, LocalSizeZ); 906 } 907 908 // We must read the size out of the dispatch pointer. 909 assert(IsAMDGCN); 910 911 // We are indexing into this struct, and want to extract the workgroup_size_* 912 // fields. 913 // 914 // typedef struct hsa_kernel_dispatch_packet_s { 915 // uint16_t header; 916 // uint16_t setup; 917 // uint16_t workgroup_size_x ; 918 // uint16_t workgroup_size_y; 919 // uint16_t workgroup_size_z; 920 // uint16_t reserved0; 921 // uint32_t grid_size_x ; 922 // uint32_t grid_size_y ; 923 // uint32_t grid_size_z; 924 // 925 // uint32_t private_segment_size; 926 // uint32_t group_segment_size; 927 // uint64_t kernel_object; 928 // 929 // #ifdef HSA_LARGE_MODEL 930 // void *kernarg_address; 931 // #elif defined HSA_LITTLE_ENDIAN 932 // void *kernarg_address; 933 // uint32_t reserved1; 934 // #else 935 // uint32_t reserved1; 936 // void *kernarg_address; 937 // #endif 938 // uint64_t reserved2; 939 // hsa_signal_t completion_signal; // uint64_t wrapper 940 // } hsa_kernel_dispatch_packet_t 941 // 942 Function *DispatchPtrFn = 943 Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 944 945 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 946 DispatchPtr->addRetAttr(Attribute::NoAlias); 947 DispatchPtr->addRetAttr(Attribute::NonNull); 948 F.removeFnAttr("amdgpu-no-dispatch-ptr"); 949 950 // Size of the dispatch packet struct. 951 DispatchPtr->addDereferenceableRetAttr(64); 952 953 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 954 Value *CastDispatchPtr = Builder.CreateBitCast( 955 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 956 957 // We could do a single 64-bit load here, but it's likely that the basic 958 // 32-bit and extract sequence is already present, and it is probably easier 959 // to CSE this. The loads should be mergeable later anyway. 960 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 961 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 962 963 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 964 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 965 966 MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt); 967 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 968 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 969 ST.makeLIDRangeMetadata(LoadZU); 970 971 // Extract y component. Upper half of LoadZU should be zero already. 972 Value *Y = Builder.CreateLShr(LoadXY, 16); 973 974 return std::pair(Y, LoadZU); 975 } 976 977 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 978 unsigned N) { 979 Function *F = Builder.GetInsertBlock()->getParent(); 980 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 981 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 982 StringRef AttrName; 983 984 switch (N) { 985 case 0: 986 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 987 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 988 AttrName = "amdgpu-no-workitem-id-x"; 989 break; 990 case 1: 991 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 992 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 993 AttrName = "amdgpu-no-workitem-id-y"; 994 break; 995 996 case 2: 997 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 998 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 999 AttrName = "amdgpu-no-workitem-id-z"; 1000 break; 1001 default: 1002 llvm_unreachable("invalid dimension"); 1003 } 1004 1005 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 1006 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 1007 ST.makeLIDRangeMetadata(CI); 1008 F->removeFnAttr(AttrName); 1009 1010 return CI; 1011 } 1012 1013 static bool isCallPromotable(CallInst *CI) { 1014 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1015 if (!II) 1016 return false; 1017 1018 switch (II->getIntrinsicID()) { 1019 case Intrinsic::memcpy: 1020 case Intrinsic::memmove: 1021 case Intrinsic::memset: 1022 case Intrinsic::lifetime_start: 1023 case Intrinsic::lifetime_end: 1024 case Intrinsic::invariant_start: 1025 case Intrinsic::invariant_end: 1026 case Intrinsic::launder_invariant_group: 1027 case Intrinsic::strip_invariant_group: 1028 case Intrinsic::objectsize: 1029 return true; 1030 default: 1031 return false; 1032 } 1033 } 1034 1035 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 1036 Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 1037 int OpIdx1) const { 1038 // Figure out which operand is the one we might not be promoting. 1039 Value *OtherOp = Inst->getOperand(OpIdx0); 1040 if (Val == OtherOp) 1041 OtherOp = Inst->getOperand(OpIdx1); 1042 1043 if (isa<ConstantPointerNull>(OtherOp)) 1044 return true; 1045 1046 Value *OtherObj = getUnderlyingObject(OtherOp); 1047 if (!isa<AllocaInst>(OtherObj)) 1048 return false; 1049 1050 // TODO: We should be able to replace undefs with the right pointer type. 1051 1052 // TODO: If we know the other base object is another promotable 1053 // alloca, not necessarily this alloca, we can do this. The 1054 // important part is both must have the same address space at 1055 // the end. 1056 if (OtherObj != BaseAlloca) { 1057 LLVM_DEBUG( 1058 dbgs() << "Found a binary instruction with another alloca object\n"); 1059 return false; 1060 } 1061 1062 return true; 1063 } 1064 1065 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 1066 Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 1067 1068 for (User *User : Val->users()) { 1069 if (is_contained(WorkList, User)) 1070 continue; 1071 1072 if (CallInst *CI = dyn_cast<CallInst>(User)) { 1073 if (!isCallPromotable(CI)) 1074 return false; 1075 1076 WorkList.push_back(User); 1077 continue; 1078 } 1079 1080 Instruction *UseInst = cast<Instruction>(User); 1081 if (UseInst->getOpcode() == Instruction::PtrToInt) 1082 return false; 1083 1084 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 1085 if (LI->isVolatile()) 1086 return false; 1087 1088 continue; 1089 } 1090 1091 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 1092 if (SI->isVolatile()) 1093 return false; 1094 1095 // Reject if the stored value is not the pointer operand. 1096 if (SI->getPointerOperand() != Val) 1097 return false; 1098 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 1099 if (RMW->isVolatile()) 1100 return false; 1101 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 1102 if (CAS->isVolatile()) 1103 return false; 1104 } 1105 1106 // Only promote a select if we know that the other select operand 1107 // is from another pointer that will also be promoted. 1108 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 1109 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 1110 return false; 1111 1112 // May need to rewrite constant operands. 1113 WorkList.push_back(ICmp); 1114 } 1115 1116 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 1117 // Give up if the pointer may be captured. 1118 if (PointerMayBeCaptured(UseInst, true, true)) 1119 return false; 1120 // Don't collect the users of this. 1121 WorkList.push_back(User); 1122 continue; 1123 } 1124 1125 // Do not promote vector/aggregate type instructions. It is hard to track 1126 // their users. 1127 if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 1128 return false; 1129 1130 if (!User->getType()->isPointerTy()) 1131 continue; 1132 1133 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 1134 // Be conservative if an address could be computed outside the bounds of 1135 // the alloca. 1136 if (!GEP->isInBounds()) 1137 return false; 1138 } 1139 1140 // Only promote a select if we know that the other select operand is from 1141 // another pointer that will also be promoted. 1142 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 1143 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 1144 return false; 1145 } 1146 1147 // Repeat for phis. 1148 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 1149 // TODO: Handle more complex cases. We should be able to replace loops 1150 // over arrays. 1151 switch (Phi->getNumIncomingValues()) { 1152 case 1: 1153 break; 1154 case 2: 1155 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 1156 return false; 1157 break; 1158 default: 1159 return false; 1160 } 1161 } 1162 1163 WorkList.push_back(User); 1164 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 1165 return false; 1166 } 1167 1168 return true; 1169 } 1170 1171 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 1172 1173 FunctionType *FTy = F.getFunctionType(); 1174 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1175 1176 // If the function has any arguments in the local address space, then it's 1177 // possible these arguments require the entire local memory space, so 1178 // we cannot use local memory in the pass. 1179 for (Type *ParamTy : FTy->params()) { 1180 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 1181 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 1182 LocalMemLimit = 0; 1183 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 1184 "local memory disabled.\n"); 1185 return false; 1186 } 1187 } 1188 1189 LocalMemLimit = ST.getAddressableLocalMemorySize(); 1190 if (LocalMemLimit == 0) 1191 return false; 1192 1193 SmallVector<const Constant *, 16> Stack; 1194 SmallPtrSet<const Constant *, 8> VisitedConstants; 1195 SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 1196 1197 auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 1198 for (const User *U : Val->users()) { 1199 if (const Instruction *Use = dyn_cast<Instruction>(U)) { 1200 if (Use->getParent()->getParent() == &F) 1201 return true; 1202 } else { 1203 const Constant *C = cast<Constant>(U); 1204 if (VisitedConstants.insert(C).second) 1205 Stack.push_back(C); 1206 } 1207 } 1208 1209 return false; 1210 }; 1211 1212 for (GlobalVariable &GV : Mod->globals()) { 1213 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 1214 continue; 1215 1216 if (visitUsers(&GV, &GV)) { 1217 UsedLDS.insert(&GV); 1218 Stack.clear(); 1219 continue; 1220 } 1221 1222 // For any ConstantExpr uses, we need to recursively search the users until 1223 // we see a function. 1224 while (!Stack.empty()) { 1225 const Constant *C = Stack.pop_back_val(); 1226 if (visitUsers(&GV, C)) { 1227 UsedLDS.insert(&GV); 1228 Stack.clear(); 1229 break; 1230 } 1231 } 1232 } 1233 1234 const DataLayout &DL = Mod->getDataLayout(); 1235 SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 1236 AllocatedSizes.reserve(UsedLDS.size()); 1237 1238 for (const GlobalVariable *GV : UsedLDS) { 1239 Align Alignment = 1240 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 1241 uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 1242 1243 // HIP uses an extern unsized array in local address space for dynamically 1244 // allocated shared memory. In that case, we have to disable the promotion. 1245 if (GV->hasExternalLinkage() && AllocSize == 0) { 1246 LocalMemLimit = 0; 1247 LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated " 1248 "local memory. Promoting to local memory " 1249 "disabled.\n"); 1250 return false; 1251 } 1252 1253 AllocatedSizes.emplace_back(AllocSize, Alignment); 1254 } 1255 1256 // Sort to try to estimate the worst case alignment padding 1257 // 1258 // FIXME: We should really do something to fix the addresses to a more optimal 1259 // value instead 1260 llvm::sort(AllocatedSizes, llvm::less_second()); 1261 1262 // Check how much local memory is being used by global objects 1263 CurrentLocalMemUsage = 0; 1264 1265 // FIXME: Try to account for padding here. The real padding and address is 1266 // currently determined from the inverse order of uses in the function when 1267 // legalizing, which could also potentially change. We try to estimate the 1268 // worst case here, but we probably should fix the addresses earlier. 1269 for (auto Alloc : AllocatedSizes) { 1270 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 1271 CurrentLocalMemUsage += Alloc.first; 1272 } 1273 1274 unsigned MaxOccupancy = 1275 ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, F); 1276 1277 // Restrict local memory usage so that we don't drastically reduce occupancy, 1278 // unless it is already significantly reduced. 1279 1280 // TODO: Have some sort of hint or other heuristics to guess occupancy based 1281 // on other factors.. 1282 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 1283 if (OccupancyHint == 0) 1284 OccupancyHint = 7; 1285 1286 // Clamp to max value. 1287 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 1288 1289 // Check the hint but ignore it if it's obviously wrong from the existing LDS 1290 // usage. 1291 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 1292 1293 // Round up to the next tier of usage. 1294 unsigned MaxSizeWithWaveCount = 1295 ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 1296 1297 // Program is possibly broken by using more local mem than available. 1298 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 1299 return false; 1300 1301 LocalMemLimit = MaxSizeWithWaveCount; 1302 1303 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 1304 << " bytes of LDS\n" 1305 << " Rounding size to " << MaxSizeWithWaveCount 1306 << " with a maximum occupancy of " << MaxOccupancy << '\n' 1307 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 1308 << " available for promotion\n"); 1309 1310 return true; 1311 } 1312 1313 // FIXME: Should try to pick the most likely to be profitable allocas first. 1314 bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToLDS(AllocaInst &I, 1315 bool SufficientLDS) { 1316 LLVM_DEBUG(dbgs() << "Trying to promote to LDS: " << I << '\n'); 1317 1318 if (DisablePromoteAllocaToLDS) { 1319 LLVM_DEBUG(dbgs() << " Promote alloca to LDS is disabled\n"); 1320 return false; 1321 } 1322 1323 const DataLayout &DL = Mod->getDataLayout(); 1324 IRBuilder<> Builder(&I); 1325 1326 const Function &ContainingFunction = *I.getParent()->getParent(); 1327 CallingConv::ID CC = ContainingFunction.getCallingConv(); 1328 1329 // Don't promote the alloca to LDS for shader calling conventions as the work 1330 // item ID intrinsics are not supported for these calling conventions. 1331 // Furthermore not all LDS is available for some of the stages. 1332 switch (CC) { 1333 case CallingConv::AMDGPU_KERNEL: 1334 case CallingConv::SPIR_KERNEL: 1335 break; 1336 default: 1337 LLVM_DEBUG( 1338 dbgs() 1339 << " promote alloca to LDS not supported with calling convention.\n"); 1340 return false; 1341 } 1342 1343 // Not likely to have sufficient local memory for promotion. 1344 if (!SufficientLDS) 1345 return false; 1346 1347 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 1348 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 1349 1350 Align Alignment = 1351 DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 1352 1353 // FIXME: This computed padding is likely wrong since it depends on inverse 1354 // usage order. 1355 // 1356 // FIXME: It is also possible that if we're allowed to use all of the memory 1357 // could end up using more than the maximum due to alignment padding. 1358 1359 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 1360 uint32_t AllocSize = 1361 WorkGroupSize * DL.getTypeAllocSize(I.getAllocatedType()); 1362 NewSize += AllocSize; 1363 1364 if (NewSize > LocalMemLimit) { 1365 LLVM_DEBUG(dbgs() << " " << AllocSize 1366 << " bytes of local memory not available to promote\n"); 1367 return false; 1368 } 1369 1370 CurrentLocalMemUsage = NewSize; 1371 1372 std::vector<Value *> WorkList; 1373 1374 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 1375 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 1376 return false; 1377 } 1378 1379 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 1380 1381 Function *F = I.getParent()->getParent(); 1382 1383 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 1384 GlobalVariable *GV = new GlobalVariable( 1385 *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy), 1386 Twine(F->getName()) + Twine('.') + I.getName(), nullptr, 1387 GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); 1388 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1389 GV->setAlignment(I.getAlign()); 1390 1391 Value *TCntY, *TCntZ; 1392 1393 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 1394 Value *TIdX = getWorkitemID(Builder, 0); 1395 Value *TIdY = getWorkitemID(Builder, 1); 1396 Value *TIdZ = getWorkitemID(Builder, 2); 1397 1398 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 1399 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 1400 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 1401 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 1402 TID = Builder.CreateAdd(TID, TIdZ); 1403 1404 LLVMContext &Context = Mod->getContext(); 1405 Value *Indices[] = {Constant::getNullValue(Type::getInt32Ty(Context)), TID}; 1406 1407 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 1408 I.mutateType(Offset->getType()); 1409 I.replaceAllUsesWith(Offset); 1410 I.eraseFromParent(); 1411 1412 SmallVector<IntrinsicInst *> DeferredIntrs; 1413 1414 for (Value *V : WorkList) { 1415 CallInst *Call = dyn_cast<CallInst>(V); 1416 if (!Call) { 1417 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 1418 PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); 1419 1420 if (isa<ConstantPointerNull>(CI->getOperand(0))) 1421 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 1422 1423 if (isa<ConstantPointerNull>(CI->getOperand(1))) 1424 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 1425 1426 continue; 1427 } 1428 1429 // The operand's value should be corrected on its own and we don't want to 1430 // touch the users. 1431 if (isa<AddrSpaceCastInst>(V)) 1432 continue; 1433 1434 PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); 1435 1436 // FIXME: It doesn't really make sense to try to do this for all 1437 // instructions. 1438 V->mutateType(NewTy); 1439 1440 // Adjust the types of any constant operands. 1441 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1442 if (isa<ConstantPointerNull>(SI->getOperand(1))) 1443 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 1444 1445 if (isa<ConstantPointerNull>(SI->getOperand(2))) 1446 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 1447 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 1448 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1449 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 1450 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 1451 } 1452 } 1453 1454 continue; 1455 } 1456 1457 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 1458 Builder.SetInsertPoint(Intr); 1459 switch (Intr->getIntrinsicID()) { 1460 case Intrinsic::lifetime_start: 1461 case Intrinsic::lifetime_end: 1462 // These intrinsics are for address space 0 only 1463 Intr->eraseFromParent(); 1464 continue; 1465 case Intrinsic::memcpy: 1466 case Intrinsic::memmove: 1467 // These have 2 pointer operands. In case if second pointer also needs 1468 // to be replaced we defer processing of these intrinsics until all 1469 // other values are processed. 1470 DeferredIntrs.push_back(Intr); 1471 continue; 1472 case Intrinsic::memset: { 1473 MemSetInst *MemSet = cast<MemSetInst>(Intr); 1474 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 1475 MemSet->getLength(), MemSet->getDestAlign(), 1476 MemSet->isVolatile()); 1477 Intr->eraseFromParent(); 1478 continue; 1479 } 1480 case Intrinsic::invariant_start: 1481 case Intrinsic::invariant_end: 1482 case Intrinsic::launder_invariant_group: 1483 case Intrinsic::strip_invariant_group: 1484 Intr->eraseFromParent(); 1485 // FIXME: I think the invariant marker should still theoretically apply, 1486 // but the intrinsics need to be changed to accept pointers with any 1487 // address space. 1488 continue; 1489 case Intrinsic::objectsize: { 1490 Value *Src = Intr->getOperand(0); 1491 Function *ObjectSize = Intrinsic::getDeclaration( 1492 Mod, Intrinsic::objectsize, 1493 {Intr->getType(), 1494 PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS)}); 1495 1496 CallInst *NewCall = Builder.CreateCall( 1497 ObjectSize, 1498 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 1499 Intr->replaceAllUsesWith(NewCall); 1500 Intr->eraseFromParent(); 1501 continue; 1502 } 1503 default: 1504 Intr->print(errs()); 1505 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1506 } 1507 } 1508 1509 for (IntrinsicInst *Intr : DeferredIntrs) { 1510 Builder.SetInsertPoint(Intr); 1511 Intrinsic::ID ID = Intr->getIntrinsicID(); 1512 assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1513 1514 MemTransferInst *MI = cast<MemTransferInst>(Intr); 1515 auto *B = Builder.CreateMemTransferInst( 1516 ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(), 1517 MI->getSourceAlign(), MI->getLength(), MI->isVolatile()); 1518 1519 for (unsigned I = 0; I != 2; ++I) { 1520 if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1521 B->addDereferenceableParamAttr(I, Bytes); 1522 } 1523 } 1524 1525 Intr->eraseFromParent(); 1526 } 1527 1528 return true; 1529 } 1530