1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminates allocas by either converting them into vectors or by migrating 10 // them to local address space. 11 // 12 // Two passes are exposed by this file: 13 // - "promote-alloca-to-vector", which runs early in the pipeline and only 14 // promotes to vector. Promotion to vector is almost always profitable 15 // except when the alloca is too big and the promotion would result in 16 // very high register pressure. 17 // - "promote-alloca", which does both promotion to vector and LDS and runs 18 // much later in the pipeline. This runs after SROA because promoting to 19 // LDS is of course less profitable than getting rid of the alloca or 20 // vectorizing it, thus we only want to do it when the only alternative is 21 // lowering the alloca to stack. 22 // 23 // Note that both of them exist for the old and new PMs. The new PM passes are 24 // declared in AMDGPU.h and the legacy PM ones are declared here.s 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "AMDGPU.h" 29 #include "GCNSubtarget.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/Analysis/CaptureTracking.h" 33 #include "llvm/Analysis/InstSimplifyFolder.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/IntrinsicsAMDGPU.h" 40 #include "llvm/IR/IntrinsicsR600.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Transforms/Utils/SSAUpdater.h" 45 46 #define DEBUG_TYPE "amdgpu-promote-alloca" 47 48 using namespace llvm; 49 50 namespace { 51 52 static cl::opt<bool> 53 DisablePromoteAllocaToVector("disable-promote-alloca-to-vector", 54 cl::desc("Disable promote alloca to vector"), 55 cl::init(false)); 56 57 static cl::opt<bool> 58 DisablePromoteAllocaToLDS("disable-promote-alloca-to-lds", 59 cl::desc("Disable promote alloca to LDS"), 60 cl::init(false)); 61 62 static cl::opt<unsigned> PromoteAllocaToVectorLimit( 63 "amdgpu-promote-alloca-to-vector-limit", 64 cl::desc("Maximum byte size to consider promote alloca to vector"), 65 cl::init(0)); 66 67 // Shared implementation which can do both promotion to vector and to LDS. 68 class AMDGPUPromoteAllocaImpl { 69 private: 70 const TargetMachine &TM; 71 Module *Mod = nullptr; 72 const DataLayout *DL = nullptr; 73 74 // FIXME: This should be per-kernel. 75 uint32_t LocalMemLimit = 0; 76 uint32_t CurrentLocalMemUsage = 0; 77 unsigned MaxVGPRs; 78 79 bool IsAMDGCN = false; 80 bool IsAMDHSA = false; 81 82 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 83 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 84 85 /// BaseAlloca is the alloca root the search started from. 86 /// Val may be that alloca or a recursive user of it. 87 bool collectUsesWithPtrTypes(Value *BaseAlloca, Value *Val, 88 std::vector<Value *> &WorkList) const; 89 90 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 91 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 92 /// Returns true if both operands are derived from the same alloca. Val should 93 /// be the same value as one of the input operands of UseInst. 94 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 95 Instruction *UseInst, int OpIdx0, 96 int OpIdx1) const; 97 98 /// Check whether we have enough local memory for promotion. 99 bool hasSufficientLocalMem(const Function &F); 100 101 bool tryPromoteAllocaToVector(AllocaInst &I); 102 bool tryPromoteAllocaToLDS(AllocaInst &I, bool SufficientLDS); 103 104 public: 105 AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) { 106 const Triple &TT = TM.getTargetTriple(); 107 IsAMDGCN = TT.getArch() == Triple::amdgcn; 108 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 109 } 110 111 bool run(Function &F, bool PromoteToLDS); 112 }; 113 114 // FIXME: This can create globals so should be a module pass. 115 class AMDGPUPromoteAlloca : public FunctionPass { 116 public: 117 static char ID; 118 119 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 120 121 bool runOnFunction(Function &F) override { 122 if (skipFunction(F)) 123 return false; 124 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 125 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()) 126 .run(F, /*PromoteToLDS*/ true); 127 return false; 128 } 129 130 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 FunctionPass::getAnalysisUsage(AU); 135 } 136 }; 137 138 class AMDGPUPromoteAllocaToVector : public FunctionPass { 139 public: 140 static char ID; 141 142 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 143 144 bool runOnFunction(Function &F) override { 145 if (skipFunction(F)) 146 return false; 147 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 148 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()) 149 .run(F, /*PromoteToLDS*/ false); 150 return false; 151 } 152 153 StringRef getPassName() const override { 154 return "AMDGPU Promote Alloca to vector"; 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 FunctionPass::getAnalysisUsage(AU); 160 } 161 }; 162 163 unsigned getMaxVGPRs(const TargetMachine &TM, const Function &F) { 164 if (!TM.getTargetTriple().isAMDGCN()) 165 return 128; 166 167 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 168 unsigned MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 169 170 // A non-entry function has only 32 caller preserved registers. 171 // Do not promote alloca which will force spilling unless we know the function 172 // will be inlined. 173 if (!F.hasFnAttribute(Attribute::AlwaysInline) && 174 !AMDGPU::isEntryFunctionCC(F.getCallingConv())) 175 MaxVGPRs = std::min(MaxVGPRs, 32u); 176 return MaxVGPRs; 177 } 178 179 } // end anonymous namespace 180 181 char AMDGPUPromoteAlloca::ID = 0; 182 char AMDGPUPromoteAllocaToVector::ID = 0; 183 184 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 185 "AMDGPU promote alloca to vector or LDS", false, false) 186 // Move LDS uses from functions to kernels before promote alloca for accurate 187 // estimation of LDS available 188 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS) 189 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 190 "AMDGPU promote alloca to vector or LDS", false, false) 191 192 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 193 "AMDGPU promote alloca to vector", false, false) 194 195 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 196 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 197 198 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 199 FunctionAnalysisManager &AM) { 200 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ true); 201 if (Changed) { 202 PreservedAnalyses PA; 203 PA.preserveSet<CFGAnalyses>(); 204 return PA; 205 } 206 return PreservedAnalyses::all(); 207 } 208 209 PreservedAnalyses 210 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 211 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ false); 212 if (Changed) { 213 PreservedAnalyses PA; 214 PA.preserveSet<CFGAnalyses>(); 215 return PA; 216 } 217 return PreservedAnalyses::all(); 218 } 219 220 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 221 return new AMDGPUPromoteAlloca(); 222 } 223 224 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 225 return new AMDGPUPromoteAllocaToVector(); 226 } 227 228 bool AMDGPUPromoteAllocaImpl::run(Function &F, bool PromoteToLDS) { 229 Mod = F.getParent(); 230 DL = &Mod->getDataLayout(); 231 232 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 233 if (!ST.isPromoteAllocaEnabled()) 234 return false; 235 236 MaxVGPRs = getMaxVGPRs(TM, F); 237 238 bool SufficientLDS = PromoteToLDS ? hasSufficientLocalMem(F) : false; 239 240 SmallVector<AllocaInst *, 16> Allocas; 241 for (Instruction &I : F.getEntryBlock()) { 242 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 243 // Array allocations are probably not worth handling, since an allocation 244 // of the array type is the canonical form. 245 if (!AI->isStaticAlloca() || AI->isArrayAllocation()) 246 continue; 247 Allocas.push_back(AI); 248 } 249 } 250 251 bool Changed = false; 252 for (AllocaInst *AI : Allocas) { 253 if (tryPromoteAllocaToVector(*AI)) 254 Changed = true; 255 else if (PromoteToLDS && tryPromoteAllocaToLDS(*AI, SufficientLDS)) 256 Changed = true; 257 } 258 259 // NOTE: tryPromoteAllocaToVector removes the alloca, so Allocas contains 260 // dangling pointers. If we want to reuse it past this point, the loop above 261 // would need to be updated to remove successfully promoted allocas. 262 263 return Changed; 264 } 265 266 struct MemTransferInfo { 267 ConstantInt *SrcIndex = nullptr; 268 ConstantInt *DestIndex = nullptr; 269 }; 270 271 // Checks if the instruction I is a memset user of the alloca AI that we can 272 // deal with. Currently, only non-volatile memsets that affect the whole alloca 273 // are handled. 274 static bool isSupportedMemset(MemSetInst *I, AllocaInst *AI, 275 const DataLayout &DL) { 276 using namespace PatternMatch; 277 // For now we only care about non-volatile memsets that affect the whole type 278 // (start at index 0 and fill the whole alloca). 279 // 280 // TODO: Now that we moved to PromoteAlloca we could handle any memsets 281 // (except maybe volatile ones?) - we just need to use shufflevector if it 282 // only affects a subset of the vector. 283 const unsigned Size = DL.getTypeStoreSize(AI->getAllocatedType()); 284 return I->getOperand(0) == AI && 285 match(I->getOperand(2), m_SpecificInt(Size)) && !I->isVolatile(); 286 } 287 288 static Value * 289 calculateVectorIndex(Value *Ptr, 290 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 291 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()); 292 if (!GEP) 293 return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext())); 294 295 auto I = GEPIdx.find(GEP); 296 assert(I != GEPIdx.end() && "Must have entry for GEP!"); 297 return I->second; 298 } 299 300 static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca, 301 Type *VecElemTy, const DataLayout &DL) { 302 // TODO: Extracting a "multiple of X" from a GEP might be a useful generic 303 // helper. 304 unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType()); 305 MapVector<Value *, APInt> VarOffsets; 306 APInt ConstOffset(BW, 0); 307 if (GEP->getPointerOperand()->stripPointerCasts() != Alloca || 308 !GEP->collectOffset(DL, BW, VarOffsets, ConstOffset)) 309 return nullptr; 310 311 unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy); 312 if (VarOffsets.size() > 1) 313 return nullptr; 314 315 if (VarOffsets.size() == 1) { 316 // Only handle cases where we don't need to insert extra arithmetic 317 // instructions. 318 const auto &VarOffset = VarOffsets.front(); 319 if (!ConstOffset.isZero() || VarOffset.second != VecElemSize) 320 return nullptr; 321 return VarOffset.first; 322 } 323 324 APInt Quot; 325 uint64_t Rem; 326 APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem); 327 if (Rem != 0) 328 return nullptr; 329 330 return ConstantInt::get(GEP->getContext(), Quot); 331 } 332 333 /// Promotes a single user of the alloca to a vector form. 334 /// 335 /// \param Inst Instruction to be promoted. 336 /// \param DL Module Data Layout. 337 /// \param VectorTy Vectorized Type. 338 /// \param VecStoreSize Size of \p VectorTy in bytes. 339 /// \param ElementSize Size of \p VectorTy element type in bytes. 340 /// \param TransferInfo MemTransferInst info map. 341 /// \param GEPVectorIdx GEP -> VectorIdx cache. 342 /// \param CurVal Current value of the vector (e.g. last stored value) 343 /// \param[out] DeferredLoads \p Inst is added to this vector if it can't 344 /// be promoted now. This happens when promoting requires \p 345 /// CurVal, but \p CurVal is nullptr. 346 /// \return the stored value if \p Inst would have written to the alloca, or 347 /// nullptr otherwise. 348 static Value *promoteAllocaUserToVector( 349 Instruction *Inst, const DataLayout &DL, FixedVectorType *VectorTy, 350 unsigned VecStoreSize, unsigned ElementSize, 351 DenseMap<MemTransferInst *, MemTransferInfo> &TransferInfo, 352 std::map<GetElementPtrInst *, Value *> &GEPVectorIdx, Value *CurVal, 353 SmallVectorImpl<LoadInst *> &DeferredLoads) { 354 // Note: we use InstSimplifyFolder because it can leverage the DataLayout 355 // to do more folding, especially in the case of vector splats. 356 IRBuilder<InstSimplifyFolder> Builder(Inst->getContext(), 357 InstSimplifyFolder(DL)); 358 Builder.SetInsertPoint(Inst); 359 360 const auto GetOrLoadCurrentVectorValue = [&]() -> Value * { 361 if (CurVal) 362 return CurVal; 363 364 // If the current value is not known, insert a dummy load and lower it on 365 // the second pass. 366 LoadInst *Dummy = 367 Builder.CreateLoad(VectorTy, PoisonValue::get(Builder.getPtrTy()), 368 "promotealloca.dummyload"); 369 DeferredLoads.push_back(Dummy); 370 return Dummy; 371 }; 372 373 const auto CreateTempPtrIntCast = [&Builder, DL](Value *Val, 374 Type *PtrTy) -> Value * { 375 assert(DL.getTypeStoreSize(Val->getType()) == DL.getTypeStoreSize(PtrTy)); 376 const unsigned Size = DL.getTypeStoreSizeInBits(PtrTy); 377 if (!PtrTy->isVectorTy()) 378 return Builder.CreateBitOrPointerCast(Val, Builder.getIntNTy(Size)); 379 const unsigned NumPtrElts = cast<FixedVectorType>(PtrTy)->getNumElements(); 380 // If we want to cast to cast, e.g. a <2 x ptr> into a <4 x i32>, we need to 381 // first cast the ptr vector to <2 x i64>. 382 assert((Size % NumPtrElts == 0) && "Vector size not divisble"); 383 Type *EltTy = Builder.getIntNTy(Size / NumPtrElts); 384 return Builder.CreateBitOrPointerCast( 385 Val, FixedVectorType::get(EltTy, NumPtrElts)); 386 }; 387 388 Type *VecEltTy = VectorTy->getElementType(); 389 const unsigned NumVecElts = VectorTy->getNumElements(); 390 391 switch (Inst->getOpcode()) { 392 case Instruction::Load: { 393 // Loads can only be lowered if the value is known. 394 if (!CurVal) { 395 DeferredLoads.push_back(cast<LoadInst>(Inst)); 396 return nullptr; 397 } 398 399 Value *Index = calculateVectorIndex( 400 cast<LoadInst>(Inst)->getPointerOperand(), GEPVectorIdx); 401 402 // We're loading the full vector. 403 Type *AccessTy = Inst->getType(); 404 TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); 405 if (AccessSize == VecStoreSize && cast<Constant>(Index)->isZeroValue()) { 406 if (AccessTy->isPtrOrPtrVectorTy()) 407 CurVal = CreateTempPtrIntCast(CurVal, AccessTy); 408 else if (CurVal->getType()->isPtrOrPtrVectorTy()) 409 CurVal = CreateTempPtrIntCast(CurVal, CurVal->getType()); 410 Value *NewVal = Builder.CreateBitOrPointerCast(CurVal, AccessTy); 411 Inst->replaceAllUsesWith(NewVal); 412 return nullptr; 413 } 414 415 // Loading a subvector. 416 if (isa<FixedVectorType>(AccessTy)) { 417 assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); 418 const unsigned NumLoadedElts = AccessSize / DL.getTypeStoreSize(VecEltTy); 419 auto *SubVecTy = FixedVectorType::get(VecEltTy, NumLoadedElts); 420 assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); 421 422 unsigned IndexVal = cast<ConstantInt>(Index)->getZExtValue(); 423 Value *SubVec = PoisonValue::get(SubVecTy); 424 for (unsigned K = 0; K < NumLoadedElts; ++K) { 425 SubVec = Builder.CreateInsertElement( 426 SubVec, Builder.CreateExtractElement(CurVal, IndexVal + K), K); 427 } 428 429 if (AccessTy->isPtrOrPtrVectorTy()) 430 SubVec = CreateTempPtrIntCast(SubVec, AccessTy); 431 else if (SubVecTy->isPtrOrPtrVectorTy()) 432 SubVec = CreateTempPtrIntCast(SubVec, SubVecTy); 433 434 SubVec = Builder.CreateBitOrPointerCast(SubVec, AccessTy); 435 Inst->replaceAllUsesWith(SubVec); 436 return nullptr; 437 } 438 439 // We're loading one element. 440 Value *ExtractElement = Builder.CreateExtractElement(CurVal, Index); 441 if (AccessTy != VecEltTy) 442 ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, AccessTy); 443 444 Inst->replaceAllUsesWith(ExtractElement); 445 return nullptr; 446 } 447 case Instruction::Store: { 448 // For stores, it's a bit trickier and it depends on whether we're storing 449 // the full vector or not. If we're storing the full vector, we don't need 450 // to know the current value. If this is a store of a single element, we 451 // need to know the value. 452 StoreInst *SI = cast<StoreInst>(Inst); 453 Value *Index = calculateVectorIndex(SI->getPointerOperand(), GEPVectorIdx); 454 Value *Val = SI->getValueOperand(); 455 456 // We're storing the full vector, we can handle this without knowing CurVal. 457 Type *AccessTy = Val->getType(); 458 TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); 459 if (AccessSize == VecStoreSize && cast<Constant>(Index)->isZeroValue()) { 460 if (AccessTy->isPtrOrPtrVectorTy()) 461 Val = CreateTempPtrIntCast(Val, AccessTy); 462 else if (VectorTy->isPtrOrPtrVectorTy()) 463 Val = CreateTempPtrIntCast(Val, VectorTy); 464 return Builder.CreateBitOrPointerCast(Val, VectorTy); 465 } 466 467 // Storing a subvector. 468 if (isa<FixedVectorType>(AccessTy)) { 469 assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); 470 const unsigned NumWrittenElts = 471 AccessSize / DL.getTypeStoreSize(VecEltTy); 472 auto *SubVecTy = FixedVectorType::get(VecEltTy, NumWrittenElts); 473 assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); 474 475 if (SubVecTy->isPtrOrPtrVectorTy()) 476 Val = CreateTempPtrIntCast(Val, SubVecTy); 477 else if (AccessTy->isPtrOrPtrVectorTy()) 478 Val = CreateTempPtrIntCast(Val, AccessTy); 479 480 Val = Builder.CreateBitOrPointerCast(Val, SubVecTy); 481 482 unsigned IndexVal = cast<ConstantInt>(Index)->getZExtValue(); 483 Value *CurVec = GetOrLoadCurrentVectorValue(); 484 for (unsigned K = 0; K < NumWrittenElts && ((IndexVal + K) < NumVecElts); 485 ++K) { 486 CurVec = Builder.CreateInsertElement( 487 CurVec, Builder.CreateExtractElement(Val, K), IndexVal + K); 488 } 489 return CurVec; 490 } 491 492 if (Val->getType() != VecEltTy) 493 Val = Builder.CreateBitOrPointerCast(Val, VecEltTy); 494 return Builder.CreateInsertElement(GetOrLoadCurrentVectorValue(), Val, 495 Index); 496 } 497 case Instruction::Call: { 498 if (auto *MTI = dyn_cast<MemTransferInst>(Inst)) { 499 // For memcpy, we need to know curval. 500 ConstantInt *Length = cast<ConstantInt>(MTI->getLength()); 501 unsigned NumCopied = Length->getZExtValue() / ElementSize; 502 MemTransferInfo *TI = &TransferInfo[MTI]; 503 unsigned SrcBegin = TI->SrcIndex->getZExtValue(); 504 unsigned DestBegin = TI->DestIndex->getZExtValue(); 505 506 SmallVector<int> Mask; 507 for (unsigned Idx = 0; Idx < VectorTy->getNumElements(); ++Idx) { 508 if (Idx >= DestBegin && Idx < DestBegin + NumCopied) { 509 Mask.push_back(SrcBegin++); 510 } else { 511 Mask.push_back(Idx); 512 } 513 } 514 515 return Builder.CreateShuffleVector(GetOrLoadCurrentVectorValue(), Mask); 516 } 517 518 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) { 519 // For memset, we don't need to know the previous value because we 520 // currently only allow memsets that cover the whole alloca. 521 Value *Elt = MSI->getOperand(1); 522 if (DL.getTypeStoreSize(VecEltTy) > 1) { 523 Value *EltBytes = 524 Builder.CreateVectorSplat(DL.getTypeStoreSize(VecEltTy), Elt); 525 Elt = Builder.CreateBitCast(EltBytes, VecEltTy); 526 } 527 528 return Builder.CreateVectorSplat(VectorTy->getElementCount(), Elt); 529 } 530 531 llvm_unreachable("Unsupported call when promoting alloca to vector"); 532 } 533 534 default: 535 llvm_unreachable("Inconsistency in instructions promotable to vector"); 536 } 537 538 llvm_unreachable("Did not return after promoting instruction!"); 539 } 540 541 static bool isSupportedAccessType(FixedVectorType *VecTy, Type *AccessTy, 542 const DataLayout &DL) { 543 // Access as a vector type can work if the size of the access vector is a 544 // multiple of the size of the alloca's vector element type. 545 // 546 // Examples: 547 // - VecTy = <8 x float>, AccessTy = <4 x float> -> OK 548 // - VecTy = <4 x double>, AccessTy = <2 x float> -> OK 549 // - VecTy = <4 x double>, AccessTy = <3 x float> -> NOT OK 550 // - 3*32 is not a multiple of 64 551 // 552 // We could handle more complicated cases, but it'd make things a lot more 553 // complicated. 554 if (isa<FixedVectorType>(AccessTy)) { 555 TypeSize AccTS = DL.getTypeStoreSize(AccessTy); 556 TypeSize VecTS = DL.getTypeStoreSize(VecTy->getElementType()); 557 return AccTS.isKnownMultipleOf(VecTS); 558 } 559 560 return CastInst::isBitOrNoopPointerCastable(VecTy->getElementType(), AccessTy, 561 DL); 562 } 563 564 /// Iterates over an instruction worklist that may contain multiple instructions 565 /// from the same basic block, but in a different order. 566 template <typename InstContainer> 567 static void forEachWorkListItem(const InstContainer &WorkList, 568 std::function<void(Instruction *)> Fn) { 569 // Bucket up uses of the alloca by the block they occur in. 570 // This is important because we have to handle multiple defs/uses in a block 571 // ourselves: SSAUpdater is purely for cross-block references. 572 DenseMap<BasicBlock *, SmallDenseSet<Instruction *>> UsesByBlock; 573 for (Instruction *User : WorkList) 574 UsesByBlock[User->getParent()].insert(User); 575 576 for (Instruction *User : WorkList) { 577 BasicBlock *BB = User->getParent(); 578 auto &BlockUses = UsesByBlock[BB]; 579 580 // Already processed, skip. 581 if (BlockUses.empty()) 582 continue; 583 584 // Only user in the block, directly process it. 585 if (BlockUses.size() == 1) { 586 Fn(User); 587 continue; 588 } 589 590 // Multiple users in the block, do a linear scan to see users in order. 591 for (Instruction &Inst : *BB) { 592 if (!BlockUses.contains(&Inst)) 593 continue; 594 595 Fn(&Inst); 596 } 597 598 // Clear the block so we know it's been processed. 599 BlockUses.clear(); 600 } 601 } 602 603 // FIXME: Should try to pick the most likely to be profitable allocas first. 604 bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToVector(AllocaInst &Alloca) { 605 LLVM_DEBUG(dbgs() << "Trying to promote to vector: " << Alloca << '\n'); 606 607 if (DisablePromoteAllocaToVector) { 608 LLVM_DEBUG(dbgs() << " Promote alloca to vector is disabled\n"); 609 return false; 610 } 611 612 Type *AllocaTy = Alloca.getAllocatedType(); 613 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 614 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 615 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 616 ArrayTy->getNumElements() > 0) 617 VectorTy = FixedVectorType::get(ArrayTy->getElementType(), 618 ArrayTy->getNumElements()); 619 } 620 621 // Use up to 1/4 of available register budget for vectorization. 622 unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 623 : (MaxVGPRs * 32); 624 625 if (DL->getTypeSizeInBits(AllocaTy) * 4 > Limit) { 626 LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " << MaxVGPRs 627 << " registers available\n"); 628 return false; 629 } 630 631 // FIXME: There is no reason why we can't support larger arrays, we 632 // are just being conservative for now. 633 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or 634 // equivalent. Potentially these could also be promoted but we don't currently 635 // handle this case 636 if (!VectorTy) { 637 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 638 return false; 639 } 640 641 if (VectorTy->getNumElements() > 16 || VectorTy->getNumElements() < 2) { 642 LLVM_DEBUG(dbgs() << " " << *VectorTy 643 << " has an unsupported number of elements\n"); 644 return false; 645 } 646 647 std::map<GetElementPtrInst *, Value *> GEPVectorIdx; 648 SmallVector<Instruction *> WorkList; 649 SmallVector<Instruction *> UsersToRemove; 650 SmallVector<Instruction *> DeferredInsts; 651 SmallVector<Use *, 8> Uses; 652 DenseMap<MemTransferInst *, MemTransferInfo> TransferInfo; 653 654 const auto RejectUser = [&](Instruction *Inst, Twine Msg) { 655 LLVM_DEBUG(dbgs() << " Cannot promote alloca to vector: " << Msg << "\n" 656 << " " << *Inst << "\n"); 657 return false; 658 }; 659 660 for (Use &U : Alloca.uses()) 661 Uses.push_back(&U); 662 663 LLVM_DEBUG(dbgs() << " Attempting promotion to: " << *VectorTy << "\n"); 664 665 Type *VecEltTy = VectorTy->getElementType(); 666 unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8; 667 while (!Uses.empty()) { 668 Use *U = Uses.pop_back_val(); 669 Instruction *Inst = cast<Instruction>(U->getUser()); 670 671 if (Value *Ptr = getLoadStorePointerOperand(Inst)) { 672 // This is a store of the pointer, not to the pointer. 673 if (isa<StoreInst>(Inst) && 674 U->getOperandNo() != StoreInst::getPointerOperandIndex()) 675 return RejectUser(Inst, "pointer is being stored"); 676 677 Type *AccessTy = getLoadStoreType(Inst); 678 if (AccessTy->isAggregateType()) 679 return RejectUser(Inst, "unsupported load/store as aggregate"); 680 assert(!AccessTy->isAggregateType() || AccessTy->isArrayTy()); 681 682 Ptr = Ptr->stripPointerCasts(); 683 684 // Alloca already accessed as vector. 685 if (Ptr == &Alloca && DL->getTypeStoreSize(Alloca.getAllocatedType()) == 686 DL->getTypeStoreSize(AccessTy)) { 687 WorkList.push_back(Inst); 688 continue; 689 } 690 691 // Check that this is a simple access of a vector element. 692 bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple() 693 : cast<StoreInst>(Inst)->isSimple(); 694 if (!IsSimple) 695 return RejectUser(Inst, "not a simple load or store"); 696 if (!isSupportedAccessType(VectorTy, AccessTy, *DL)) 697 return RejectUser(Inst, "not a supported access type"); 698 699 WorkList.push_back(Inst); 700 continue; 701 } 702 703 if (isa<BitCastInst>(Inst)) { 704 // Look through bitcasts. 705 for (Use &U : Inst->uses()) 706 Uses.push_back(&U); 707 UsersToRemove.push_back(Inst); 708 continue; 709 } 710 711 if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 712 // If we can't compute a vector index from this GEP, then we can't 713 // promote this alloca to vector. 714 Value *Index = GEPToVectorIndex(GEP, &Alloca, VecEltTy, *DL); 715 if (!Index) 716 return RejectUser(Inst, "cannot compute vector index for GEP"); 717 718 GEPVectorIdx[GEP] = Index; 719 for (Use &U : Inst->uses()) 720 Uses.push_back(&U); 721 UsersToRemove.push_back(Inst); 722 continue; 723 } 724 725 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst); 726 MSI && isSupportedMemset(MSI, &Alloca, *DL)) { 727 WorkList.push_back(Inst); 728 continue; 729 } 730 731 if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) { 732 if (TransferInst->isVolatile()) 733 return RejectUser(Inst, "mem transfer inst is volatile"); 734 735 ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength()); 736 if (!Len || (Len->getZExtValue() % ElementSize)) 737 return RejectUser(Inst, "mem transfer inst length is non-constant or " 738 "not a multiple of the vector element size"); 739 740 if (!TransferInfo.count(TransferInst)) { 741 DeferredInsts.push_back(Inst); 742 WorkList.push_back(Inst); 743 TransferInfo[TransferInst] = MemTransferInfo(); 744 } 745 746 auto getPointerIndexOfAlloca = [&](Value *Ptr) -> ConstantInt * { 747 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 748 if (Ptr != &Alloca && !GEPVectorIdx.count(GEP)) 749 return nullptr; 750 751 return dyn_cast<ConstantInt>(calculateVectorIndex(Ptr, GEPVectorIdx)); 752 }; 753 754 unsigned OpNum = U->getOperandNo(); 755 MemTransferInfo *TI = &TransferInfo[TransferInst]; 756 if (OpNum == 0) { 757 Value *Dest = TransferInst->getDest(); 758 ConstantInt *Index = getPointerIndexOfAlloca(Dest); 759 if (!Index) 760 return RejectUser(Inst, "could not calculate constant dest index"); 761 TI->DestIndex = Index; 762 } else { 763 assert(OpNum == 1); 764 Value *Src = TransferInst->getSource(); 765 ConstantInt *Index = getPointerIndexOfAlloca(Src); 766 if (!Index) 767 return RejectUser(Inst, "could not calculate constant src index"); 768 TI->SrcIndex = Index; 769 } 770 continue; 771 } 772 773 // Ignore assume-like intrinsics and comparisons used in assumes. 774 if (isAssumeLikeIntrinsic(Inst)) { 775 UsersToRemove.push_back(Inst); 776 continue; 777 } 778 779 if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) { 780 return isAssumeLikeIntrinsic(cast<Instruction>(U)); 781 })) { 782 UsersToRemove.push_back(Inst); 783 continue; 784 } 785 786 return RejectUser(Inst, "unhandled alloca user"); 787 } 788 789 while (!DeferredInsts.empty()) { 790 Instruction *Inst = DeferredInsts.pop_back_val(); 791 MemTransferInst *TransferInst = cast<MemTransferInst>(Inst); 792 // TODO: Support the case if the pointers are from different alloca or 793 // from different address spaces. 794 MemTransferInfo &Info = TransferInfo[TransferInst]; 795 if (!Info.SrcIndex || !Info.DestIndex) 796 return RejectUser( 797 Inst, "mem transfer inst is missing constant src and/or dst index"); 798 } 799 800 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 801 << *VectorTy << '\n'); 802 const unsigned VecStoreSize = DL->getTypeStoreSize(VectorTy); 803 804 // Alloca is uninitialized memory. Imitate that by making the first value 805 // undef. 806 SSAUpdater Updater; 807 Updater.Initialize(VectorTy, "promotealloca"); 808 Updater.AddAvailableValue(Alloca.getParent(), UndefValue::get(VectorTy)); 809 810 // First handle the initial worklist. 811 SmallVector<LoadInst *, 4> DeferredLoads; 812 forEachWorkListItem(WorkList, [&](Instruction *I) { 813 BasicBlock *BB = I->getParent(); 814 // On the first pass, we only take values that are trivially known, i.e. 815 // where AddAvailableValue was already called in this block. 816 Value *Result = promoteAllocaUserToVector( 817 I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, 818 Updater.FindValueForBlock(BB), DeferredLoads); 819 if (Result) 820 Updater.AddAvailableValue(BB, Result); 821 }); 822 823 // Then handle deferred loads. 824 forEachWorkListItem(DeferredLoads, [&](Instruction *I) { 825 SmallVector<LoadInst *, 0> NewDLs; 826 BasicBlock *BB = I->getParent(); 827 // On the second pass, we use GetValueInMiddleOfBlock to guarantee we always 828 // get a value, inserting PHIs as needed. 829 Value *Result = promoteAllocaUserToVector( 830 I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, 831 Updater.GetValueInMiddleOfBlock(I->getParent()), NewDLs); 832 if (Result) 833 Updater.AddAvailableValue(BB, Result); 834 assert(NewDLs.empty() && "No more deferred loads should be queued!"); 835 }); 836 837 // Delete all instructions. On the first pass, new dummy loads may have been 838 // added so we need to collect them too. 839 DenseSet<Instruction *> InstsToDelete(WorkList.begin(), WorkList.end()); 840 InstsToDelete.insert(DeferredLoads.begin(), DeferredLoads.end()); 841 for (Instruction *I : InstsToDelete) { 842 assert(I->use_empty()); 843 I->eraseFromParent(); 844 } 845 846 // Delete all the users that are known to be removeable. 847 for (Instruction *I : reverse(UsersToRemove)) { 848 I->dropDroppableUses(); 849 assert(I->use_empty()); 850 I->eraseFromParent(); 851 } 852 853 // Alloca should now be dead too. 854 assert(Alloca.use_empty()); 855 Alloca.eraseFromParent(); 856 return true; 857 } 858 859 std::pair<Value *, Value *> 860 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 861 Function &F = *Builder.GetInsertBlock()->getParent(); 862 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 863 864 if (!IsAMDHSA) { 865 Function *LocalSizeYFn = 866 Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 867 Function *LocalSizeZFn = 868 Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 869 870 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 871 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 872 873 ST.makeLIDRangeMetadata(LocalSizeY); 874 ST.makeLIDRangeMetadata(LocalSizeZ); 875 876 return std::pair(LocalSizeY, LocalSizeZ); 877 } 878 879 // We must read the size out of the dispatch pointer. 880 assert(IsAMDGCN); 881 882 // We are indexing into this struct, and want to extract the workgroup_size_* 883 // fields. 884 // 885 // typedef struct hsa_kernel_dispatch_packet_s { 886 // uint16_t header; 887 // uint16_t setup; 888 // uint16_t workgroup_size_x ; 889 // uint16_t workgroup_size_y; 890 // uint16_t workgroup_size_z; 891 // uint16_t reserved0; 892 // uint32_t grid_size_x ; 893 // uint32_t grid_size_y ; 894 // uint32_t grid_size_z; 895 // 896 // uint32_t private_segment_size; 897 // uint32_t group_segment_size; 898 // uint64_t kernel_object; 899 // 900 // #ifdef HSA_LARGE_MODEL 901 // void *kernarg_address; 902 // #elif defined HSA_LITTLE_ENDIAN 903 // void *kernarg_address; 904 // uint32_t reserved1; 905 // #else 906 // uint32_t reserved1; 907 // void *kernarg_address; 908 // #endif 909 // uint64_t reserved2; 910 // hsa_signal_t completion_signal; // uint64_t wrapper 911 // } hsa_kernel_dispatch_packet_t 912 // 913 Function *DispatchPtrFn = 914 Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 915 916 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 917 DispatchPtr->addRetAttr(Attribute::NoAlias); 918 DispatchPtr->addRetAttr(Attribute::NonNull); 919 F.removeFnAttr("amdgpu-no-dispatch-ptr"); 920 921 // Size of the dispatch packet struct. 922 DispatchPtr->addDereferenceableRetAttr(64); 923 924 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 925 Value *CastDispatchPtr = Builder.CreateBitCast( 926 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 927 928 // We could do a single 64-bit load here, but it's likely that the basic 929 // 32-bit and extract sequence is already present, and it is probably easier 930 // to CSE this. The loads should be mergeable later anyway. 931 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 932 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 933 934 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 935 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 936 937 MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt); 938 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 939 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 940 ST.makeLIDRangeMetadata(LoadZU); 941 942 // Extract y component. Upper half of LoadZU should be zero already. 943 Value *Y = Builder.CreateLShr(LoadXY, 16); 944 945 return std::pair(Y, LoadZU); 946 } 947 948 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 949 unsigned N) { 950 Function *F = Builder.GetInsertBlock()->getParent(); 951 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 952 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 953 StringRef AttrName; 954 955 switch (N) { 956 case 0: 957 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 958 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 959 AttrName = "amdgpu-no-workitem-id-x"; 960 break; 961 case 1: 962 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 963 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 964 AttrName = "amdgpu-no-workitem-id-y"; 965 break; 966 967 case 2: 968 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 969 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 970 AttrName = "amdgpu-no-workitem-id-z"; 971 break; 972 default: 973 llvm_unreachable("invalid dimension"); 974 } 975 976 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 977 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 978 ST.makeLIDRangeMetadata(CI); 979 F->removeFnAttr(AttrName); 980 981 return CI; 982 } 983 984 static bool isCallPromotable(CallInst *CI) { 985 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 986 if (!II) 987 return false; 988 989 switch (II->getIntrinsicID()) { 990 case Intrinsic::memcpy: 991 case Intrinsic::memmove: 992 case Intrinsic::memset: 993 case Intrinsic::lifetime_start: 994 case Intrinsic::lifetime_end: 995 case Intrinsic::invariant_start: 996 case Intrinsic::invariant_end: 997 case Intrinsic::launder_invariant_group: 998 case Intrinsic::strip_invariant_group: 999 case Intrinsic::objectsize: 1000 return true; 1001 default: 1002 return false; 1003 } 1004 } 1005 1006 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 1007 Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 1008 int OpIdx1) const { 1009 // Figure out which operand is the one we might not be promoting. 1010 Value *OtherOp = Inst->getOperand(OpIdx0); 1011 if (Val == OtherOp) 1012 OtherOp = Inst->getOperand(OpIdx1); 1013 1014 if (isa<ConstantPointerNull>(OtherOp)) 1015 return true; 1016 1017 Value *OtherObj = getUnderlyingObject(OtherOp); 1018 if (!isa<AllocaInst>(OtherObj)) 1019 return false; 1020 1021 // TODO: We should be able to replace undefs with the right pointer type. 1022 1023 // TODO: If we know the other base object is another promotable 1024 // alloca, not necessarily this alloca, we can do this. The 1025 // important part is both must have the same address space at 1026 // the end. 1027 if (OtherObj != BaseAlloca) { 1028 LLVM_DEBUG( 1029 dbgs() << "Found a binary instruction with another alloca object\n"); 1030 return false; 1031 } 1032 1033 return true; 1034 } 1035 1036 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 1037 Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 1038 1039 for (User *User : Val->users()) { 1040 if (is_contained(WorkList, User)) 1041 continue; 1042 1043 if (CallInst *CI = dyn_cast<CallInst>(User)) { 1044 if (!isCallPromotable(CI)) 1045 return false; 1046 1047 WorkList.push_back(User); 1048 continue; 1049 } 1050 1051 Instruction *UseInst = cast<Instruction>(User); 1052 if (UseInst->getOpcode() == Instruction::PtrToInt) 1053 return false; 1054 1055 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 1056 if (LI->isVolatile()) 1057 return false; 1058 1059 continue; 1060 } 1061 1062 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 1063 if (SI->isVolatile()) 1064 return false; 1065 1066 // Reject if the stored value is not the pointer operand. 1067 if (SI->getPointerOperand() != Val) 1068 return false; 1069 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 1070 if (RMW->isVolatile()) 1071 return false; 1072 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 1073 if (CAS->isVolatile()) 1074 return false; 1075 } 1076 1077 // Only promote a select if we know that the other select operand 1078 // is from another pointer that will also be promoted. 1079 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 1080 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 1081 return false; 1082 1083 // May need to rewrite constant operands. 1084 WorkList.push_back(ICmp); 1085 } 1086 1087 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 1088 // Give up if the pointer may be captured. 1089 if (PointerMayBeCaptured(UseInst, true, true)) 1090 return false; 1091 // Don't collect the users of this. 1092 WorkList.push_back(User); 1093 continue; 1094 } 1095 1096 // Do not promote vector/aggregate type instructions. It is hard to track 1097 // their users. 1098 if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 1099 return false; 1100 1101 if (!User->getType()->isPointerTy()) 1102 continue; 1103 1104 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 1105 // Be conservative if an address could be computed outside the bounds of 1106 // the alloca. 1107 if (!GEP->isInBounds()) 1108 return false; 1109 } 1110 1111 // Only promote a select if we know that the other select operand is from 1112 // another pointer that will also be promoted. 1113 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 1114 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 1115 return false; 1116 } 1117 1118 // Repeat for phis. 1119 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 1120 // TODO: Handle more complex cases. We should be able to replace loops 1121 // over arrays. 1122 switch (Phi->getNumIncomingValues()) { 1123 case 1: 1124 break; 1125 case 2: 1126 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 1127 return false; 1128 break; 1129 default: 1130 return false; 1131 } 1132 } 1133 1134 WorkList.push_back(User); 1135 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 1136 return false; 1137 } 1138 1139 return true; 1140 } 1141 1142 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 1143 1144 FunctionType *FTy = F.getFunctionType(); 1145 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1146 1147 // If the function has any arguments in the local address space, then it's 1148 // possible these arguments require the entire local memory space, so 1149 // we cannot use local memory in the pass. 1150 for (Type *ParamTy : FTy->params()) { 1151 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 1152 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 1153 LocalMemLimit = 0; 1154 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 1155 "local memory disabled.\n"); 1156 return false; 1157 } 1158 } 1159 1160 LocalMemLimit = ST.getAddressableLocalMemorySize(); 1161 if (LocalMemLimit == 0) 1162 return false; 1163 1164 SmallVector<const Constant *, 16> Stack; 1165 SmallPtrSet<const Constant *, 8> VisitedConstants; 1166 SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 1167 1168 auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 1169 for (const User *U : Val->users()) { 1170 if (const Instruction *Use = dyn_cast<Instruction>(U)) { 1171 if (Use->getParent()->getParent() == &F) 1172 return true; 1173 } else { 1174 const Constant *C = cast<Constant>(U); 1175 if (VisitedConstants.insert(C).second) 1176 Stack.push_back(C); 1177 } 1178 } 1179 1180 return false; 1181 }; 1182 1183 for (GlobalVariable &GV : Mod->globals()) { 1184 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 1185 continue; 1186 1187 if (visitUsers(&GV, &GV)) { 1188 UsedLDS.insert(&GV); 1189 Stack.clear(); 1190 continue; 1191 } 1192 1193 // For any ConstantExpr uses, we need to recursively search the users until 1194 // we see a function. 1195 while (!Stack.empty()) { 1196 const Constant *C = Stack.pop_back_val(); 1197 if (visitUsers(&GV, C)) { 1198 UsedLDS.insert(&GV); 1199 Stack.clear(); 1200 break; 1201 } 1202 } 1203 } 1204 1205 const DataLayout &DL = Mod->getDataLayout(); 1206 SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 1207 AllocatedSizes.reserve(UsedLDS.size()); 1208 1209 for (const GlobalVariable *GV : UsedLDS) { 1210 Align Alignment = 1211 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 1212 uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 1213 1214 // HIP uses an extern unsized array in local address space for dynamically 1215 // allocated shared memory. In that case, we have to disable the promotion. 1216 if (GV->hasExternalLinkage() && AllocSize == 0) { 1217 LocalMemLimit = 0; 1218 LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated " 1219 "local memory. Promoting to local memory " 1220 "disabled.\n"); 1221 return false; 1222 } 1223 1224 AllocatedSizes.emplace_back(AllocSize, Alignment); 1225 } 1226 1227 // Sort to try to estimate the worst case alignment padding 1228 // 1229 // FIXME: We should really do something to fix the addresses to a more optimal 1230 // value instead 1231 llvm::sort(AllocatedSizes, llvm::less_second()); 1232 1233 // Check how much local memory is being used by global objects 1234 CurrentLocalMemUsage = 0; 1235 1236 // FIXME: Try to account for padding here. The real padding and address is 1237 // currently determined from the inverse order of uses in the function when 1238 // legalizing, which could also potentially change. We try to estimate the 1239 // worst case here, but we probably should fix the addresses earlier. 1240 for (auto Alloc : AllocatedSizes) { 1241 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 1242 CurrentLocalMemUsage += Alloc.first; 1243 } 1244 1245 unsigned MaxOccupancy = 1246 ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, F); 1247 1248 // Restrict local memory usage so that we don't drastically reduce occupancy, 1249 // unless it is already significantly reduced. 1250 1251 // TODO: Have some sort of hint or other heuristics to guess occupancy based 1252 // on other factors.. 1253 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 1254 if (OccupancyHint == 0) 1255 OccupancyHint = 7; 1256 1257 // Clamp to max value. 1258 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 1259 1260 // Check the hint but ignore it if it's obviously wrong from the existing LDS 1261 // usage. 1262 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 1263 1264 // Round up to the next tier of usage. 1265 unsigned MaxSizeWithWaveCount = 1266 ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 1267 1268 // Program is possibly broken by using more local mem than available. 1269 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 1270 return false; 1271 1272 LocalMemLimit = MaxSizeWithWaveCount; 1273 1274 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 1275 << " bytes of LDS\n" 1276 << " Rounding size to " << MaxSizeWithWaveCount 1277 << " with a maximum occupancy of " << MaxOccupancy << '\n' 1278 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 1279 << " available for promotion\n"); 1280 1281 return true; 1282 } 1283 1284 // FIXME: Should try to pick the most likely to be profitable allocas first. 1285 bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToLDS(AllocaInst &I, 1286 bool SufficientLDS) { 1287 LLVM_DEBUG(dbgs() << "Trying to promote to LDS: " << I << '\n'); 1288 1289 if (DisablePromoteAllocaToLDS) { 1290 LLVM_DEBUG(dbgs() << " Promote alloca to LDS is disabled\n"); 1291 return false; 1292 } 1293 1294 const DataLayout &DL = Mod->getDataLayout(); 1295 IRBuilder<> Builder(&I); 1296 1297 const Function &ContainingFunction = *I.getParent()->getParent(); 1298 CallingConv::ID CC = ContainingFunction.getCallingConv(); 1299 1300 // Don't promote the alloca to LDS for shader calling conventions as the work 1301 // item ID intrinsics are not supported for these calling conventions. 1302 // Furthermore not all LDS is available for some of the stages. 1303 switch (CC) { 1304 case CallingConv::AMDGPU_KERNEL: 1305 case CallingConv::SPIR_KERNEL: 1306 break; 1307 default: 1308 LLVM_DEBUG( 1309 dbgs() 1310 << " promote alloca to LDS not supported with calling convention.\n"); 1311 return false; 1312 } 1313 1314 // Not likely to have sufficient local memory for promotion. 1315 if (!SufficientLDS) 1316 return false; 1317 1318 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 1319 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 1320 1321 Align Alignment = 1322 DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 1323 1324 // FIXME: This computed padding is likely wrong since it depends on inverse 1325 // usage order. 1326 // 1327 // FIXME: It is also possible that if we're allowed to use all of the memory 1328 // could end up using more than the maximum due to alignment padding. 1329 1330 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 1331 uint32_t AllocSize = 1332 WorkGroupSize * DL.getTypeAllocSize(I.getAllocatedType()); 1333 NewSize += AllocSize; 1334 1335 if (NewSize > LocalMemLimit) { 1336 LLVM_DEBUG(dbgs() << " " << AllocSize 1337 << " bytes of local memory not available to promote\n"); 1338 return false; 1339 } 1340 1341 CurrentLocalMemUsage = NewSize; 1342 1343 std::vector<Value *> WorkList; 1344 1345 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 1346 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 1347 return false; 1348 } 1349 1350 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 1351 1352 Function *F = I.getParent()->getParent(); 1353 1354 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 1355 GlobalVariable *GV = new GlobalVariable( 1356 *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy), 1357 Twine(F->getName()) + Twine('.') + I.getName(), nullptr, 1358 GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); 1359 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1360 GV->setAlignment(I.getAlign()); 1361 1362 Value *TCntY, *TCntZ; 1363 1364 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 1365 Value *TIdX = getWorkitemID(Builder, 0); 1366 Value *TIdY = getWorkitemID(Builder, 1); 1367 Value *TIdZ = getWorkitemID(Builder, 2); 1368 1369 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 1370 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 1371 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 1372 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 1373 TID = Builder.CreateAdd(TID, TIdZ); 1374 1375 LLVMContext &Context = Mod->getContext(); 1376 Value *Indices[] = {Constant::getNullValue(Type::getInt32Ty(Context)), TID}; 1377 1378 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 1379 I.mutateType(Offset->getType()); 1380 I.replaceAllUsesWith(Offset); 1381 I.eraseFromParent(); 1382 1383 SmallVector<IntrinsicInst *> DeferredIntrs; 1384 1385 for (Value *V : WorkList) { 1386 CallInst *Call = dyn_cast<CallInst>(V); 1387 if (!Call) { 1388 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 1389 PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); 1390 1391 if (isa<ConstantPointerNull>(CI->getOperand(0))) 1392 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 1393 1394 if (isa<ConstantPointerNull>(CI->getOperand(1))) 1395 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 1396 1397 continue; 1398 } 1399 1400 // The operand's value should be corrected on its own and we don't want to 1401 // touch the users. 1402 if (isa<AddrSpaceCastInst>(V)) 1403 continue; 1404 1405 PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); 1406 1407 // FIXME: It doesn't really make sense to try to do this for all 1408 // instructions. 1409 V->mutateType(NewTy); 1410 1411 // Adjust the types of any constant operands. 1412 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1413 if (isa<ConstantPointerNull>(SI->getOperand(1))) 1414 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 1415 1416 if (isa<ConstantPointerNull>(SI->getOperand(2))) 1417 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 1418 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 1419 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1420 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 1421 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 1422 } 1423 } 1424 1425 continue; 1426 } 1427 1428 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 1429 Builder.SetInsertPoint(Intr); 1430 switch (Intr->getIntrinsicID()) { 1431 case Intrinsic::lifetime_start: 1432 case Intrinsic::lifetime_end: 1433 // These intrinsics are for address space 0 only 1434 Intr->eraseFromParent(); 1435 continue; 1436 case Intrinsic::memcpy: 1437 case Intrinsic::memmove: 1438 // These have 2 pointer operands. In case if second pointer also needs 1439 // to be replaced we defer processing of these intrinsics until all 1440 // other values are processed. 1441 DeferredIntrs.push_back(Intr); 1442 continue; 1443 case Intrinsic::memset: { 1444 MemSetInst *MemSet = cast<MemSetInst>(Intr); 1445 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 1446 MemSet->getLength(), MemSet->getDestAlign(), 1447 MemSet->isVolatile()); 1448 Intr->eraseFromParent(); 1449 continue; 1450 } 1451 case Intrinsic::invariant_start: 1452 case Intrinsic::invariant_end: 1453 case Intrinsic::launder_invariant_group: 1454 case Intrinsic::strip_invariant_group: 1455 Intr->eraseFromParent(); 1456 // FIXME: I think the invariant marker should still theoretically apply, 1457 // but the intrinsics need to be changed to accept pointers with any 1458 // address space. 1459 continue; 1460 case Intrinsic::objectsize: { 1461 Value *Src = Intr->getOperand(0); 1462 Function *ObjectSize = Intrinsic::getDeclaration( 1463 Mod, Intrinsic::objectsize, 1464 {Intr->getType(), 1465 PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS)}); 1466 1467 CallInst *NewCall = Builder.CreateCall( 1468 ObjectSize, 1469 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 1470 Intr->replaceAllUsesWith(NewCall); 1471 Intr->eraseFromParent(); 1472 continue; 1473 } 1474 default: 1475 Intr->print(errs()); 1476 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1477 } 1478 } 1479 1480 for (IntrinsicInst *Intr : DeferredIntrs) { 1481 Builder.SetInsertPoint(Intr); 1482 Intrinsic::ID ID = Intr->getIntrinsicID(); 1483 assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1484 1485 MemTransferInst *MI = cast<MemTransferInst>(Intr); 1486 auto *B = Builder.CreateMemTransferInst( 1487 ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(), 1488 MI->getSourceAlign(), MI->getLength(), MI->isVolatile()); 1489 1490 for (unsigned I = 0; I != 2; ++I) { 1491 if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1492 B->addDereferenceableParamAttr(I, Bytes); 1493 } 1494 } 1495 1496 Intr->eraseFromParent(); 1497 } 1498 1499 return true; 1500 } 1501