xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates allocas by either converting them into vectors or
10 // by migrating them to local address space.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "GCNSubtarget.h"
16 #include "llvm/Analysis/CaptureTracking.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/CodeGen/TargetPassConfig.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/IntrinsicsAMDGPU.h"
21 #include "llvm/IR/IntrinsicsR600.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Target/TargetMachine.h"
24 
25 #define DEBUG_TYPE "amdgpu-promote-alloca"
26 
27 using namespace llvm;
28 
29 namespace {
30 
31 static cl::opt<bool> DisablePromoteAllocaToVector(
32   "disable-promote-alloca-to-vector",
33   cl::desc("Disable promote alloca to vector"),
34   cl::init(false));
35 
36 static cl::opt<bool> DisablePromoteAllocaToLDS(
37   "disable-promote-alloca-to-lds",
38   cl::desc("Disable promote alloca to LDS"),
39   cl::init(false));
40 
41 static cl::opt<unsigned> PromoteAllocaToVectorLimit(
42   "amdgpu-promote-alloca-to-vector-limit",
43   cl::desc("Maximum byte size to consider promote alloca to vector"),
44   cl::init(0));
45 
46 // FIXME: This can create globals so should be a module pass.
47 class AMDGPUPromoteAlloca : public FunctionPass {
48 public:
49   static char ID;
50 
51   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
52 
53   bool runOnFunction(Function &F) override;
54 
55   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
56 
57   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
58 
59   void getAnalysisUsage(AnalysisUsage &AU) const override {
60     AU.setPreservesCFG();
61     FunctionPass::getAnalysisUsage(AU);
62   }
63 };
64 
65 class AMDGPUPromoteAllocaImpl {
66 private:
67   const TargetMachine &TM;
68   Module *Mod = nullptr;
69   const DataLayout *DL = nullptr;
70 
71   // FIXME: This should be per-kernel.
72   uint32_t LocalMemLimit = 0;
73   uint32_t CurrentLocalMemUsage = 0;
74   unsigned MaxVGPRs;
75 
76   bool IsAMDGCN = false;
77   bool IsAMDHSA = false;
78 
79   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
80   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
81 
82   /// BaseAlloca is the alloca root the search started from.
83   /// Val may be that alloca or a recursive user of it.
84   bool collectUsesWithPtrTypes(Value *BaseAlloca,
85                                Value *Val,
86                                std::vector<Value*> &WorkList) const;
87 
88   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
89   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
90   /// Returns true if both operands are derived from the same alloca. Val should
91   /// be the same value as one of the input operands of UseInst.
92   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
93                                        Instruction *UseInst,
94                                        int OpIdx0, int OpIdx1) const;
95 
96   /// Check whether we have enough local memory for promotion.
97   bool hasSufficientLocalMem(const Function &F);
98 
99   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
100 
101 public:
102   AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
103   bool run(Function &F);
104 };
105 
106 class AMDGPUPromoteAllocaToVector : public FunctionPass {
107 public:
108   static char ID;
109 
110   AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
111 
112   bool runOnFunction(Function &F) override;
113 
114   StringRef getPassName() const override {
115     return "AMDGPU Promote Alloca to vector";
116   }
117 
118   void getAnalysisUsage(AnalysisUsage &AU) const override {
119     AU.setPreservesCFG();
120     FunctionPass::getAnalysisUsage(AU);
121   }
122 };
123 
124 } // end anonymous namespace
125 
126 char AMDGPUPromoteAlloca::ID = 0;
127 char AMDGPUPromoteAllocaToVector::ID = 0;
128 
129 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
130                 "AMDGPU promote alloca to vector or LDS", false, false)
131 
132 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
133                 "AMDGPU promote alloca to vector", false, false)
134 
135 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
136 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
137 
138 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
139   if (skipFunction(F))
140     return false;
141 
142   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
143     return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
144   }
145   return false;
146 }
147 
148 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
149                                                FunctionAnalysisManager &AM) {
150   bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
151   if (Changed) {
152     PreservedAnalyses PA;
153     PA.preserveSet<CFGAnalyses>();
154     return PA;
155   }
156   return PreservedAnalyses::all();
157 }
158 
159 bool AMDGPUPromoteAllocaImpl::run(Function &F) {
160   Mod = F.getParent();
161   DL = &Mod->getDataLayout();
162 
163   const Triple &TT = TM.getTargetTriple();
164   IsAMDGCN = TT.getArch() == Triple::amdgcn;
165   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
166 
167   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
168   if (!ST.isPromoteAllocaEnabled())
169     return false;
170 
171   if (IsAMDGCN) {
172     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
173     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
174   } else {
175     MaxVGPRs = 128;
176   }
177 
178   bool SufficientLDS = hasSufficientLocalMem(F);
179   bool Changed = false;
180   BasicBlock &EntryBB = *F.begin();
181 
182   SmallVector<AllocaInst *, 16> Allocas;
183   for (Instruction &I : EntryBB) {
184     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
185       Allocas.push_back(AI);
186   }
187 
188   for (AllocaInst *AI : Allocas) {
189     if (handleAlloca(*AI, SufficientLDS))
190       Changed = true;
191   }
192 
193   return Changed;
194 }
195 
196 std::pair<Value *, Value *>
197 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
198   const Function &F = *Builder.GetInsertBlock()->getParent();
199   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
200 
201   if (!IsAMDHSA) {
202     Function *LocalSizeYFn
203       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
204     Function *LocalSizeZFn
205       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
206 
207     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
208     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
209 
210     ST.makeLIDRangeMetadata(LocalSizeY);
211     ST.makeLIDRangeMetadata(LocalSizeZ);
212 
213     return std::make_pair(LocalSizeY, LocalSizeZ);
214   }
215 
216   // We must read the size out of the dispatch pointer.
217   assert(IsAMDGCN);
218 
219   // We are indexing into this struct, and want to extract the workgroup_size_*
220   // fields.
221   //
222   //   typedef struct hsa_kernel_dispatch_packet_s {
223   //     uint16_t header;
224   //     uint16_t setup;
225   //     uint16_t workgroup_size_x ;
226   //     uint16_t workgroup_size_y;
227   //     uint16_t workgroup_size_z;
228   //     uint16_t reserved0;
229   //     uint32_t grid_size_x ;
230   //     uint32_t grid_size_y ;
231   //     uint32_t grid_size_z;
232   //
233   //     uint32_t private_segment_size;
234   //     uint32_t group_segment_size;
235   //     uint64_t kernel_object;
236   //
237   // #ifdef HSA_LARGE_MODEL
238   //     void *kernarg_address;
239   // #elif defined HSA_LITTLE_ENDIAN
240   //     void *kernarg_address;
241   //     uint32_t reserved1;
242   // #else
243   //     uint32_t reserved1;
244   //     void *kernarg_address;
245   // #endif
246   //     uint64_t reserved2;
247   //     hsa_signal_t completion_signal; // uint64_t wrapper
248   //   } hsa_kernel_dispatch_packet_t
249   //
250   Function *DispatchPtrFn
251     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
252 
253   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
254   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
255   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
256 
257   // Size of the dispatch packet struct.
258   DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
259 
260   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
261   Value *CastDispatchPtr = Builder.CreateBitCast(
262     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
263 
264   // We could do a single 64-bit load here, but it's likely that the basic
265   // 32-bit and extract sequence is already present, and it is probably easier
266   // to CSE this. The loads should be mergable later anyway.
267   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
268   LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
269 
270   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
271   LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
272 
273   MDNode *MD = MDNode::get(Mod->getContext(), None);
274   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
275   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
276   ST.makeLIDRangeMetadata(LoadZU);
277 
278   // Extract y component. Upper half of LoadZU should be zero already.
279   Value *Y = Builder.CreateLShr(LoadXY, 16);
280 
281   return std::make_pair(Y, LoadZU);
282 }
283 
284 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
285                                               unsigned N) {
286   const AMDGPUSubtarget &ST =
287       AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent());
288   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
289 
290   switch (N) {
291   case 0:
292     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
293                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
294     break;
295   case 1:
296     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
297                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
298     break;
299 
300   case 2:
301     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
302                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
303     break;
304   default:
305     llvm_unreachable("invalid dimension");
306   }
307 
308   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
309   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
310   ST.makeLIDRangeMetadata(CI);
311 
312   return CI;
313 }
314 
315 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
316   return FixedVectorType::get(ArrayTy->getElementType(),
317                               ArrayTy->getNumElements());
318 }
319 
320 static Value *stripBitcasts(Value *V) {
321   while (Instruction *I = dyn_cast<Instruction>(V)) {
322     if (I->getOpcode() != Instruction::BitCast)
323       break;
324     V = I->getOperand(0);
325   }
326   return V;
327 }
328 
329 static Value *
330 calculateVectorIndex(Value *Ptr,
331                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
332   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
333   if (!GEP)
334     return nullptr;
335 
336   auto I = GEPIdx.find(GEP);
337   return I == GEPIdx.end() ? nullptr : I->second;
338 }
339 
340 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
341   // FIXME we only support simple cases
342   if (GEP->getNumOperands() != 3)
343     return nullptr;
344 
345   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
346   if (!I0 || !I0->isZero())
347     return nullptr;
348 
349   return GEP->getOperand(2);
350 }
351 
352 // Not an instruction handled below to turn into a vector.
353 //
354 // TODO: Check isTriviallyVectorizable for calls and handle other
355 // instructions.
356 static bool canVectorizeInst(Instruction *Inst, User *User,
357                              const DataLayout &DL) {
358   switch (Inst->getOpcode()) {
359   case Instruction::Load: {
360     // Currently only handle the case where the Pointer Operand is a GEP.
361     // Also we could not vectorize volatile or atomic loads.
362     LoadInst *LI = cast<LoadInst>(Inst);
363     if (isa<AllocaInst>(User) &&
364         LI->getPointerOperandType() == User->getType() &&
365         isa<VectorType>(LI->getType()))
366       return true;
367 
368     Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
369     if (!PtrInst)
370       return false;
371 
372     return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
373             PtrInst->getOpcode() == Instruction::BitCast) &&
374            LI->isSimple();
375   }
376   case Instruction::BitCast:
377     return true;
378   case Instruction::Store: {
379     // Must be the stored pointer operand, not a stored value, plus
380     // since it should be canonical form, the User should be a GEP.
381     // Also we could not vectorize volatile or atomic stores.
382     StoreInst *SI = cast<StoreInst>(Inst);
383     if (isa<AllocaInst>(User) &&
384         SI->getPointerOperandType() == User->getType() &&
385         isa<VectorType>(SI->getValueOperand()->getType()))
386       return true;
387 
388     Instruction *UserInst = dyn_cast<Instruction>(User);
389     if (!UserInst)
390       return false;
391 
392     return (SI->getPointerOperand() == User) &&
393            (UserInst->getOpcode() == Instruction::GetElementPtr ||
394             UserInst->getOpcode() == Instruction::BitCast) &&
395            SI->isSimple();
396   }
397   default:
398     return false;
399   }
400 }
401 
402 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
403                                      unsigned MaxVGPRs) {
404 
405   if (DisablePromoteAllocaToVector) {
406     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
407     return false;
408   }
409 
410   Type *AllocaTy = Alloca->getAllocatedType();
411   auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
412   if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
413     if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
414         ArrayTy->getNumElements() > 0)
415       VectorTy = arrayTypeToVecType(ArrayTy);
416   }
417 
418   // Use up to 1/4 of available register budget for vectorization.
419   unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
420                                               : (MaxVGPRs * 32);
421 
422   if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
423     LLVM_DEBUG(dbgs() << "  Alloca too big for vectorization with "
424                       << MaxVGPRs << " registers available\n");
425     return false;
426   }
427 
428   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
429 
430   // FIXME: There is no reason why we can't support larger arrays, we
431   // are just being conservative for now.
432   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
433   // could also be promoted but we don't currently handle this case
434   if (!VectorTy || VectorTy->getNumElements() > 16 ||
435       VectorTy->getNumElements() < 2) {
436     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
437     return false;
438   }
439 
440   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
441   std::vector<Value *> WorkList;
442   SmallVector<User *, 8> Users(Alloca->users());
443   SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
444   Type *VecEltTy = VectorTy->getElementType();
445   while (!Users.empty()) {
446     User *AllocaUser = Users.pop_back_val();
447     User *UseUser = UseUsers.pop_back_val();
448     Instruction *Inst = dyn_cast<Instruction>(AllocaUser);
449 
450     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
451     if (!GEP) {
452       if (!canVectorizeInst(Inst, UseUser, DL))
453         return false;
454 
455       if (Inst->getOpcode() == Instruction::BitCast) {
456         Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
457         Type *ToTy = Inst->getType()->getPointerElementType();
458         if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
459             DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
460           continue;
461 
462         for (User *CastUser : Inst->users()) {
463           if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
464             continue;
465           Users.push_back(CastUser);
466           UseUsers.push_back(Inst);
467         }
468 
469         continue;
470       }
471 
472       WorkList.push_back(AllocaUser);
473       continue;
474     }
475 
476     Value *Index = GEPToVectorIndex(GEP);
477 
478     // If we can't compute a vector index from this GEP, then we can't
479     // promote this alloca to vector.
480     if (!Index) {
481       LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
482                         << '\n');
483       return false;
484     }
485 
486     GEPVectorIdx[GEP] = Index;
487     Users.append(GEP->user_begin(), GEP->user_end());
488     UseUsers.append(GEP->getNumUses(), GEP);
489   }
490 
491   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
492                     << *VectorTy << '\n');
493 
494   for (Value *V : WorkList) {
495     Instruction *Inst = cast<Instruction>(V);
496     IRBuilder<> Builder(Inst);
497     switch (Inst->getOpcode()) {
498     case Instruction::Load: {
499       if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
500         break;
501 
502       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
503       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
504       if (!Index)
505         break;
506 
507       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
508       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
509       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
510       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
511       if (Inst->getType() != VecEltTy)
512         ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
513       Inst->replaceAllUsesWith(ExtractElement);
514       Inst->eraseFromParent();
515       break;
516     }
517     case Instruction::Store: {
518       StoreInst *SI = cast<StoreInst>(Inst);
519       if (SI->getValueOperand()->getType() == AllocaTy ||
520           SI->getValueOperand()->getType()->isVectorTy())
521         break;
522 
523       Value *Ptr = SI->getPointerOperand();
524       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
525       if (!Index)
526         break;
527 
528       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
529       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
530       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
531       Value *Elt = SI->getValueOperand();
532       if (Elt->getType() != VecEltTy)
533         Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
534       Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
535       Builder.CreateStore(NewVecValue, BitCast);
536       Inst->eraseFromParent();
537       break;
538     }
539 
540     default:
541       llvm_unreachable("Inconsistency in instructions promotable to vector");
542     }
543   }
544   return true;
545 }
546 
547 static bool isCallPromotable(CallInst *CI) {
548   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
549   if (!II)
550     return false;
551 
552   switch (II->getIntrinsicID()) {
553   case Intrinsic::memcpy:
554   case Intrinsic::memmove:
555   case Intrinsic::memset:
556   case Intrinsic::lifetime_start:
557   case Intrinsic::lifetime_end:
558   case Intrinsic::invariant_start:
559   case Intrinsic::invariant_end:
560   case Intrinsic::launder_invariant_group:
561   case Intrinsic::strip_invariant_group:
562   case Intrinsic::objectsize:
563     return true;
564   default:
565     return false;
566   }
567 }
568 
569 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
570     Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
571     int OpIdx1) const {
572   // Figure out which operand is the one we might not be promoting.
573   Value *OtherOp = Inst->getOperand(OpIdx0);
574   if (Val == OtherOp)
575     OtherOp = Inst->getOperand(OpIdx1);
576 
577   if (isa<ConstantPointerNull>(OtherOp))
578     return true;
579 
580   Value *OtherObj = getUnderlyingObject(OtherOp);
581   if (!isa<AllocaInst>(OtherObj))
582     return false;
583 
584   // TODO: We should be able to replace undefs with the right pointer type.
585 
586   // TODO: If we know the other base object is another promotable
587   // alloca, not necessarily this alloca, we can do this. The
588   // important part is both must have the same address space at
589   // the end.
590   if (OtherObj != BaseAlloca) {
591     LLVM_DEBUG(
592         dbgs() << "Found a binary instruction with another alloca object\n");
593     return false;
594   }
595 
596   return true;
597 }
598 
599 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
600     Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
601 
602   for (User *User : Val->users()) {
603     if (is_contained(WorkList, User))
604       continue;
605 
606     if (CallInst *CI = dyn_cast<CallInst>(User)) {
607       if (!isCallPromotable(CI))
608         return false;
609 
610       WorkList.push_back(User);
611       continue;
612     }
613 
614     Instruction *UseInst = cast<Instruction>(User);
615     if (UseInst->getOpcode() == Instruction::PtrToInt)
616       return false;
617 
618     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
619       if (LI->isVolatile())
620         return false;
621 
622       continue;
623     }
624 
625     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
626       if (SI->isVolatile())
627         return false;
628 
629       // Reject if the stored value is not the pointer operand.
630       if (SI->getPointerOperand() != Val)
631         return false;
632     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
633       if (RMW->isVolatile())
634         return false;
635     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
636       if (CAS->isVolatile())
637         return false;
638     }
639 
640     // Only promote a select if we know that the other select operand
641     // is from another pointer that will also be promoted.
642     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
643       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
644         return false;
645 
646       // May need to rewrite constant operands.
647       WorkList.push_back(ICmp);
648     }
649 
650     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
651       // Give up if the pointer may be captured.
652       if (PointerMayBeCaptured(UseInst, true, true))
653         return false;
654       // Don't collect the users of this.
655       WorkList.push_back(User);
656       continue;
657     }
658 
659     if (!User->getType()->isPointerTy())
660       continue;
661 
662     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
663       // Be conservative if an address could be computed outside the bounds of
664       // the alloca.
665       if (!GEP->isInBounds())
666         return false;
667     }
668 
669     // Only promote a select if we know that the other select operand is from
670     // another pointer that will also be promoted.
671     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
672       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
673         return false;
674     }
675 
676     // Repeat for phis.
677     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
678       // TODO: Handle more complex cases. We should be able to replace loops
679       // over arrays.
680       switch (Phi->getNumIncomingValues()) {
681       case 1:
682         break;
683       case 2:
684         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
685           return false;
686         break;
687       default:
688         return false;
689       }
690     }
691 
692     WorkList.push_back(User);
693     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
694       return false;
695   }
696 
697   return true;
698 }
699 
700 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
701 
702   FunctionType *FTy = F.getFunctionType();
703   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
704 
705   // If the function has any arguments in the local address space, then it's
706   // possible these arguments require the entire local memory space, so
707   // we cannot use local memory in the pass.
708   for (Type *ParamTy : FTy->params()) {
709     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
710     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
711       LocalMemLimit = 0;
712       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
713                            "local memory disabled.\n");
714       return false;
715     }
716   }
717 
718   LocalMemLimit = ST.getLocalMemorySize();
719   if (LocalMemLimit == 0)
720     return false;
721 
722   SmallVector<const Constant *, 16> Stack;
723   SmallPtrSet<const Constant *, 8> VisitedConstants;
724   SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
725 
726   auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
727     for (const User *U : Val->users()) {
728       if (const Instruction *Use = dyn_cast<Instruction>(U)) {
729         if (Use->getParent()->getParent() == &F)
730           return true;
731       } else {
732         const Constant *C = cast<Constant>(U);
733         if (VisitedConstants.insert(C).second)
734           Stack.push_back(C);
735       }
736     }
737 
738     return false;
739   };
740 
741   for (GlobalVariable &GV : Mod->globals()) {
742     if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
743       continue;
744 
745     if (visitUsers(&GV, &GV)) {
746       UsedLDS.insert(&GV);
747       Stack.clear();
748       continue;
749     }
750 
751     // For any ConstantExpr uses, we need to recursively search the users until
752     // we see a function.
753     while (!Stack.empty()) {
754       const Constant *C = Stack.pop_back_val();
755       if (visitUsers(&GV, C)) {
756         UsedLDS.insert(&GV);
757         Stack.clear();
758         break;
759       }
760     }
761   }
762 
763   const DataLayout &DL = Mod->getDataLayout();
764   SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
765   AllocatedSizes.reserve(UsedLDS.size());
766 
767   for (const GlobalVariable *GV : UsedLDS) {
768     Align Alignment =
769         DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
770     uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
771     AllocatedSizes.emplace_back(AllocSize, Alignment);
772   }
773 
774   // Sort to try to estimate the worst case alignment padding
775   //
776   // FIXME: We should really do something to fix the addresses to a more optimal
777   // value instead
778   llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS,
779                                 std::pair<uint64_t, Align> RHS) {
780     return LHS.second < RHS.second;
781   });
782 
783   // Check how much local memory is being used by global objects
784   CurrentLocalMemUsage = 0;
785 
786   // FIXME: Try to account for padding here. The real padding and address is
787   // currently determined from the inverse order of uses in the function when
788   // legalizing, which could also potentially change. We try to estimate the
789   // worst case here, but we probably should fix the addresses earlier.
790   for (auto Alloc : AllocatedSizes) {
791     CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
792     CurrentLocalMemUsage += Alloc.first;
793   }
794 
795   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
796                                                           F);
797 
798   // Restrict local memory usage so that we don't drastically reduce occupancy,
799   // unless it is already significantly reduced.
800 
801   // TODO: Have some sort of hint or other heuristics to guess occupancy based
802   // on other factors..
803   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
804   if (OccupancyHint == 0)
805     OccupancyHint = 7;
806 
807   // Clamp to max value.
808   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
809 
810   // Check the hint but ignore it if it's obviously wrong from the existing LDS
811   // usage.
812   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
813 
814 
815   // Round up to the next tier of usage.
816   unsigned MaxSizeWithWaveCount
817     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
818 
819   // Program is possibly broken by using more local mem than available.
820   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
821     return false;
822 
823   LocalMemLimit = MaxSizeWithWaveCount;
824 
825   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
826                     << " bytes of LDS\n"
827                     << "  Rounding size to " << MaxSizeWithWaveCount
828                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
829                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
830                     << " available for promotion\n");
831 
832   return true;
833 }
834 
835 // FIXME: Should try to pick the most likely to be profitable allocas first.
836 bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
837   // Array allocations are probably not worth handling, since an allocation of
838   // the array type is the canonical form.
839   if (!I.isStaticAlloca() || I.isArrayAllocation())
840     return false;
841 
842   const DataLayout &DL = Mod->getDataLayout();
843   IRBuilder<> Builder(&I);
844 
845   // First try to replace the alloca with a vector
846   Type *AllocaTy = I.getAllocatedType();
847 
848   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
849 
850   if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
851     return true; // Promoted to vector.
852 
853   if (DisablePromoteAllocaToLDS)
854     return false;
855 
856   const Function &ContainingFunction = *I.getParent()->getParent();
857   CallingConv::ID CC = ContainingFunction.getCallingConv();
858 
859   // Don't promote the alloca to LDS for shader calling conventions as the work
860   // item ID intrinsics are not supported for these calling conventions.
861   // Furthermore not all LDS is available for some of the stages.
862   switch (CC) {
863   case CallingConv::AMDGPU_KERNEL:
864   case CallingConv::SPIR_KERNEL:
865     break;
866   default:
867     LLVM_DEBUG(
868         dbgs()
869         << " promote alloca to LDS not supported with calling convention.\n");
870     return false;
871   }
872 
873   // Not likely to have sufficient local memory for promotion.
874   if (!SufficientLDS)
875     return false;
876 
877   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
878   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
879 
880   Align Alignment =
881       DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
882 
883   // FIXME: This computed padding is likely wrong since it depends on inverse
884   // usage order.
885   //
886   // FIXME: It is also possible that if we're allowed to use all of the memory
887   // could could end up using more than the maximum due to alignment padding.
888 
889   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
890   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
891   NewSize += AllocSize;
892 
893   if (NewSize > LocalMemLimit) {
894     LLVM_DEBUG(dbgs() << "  " << AllocSize
895                       << " bytes of local memory not available to promote\n");
896     return false;
897   }
898 
899   CurrentLocalMemUsage = NewSize;
900 
901   std::vector<Value*> WorkList;
902 
903   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
904     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
905     return false;
906   }
907 
908   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
909 
910   Function *F = I.getParent()->getParent();
911 
912   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
913   GlobalVariable *GV = new GlobalVariable(
914       *Mod, GVTy, false, GlobalValue::InternalLinkage,
915       UndefValue::get(GVTy),
916       Twine(F->getName()) + Twine('.') + I.getName(),
917       nullptr,
918       GlobalVariable::NotThreadLocal,
919       AMDGPUAS::LOCAL_ADDRESS);
920   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
921   GV->setAlignment(MaybeAlign(I.getAlignment()));
922 
923   Value *TCntY, *TCntZ;
924 
925   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
926   Value *TIdX = getWorkitemID(Builder, 0);
927   Value *TIdY = getWorkitemID(Builder, 1);
928   Value *TIdZ = getWorkitemID(Builder, 2);
929 
930   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
931   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
932   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
933   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
934   TID = Builder.CreateAdd(TID, TIdZ);
935 
936   Value *Indices[] = {
937     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
938     TID
939   };
940 
941   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
942   I.mutateType(Offset->getType());
943   I.replaceAllUsesWith(Offset);
944   I.eraseFromParent();
945 
946   for (Value *V : WorkList) {
947     CallInst *Call = dyn_cast<CallInst>(V);
948     if (!Call) {
949       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
950         Value *Src0 = CI->getOperand(0);
951         Type *EltTy = Src0->getType()->getPointerElementType();
952         PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
953 
954         if (isa<ConstantPointerNull>(CI->getOperand(0)))
955           CI->setOperand(0, ConstantPointerNull::get(NewTy));
956 
957         if (isa<ConstantPointerNull>(CI->getOperand(1)))
958           CI->setOperand(1, ConstantPointerNull::get(NewTy));
959 
960         continue;
961       }
962 
963       // The operand's value should be corrected on its own and we don't want to
964       // touch the users.
965       if (isa<AddrSpaceCastInst>(V))
966         continue;
967 
968       Type *EltTy = V->getType()->getPointerElementType();
969       PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
970 
971       // FIXME: It doesn't really make sense to try to do this for all
972       // instructions.
973       V->mutateType(NewTy);
974 
975       // Adjust the types of any constant operands.
976       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
977         if (isa<ConstantPointerNull>(SI->getOperand(1)))
978           SI->setOperand(1, ConstantPointerNull::get(NewTy));
979 
980         if (isa<ConstantPointerNull>(SI->getOperand(2)))
981           SI->setOperand(2, ConstantPointerNull::get(NewTy));
982       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
983         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
984           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
985             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
986         }
987       }
988 
989       continue;
990     }
991 
992     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
993     Builder.SetInsertPoint(Intr);
994     switch (Intr->getIntrinsicID()) {
995     case Intrinsic::lifetime_start:
996     case Intrinsic::lifetime_end:
997       // These intrinsics are for address space 0 only
998       Intr->eraseFromParent();
999       continue;
1000     case Intrinsic::memcpy: {
1001       MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
1002       Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(),
1003                            MemCpy->getRawSource(), MemCpy->getSourceAlign(),
1004                            MemCpy->getLength(), MemCpy->isVolatile());
1005       Intr->eraseFromParent();
1006       continue;
1007     }
1008     case Intrinsic::memmove: {
1009       MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
1010       Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(),
1011                             MemMove->getRawSource(), MemMove->getSourceAlign(),
1012                             MemMove->getLength(), MemMove->isVolatile());
1013       Intr->eraseFromParent();
1014       continue;
1015     }
1016     case Intrinsic::memset: {
1017       MemSetInst *MemSet = cast<MemSetInst>(Intr);
1018       Builder.CreateMemSet(
1019           MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
1020           MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
1021       Intr->eraseFromParent();
1022       continue;
1023     }
1024     case Intrinsic::invariant_start:
1025     case Intrinsic::invariant_end:
1026     case Intrinsic::launder_invariant_group:
1027     case Intrinsic::strip_invariant_group:
1028       Intr->eraseFromParent();
1029       // FIXME: I think the invariant marker should still theoretically apply,
1030       // but the intrinsics need to be changed to accept pointers with any
1031       // address space.
1032       continue;
1033     case Intrinsic::objectsize: {
1034       Value *Src = Intr->getOperand(0);
1035       Type *SrcTy = Src->getType()->getPointerElementType();
1036       Function *ObjectSize = Intrinsic::getDeclaration(Mod,
1037         Intrinsic::objectsize,
1038         { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
1039       );
1040 
1041       CallInst *NewCall = Builder.CreateCall(
1042           ObjectSize,
1043           {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
1044       Intr->replaceAllUsesWith(NewCall);
1045       Intr->eraseFromParent();
1046       continue;
1047     }
1048     default:
1049       Intr->print(errs());
1050       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
1051     }
1052   }
1053   return true;
1054 }
1055 
1056 bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
1057   // Array allocations are probably not worth handling, since an allocation of
1058   // the array type is the canonical form.
1059   if (!I.isStaticAlloca() || I.isArrayAllocation())
1060     return false;
1061 
1062   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
1063 
1064   Module *Mod = I.getParent()->getParent()->getParent();
1065   return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
1066 }
1067 
1068 bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
1069   if (DisablePromoteAllocaToVector)
1070     return false;
1071 
1072   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
1073   if (!ST.isPromoteAllocaEnabled())
1074     return false;
1075 
1076   unsigned MaxVGPRs;
1077   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1078     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
1079     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
1080   } else {
1081     MaxVGPRs = 128;
1082   }
1083 
1084   bool Changed = false;
1085   BasicBlock &EntryBB = *F.begin();
1086 
1087   SmallVector<AllocaInst *, 16> Allocas;
1088   for (Instruction &I : EntryBB) {
1089     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
1090       Allocas.push_back(AI);
1091   }
1092 
1093   for (AllocaInst *AI : Allocas) {
1094     if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
1095       Changed = true;
1096   }
1097 
1098   return Changed;
1099 }
1100 
1101 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
1102   if (skipFunction(F))
1103     return false;
1104   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
1105     return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
1106   }
1107   return false;
1108 }
1109 
1110 PreservedAnalyses
1111 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
1112   bool Changed = promoteAllocasToVector(F, TM);
1113   if (Changed) {
1114     PreservedAnalyses PA;
1115     PA.preserveSet<CFGAnalyses>();
1116     return PA;
1117   }
1118   return PreservedAnalyses::all();
1119 }
1120 
1121 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
1122   return new AMDGPUPromoteAlloca();
1123 }
1124 
1125 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
1126   return new AMDGPUPromoteAllocaToVector();
1127 }
1128