xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates allocas by either converting them into vectors or
10 // by migrating them to local address space.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "GCNSubtarget.h"
16 #include "Utils/AMDGPUBaseInfo.h"
17 #include "llvm/Analysis/CaptureTracking.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/IntrinsicsAMDGPU.h"
23 #include "llvm/IR/IntrinsicsR600.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "amdgpu-promote-alloca"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 static cl::opt<bool> DisablePromoteAllocaToVector(
34   "disable-promote-alloca-to-vector",
35   cl::desc("Disable promote alloca to vector"),
36   cl::init(false));
37 
38 static cl::opt<bool> DisablePromoteAllocaToLDS(
39   "disable-promote-alloca-to-lds",
40   cl::desc("Disable promote alloca to LDS"),
41   cl::init(false));
42 
43 static cl::opt<unsigned> PromoteAllocaToVectorLimit(
44   "amdgpu-promote-alloca-to-vector-limit",
45   cl::desc("Maximum byte size to consider promote alloca to vector"),
46   cl::init(0));
47 
48 // FIXME: This can create globals so should be a module pass.
49 class AMDGPUPromoteAlloca : public FunctionPass {
50 public:
51   static char ID;
52 
53   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
54 
55   bool runOnFunction(Function &F) override;
56 
57   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
58 
59   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
60 
61   void getAnalysisUsage(AnalysisUsage &AU) const override {
62     AU.setPreservesCFG();
63     FunctionPass::getAnalysisUsage(AU);
64   }
65 };
66 
67 class AMDGPUPromoteAllocaImpl {
68 private:
69   const TargetMachine &TM;
70   Module *Mod = nullptr;
71   const DataLayout *DL = nullptr;
72 
73   // FIXME: This should be per-kernel.
74   uint32_t LocalMemLimit = 0;
75   uint32_t CurrentLocalMemUsage = 0;
76   unsigned MaxVGPRs;
77 
78   bool IsAMDGCN = false;
79   bool IsAMDHSA = false;
80 
81   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
82   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
83 
84   /// BaseAlloca is the alloca root the search started from.
85   /// Val may be that alloca or a recursive user of it.
86   bool collectUsesWithPtrTypes(Value *BaseAlloca,
87                                Value *Val,
88                                std::vector<Value*> &WorkList) const;
89 
90   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
91   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
92   /// Returns true if both operands are derived from the same alloca. Val should
93   /// be the same value as one of the input operands of UseInst.
94   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
95                                        Instruction *UseInst,
96                                        int OpIdx0, int OpIdx1) const;
97 
98   /// Check whether we have enough local memory for promotion.
99   bool hasSufficientLocalMem(const Function &F);
100 
101   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
102 
103 public:
104   AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
105   bool run(Function &F);
106 };
107 
108 class AMDGPUPromoteAllocaToVector : public FunctionPass {
109 public:
110   static char ID;
111 
112   AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
113 
114   bool runOnFunction(Function &F) override;
115 
116   StringRef getPassName() const override {
117     return "AMDGPU Promote Alloca to vector";
118   }
119 
120   void getAnalysisUsage(AnalysisUsage &AU) const override {
121     AU.setPreservesCFG();
122     FunctionPass::getAnalysisUsage(AU);
123   }
124 };
125 
126 } // end anonymous namespace
127 
128 char AMDGPUPromoteAlloca::ID = 0;
129 char AMDGPUPromoteAllocaToVector::ID = 0;
130 
131 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
132                       "AMDGPU promote alloca to vector or LDS", false, false)
133 // Move LDS uses from functions to kernels before promote alloca for accurate
134 // estimation of LDS available
135 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)
136 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
137                     "AMDGPU promote alloca to vector or LDS", false, false)
138 
139 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
140                 "AMDGPU promote alloca to vector", false, false)
141 
142 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
143 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
144 
145 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
146   if (skipFunction(F))
147     return false;
148 
149   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
150     return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
151   }
152   return false;
153 }
154 
155 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
156                                                FunctionAnalysisManager &AM) {
157   bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
158   if (Changed) {
159     PreservedAnalyses PA;
160     PA.preserveSet<CFGAnalyses>();
161     return PA;
162   }
163   return PreservedAnalyses::all();
164 }
165 
166 bool AMDGPUPromoteAllocaImpl::run(Function &F) {
167   Mod = F.getParent();
168   DL = &Mod->getDataLayout();
169 
170   const Triple &TT = TM.getTargetTriple();
171   IsAMDGCN = TT.getArch() == Triple::amdgcn;
172   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
173 
174   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
175   if (!ST.isPromoteAllocaEnabled())
176     return false;
177 
178   if (IsAMDGCN) {
179     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
180     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
181     // A non-entry function has only 32 caller preserved registers.
182     // Do not promote alloca which will force spilling.
183     if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
184       MaxVGPRs = std::min(MaxVGPRs, 32u);
185   } else {
186     MaxVGPRs = 128;
187   }
188 
189   bool SufficientLDS = hasSufficientLocalMem(F);
190   bool Changed = false;
191   BasicBlock &EntryBB = *F.begin();
192 
193   SmallVector<AllocaInst *, 16> Allocas;
194   for (Instruction &I : EntryBB) {
195     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
196       Allocas.push_back(AI);
197   }
198 
199   for (AllocaInst *AI : Allocas) {
200     if (handleAlloca(*AI, SufficientLDS))
201       Changed = true;
202   }
203 
204   return Changed;
205 }
206 
207 std::pair<Value *, Value *>
208 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
209   Function &F = *Builder.GetInsertBlock()->getParent();
210   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
211 
212   if (!IsAMDHSA) {
213     Function *LocalSizeYFn
214       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
215     Function *LocalSizeZFn
216       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
217 
218     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
219     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
220 
221     ST.makeLIDRangeMetadata(LocalSizeY);
222     ST.makeLIDRangeMetadata(LocalSizeZ);
223 
224     return std::pair(LocalSizeY, LocalSizeZ);
225   }
226 
227   // We must read the size out of the dispatch pointer.
228   assert(IsAMDGCN);
229 
230   // We are indexing into this struct, and want to extract the workgroup_size_*
231   // fields.
232   //
233   //   typedef struct hsa_kernel_dispatch_packet_s {
234   //     uint16_t header;
235   //     uint16_t setup;
236   //     uint16_t workgroup_size_x ;
237   //     uint16_t workgroup_size_y;
238   //     uint16_t workgroup_size_z;
239   //     uint16_t reserved0;
240   //     uint32_t grid_size_x ;
241   //     uint32_t grid_size_y ;
242   //     uint32_t grid_size_z;
243   //
244   //     uint32_t private_segment_size;
245   //     uint32_t group_segment_size;
246   //     uint64_t kernel_object;
247   //
248   // #ifdef HSA_LARGE_MODEL
249   //     void *kernarg_address;
250   // #elif defined HSA_LITTLE_ENDIAN
251   //     void *kernarg_address;
252   //     uint32_t reserved1;
253   // #else
254   //     uint32_t reserved1;
255   //     void *kernarg_address;
256   // #endif
257   //     uint64_t reserved2;
258   //     hsa_signal_t completion_signal; // uint64_t wrapper
259   //   } hsa_kernel_dispatch_packet_t
260   //
261   Function *DispatchPtrFn
262     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
263 
264   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
265   DispatchPtr->addRetAttr(Attribute::NoAlias);
266   DispatchPtr->addRetAttr(Attribute::NonNull);
267   F.removeFnAttr("amdgpu-no-dispatch-ptr");
268 
269   // Size of the dispatch packet struct.
270   DispatchPtr->addDereferenceableRetAttr(64);
271 
272   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
273   Value *CastDispatchPtr = Builder.CreateBitCast(
274     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
275 
276   // We could do a single 64-bit load here, but it's likely that the basic
277   // 32-bit and extract sequence is already present, and it is probably easier
278   // to CSE this. The loads should be mergeable later anyway.
279   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
280   LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
281 
282   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
283   LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
284 
285   MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt);
286   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
287   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
288   ST.makeLIDRangeMetadata(LoadZU);
289 
290   // Extract y component. Upper half of LoadZU should be zero already.
291   Value *Y = Builder.CreateLShr(LoadXY, 16);
292 
293   return std::pair(Y, LoadZU);
294 }
295 
296 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
297                                               unsigned N) {
298   Function *F = Builder.GetInsertBlock()->getParent();
299   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F);
300   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
301   StringRef AttrName;
302 
303   switch (N) {
304   case 0:
305     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
306                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
307     AttrName = "amdgpu-no-workitem-id-x";
308     break;
309   case 1:
310     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
311                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
312     AttrName = "amdgpu-no-workitem-id-y";
313     break;
314 
315   case 2:
316     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
317                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
318     AttrName = "amdgpu-no-workitem-id-z";
319     break;
320   default:
321     llvm_unreachable("invalid dimension");
322   }
323 
324   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
325   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
326   ST.makeLIDRangeMetadata(CI);
327   F->removeFnAttr(AttrName);
328 
329   return CI;
330 }
331 
332 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
333   return FixedVectorType::get(ArrayTy->getElementType(),
334                               ArrayTy->getNumElements());
335 }
336 
337 static Value *
338 calculateVectorIndex(Value *Ptr,
339                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
340   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts());
341   if (!GEP)
342     return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext()));
343 
344   auto I = GEPIdx.find(GEP);
345   assert(I != GEPIdx.end() && "Must have entry for GEP!");
346   return I->second;
347 }
348 
349 static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca,
350                                Type *VecElemTy, const DataLayout &DL) {
351   // TODO: Extracting a "multiple of X" from a GEP might be a useful generic
352   // helper.
353   unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType());
354   MapVector<Value *, APInt> VarOffsets;
355   APInt ConstOffset(BW, 0);
356   if (GEP->getPointerOperand()->stripPointerCasts() != Alloca ||
357       !GEP->collectOffset(DL, BW, VarOffsets, ConstOffset))
358     return nullptr;
359 
360   unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy);
361   if (VarOffsets.size() > 1)
362     return nullptr;
363 
364   if (VarOffsets.size() == 1) {
365     // Only handle cases where we don't need to insert extra arithmetic
366     // instructions.
367     const auto &VarOffset = VarOffsets.front();
368     if (!ConstOffset.isZero() || VarOffset.second != VecElemSize)
369       return nullptr;
370     return VarOffset.first;
371   }
372 
373   APInt Quot;
374   uint64_t Rem;
375   APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem);
376   if (Rem != 0)
377     return nullptr;
378 
379   return ConstantInt::get(GEP->getContext(), Quot);
380 }
381 
382 struct MemTransferInfo {
383   ConstantInt *SrcIndex = nullptr;
384   ConstantInt *DestIndex = nullptr;
385 };
386 
387 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
388                                      unsigned MaxVGPRs) {
389 
390   if (DisablePromoteAllocaToVector) {
391     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
392     return false;
393   }
394 
395   Type *AllocaTy = Alloca->getAllocatedType();
396   auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
397   if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
398     if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
399         ArrayTy->getNumElements() > 0)
400       VectorTy = arrayTypeToVecType(ArrayTy);
401   }
402 
403   // Use up to 1/4 of available register budget for vectorization.
404   unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
405                                               : (MaxVGPRs * 32);
406 
407   if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
408     LLVM_DEBUG(dbgs() << "  Alloca too big for vectorization with "
409                       << MaxVGPRs << " registers available\n");
410     return false;
411   }
412 
413   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
414 
415   // FIXME: There is no reason why we can't support larger arrays, we
416   // are just being conservative for now.
417   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
418   // could also be promoted but we don't currently handle this case
419   if (!VectorTy || VectorTy->getNumElements() > 16 ||
420       VectorTy->getNumElements() < 2) {
421     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
422     return false;
423   }
424 
425   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
426   SmallVector<Instruction *> WorkList;
427   SmallVector<Instruction *> DeferredInsts;
428   SmallVector<Use *, 8> Uses;
429   DenseMap<MemTransferInst *, MemTransferInfo> TransferInfo;
430 
431   for (Use &U : Alloca->uses())
432     Uses.push_back(&U);
433 
434   Type *VecEltTy = VectorTy->getElementType();
435   unsigned ElementSize = DL.getTypeSizeInBits(VecEltTy) / 8;
436   while (!Uses.empty()) {
437     Use *U = Uses.pop_back_val();
438     Instruction *Inst = cast<Instruction>(U->getUser());
439 
440     if (Value *Ptr = getLoadStorePointerOperand(Inst)) {
441       // This is a store of the pointer, not to the pointer.
442       if (isa<StoreInst>(Inst) &&
443           U->getOperandNo() != StoreInst::getPointerOperandIndex())
444         return false;
445 
446       Type *AccessTy = getLoadStoreType(Inst);
447       Ptr = Ptr->stripPointerCasts();
448 
449       // Alloca already accessed as vector, leave alone.
450       if (Ptr == Alloca && DL.getTypeStoreSize(Alloca->getAllocatedType()) ==
451                                DL.getTypeStoreSize(AccessTy))
452         continue;
453 
454       // Check that this is a simple access of a vector element.
455       bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple()
456                                           : cast<StoreInst>(Inst)->isSimple();
457       if (!IsSimple ||
458           !CastInst::isBitOrNoopPointerCastable(VecEltTy, AccessTy, DL))
459         return false;
460 
461       WorkList.push_back(Inst);
462       continue;
463     }
464 
465     if (isa<BitCastInst>(Inst)) {
466       // Look through bitcasts.
467       for (Use &U : Inst->uses())
468         Uses.push_back(&U);
469       continue;
470     }
471 
472     if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
473       // If we can't compute a vector index from this GEP, then we can't
474       // promote this alloca to vector.
475       Value *Index = GEPToVectorIndex(GEP, Alloca, VecEltTy, DL);
476       if (!Index) {
477         LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
478                           << '\n');
479         return false;
480       }
481 
482       GEPVectorIdx[GEP] = Index;
483       for (Use &U : Inst->uses())
484         Uses.push_back(&U);
485       continue;
486     }
487 
488     if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) {
489       if (TransferInst->isVolatile())
490         return false;
491 
492       ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength());
493       if (!Len || !!(Len->getZExtValue() % ElementSize))
494         return false;
495 
496       if (!TransferInfo.count(TransferInst)) {
497         DeferredInsts.push_back(Inst);
498         WorkList.push_back(Inst);
499         TransferInfo[TransferInst] = MemTransferInfo();
500       }
501 
502       auto getPointerIndexOfAlloca = [&](Value *Ptr) -> ConstantInt * {
503         GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
504         if (Ptr != Alloca && !GEPVectorIdx.count(GEP))
505           return nullptr;
506 
507         return dyn_cast<ConstantInt>(calculateVectorIndex(Ptr, GEPVectorIdx));
508       };
509 
510       unsigned OpNum = U->getOperandNo();
511       MemTransferInfo *TI = &TransferInfo[TransferInst];
512       if (OpNum == 0) {
513         Value *Dest = TransferInst->getDest();
514         ConstantInt *Index = getPointerIndexOfAlloca(Dest);
515         if (!Index)
516           return false;
517         TI->DestIndex = Index;
518       } else {
519         assert(OpNum == 1);
520         Value *Src = TransferInst->getSource();
521         ConstantInt *Index = getPointerIndexOfAlloca(Src);
522         if (!Index)
523           return false;
524         TI->SrcIndex = Index;
525       }
526       continue;
527     }
528 
529     // Ignore assume-like intrinsics and comparisons used in assumes.
530     if (isAssumeLikeIntrinsic(Inst))
531       continue;
532 
533     if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) {
534           return isAssumeLikeIntrinsic(cast<Instruction>(U));
535         }))
536       continue;
537 
538     // Unknown user.
539     return false;
540   }
541 
542   while (!DeferredInsts.empty()) {
543     Instruction *Inst = DeferredInsts.pop_back_val();
544     MemTransferInst *TransferInst = cast<MemTransferInst>(Inst);
545     // TODO: Support the case if the pointers are from different alloca or
546     // from different address spaces.
547     MemTransferInfo &Info = TransferInfo[TransferInst];
548     if (!Info.SrcIndex || !Info.DestIndex)
549       return false;
550   }
551 
552   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
553                     << *VectorTy << '\n');
554 
555   for (Instruction *Inst : WorkList) {
556     IRBuilder<> Builder(Inst);
557     switch (Inst->getOpcode()) {
558     case Instruction::Load: {
559       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
560       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
561       Type *VecPtrTy = VectorTy->getPointerTo(Alloca->getAddressSpace());
562       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
563       Value *VecValue =
564           Builder.CreateAlignedLoad(VectorTy, BitCast, Alloca->getAlign());
565       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
566       if (Inst->getType() != VecEltTy)
567         ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
568       Inst->replaceAllUsesWith(ExtractElement);
569       Inst->eraseFromParent();
570       break;
571     }
572     case Instruction::Store: {
573       StoreInst *SI = cast<StoreInst>(Inst);
574       Value *Ptr = SI->getPointerOperand();
575       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
576       Type *VecPtrTy = VectorTy->getPointerTo(Alloca->getAddressSpace());
577       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
578       Value *VecValue =
579           Builder.CreateAlignedLoad(VectorTy, BitCast, Alloca->getAlign());
580       Value *Elt = SI->getValueOperand();
581       if (Elt->getType() != VecEltTy)
582         Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
583       Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
584       Builder.CreateAlignedStore(NewVecValue, BitCast, Alloca->getAlign());
585       Inst->eraseFromParent();
586       break;
587     }
588     case Instruction::Call: {
589       if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst)) {
590         ConstantInt *Length = cast<ConstantInt>(MTI->getLength());
591         unsigned NumCopied = Length->getZExtValue() / ElementSize;
592         MemTransferInfo *TI = &TransferInfo[cast<MemTransferInst>(Inst)];
593         unsigned SrcBegin = TI->SrcIndex->getZExtValue();
594         unsigned DestBegin = TI->DestIndex->getZExtValue();
595 
596         SmallVector<int> Mask;
597         for (unsigned Idx = 0; Idx < VectorTy->getNumElements(); ++Idx) {
598           if (Idx >= DestBegin && Idx < DestBegin + NumCopied) {
599             Mask.push_back(SrcBegin++);
600           } else {
601             Mask.push_back(Idx);
602           }
603         }
604         Type *VecPtrTy = VectorTy->getPointerTo(Alloca->getAddressSpace());
605         Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
606         Value *VecValue =
607             Builder.CreateAlignedLoad(VectorTy, BitCast, Alloca->getAlign());
608         Value *NewVecValue = Builder.CreateShuffleVector(VecValue, Mask);
609         Builder.CreateAlignedStore(NewVecValue, BitCast, Alloca->getAlign());
610 
611         Inst->eraseFromParent();
612       } else {
613         llvm_unreachable("Unsupported call when promoting alloca to vector");
614       }
615       break;
616     }
617 
618     default:
619       llvm_unreachable("Inconsistency in instructions promotable to vector");
620     }
621   }
622   return true;
623 }
624 
625 static bool isCallPromotable(CallInst *CI) {
626   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
627   if (!II)
628     return false;
629 
630   switch (II->getIntrinsicID()) {
631   case Intrinsic::memcpy:
632   case Intrinsic::memmove:
633   case Intrinsic::memset:
634   case Intrinsic::lifetime_start:
635   case Intrinsic::lifetime_end:
636   case Intrinsic::invariant_start:
637   case Intrinsic::invariant_end:
638   case Intrinsic::launder_invariant_group:
639   case Intrinsic::strip_invariant_group:
640   case Intrinsic::objectsize:
641     return true;
642   default:
643     return false;
644   }
645 }
646 
647 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
648     Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
649     int OpIdx1) const {
650   // Figure out which operand is the one we might not be promoting.
651   Value *OtherOp = Inst->getOperand(OpIdx0);
652   if (Val == OtherOp)
653     OtherOp = Inst->getOperand(OpIdx1);
654 
655   if (isa<ConstantPointerNull>(OtherOp))
656     return true;
657 
658   Value *OtherObj = getUnderlyingObject(OtherOp);
659   if (!isa<AllocaInst>(OtherObj))
660     return false;
661 
662   // TODO: We should be able to replace undefs with the right pointer type.
663 
664   // TODO: If we know the other base object is another promotable
665   // alloca, not necessarily this alloca, we can do this. The
666   // important part is both must have the same address space at
667   // the end.
668   if (OtherObj != BaseAlloca) {
669     LLVM_DEBUG(
670         dbgs() << "Found a binary instruction with another alloca object\n");
671     return false;
672   }
673 
674   return true;
675 }
676 
677 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
678     Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
679 
680   for (User *User : Val->users()) {
681     if (is_contained(WorkList, User))
682       continue;
683 
684     if (CallInst *CI = dyn_cast<CallInst>(User)) {
685       if (!isCallPromotable(CI))
686         return false;
687 
688       WorkList.push_back(User);
689       continue;
690     }
691 
692     Instruction *UseInst = cast<Instruction>(User);
693     if (UseInst->getOpcode() == Instruction::PtrToInt)
694       return false;
695 
696     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
697       if (LI->isVolatile())
698         return false;
699 
700       continue;
701     }
702 
703     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
704       if (SI->isVolatile())
705         return false;
706 
707       // Reject if the stored value is not the pointer operand.
708       if (SI->getPointerOperand() != Val)
709         return false;
710     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
711       if (RMW->isVolatile())
712         return false;
713     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
714       if (CAS->isVolatile())
715         return false;
716     }
717 
718     // Only promote a select if we know that the other select operand
719     // is from another pointer that will also be promoted.
720     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
721       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
722         return false;
723 
724       // May need to rewrite constant operands.
725       WorkList.push_back(ICmp);
726     }
727 
728     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
729       // Give up if the pointer may be captured.
730       if (PointerMayBeCaptured(UseInst, true, true))
731         return false;
732       // Don't collect the users of this.
733       WorkList.push_back(User);
734       continue;
735     }
736 
737     // Do not promote vector/aggregate type instructions. It is hard to track
738     // their users.
739     if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User))
740       return false;
741 
742     if (!User->getType()->isPointerTy())
743       continue;
744 
745     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
746       // Be conservative if an address could be computed outside the bounds of
747       // the alloca.
748       if (!GEP->isInBounds())
749         return false;
750     }
751 
752     // Only promote a select if we know that the other select operand is from
753     // another pointer that will also be promoted.
754     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
755       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
756         return false;
757     }
758 
759     // Repeat for phis.
760     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
761       // TODO: Handle more complex cases. We should be able to replace loops
762       // over arrays.
763       switch (Phi->getNumIncomingValues()) {
764       case 1:
765         break;
766       case 2:
767         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
768           return false;
769         break;
770       default:
771         return false;
772       }
773     }
774 
775     WorkList.push_back(User);
776     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
777       return false;
778   }
779 
780   return true;
781 }
782 
783 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
784 
785   FunctionType *FTy = F.getFunctionType();
786   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
787 
788   // If the function has any arguments in the local address space, then it's
789   // possible these arguments require the entire local memory space, so
790   // we cannot use local memory in the pass.
791   for (Type *ParamTy : FTy->params()) {
792     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
793     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
794       LocalMemLimit = 0;
795       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
796                            "local memory disabled.\n");
797       return false;
798     }
799   }
800 
801   LocalMemLimit = ST.getAddressableLocalMemorySize();
802   if (LocalMemLimit == 0)
803     return false;
804 
805   SmallVector<const Constant *, 16> Stack;
806   SmallPtrSet<const Constant *, 8> VisitedConstants;
807   SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
808 
809   auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
810     for (const User *U : Val->users()) {
811       if (const Instruction *Use = dyn_cast<Instruction>(U)) {
812         if (Use->getParent()->getParent() == &F)
813           return true;
814       } else {
815         const Constant *C = cast<Constant>(U);
816         if (VisitedConstants.insert(C).second)
817           Stack.push_back(C);
818       }
819     }
820 
821     return false;
822   };
823 
824   for (GlobalVariable &GV : Mod->globals()) {
825     if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
826       continue;
827 
828     if (visitUsers(&GV, &GV)) {
829       UsedLDS.insert(&GV);
830       Stack.clear();
831       continue;
832     }
833 
834     // For any ConstantExpr uses, we need to recursively search the users until
835     // we see a function.
836     while (!Stack.empty()) {
837       const Constant *C = Stack.pop_back_val();
838       if (visitUsers(&GV, C)) {
839         UsedLDS.insert(&GV);
840         Stack.clear();
841         break;
842       }
843     }
844   }
845 
846   const DataLayout &DL = Mod->getDataLayout();
847   SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
848   AllocatedSizes.reserve(UsedLDS.size());
849 
850   for (const GlobalVariable *GV : UsedLDS) {
851     Align Alignment =
852         DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
853     uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
854 
855     // HIP uses an extern unsized array in local address space for dynamically
856     // allocated shared memory.  In that case, we have to disable the promotion.
857     if (GV->hasExternalLinkage() && AllocSize == 0) {
858       LocalMemLimit = 0;
859       LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated "
860                            "local memory. Promoting to local memory "
861                            "disabled.\n");
862       return false;
863     }
864 
865     AllocatedSizes.emplace_back(AllocSize, Alignment);
866   }
867 
868   // Sort to try to estimate the worst case alignment padding
869   //
870   // FIXME: We should really do something to fix the addresses to a more optimal
871   // value instead
872   llvm::sort(AllocatedSizes, llvm::less_second());
873 
874   // Check how much local memory is being used by global objects
875   CurrentLocalMemUsage = 0;
876 
877   // FIXME: Try to account for padding here. The real padding and address is
878   // currently determined from the inverse order of uses in the function when
879   // legalizing, which could also potentially change. We try to estimate the
880   // worst case here, but we probably should fix the addresses earlier.
881   for (auto Alloc : AllocatedSizes) {
882     CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
883     CurrentLocalMemUsage += Alloc.first;
884   }
885 
886   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
887                                                           F);
888 
889   // Restrict local memory usage so that we don't drastically reduce occupancy,
890   // unless it is already significantly reduced.
891 
892   // TODO: Have some sort of hint or other heuristics to guess occupancy based
893   // on other factors..
894   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
895   if (OccupancyHint == 0)
896     OccupancyHint = 7;
897 
898   // Clamp to max value.
899   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
900 
901   // Check the hint but ignore it if it's obviously wrong from the existing LDS
902   // usage.
903   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
904 
905 
906   // Round up to the next tier of usage.
907   unsigned MaxSizeWithWaveCount
908     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
909 
910   // Program is possibly broken by using more local mem than available.
911   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
912     return false;
913 
914   LocalMemLimit = MaxSizeWithWaveCount;
915 
916   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
917                     << " bytes of LDS\n"
918                     << "  Rounding size to " << MaxSizeWithWaveCount
919                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
920                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
921                     << " available for promotion\n");
922 
923   return true;
924 }
925 
926 // FIXME: Should try to pick the most likely to be profitable allocas first.
927 bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
928   // Array allocations are probably not worth handling, since an allocation of
929   // the array type is the canonical form.
930   if (!I.isStaticAlloca() || I.isArrayAllocation())
931     return false;
932 
933   const DataLayout &DL = Mod->getDataLayout();
934   IRBuilder<> Builder(&I);
935 
936   // First try to replace the alloca with a vector
937   Type *AllocaTy = I.getAllocatedType();
938 
939   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
940 
941   if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
942     return true; // Promoted to vector.
943 
944   if (DisablePromoteAllocaToLDS)
945     return false;
946 
947   const Function &ContainingFunction = *I.getParent()->getParent();
948   CallingConv::ID CC = ContainingFunction.getCallingConv();
949 
950   // Don't promote the alloca to LDS for shader calling conventions as the work
951   // item ID intrinsics are not supported for these calling conventions.
952   // Furthermore not all LDS is available for some of the stages.
953   switch (CC) {
954   case CallingConv::AMDGPU_KERNEL:
955   case CallingConv::SPIR_KERNEL:
956     break;
957   default:
958     LLVM_DEBUG(
959         dbgs()
960         << " promote alloca to LDS not supported with calling convention.\n");
961     return false;
962   }
963 
964   // Not likely to have sufficient local memory for promotion.
965   if (!SufficientLDS)
966     return false;
967 
968   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
969   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
970 
971   Align Alignment =
972       DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
973 
974   // FIXME: This computed padding is likely wrong since it depends on inverse
975   // usage order.
976   //
977   // FIXME: It is also possible that if we're allowed to use all of the memory
978   // could end up using more than the maximum due to alignment padding.
979 
980   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
981   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
982   NewSize += AllocSize;
983 
984   if (NewSize > LocalMemLimit) {
985     LLVM_DEBUG(dbgs() << "  " << AllocSize
986                       << " bytes of local memory not available to promote\n");
987     return false;
988   }
989 
990   CurrentLocalMemUsage = NewSize;
991 
992   std::vector<Value*> WorkList;
993 
994   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
995     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
996     return false;
997   }
998 
999   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
1000 
1001   Function *F = I.getParent()->getParent();
1002 
1003   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
1004   GlobalVariable *GV = new GlobalVariable(
1005       *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy),
1006       Twine(F->getName()) + Twine('.') + I.getName(), nullptr,
1007       GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS);
1008   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1009   GV->setAlignment(I.getAlign());
1010 
1011   Value *TCntY, *TCntZ;
1012 
1013   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
1014   Value *TIdX = getWorkitemID(Builder, 0);
1015   Value *TIdY = getWorkitemID(Builder, 1);
1016   Value *TIdZ = getWorkitemID(Builder, 2);
1017 
1018   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
1019   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
1020   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
1021   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
1022   TID = Builder.CreateAdd(TID, TIdZ);
1023 
1024   Value *Indices[] = {
1025     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
1026     TID
1027   };
1028 
1029   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
1030   I.mutateType(Offset->getType());
1031   I.replaceAllUsesWith(Offset);
1032   I.eraseFromParent();
1033 
1034   SmallVector<IntrinsicInst *> DeferredIntrs;
1035 
1036   for (Value *V : WorkList) {
1037     CallInst *Call = dyn_cast<CallInst>(V);
1038     if (!Call) {
1039       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
1040         Value *Src0 = CI->getOperand(0);
1041         PointerType *NewTy = PointerType::getWithSamePointeeType(
1042             cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS);
1043 
1044         if (isa<ConstantPointerNull>(CI->getOperand(0)))
1045           CI->setOperand(0, ConstantPointerNull::get(NewTy));
1046 
1047         if (isa<ConstantPointerNull>(CI->getOperand(1)))
1048           CI->setOperand(1, ConstantPointerNull::get(NewTy));
1049 
1050         continue;
1051       }
1052 
1053       // The operand's value should be corrected on its own and we don't want to
1054       // touch the users.
1055       if (isa<AddrSpaceCastInst>(V))
1056         continue;
1057 
1058       PointerType *NewTy = PointerType::getWithSamePointeeType(
1059           cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS);
1060 
1061       // FIXME: It doesn't really make sense to try to do this for all
1062       // instructions.
1063       V->mutateType(NewTy);
1064 
1065       // Adjust the types of any constant operands.
1066       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1067         if (isa<ConstantPointerNull>(SI->getOperand(1)))
1068           SI->setOperand(1, ConstantPointerNull::get(NewTy));
1069 
1070         if (isa<ConstantPointerNull>(SI->getOperand(2)))
1071           SI->setOperand(2, ConstantPointerNull::get(NewTy));
1072       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
1073         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1074           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
1075             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
1076         }
1077       }
1078 
1079       continue;
1080     }
1081 
1082     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
1083     Builder.SetInsertPoint(Intr);
1084     switch (Intr->getIntrinsicID()) {
1085     case Intrinsic::lifetime_start:
1086     case Intrinsic::lifetime_end:
1087       // These intrinsics are for address space 0 only
1088       Intr->eraseFromParent();
1089       continue;
1090     case Intrinsic::memcpy:
1091     case Intrinsic::memmove:
1092       // These have 2 pointer operands. In case if second pointer also needs
1093       // to be replaced we defer processing of these intrinsics until all
1094       // other values are processed.
1095       DeferredIntrs.push_back(Intr);
1096       continue;
1097     case Intrinsic::memset: {
1098       MemSetInst *MemSet = cast<MemSetInst>(Intr);
1099       Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
1100                            MemSet->getLength(), MemSet->getDestAlign(),
1101                            MemSet->isVolatile());
1102       Intr->eraseFromParent();
1103       continue;
1104     }
1105     case Intrinsic::invariant_start:
1106     case Intrinsic::invariant_end:
1107     case Intrinsic::launder_invariant_group:
1108     case Intrinsic::strip_invariant_group:
1109       Intr->eraseFromParent();
1110       // FIXME: I think the invariant marker should still theoretically apply,
1111       // but the intrinsics need to be changed to accept pointers with any
1112       // address space.
1113       continue;
1114     case Intrinsic::objectsize: {
1115       Value *Src = Intr->getOperand(0);
1116       Function *ObjectSize = Intrinsic::getDeclaration(
1117           Mod, Intrinsic::objectsize,
1118           {Intr->getType(),
1119            PointerType::getWithSamePointeeType(
1120                cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)});
1121 
1122       CallInst *NewCall = Builder.CreateCall(
1123           ObjectSize,
1124           {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
1125       Intr->replaceAllUsesWith(NewCall);
1126       Intr->eraseFromParent();
1127       continue;
1128     }
1129     default:
1130       Intr->print(errs());
1131       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
1132     }
1133   }
1134 
1135   for (IntrinsicInst *Intr : DeferredIntrs) {
1136     Builder.SetInsertPoint(Intr);
1137     Intrinsic::ID ID = Intr->getIntrinsicID();
1138     assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
1139 
1140     MemTransferInst *MI = cast<MemTransferInst>(Intr);
1141     auto *B =
1142       Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(),
1143                                     MI->getRawSource(), MI->getSourceAlign(),
1144                                     MI->getLength(), MI->isVolatile());
1145 
1146     for (unsigned I = 0; I != 2; ++I) {
1147       if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) {
1148         B->addDereferenceableParamAttr(I, Bytes);
1149       }
1150     }
1151 
1152     Intr->eraseFromParent();
1153   }
1154 
1155   return true;
1156 }
1157 
1158 bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
1159   // Array allocations are probably not worth handling, since an allocation of
1160   // the array type is the canonical form.
1161   if (!I.isStaticAlloca() || I.isArrayAllocation())
1162     return false;
1163 
1164   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
1165 
1166   Module *Mod = I.getParent()->getParent()->getParent();
1167   return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
1168 }
1169 
1170 bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
1171   if (DisablePromoteAllocaToVector)
1172     return false;
1173 
1174   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
1175   if (!ST.isPromoteAllocaEnabled())
1176     return false;
1177 
1178   unsigned MaxVGPRs;
1179   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1180     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
1181     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
1182     // A non-entry function has only 32 caller preserved registers.
1183     // Do not promote alloca which will force spilling.
1184     if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
1185       MaxVGPRs = std::min(MaxVGPRs, 32u);
1186   } else {
1187     MaxVGPRs = 128;
1188   }
1189 
1190   bool Changed = false;
1191   BasicBlock &EntryBB = *F.begin();
1192 
1193   SmallVector<AllocaInst *, 16> Allocas;
1194   for (Instruction &I : EntryBB) {
1195     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
1196       Allocas.push_back(AI);
1197   }
1198 
1199   for (AllocaInst *AI : Allocas) {
1200     if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
1201       Changed = true;
1202   }
1203 
1204   return Changed;
1205 }
1206 
1207 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
1208   if (skipFunction(F))
1209     return false;
1210   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
1211     return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
1212   }
1213   return false;
1214 }
1215 
1216 PreservedAnalyses
1217 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
1218   bool Changed = promoteAllocasToVector(F, TM);
1219   if (Changed) {
1220     PreservedAnalyses PA;
1221     PA.preserveSet<CFGAnalyses>();
1222     return PA;
1223   }
1224   return PreservedAnalyses::all();
1225 }
1226 
1227 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
1228   return new AMDGPUPromoteAlloca();
1229 }
1230 
1231 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
1232   return new AMDGPUPromoteAllocaToVector();
1233 }
1234