1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates allocas by either converting them into vectors or 10 // by migrating them to local address space. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUSubtarget.h" 16 #include "Utils/AMDGPUBaseInfo.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsAMDGPU.h" 41 #include "llvm/IR/IntrinsicsR600.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <map> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 #define DEBUG_TYPE "amdgpu-promote-alloca" 64 65 using namespace llvm; 66 67 namespace { 68 69 static cl::opt<bool> DisablePromoteAllocaToVector( 70 "disable-promote-alloca-to-vector", 71 cl::desc("Disable promote alloca to vector"), 72 cl::init(false)); 73 74 static cl::opt<bool> DisablePromoteAllocaToLDS( 75 "disable-promote-alloca-to-lds", 76 cl::desc("Disable promote alloca to LDS"), 77 cl::init(false)); 78 79 // FIXME: This can create globals so should be a module pass. 80 class AMDGPUPromoteAlloca : public FunctionPass { 81 private: 82 const TargetMachine *TM; 83 Module *Mod = nullptr; 84 const DataLayout *DL = nullptr; 85 86 // FIXME: This should be per-kernel. 87 uint32_t LocalMemLimit = 0; 88 uint32_t CurrentLocalMemUsage = 0; 89 90 bool IsAMDGCN = false; 91 bool IsAMDHSA = false; 92 93 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 94 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 95 96 /// BaseAlloca is the alloca root the search started from. 97 /// Val may be that alloca or a recursive user of it. 98 bool collectUsesWithPtrTypes(Value *BaseAlloca, 99 Value *Val, 100 std::vector<Value*> &WorkList) const; 101 102 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 103 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 104 /// Returns true if both operands are derived from the same alloca. Val should 105 /// be the same value as one of the input operands of UseInst. 106 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 107 Instruction *UseInst, 108 int OpIdx0, int OpIdx1) const; 109 110 /// Check whether we have enough local memory for promotion. 111 bool hasSufficientLocalMem(const Function &F); 112 113 public: 114 static char ID; 115 116 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 117 118 bool doInitialization(Module &M) override; 119 bool runOnFunction(Function &F) override; 120 121 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 122 123 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 124 125 void getAnalysisUsage(AnalysisUsage &AU) const override { 126 AU.setPreservesCFG(); 127 FunctionPass::getAnalysisUsage(AU); 128 } 129 }; 130 131 } // end anonymous namespace 132 133 char AMDGPUPromoteAlloca::ID = 0; 134 135 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 136 "AMDGPU promote alloca to vector or LDS", false, false) 137 138 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 139 140 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 141 Mod = &M; 142 DL = &Mod->getDataLayout(); 143 144 return false; 145 } 146 147 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 148 if (skipFunction(F)) 149 return false; 150 151 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 152 TM = &TPC->getTM<TargetMachine>(); 153 else 154 return false; 155 156 const Triple &TT = TM->getTargetTriple(); 157 IsAMDGCN = TT.getArch() == Triple::amdgcn; 158 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 159 160 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 161 if (!ST.isPromoteAllocaEnabled()) 162 return false; 163 164 bool SufficientLDS = hasSufficientLocalMem(F); 165 bool Changed = false; 166 BasicBlock &EntryBB = *F.begin(); 167 168 SmallVector<AllocaInst *, 16> Allocas; 169 for (Instruction &I : EntryBB) { 170 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 171 Allocas.push_back(AI); 172 } 173 174 for (AllocaInst *AI : Allocas) { 175 if (handleAlloca(*AI, SufficientLDS)) 176 Changed = true; 177 } 178 179 return Changed; 180 } 181 182 std::pair<Value *, Value *> 183 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 184 const Function &F = *Builder.GetInsertBlock()->getParent(); 185 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 186 187 if (!IsAMDHSA) { 188 Function *LocalSizeYFn 189 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 190 Function *LocalSizeZFn 191 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 192 193 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 194 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 195 196 ST.makeLIDRangeMetadata(LocalSizeY); 197 ST.makeLIDRangeMetadata(LocalSizeZ); 198 199 return std::make_pair(LocalSizeY, LocalSizeZ); 200 } 201 202 // We must read the size out of the dispatch pointer. 203 assert(IsAMDGCN); 204 205 // We are indexing into this struct, and want to extract the workgroup_size_* 206 // fields. 207 // 208 // typedef struct hsa_kernel_dispatch_packet_s { 209 // uint16_t header; 210 // uint16_t setup; 211 // uint16_t workgroup_size_x ; 212 // uint16_t workgroup_size_y; 213 // uint16_t workgroup_size_z; 214 // uint16_t reserved0; 215 // uint32_t grid_size_x ; 216 // uint32_t grid_size_y ; 217 // uint32_t grid_size_z; 218 // 219 // uint32_t private_segment_size; 220 // uint32_t group_segment_size; 221 // uint64_t kernel_object; 222 // 223 // #ifdef HSA_LARGE_MODEL 224 // void *kernarg_address; 225 // #elif defined HSA_LITTLE_ENDIAN 226 // void *kernarg_address; 227 // uint32_t reserved1; 228 // #else 229 // uint32_t reserved1; 230 // void *kernarg_address; 231 // #endif 232 // uint64_t reserved2; 233 // hsa_signal_t completion_signal; // uint64_t wrapper 234 // } hsa_kernel_dispatch_packet_t 235 // 236 Function *DispatchPtrFn 237 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 238 239 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 240 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 241 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 242 243 // Size of the dispatch packet struct. 244 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 245 246 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 247 Value *CastDispatchPtr = Builder.CreateBitCast( 248 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 249 250 // We could do a single 64-bit load here, but it's likely that the basic 251 // 32-bit and extract sequence is already present, and it is probably easier 252 // to CSE this. The loads should be mergable later anyway. 253 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 254 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, 4); 255 256 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 257 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, 4); 258 259 MDNode *MD = MDNode::get(Mod->getContext(), None); 260 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 261 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 262 ST.makeLIDRangeMetadata(LoadZU); 263 264 // Extract y component. Upper half of LoadZU should be zero already. 265 Value *Y = Builder.CreateLShr(LoadXY, 16); 266 267 return std::make_pair(Y, LoadZU); 268 } 269 270 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 271 const AMDGPUSubtarget &ST = 272 AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent()); 273 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 274 275 switch (N) { 276 case 0: 277 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 278 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 279 break; 280 case 1: 281 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 282 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 283 break; 284 285 case 2: 286 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 287 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 288 break; 289 default: 290 llvm_unreachable("invalid dimension"); 291 } 292 293 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 294 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 295 ST.makeLIDRangeMetadata(CI); 296 297 return CI; 298 } 299 300 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 301 return VectorType::get(ArrayTy->getElementType(), 302 ArrayTy->getNumElements()); 303 } 304 305 static Value * 306 calculateVectorIndex(Value *Ptr, 307 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 308 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 309 310 auto I = GEPIdx.find(GEP); 311 return I == GEPIdx.end() ? nullptr : I->second; 312 } 313 314 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 315 // FIXME we only support simple cases 316 if (GEP->getNumOperands() != 3) 317 return nullptr; 318 319 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 320 if (!I0 || !I0->isZero()) 321 return nullptr; 322 323 return GEP->getOperand(2); 324 } 325 326 // Not an instruction handled below to turn into a vector. 327 // 328 // TODO: Check isTriviallyVectorizable for calls and handle other 329 // instructions. 330 static bool canVectorizeInst(Instruction *Inst, User *User) { 331 switch (Inst->getOpcode()) { 332 case Instruction::Load: { 333 // Currently only handle the case where the Pointer Operand is a GEP. 334 // Also we could not vectorize volatile or atomic loads. 335 LoadInst *LI = cast<LoadInst>(Inst); 336 if (isa<AllocaInst>(User) && 337 LI->getPointerOperandType() == User->getType() && 338 isa<VectorType>(LI->getType())) 339 return true; 340 return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple(); 341 } 342 case Instruction::BitCast: 343 return true; 344 case Instruction::Store: { 345 // Must be the stored pointer operand, not a stored value, plus 346 // since it should be canonical form, the User should be a GEP. 347 // Also we could not vectorize volatile or atomic stores. 348 StoreInst *SI = cast<StoreInst>(Inst); 349 if (isa<AllocaInst>(User) && 350 SI->getPointerOperandType() == User->getType() && 351 isa<VectorType>(SI->getValueOperand()->getType())) 352 return true; 353 return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple(); 354 } 355 default: 356 return false; 357 } 358 } 359 360 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 361 362 if (DisablePromoteAllocaToVector) { 363 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 364 return false; 365 } 366 367 Type *AT = Alloca->getAllocatedType(); 368 SequentialType *AllocaTy = dyn_cast<SequentialType>(AT); 369 370 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 371 372 // FIXME: There is no reason why we can't support larger arrays, we 373 // are just being conservative for now. 374 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 375 // could also be promoted but we don't currently handle this case 376 if (!AllocaTy || 377 AllocaTy->getNumElements() > 16 || 378 AllocaTy->getNumElements() < 2 || 379 !VectorType::isValidElementType(AllocaTy->getElementType())) { 380 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 381 return false; 382 } 383 384 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 385 std::vector<Value*> WorkList; 386 for (User *AllocaUser : Alloca->users()) { 387 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 388 if (!GEP) { 389 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 390 return false; 391 392 WorkList.push_back(AllocaUser); 393 continue; 394 } 395 396 Value *Index = GEPToVectorIndex(GEP); 397 398 // If we can't compute a vector index from this GEP, then we can't 399 // promote this alloca to vector. 400 if (!Index) { 401 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 402 << '\n'); 403 return false; 404 } 405 406 GEPVectorIdx[GEP] = Index; 407 for (User *GEPUser : AllocaUser->users()) { 408 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 409 return false; 410 411 WorkList.push_back(GEPUser); 412 } 413 } 414 415 VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy); 416 if (!VectorTy) 417 VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy)); 418 419 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 420 << *VectorTy << '\n'); 421 422 for (Value *V : WorkList) { 423 Instruction *Inst = cast<Instruction>(V); 424 IRBuilder<> Builder(Inst); 425 switch (Inst->getOpcode()) { 426 case Instruction::Load: { 427 if (Inst->getType() == AT) 428 break; 429 430 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 431 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 432 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 433 434 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 435 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 436 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 437 Inst->replaceAllUsesWith(ExtractElement); 438 Inst->eraseFromParent(); 439 break; 440 } 441 case Instruction::Store: { 442 StoreInst *SI = cast<StoreInst>(Inst); 443 if (SI->getValueOperand()->getType() == AT) 444 break; 445 446 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 447 Value *Ptr = SI->getPointerOperand(); 448 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 449 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 450 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 451 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 452 SI->getValueOperand(), 453 Index); 454 Builder.CreateStore(NewVecValue, BitCast); 455 Inst->eraseFromParent(); 456 break; 457 } 458 case Instruction::BitCast: 459 case Instruction::AddrSpaceCast: 460 break; 461 462 default: 463 llvm_unreachable("Inconsistency in instructions promotable to vector"); 464 } 465 } 466 return true; 467 } 468 469 static bool isCallPromotable(CallInst *CI) { 470 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 471 if (!II) 472 return false; 473 474 switch (II->getIntrinsicID()) { 475 case Intrinsic::memcpy: 476 case Intrinsic::memmove: 477 case Intrinsic::memset: 478 case Intrinsic::lifetime_start: 479 case Intrinsic::lifetime_end: 480 case Intrinsic::invariant_start: 481 case Intrinsic::invariant_end: 482 case Intrinsic::launder_invariant_group: 483 case Intrinsic::strip_invariant_group: 484 case Intrinsic::objectsize: 485 return true; 486 default: 487 return false; 488 } 489 } 490 491 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 492 Value *Val, 493 Instruction *Inst, 494 int OpIdx0, 495 int OpIdx1) const { 496 // Figure out which operand is the one we might not be promoting. 497 Value *OtherOp = Inst->getOperand(OpIdx0); 498 if (Val == OtherOp) 499 OtherOp = Inst->getOperand(OpIdx1); 500 501 if (isa<ConstantPointerNull>(OtherOp)) 502 return true; 503 504 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 505 if (!isa<AllocaInst>(OtherObj)) 506 return false; 507 508 // TODO: We should be able to replace undefs with the right pointer type. 509 510 // TODO: If we know the other base object is another promotable 511 // alloca, not necessarily this alloca, we can do this. The 512 // important part is both must have the same address space at 513 // the end. 514 if (OtherObj != BaseAlloca) { 515 LLVM_DEBUG( 516 dbgs() << "Found a binary instruction with another alloca object\n"); 517 return false; 518 } 519 520 return true; 521 } 522 523 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 524 Value *BaseAlloca, 525 Value *Val, 526 std::vector<Value*> &WorkList) const { 527 528 for (User *User : Val->users()) { 529 if (is_contained(WorkList, User)) 530 continue; 531 532 if (CallInst *CI = dyn_cast<CallInst>(User)) { 533 if (!isCallPromotable(CI)) 534 return false; 535 536 WorkList.push_back(User); 537 continue; 538 } 539 540 Instruction *UseInst = cast<Instruction>(User); 541 if (UseInst->getOpcode() == Instruction::PtrToInt) 542 return false; 543 544 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 545 if (LI->isVolatile()) 546 return false; 547 548 continue; 549 } 550 551 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 552 if (SI->isVolatile()) 553 return false; 554 555 // Reject if the stored value is not the pointer operand. 556 if (SI->getPointerOperand() != Val) 557 return false; 558 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 559 if (RMW->isVolatile()) 560 return false; 561 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 562 if (CAS->isVolatile()) 563 return false; 564 } 565 566 // Only promote a select if we know that the other select operand 567 // is from another pointer that will also be promoted. 568 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 569 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 570 return false; 571 572 // May need to rewrite constant operands. 573 WorkList.push_back(ICmp); 574 } 575 576 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 577 // Give up if the pointer may be captured. 578 if (PointerMayBeCaptured(UseInst, true, true)) 579 return false; 580 // Don't collect the users of this. 581 WorkList.push_back(User); 582 continue; 583 } 584 585 if (!User->getType()->isPointerTy()) 586 continue; 587 588 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 589 // Be conservative if an address could be computed outside the bounds of 590 // the alloca. 591 if (!GEP->isInBounds()) 592 return false; 593 } 594 595 // Only promote a select if we know that the other select operand is from 596 // another pointer that will also be promoted. 597 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 598 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 599 return false; 600 } 601 602 // Repeat for phis. 603 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 604 // TODO: Handle more complex cases. We should be able to replace loops 605 // over arrays. 606 switch (Phi->getNumIncomingValues()) { 607 case 1: 608 break; 609 case 2: 610 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 611 return false; 612 break; 613 default: 614 return false; 615 } 616 } 617 618 WorkList.push_back(User); 619 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 620 return false; 621 } 622 623 return true; 624 } 625 626 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { 627 628 FunctionType *FTy = F.getFunctionType(); 629 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 630 631 // If the function has any arguments in the local address space, then it's 632 // possible these arguments require the entire local memory space, so 633 // we cannot use local memory in the pass. 634 for (Type *ParamTy : FTy->params()) { 635 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 636 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 637 LocalMemLimit = 0; 638 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 639 "local memory disabled.\n"); 640 return false; 641 } 642 } 643 644 LocalMemLimit = ST.getLocalMemorySize(); 645 if (LocalMemLimit == 0) 646 return false; 647 648 const DataLayout &DL = Mod->getDataLayout(); 649 650 // Check how much local memory is being used by global objects 651 CurrentLocalMemUsage = 0; 652 for (GlobalVariable &GV : Mod->globals()) { 653 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 654 continue; 655 656 for (const User *U : GV.users()) { 657 const Instruction *Use = dyn_cast<Instruction>(U); 658 if (!Use) 659 continue; 660 661 if (Use->getParent()->getParent() == &F) { 662 unsigned Align = GV.getAlignment(); 663 if (Align == 0) 664 Align = DL.getABITypeAlignment(GV.getValueType()); 665 666 // FIXME: Try to account for padding here. The padding is currently 667 // determined from the inverse order of uses in the function. I'm not 668 // sure if the use list order is in any way connected to this, so the 669 // total reported size is likely incorrect. 670 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 671 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 672 CurrentLocalMemUsage += AllocSize; 673 break; 674 } 675 } 676 } 677 678 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 679 F); 680 681 // Restrict local memory usage so that we don't drastically reduce occupancy, 682 // unless it is already significantly reduced. 683 684 // TODO: Have some sort of hint or other heuristics to guess occupancy based 685 // on other factors.. 686 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 687 if (OccupancyHint == 0) 688 OccupancyHint = 7; 689 690 // Clamp to max value. 691 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 692 693 // Check the hint but ignore it if it's obviously wrong from the existing LDS 694 // usage. 695 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 696 697 698 // Round up to the next tier of usage. 699 unsigned MaxSizeWithWaveCount 700 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 701 702 // Program is possibly broken by using more local mem than available. 703 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 704 return false; 705 706 LocalMemLimit = MaxSizeWithWaveCount; 707 708 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 709 << " bytes of LDS\n" 710 << " Rounding size to " << MaxSizeWithWaveCount 711 << " with a maximum occupancy of " << MaxOccupancy << '\n' 712 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 713 << " available for promotion\n"); 714 715 return true; 716 } 717 718 // FIXME: Should try to pick the most likely to be profitable allocas first. 719 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { 720 // Array allocations are probably not worth handling, since an allocation of 721 // the array type is the canonical form. 722 if (!I.isStaticAlloca() || I.isArrayAllocation()) 723 return false; 724 725 IRBuilder<> Builder(&I); 726 727 // First try to replace the alloca with a vector 728 Type *AllocaTy = I.getAllocatedType(); 729 730 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 731 732 if (tryPromoteAllocaToVector(&I)) 733 return true; // Promoted to vector. 734 735 if (DisablePromoteAllocaToLDS) 736 return false; 737 738 const Function &ContainingFunction = *I.getParent()->getParent(); 739 CallingConv::ID CC = ContainingFunction.getCallingConv(); 740 741 // Don't promote the alloca to LDS for shader calling conventions as the work 742 // item ID intrinsics are not supported for these calling conventions. 743 // Furthermore not all LDS is available for some of the stages. 744 switch (CC) { 745 case CallingConv::AMDGPU_KERNEL: 746 case CallingConv::SPIR_KERNEL: 747 break; 748 default: 749 LLVM_DEBUG( 750 dbgs() 751 << " promote alloca to LDS not supported with calling convention.\n"); 752 return false; 753 } 754 755 // Not likely to have sufficient local memory for promotion. 756 if (!SufficientLDS) 757 return false; 758 759 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction); 760 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 761 762 const DataLayout &DL = Mod->getDataLayout(); 763 764 unsigned Align = I.getAlignment(); 765 if (Align == 0) 766 Align = DL.getABITypeAlignment(I.getAllocatedType()); 767 768 // FIXME: This computed padding is likely wrong since it depends on inverse 769 // usage order. 770 // 771 // FIXME: It is also possible that if we're allowed to use all of the memory 772 // could could end up using more than the maximum due to alignment padding. 773 774 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 775 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 776 NewSize += AllocSize; 777 778 if (NewSize > LocalMemLimit) { 779 LLVM_DEBUG(dbgs() << " " << AllocSize 780 << " bytes of local memory not available to promote\n"); 781 return false; 782 } 783 784 CurrentLocalMemUsage = NewSize; 785 786 std::vector<Value*> WorkList; 787 788 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 789 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 790 return false; 791 } 792 793 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 794 795 Function *F = I.getParent()->getParent(); 796 797 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 798 GlobalVariable *GV = new GlobalVariable( 799 *Mod, GVTy, false, GlobalValue::InternalLinkage, 800 UndefValue::get(GVTy), 801 Twine(F->getName()) + Twine('.') + I.getName(), 802 nullptr, 803 GlobalVariable::NotThreadLocal, 804 AMDGPUAS::LOCAL_ADDRESS); 805 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 806 GV->setAlignment(MaybeAlign(I.getAlignment())); 807 808 Value *TCntY, *TCntZ; 809 810 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 811 Value *TIdX = getWorkitemID(Builder, 0); 812 Value *TIdY = getWorkitemID(Builder, 1); 813 Value *TIdZ = getWorkitemID(Builder, 2); 814 815 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 816 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 817 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 818 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 819 TID = Builder.CreateAdd(TID, TIdZ); 820 821 Value *Indices[] = { 822 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 823 TID 824 }; 825 826 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 827 I.mutateType(Offset->getType()); 828 I.replaceAllUsesWith(Offset); 829 I.eraseFromParent(); 830 831 for (Value *V : WorkList) { 832 CallInst *Call = dyn_cast<CallInst>(V); 833 if (!Call) { 834 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 835 Value *Src0 = CI->getOperand(0); 836 Type *EltTy = Src0->getType()->getPointerElementType(); 837 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 838 839 if (isa<ConstantPointerNull>(CI->getOperand(0))) 840 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 841 842 if (isa<ConstantPointerNull>(CI->getOperand(1))) 843 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 844 845 continue; 846 } 847 848 // The operand's value should be corrected on its own and we don't want to 849 // touch the users. 850 if (isa<AddrSpaceCastInst>(V)) 851 continue; 852 853 Type *EltTy = V->getType()->getPointerElementType(); 854 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 855 856 // FIXME: It doesn't really make sense to try to do this for all 857 // instructions. 858 V->mutateType(NewTy); 859 860 // Adjust the types of any constant operands. 861 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 862 if (isa<ConstantPointerNull>(SI->getOperand(1))) 863 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 864 865 if (isa<ConstantPointerNull>(SI->getOperand(2))) 866 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 867 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 868 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 869 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 870 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 871 } 872 } 873 874 continue; 875 } 876 877 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 878 Builder.SetInsertPoint(Intr); 879 switch (Intr->getIntrinsicID()) { 880 case Intrinsic::lifetime_start: 881 case Intrinsic::lifetime_end: 882 // These intrinsics are for address space 0 only 883 Intr->eraseFromParent(); 884 continue; 885 case Intrinsic::memcpy: { 886 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 887 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(), 888 MemCpy->getRawSource(), MemCpy->getSourceAlign(), 889 MemCpy->getLength(), MemCpy->isVolatile()); 890 Intr->eraseFromParent(); 891 continue; 892 } 893 case Intrinsic::memmove: { 894 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 895 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(), 896 MemMove->getRawSource(), MemMove->getSourceAlign(), 897 MemMove->getLength(), MemMove->isVolatile()); 898 Intr->eraseFromParent(); 899 continue; 900 } 901 case Intrinsic::memset: { 902 MemSetInst *MemSet = cast<MemSetInst>(Intr); 903 Builder.CreateMemSet( 904 MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 905 MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 906 Intr->eraseFromParent(); 907 continue; 908 } 909 case Intrinsic::invariant_start: 910 case Intrinsic::invariant_end: 911 case Intrinsic::launder_invariant_group: 912 case Intrinsic::strip_invariant_group: 913 Intr->eraseFromParent(); 914 // FIXME: I think the invariant marker should still theoretically apply, 915 // but the intrinsics need to be changed to accept pointers with any 916 // address space. 917 continue; 918 case Intrinsic::objectsize: { 919 Value *Src = Intr->getOperand(0); 920 Type *SrcTy = Src->getType()->getPointerElementType(); 921 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 922 Intrinsic::objectsize, 923 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 924 ); 925 926 CallInst *NewCall = Builder.CreateCall( 927 ObjectSize, 928 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 929 Intr->replaceAllUsesWith(NewCall); 930 Intr->eraseFromParent(); 931 continue; 932 } 933 default: 934 Intr->print(errs()); 935 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 936 } 937 } 938 return true; 939 } 940 941 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 942 return new AMDGPUPromoteAlloca(); 943 } 944