1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminates allocas by either converting them into vectors or by migrating 10 // them to local address space. 11 // 12 // Two passes are exposed by this file: 13 // - "promote-alloca-to-vector", which runs early in the pipeline and only 14 // promotes to vector. Promotion to vector is almost always profitable 15 // except when the alloca is too big and the promotion would result in 16 // very high register pressure. 17 // - "promote-alloca", which does both promotion to vector and LDS and runs 18 // much later in the pipeline. This runs after SROA because promoting to 19 // LDS is of course less profitable than getting rid of the alloca or 20 // vectorizing it, thus we only want to do it when the only alternative is 21 // lowering the alloca to stack. 22 // 23 // Note that both of them exist for the old and new PMs. The new PM passes are 24 // declared in AMDGPU.h and the legacy PM ones are declared here.s 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "AMDGPU.h" 29 #include "GCNSubtarget.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/Analysis/CaptureTracking.h" 33 #include "llvm/Analysis/InstSimplifyFolder.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/IntrinsicsAMDGPU.h" 41 #include "llvm/IR/IntrinsicsR600.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Transforms/Utils/SSAUpdater.h" 47 48 #define DEBUG_TYPE "amdgpu-promote-alloca" 49 50 using namespace llvm; 51 52 namespace { 53 54 static cl::opt<bool> 55 DisablePromoteAllocaToVector("disable-promote-alloca-to-vector", 56 cl::desc("Disable promote alloca to vector"), 57 cl::init(false)); 58 59 static cl::opt<bool> 60 DisablePromoteAllocaToLDS("disable-promote-alloca-to-lds", 61 cl::desc("Disable promote alloca to LDS"), 62 cl::init(false)); 63 64 static cl::opt<unsigned> PromoteAllocaToVectorLimit( 65 "amdgpu-promote-alloca-to-vector-limit", 66 cl::desc("Maximum byte size to consider promote alloca to vector"), 67 cl::init(0)); 68 69 static cl::opt<unsigned> 70 LoopUserWeight("promote-alloca-vector-loop-user-weight", 71 cl::desc("The bonus weight of users of allocas within loop " 72 "when sorting profitable allocas"), 73 cl::init(4)); 74 75 // Shared implementation which can do both promotion to vector and to LDS. 76 class AMDGPUPromoteAllocaImpl { 77 private: 78 const TargetMachine &TM; 79 LoopInfo &LI; 80 Module *Mod = nullptr; 81 const DataLayout *DL = nullptr; 82 83 // FIXME: This should be per-kernel. 84 uint32_t LocalMemLimit = 0; 85 uint32_t CurrentLocalMemUsage = 0; 86 unsigned MaxVGPRs; 87 88 bool IsAMDGCN = false; 89 bool IsAMDHSA = false; 90 91 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 92 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 93 94 /// BaseAlloca is the alloca root the search started from. 95 /// Val may be that alloca or a recursive user of it. 96 bool collectUsesWithPtrTypes(Value *BaseAlloca, Value *Val, 97 std::vector<Value *> &WorkList) const; 98 99 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 100 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 101 /// Returns true if both operands are derived from the same alloca. Val should 102 /// be the same value as one of the input operands of UseInst. 103 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 104 Instruction *UseInst, int OpIdx0, 105 int OpIdx1) const; 106 107 /// Check whether we have enough local memory for promotion. 108 bool hasSufficientLocalMem(const Function &F); 109 110 bool tryPromoteAllocaToVector(AllocaInst &I); 111 bool tryPromoteAllocaToLDS(AllocaInst &I, bool SufficientLDS); 112 113 void sortAllocasToPromote(SmallVectorImpl<AllocaInst *> &Allocas); 114 115 public: 116 AMDGPUPromoteAllocaImpl(TargetMachine &TM, LoopInfo &LI) : TM(TM), LI(LI) { 117 118 const Triple &TT = TM.getTargetTriple(); 119 IsAMDGCN = TT.getArch() == Triple::amdgcn; 120 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 121 } 122 123 bool run(Function &F, bool PromoteToLDS); 124 }; 125 126 // FIXME: This can create globals so should be a module pass. 127 class AMDGPUPromoteAlloca : public FunctionPass { 128 public: 129 static char ID; 130 131 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 132 133 bool runOnFunction(Function &F) override { 134 if (skipFunction(F)) 135 return false; 136 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 137 return AMDGPUPromoteAllocaImpl( 138 TPC->getTM<TargetMachine>(), 139 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()) 140 .run(F, /*PromoteToLDS*/ true); 141 return false; 142 } 143 144 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 145 146 void getAnalysisUsage(AnalysisUsage &AU) const override { 147 AU.setPreservesCFG(); 148 AU.addRequired<LoopInfoWrapperPass>(); 149 FunctionPass::getAnalysisUsage(AU); 150 } 151 }; 152 153 class AMDGPUPromoteAllocaToVector : public FunctionPass { 154 public: 155 static char ID; 156 157 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 158 159 bool runOnFunction(Function &F) override { 160 if (skipFunction(F)) 161 return false; 162 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 163 return AMDGPUPromoteAllocaImpl( 164 TPC->getTM<TargetMachine>(), 165 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()) 166 .run(F, /*PromoteToLDS*/ false); 167 return false; 168 } 169 170 StringRef getPassName() const override { 171 return "AMDGPU Promote Alloca to vector"; 172 } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.setPreservesCFG(); 176 AU.addRequired<LoopInfoWrapperPass>(); 177 FunctionPass::getAnalysisUsage(AU); 178 } 179 }; 180 181 unsigned getMaxVGPRs(const TargetMachine &TM, const Function &F) { 182 if (!TM.getTargetTriple().isAMDGCN()) 183 return 128; 184 185 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 186 unsigned MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 187 188 // A non-entry function has only 32 caller preserved registers. 189 // Do not promote alloca which will force spilling unless we know the function 190 // will be inlined. 191 if (!F.hasFnAttribute(Attribute::AlwaysInline) && 192 !AMDGPU::isEntryFunctionCC(F.getCallingConv())) 193 MaxVGPRs = std::min(MaxVGPRs, 32u); 194 return MaxVGPRs; 195 } 196 197 } // end anonymous namespace 198 199 char AMDGPUPromoteAlloca::ID = 0; 200 char AMDGPUPromoteAllocaToVector::ID = 0; 201 202 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 203 "AMDGPU promote alloca to vector or LDS", false, false) 204 // Move LDS uses from functions to kernels before promote alloca for accurate 205 // estimation of LDS available 206 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDSLegacy) 207 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 208 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 209 "AMDGPU promote alloca to vector or LDS", false, false) 210 211 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 212 "AMDGPU promote alloca to vector", false, false) 213 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 214 INITIALIZE_PASS_END(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 215 "AMDGPU promote alloca to vector", false, false) 216 217 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 218 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 219 220 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 221 FunctionAnalysisManager &AM) { 222 auto &LI = AM.getResult<LoopAnalysis>(F); 223 bool Changed = AMDGPUPromoteAllocaImpl(TM, LI).run(F, /*PromoteToLDS=*/true); 224 if (Changed) { 225 PreservedAnalyses PA; 226 PA.preserveSet<CFGAnalyses>(); 227 return PA; 228 } 229 return PreservedAnalyses::all(); 230 } 231 232 PreservedAnalyses 233 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 234 auto &LI = AM.getResult<LoopAnalysis>(F); 235 bool Changed = AMDGPUPromoteAllocaImpl(TM, LI).run(F, /*PromoteToLDS=*/false); 236 if (Changed) { 237 PreservedAnalyses PA; 238 PA.preserveSet<CFGAnalyses>(); 239 return PA; 240 } 241 return PreservedAnalyses::all(); 242 } 243 244 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 245 return new AMDGPUPromoteAlloca(); 246 } 247 248 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 249 return new AMDGPUPromoteAllocaToVector(); 250 } 251 252 static void collectAllocaUses(AllocaInst &Alloca, 253 SmallVectorImpl<Use *> &Uses) { 254 SmallVector<Instruction *, 4> WorkList({&Alloca}); 255 while (!WorkList.empty()) { 256 auto *Cur = WorkList.pop_back_val(); 257 for (auto &U : Cur->uses()) { 258 Uses.push_back(&U); 259 260 if (isa<GetElementPtrInst>(U.getUser())) 261 WorkList.push_back(cast<Instruction>(U.getUser())); 262 } 263 } 264 } 265 266 void AMDGPUPromoteAllocaImpl::sortAllocasToPromote( 267 SmallVectorImpl<AllocaInst *> &Allocas) { 268 DenseMap<AllocaInst *, unsigned> Scores; 269 270 for (auto *Alloca : Allocas) { 271 LLVM_DEBUG(dbgs() << "Scoring: " << *Alloca << "\n"); 272 unsigned &Score = Scores[Alloca]; 273 // Increment score by one for each user + a bonus for users within loops. 274 SmallVector<Use *, 8> Uses; 275 collectAllocaUses(*Alloca, Uses); 276 for (auto *U : Uses) { 277 Instruction *Inst = cast<Instruction>(U->getUser()); 278 if (isa<GetElementPtrInst>(Inst)) 279 continue; 280 unsigned UserScore = 281 1 + (LoopUserWeight * LI.getLoopDepth(Inst->getParent())); 282 LLVM_DEBUG(dbgs() << " [+" << UserScore << "]:\t" << *Inst << "\n"); 283 Score += UserScore; 284 } 285 LLVM_DEBUG(dbgs() << " => Final Score:" << Score << "\n"); 286 } 287 288 stable_sort(Allocas, [&](AllocaInst *A, AllocaInst *B) { 289 return Scores.at(A) > Scores.at(B); 290 }); 291 292 // clang-format off 293 LLVM_DEBUG( 294 dbgs() << "Sorted Worklist:\n"; 295 for (auto *A: Allocas) 296 dbgs() << " " << *A << "\n"; 297 ); 298 // clang-format on 299 } 300 301 bool AMDGPUPromoteAllocaImpl::run(Function &F, bool PromoteToLDS) { 302 Mod = F.getParent(); 303 DL = &Mod->getDataLayout(); 304 305 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 306 if (!ST.isPromoteAllocaEnabled()) 307 return false; 308 309 MaxVGPRs = getMaxVGPRs(TM, F); 310 311 bool SufficientLDS = PromoteToLDS ? hasSufficientLocalMem(F) : false; 312 313 // Use up to 1/4 of available register budget for vectorization. 314 // FIXME: Increase the limit for whole function budgets? Perhaps x2? 315 unsigned VectorizationBudget = 316 (PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 317 : (MaxVGPRs * 32)) / 318 4; 319 320 SmallVector<AllocaInst *, 16> Allocas; 321 for (Instruction &I : F.getEntryBlock()) { 322 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 323 // Array allocations are probably not worth handling, since an allocation 324 // of the array type is the canonical form. 325 if (!AI->isStaticAlloca() || AI->isArrayAllocation()) 326 continue; 327 Allocas.push_back(AI); 328 } 329 } 330 331 sortAllocasToPromote(Allocas); 332 333 bool Changed = false; 334 for (AllocaInst *AI : Allocas) { 335 const unsigned AllocaCost = DL->getTypeSizeInBits(AI->getAllocatedType()); 336 // First, check if we have enough budget to vectorize this alloca. 337 if (AllocaCost <= VectorizationBudget) { 338 // If we do, attempt vectorization, otherwise, fall through and try 339 // promoting to LDS instead. 340 if (tryPromoteAllocaToVector(*AI)) { 341 Changed = true; 342 assert((VectorizationBudget - AllocaCost) < VectorizationBudget && 343 "Underflow!"); 344 VectorizationBudget -= AllocaCost; 345 LLVM_DEBUG(dbgs() << " Remaining vectorization budget:" 346 << VectorizationBudget << "\n"); 347 continue; 348 } 349 } else { 350 LLVM_DEBUG(dbgs() << "Alloca too big for vectorization (size:" 351 << AllocaCost << ", budget:" << VectorizationBudget 352 << "): " << *AI << "\n"); 353 } 354 355 if (PromoteToLDS && tryPromoteAllocaToLDS(*AI, SufficientLDS)) 356 Changed = true; 357 } 358 359 // NOTE: tryPromoteAllocaToVector removes the alloca, so Allocas contains 360 // dangling pointers. If we want to reuse it past this point, the loop above 361 // would need to be updated to remove successfully promoted allocas. 362 363 return Changed; 364 } 365 366 struct MemTransferInfo { 367 ConstantInt *SrcIndex = nullptr; 368 ConstantInt *DestIndex = nullptr; 369 }; 370 371 // Checks if the instruction I is a memset user of the alloca AI that we can 372 // deal with. Currently, only non-volatile memsets that affect the whole alloca 373 // are handled. 374 static bool isSupportedMemset(MemSetInst *I, AllocaInst *AI, 375 const DataLayout &DL) { 376 using namespace PatternMatch; 377 // For now we only care about non-volatile memsets that affect the whole type 378 // (start at index 0 and fill the whole alloca). 379 // 380 // TODO: Now that we moved to PromoteAlloca we could handle any memsets 381 // (except maybe volatile ones?) - we just need to use shufflevector if it 382 // only affects a subset of the vector. 383 const unsigned Size = DL.getTypeStoreSize(AI->getAllocatedType()); 384 return I->getOperand(0) == AI && 385 match(I->getOperand(2), m_SpecificInt(Size)) && !I->isVolatile(); 386 } 387 388 static Value * 389 calculateVectorIndex(Value *Ptr, 390 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 391 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()); 392 if (!GEP) 393 return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext())); 394 395 auto I = GEPIdx.find(GEP); 396 assert(I != GEPIdx.end() && "Must have entry for GEP!"); 397 return I->second; 398 } 399 400 static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca, 401 Type *VecElemTy, const DataLayout &DL) { 402 // TODO: Extracting a "multiple of X" from a GEP might be a useful generic 403 // helper. 404 unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType()); 405 MapVector<Value *, APInt> VarOffsets; 406 APInt ConstOffset(BW, 0); 407 if (GEP->getPointerOperand()->stripPointerCasts() != Alloca || 408 !GEP->collectOffset(DL, BW, VarOffsets, ConstOffset)) 409 return nullptr; 410 411 unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy); 412 if (VarOffsets.size() > 1) 413 return nullptr; 414 415 if (VarOffsets.size() == 1) { 416 // Only handle cases where we don't need to insert extra arithmetic 417 // instructions. 418 const auto &VarOffset = VarOffsets.front(); 419 if (!ConstOffset.isZero() || VarOffset.second != VecElemSize) 420 return nullptr; 421 return VarOffset.first; 422 } 423 424 APInt Quot; 425 uint64_t Rem; 426 APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem); 427 if (Rem != 0) 428 return nullptr; 429 430 return ConstantInt::get(GEP->getContext(), Quot); 431 } 432 433 /// Promotes a single user of the alloca to a vector form. 434 /// 435 /// \param Inst Instruction to be promoted. 436 /// \param DL Module Data Layout. 437 /// \param VectorTy Vectorized Type. 438 /// \param VecStoreSize Size of \p VectorTy in bytes. 439 /// \param ElementSize Size of \p VectorTy element type in bytes. 440 /// \param TransferInfo MemTransferInst info map. 441 /// \param GEPVectorIdx GEP -> VectorIdx cache. 442 /// \param CurVal Current value of the vector (e.g. last stored value) 443 /// \param[out] DeferredLoads \p Inst is added to this vector if it can't 444 /// be promoted now. This happens when promoting requires \p 445 /// CurVal, but \p CurVal is nullptr. 446 /// \return the stored value if \p Inst would have written to the alloca, or 447 /// nullptr otherwise. 448 static Value *promoteAllocaUserToVector( 449 Instruction *Inst, const DataLayout &DL, FixedVectorType *VectorTy, 450 unsigned VecStoreSize, unsigned ElementSize, 451 DenseMap<MemTransferInst *, MemTransferInfo> &TransferInfo, 452 std::map<GetElementPtrInst *, Value *> &GEPVectorIdx, Value *CurVal, 453 SmallVectorImpl<LoadInst *> &DeferredLoads) { 454 // Note: we use InstSimplifyFolder because it can leverage the DataLayout 455 // to do more folding, especially in the case of vector splats. 456 IRBuilder<InstSimplifyFolder> Builder(Inst->getContext(), 457 InstSimplifyFolder(DL)); 458 Builder.SetInsertPoint(Inst); 459 460 const auto GetOrLoadCurrentVectorValue = [&]() -> Value * { 461 if (CurVal) 462 return CurVal; 463 464 // If the current value is not known, insert a dummy load and lower it on 465 // the second pass. 466 LoadInst *Dummy = 467 Builder.CreateLoad(VectorTy, PoisonValue::get(Builder.getPtrTy()), 468 "promotealloca.dummyload"); 469 DeferredLoads.push_back(Dummy); 470 return Dummy; 471 }; 472 473 const auto CreateTempPtrIntCast = [&Builder, DL](Value *Val, 474 Type *PtrTy) -> Value * { 475 assert(DL.getTypeStoreSize(Val->getType()) == DL.getTypeStoreSize(PtrTy)); 476 const unsigned Size = DL.getTypeStoreSizeInBits(PtrTy); 477 if (!PtrTy->isVectorTy()) 478 return Builder.CreateBitOrPointerCast(Val, Builder.getIntNTy(Size)); 479 const unsigned NumPtrElts = cast<FixedVectorType>(PtrTy)->getNumElements(); 480 // If we want to cast to cast, e.g. a <2 x ptr> into a <4 x i32>, we need to 481 // first cast the ptr vector to <2 x i64>. 482 assert((Size % NumPtrElts == 0) && "Vector size not divisble"); 483 Type *EltTy = Builder.getIntNTy(Size / NumPtrElts); 484 return Builder.CreateBitOrPointerCast( 485 Val, FixedVectorType::get(EltTy, NumPtrElts)); 486 }; 487 488 Type *VecEltTy = VectorTy->getElementType(); 489 490 switch (Inst->getOpcode()) { 491 case Instruction::Load: { 492 // Loads can only be lowered if the value is known. 493 if (!CurVal) { 494 DeferredLoads.push_back(cast<LoadInst>(Inst)); 495 return nullptr; 496 } 497 498 Value *Index = calculateVectorIndex( 499 cast<LoadInst>(Inst)->getPointerOperand(), GEPVectorIdx); 500 501 // We're loading the full vector. 502 Type *AccessTy = Inst->getType(); 503 TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); 504 if (Constant *CI = dyn_cast<Constant>(Index)) { 505 if (CI->isZeroValue() && AccessSize == VecStoreSize) { 506 if (AccessTy->isPtrOrPtrVectorTy()) 507 CurVal = CreateTempPtrIntCast(CurVal, AccessTy); 508 else if (CurVal->getType()->isPtrOrPtrVectorTy()) 509 CurVal = CreateTempPtrIntCast(CurVal, CurVal->getType()); 510 Value *NewVal = Builder.CreateBitOrPointerCast(CurVal, AccessTy); 511 Inst->replaceAllUsesWith(NewVal); 512 return nullptr; 513 } 514 } 515 516 // Loading a subvector. 517 if (isa<FixedVectorType>(AccessTy)) { 518 assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); 519 const unsigned NumLoadedElts = AccessSize / DL.getTypeStoreSize(VecEltTy); 520 auto *SubVecTy = FixedVectorType::get(VecEltTy, NumLoadedElts); 521 assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); 522 523 Value *SubVec = PoisonValue::get(SubVecTy); 524 for (unsigned K = 0; K < NumLoadedElts; ++K) { 525 Value *CurIdx = 526 Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); 527 SubVec = Builder.CreateInsertElement( 528 SubVec, Builder.CreateExtractElement(CurVal, CurIdx), K); 529 } 530 531 if (AccessTy->isPtrOrPtrVectorTy()) 532 SubVec = CreateTempPtrIntCast(SubVec, AccessTy); 533 else if (SubVecTy->isPtrOrPtrVectorTy()) 534 SubVec = CreateTempPtrIntCast(SubVec, SubVecTy); 535 536 SubVec = Builder.CreateBitOrPointerCast(SubVec, AccessTy); 537 Inst->replaceAllUsesWith(SubVec); 538 return nullptr; 539 } 540 541 // We're loading one element. 542 Value *ExtractElement = Builder.CreateExtractElement(CurVal, Index); 543 if (AccessTy != VecEltTy) 544 ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, AccessTy); 545 546 Inst->replaceAllUsesWith(ExtractElement); 547 return nullptr; 548 } 549 case Instruction::Store: { 550 // For stores, it's a bit trickier and it depends on whether we're storing 551 // the full vector or not. If we're storing the full vector, we don't need 552 // to know the current value. If this is a store of a single element, we 553 // need to know the value. 554 StoreInst *SI = cast<StoreInst>(Inst); 555 Value *Index = calculateVectorIndex(SI->getPointerOperand(), GEPVectorIdx); 556 Value *Val = SI->getValueOperand(); 557 558 // We're storing the full vector, we can handle this without knowing CurVal. 559 Type *AccessTy = Val->getType(); 560 TypeSize AccessSize = DL.getTypeStoreSize(AccessTy); 561 if (Constant *CI = dyn_cast<Constant>(Index)) { 562 if (CI->isZeroValue() && AccessSize == VecStoreSize) { 563 if (AccessTy->isPtrOrPtrVectorTy()) 564 Val = CreateTempPtrIntCast(Val, AccessTy); 565 else if (VectorTy->isPtrOrPtrVectorTy()) 566 Val = CreateTempPtrIntCast(Val, VectorTy); 567 return Builder.CreateBitOrPointerCast(Val, VectorTy); 568 } 569 } 570 571 // Storing a subvector. 572 if (isa<FixedVectorType>(AccessTy)) { 573 assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy))); 574 const unsigned NumWrittenElts = 575 AccessSize / DL.getTypeStoreSize(VecEltTy); 576 const unsigned NumVecElts = VectorTy->getNumElements(); 577 auto *SubVecTy = FixedVectorType::get(VecEltTy, NumWrittenElts); 578 assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy)); 579 580 if (SubVecTy->isPtrOrPtrVectorTy()) 581 Val = CreateTempPtrIntCast(Val, SubVecTy); 582 else if (AccessTy->isPtrOrPtrVectorTy()) 583 Val = CreateTempPtrIntCast(Val, AccessTy); 584 585 Val = Builder.CreateBitOrPointerCast(Val, SubVecTy); 586 587 Value *CurVec = GetOrLoadCurrentVectorValue(); 588 for (unsigned K = 0, NumElts = std::min(NumWrittenElts, NumVecElts); 589 K < NumElts; ++K) { 590 Value *CurIdx = 591 Builder.CreateAdd(Index, ConstantInt::get(Index->getType(), K)); 592 CurVec = Builder.CreateInsertElement( 593 CurVec, Builder.CreateExtractElement(Val, K), CurIdx); 594 } 595 return CurVec; 596 } 597 598 if (Val->getType() != VecEltTy) 599 Val = Builder.CreateBitOrPointerCast(Val, VecEltTy); 600 return Builder.CreateInsertElement(GetOrLoadCurrentVectorValue(), Val, 601 Index); 602 } 603 case Instruction::Call: { 604 if (auto *MTI = dyn_cast<MemTransferInst>(Inst)) { 605 // For memcpy, we need to know curval. 606 ConstantInt *Length = cast<ConstantInt>(MTI->getLength()); 607 unsigned NumCopied = Length->getZExtValue() / ElementSize; 608 MemTransferInfo *TI = &TransferInfo[MTI]; 609 unsigned SrcBegin = TI->SrcIndex->getZExtValue(); 610 unsigned DestBegin = TI->DestIndex->getZExtValue(); 611 612 SmallVector<int> Mask; 613 for (unsigned Idx = 0; Idx < VectorTy->getNumElements(); ++Idx) { 614 if (Idx >= DestBegin && Idx < DestBegin + NumCopied) { 615 Mask.push_back(SrcBegin++); 616 } else { 617 Mask.push_back(Idx); 618 } 619 } 620 621 return Builder.CreateShuffleVector(GetOrLoadCurrentVectorValue(), Mask); 622 } 623 624 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) { 625 // For memset, we don't need to know the previous value because we 626 // currently only allow memsets that cover the whole alloca. 627 Value *Elt = MSI->getOperand(1); 628 const unsigned BytesPerElt = DL.getTypeStoreSize(VecEltTy); 629 if (BytesPerElt > 1) { 630 Value *EltBytes = Builder.CreateVectorSplat(BytesPerElt, Elt); 631 632 // If the element type of the vector is a pointer, we need to first cast 633 // to an integer, then use a PtrCast. 634 if (VecEltTy->isPointerTy()) { 635 Type *PtrInt = Builder.getIntNTy(BytesPerElt * 8); 636 Elt = Builder.CreateBitCast(EltBytes, PtrInt); 637 Elt = Builder.CreateIntToPtr(Elt, VecEltTy); 638 } else 639 Elt = Builder.CreateBitCast(EltBytes, VecEltTy); 640 } 641 642 return Builder.CreateVectorSplat(VectorTy->getElementCount(), Elt); 643 } 644 645 if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) { 646 if (Intr->getIntrinsicID() == Intrinsic::objectsize) { 647 Intr->replaceAllUsesWith( 648 Builder.getIntN(Intr->getType()->getIntegerBitWidth(), 649 DL.getTypeAllocSize(VectorTy))); 650 return nullptr; 651 } 652 } 653 654 llvm_unreachable("Unsupported call when promoting alloca to vector"); 655 } 656 657 default: 658 llvm_unreachable("Inconsistency in instructions promotable to vector"); 659 } 660 661 llvm_unreachable("Did not return after promoting instruction!"); 662 } 663 664 static bool isSupportedAccessType(FixedVectorType *VecTy, Type *AccessTy, 665 const DataLayout &DL) { 666 // Access as a vector type can work if the size of the access vector is a 667 // multiple of the size of the alloca's vector element type. 668 // 669 // Examples: 670 // - VecTy = <8 x float>, AccessTy = <4 x float> -> OK 671 // - VecTy = <4 x double>, AccessTy = <2 x float> -> OK 672 // - VecTy = <4 x double>, AccessTy = <3 x float> -> NOT OK 673 // - 3*32 is not a multiple of 64 674 // 675 // We could handle more complicated cases, but it'd make things a lot more 676 // complicated. 677 if (isa<FixedVectorType>(AccessTy)) { 678 TypeSize AccTS = DL.getTypeStoreSize(AccessTy); 679 TypeSize VecTS = DL.getTypeStoreSize(VecTy->getElementType()); 680 return AccTS.isKnownMultipleOf(VecTS); 681 } 682 683 return CastInst::isBitOrNoopPointerCastable(VecTy->getElementType(), AccessTy, 684 DL); 685 } 686 687 /// Iterates over an instruction worklist that may contain multiple instructions 688 /// from the same basic block, but in a different order. 689 template <typename InstContainer> 690 static void forEachWorkListItem(const InstContainer &WorkList, 691 std::function<void(Instruction *)> Fn) { 692 // Bucket up uses of the alloca by the block they occur in. 693 // This is important because we have to handle multiple defs/uses in a block 694 // ourselves: SSAUpdater is purely for cross-block references. 695 DenseMap<BasicBlock *, SmallDenseSet<Instruction *>> UsesByBlock; 696 for (Instruction *User : WorkList) 697 UsesByBlock[User->getParent()].insert(User); 698 699 for (Instruction *User : WorkList) { 700 BasicBlock *BB = User->getParent(); 701 auto &BlockUses = UsesByBlock[BB]; 702 703 // Already processed, skip. 704 if (BlockUses.empty()) 705 continue; 706 707 // Only user in the block, directly process it. 708 if (BlockUses.size() == 1) { 709 Fn(User); 710 continue; 711 } 712 713 // Multiple users in the block, do a linear scan to see users in order. 714 for (Instruction &Inst : *BB) { 715 if (!BlockUses.contains(&Inst)) 716 continue; 717 718 Fn(&Inst); 719 } 720 721 // Clear the block so we know it's been processed. 722 BlockUses.clear(); 723 } 724 } 725 726 // FIXME: Should try to pick the most likely to be profitable allocas first. 727 bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToVector(AllocaInst &Alloca) { 728 LLVM_DEBUG(dbgs() << "Trying to promote to vector: " << Alloca << '\n'); 729 730 if (DisablePromoteAllocaToVector) { 731 LLVM_DEBUG(dbgs() << " Promote alloca to vector is disabled\n"); 732 return false; 733 } 734 735 Type *AllocaTy = Alloca.getAllocatedType(); 736 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 737 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 738 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 739 ArrayTy->getNumElements() > 0) 740 VectorTy = FixedVectorType::get(ArrayTy->getElementType(), 741 ArrayTy->getNumElements()); 742 } 743 744 // FIXME: There is no reason why we can't support larger arrays, we 745 // are just being conservative for now. 746 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or 747 // equivalent. Potentially these could also be promoted but we don't currently 748 // handle this case 749 if (!VectorTy) { 750 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 751 return false; 752 } 753 754 if (VectorTy->getNumElements() > 16 || VectorTy->getNumElements() < 2) { 755 LLVM_DEBUG(dbgs() << " " << *VectorTy 756 << " has an unsupported number of elements\n"); 757 return false; 758 } 759 760 std::map<GetElementPtrInst *, Value *> GEPVectorIdx; 761 SmallVector<Instruction *> WorkList; 762 SmallVector<Instruction *> UsersToRemove; 763 SmallVector<Instruction *> DeferredInsts; 764 DenseMap<MemTransferInst *, MemTransferInfo> TransferInfo; 765 766 const auto RejectUser = [&](Instruction *Inst, Twine Msg) { 767 LLVM_DEBUG(dbgs() << " Cannot promote alloca to vector: " << Msg << "\n" 768 << " " << *Inst << "\n"); 769 return false; 770 }; 771 772 SmallVector<Use *, 8> Uses; 773 collectAllocaUses(Alloca, Uses); 774 775 LLVM_DEBUG(dbgs() << " Attempting promotion to: " << *VectorTy << "\n"); 776 777 Type *VecEltTy = VectorTy->getElementType(); 778 unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8; 779 for (auto *U : Uses) { 780 Instruction *Inst = cast<Instruction>(U->getUser()); 781 782 if (Value *Ptr = getLoadStorePointerOperand(Inst)) { 783 // This is a store of the pointer, not to the pointer. 784 if (isa<StoreInst>(Inst) && 785 U->getOperandNo() != StoreInst::getPointerOperandIndex()) 786 return RejectUser(Inst, "pointer is being stored"); 787 788 Type *AccessTy = getLoadStoreType(Inst); 789 if (AccessTy->isAggregateType()) 790 return RejectUser(Inst, "unsupported load/store as aggregate"); 791 assert(!AccessTy->isAggregateType() || AccessTy->isArrayTy()); 792 793 // Check that this is a simple access of a vector element. 794 bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple() 795 : cast<StoreInst>(Inst)->isSimple(); 796 if (!IsSimple) 797 return RejectUser(Inst, "not a simple load or store"); 798 799 Ptr = Ptr->stripPointerCasts(); 800 801 // Alloca already accessed as vector. 802 if (Ptr == &Alloca && DL->getTypeStoreSize(Alloca.getAllocatedType()) == 803 DL->getTypeStoreSize(AccessTy)) { 804 WorkList.push_back(Inst); 805 continue; 806 } 807 808 if (!isSupportedAccessType(VectorTy, AccessTy, *DL)) 809 return RejectUser(Inst, "not a supported access type"); 810 811 WorkList.push_back(Inst); 812 continue; 813 } 814 815 if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 816 // If we can't compute a vector index from this GEP, then we can't 817 // promote this alloca to vector. 818 Value *Index = GEPToVectorIndex(GEP, &Alloca, VecEltTy, *DL); 819 if (!Index) 820 return RejectUser(Inst, "cannot compute vector index for GEP"); 821 822 GEPVectorIdx[GEP] = Index; 823 UsersToRemove.push_back(Inst); 824 continue; 825 } 826 827 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst); 828 MSI && isSupportedMemset(MSI, &Alloca, *DL)) { 829 WorkList.push_back(Inst); 830 continue; 831 } 832 833 if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) { 834 if (TransferInst->isVolatile()) 835 return RejectUser(Inst, "mem transfer inst is volatile"); 836 837 ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength()); 838 if (!Len || (Len->getZExtValue() % ElementSize)) 839 return RejectUser(Inst, "mem transfer inst length is non-constant or " 840 "not a multiple of the vector element size"); 841 842 if (!TransferInfo.count(TransferInst)) { 843 DeferredInsts.push_back(Inst); 844 WorkList.push_back(Inst); 845 TransferInfo[TransferInst] = MemTransferInfo(); 846 } 847 848 auto getPointerIndexOfAlloca = [&](Value *Ptr) -> ConstantInt * { 849 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 850 if (Ptr != &Alloca && !GEPVectorIdx.count(GEP)) 851 return nullptr; 852 853 return dyn_cast<ConstantInt>(calculateVectorIndex(Ptr, GEPVectorIdx)); 854 }; 855 856 unsigned OpNum = U->getOperandNo(); 857 MemTransferInfo *TI = &TransferInfo[TransferInst]; 858 if (OpNum == 0) { 859 Value *Dest = TransferInst->getDest(); 860 ConstantInt *Index = getPointerIndexOfAlloca(Dest); 861 if (!Index) 862 return RejectUser(Inst, "could not calculate constant dest index"); 863 TI->DestIndex = Index; 864 } else { 865 assert(OpNum == 1); 866 Value *Src = TransferInst->getSource(); 867 ConstantInt *Index = getPointerIndexOfAlloca(Src); 868 if (!Index) 869 return RejectUser(Inst, "could not calculate constant src index"); 870 TI->SrcIndex = Index; 871 } 872 continue; 873 } 874 875 if (auto *Intr = dyn_cast<IntrinsicInst>(Inst)) { 876 if (Intr->getIntrinsicID() == Intrinsic::objectsize) { 877 WorkList.push_back(Inst); 878 continue; 879 } 880 } 881 882 // Ignore assume-like intrinsics and comparisons used in assumes. 883 if (isAssumeLikeIntrinsic(Inst)) { 884 if (!Inst->use_empty()) 885 return RejectUser(Inst, "assume-like intrinsic cannot have any users"); 886 UsersToRemove.push_back(Inst); 887 continue; 888 } 889 890 if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) { 891 return isAssumeLikeIntrinsic(cast<Instruction>(U)); 892 })) { 893 UsersToRemove.push_back(Inst); 894 continue; 895 } 896 897 return RejectUser(Inst, "unhandled alloca user"); 898 } 899 900 while (!DeferredInsts.empty()) { 901 Instruction *Inst = DeferredInsts.pop_back_val(); 902 MemTransferInst *TransferInst = cast<MemTransferInst>(Inst); 903 // TODO: Support the case if the pointers are from different alloca or 904 // from different address spaces. 905 MemTransferInfo &Info = TransferInfo[TransferInst]; 906 if (!Info.SrcIndex || !Info.DestIndex) 907 return RejectUser( 908 Inst, "mem transfer inst is missing constant src and/or dst index"); 909 } 910 911 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 912 << *VectorTy << '\n'); 913 const unsigned VecStoreSize = DL->getTypeStoreSize(VectorTy); 914 915 // Alloca is uninitialized memory. Imitate that by making the first value 916 // undef. 917 SSAUpdater Updater; 918 Updater.Initialize(VectorTy, "promotealloca"); 919 Updater.AddAvailableValue(Alloca.getParent(), UndefValue::get(VectorTy)); 920 921 // First handle the initial worklist. 922 SmallVector<LoadInst *, 4> DeferredLoads; 923 forEachWorkListItem(WorkList, [&](Instruction *I) { 924 BasicBlock *BB = I->getParent(); 925 // On the first pass, we only take values that are trivially known, i.e. 926 // where AddAvailableValue was already called in this block. 927 Value *Result = promoteAllocaUserToVector( 928 I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, 929 Updater.FindValueForBlock(BB), DeferredLoads); 930 if (Result) 931 Updater.AddAvailableValue(BB, Result); 932 }); 933 934 // Then handle deferred loads. 935 forEachWorkListItem(DeferredLoads, [&](Instruction *I) { 936 SmallVector<LoadInst *, 0> NewDLs; 937 BasicBlock *BB = I->getParent(); 938 // On the second pass, we use GetValueInMiddleOfBlock to guarantee we always 939 // get a value, inserting PHIs as needed. 940 Value *Result = promoteAllocaUserToVector( 941 I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx, 942 Updater.GetValueInMiddleOfBlock(I->getParent()), NewDLs); 943 if (Result) 944 Updater.AddAvailableValue(BB, Result); 945 assert(NewDLs.empty() && "No more deferred loads should be queued!"); 946 }); 947 948 // Delete all instructions. On the first pass, new dummy loads may have been 949 // added so we need to collect them too. 950 DenseSet<Instruction *> InstsToDelete(WorkList.begin(), WorkList.end()); 951 InstsToDelete.insert(DeferredLoads.begin(), DeferredLoads.end()); 952 for (Instruction *I : InstsToDelete) { 953 assert(I->use_empty()); 954 I->eraseFromParent(); 955 } 956 957 // Delete all the users that are known to be removeable. 958 for (Instruction *I : reverse(UsersToRemove)) { 959 I->dropDroppableUses(); 960 assert(I->use_empty()); 961 I->eraseFromParent(); 962 } 963 964 // Alloca should now be dead too. 965 assert(Alloca.use_empty()); 966 Alloca.eraseFromParent(); 967 return true; 968 } 969 970 std::pair<Value *, Value *> 971 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 972 Function &F = *Builder.GetInsertBlock()->getParent(); 973 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 974 975 if (!IsAMDHSA) { 976 Function *LocalSizeYFn = 977 Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 978 Function *LocalSizeZFn = 979 Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 980 981 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 982 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 983 984 ST.makeLIDRangeMetadata(LocalSizeY); 985 ST.makeLIDRangeMetadata(LocalSizeZ); 986 987 return std::pair(LocalSizeY, LocalSizeZ); 988 } 989 990 // We must read the size out of the dispatch pointer. 991 assert(IsAMDGCN); 992 993 // We are indexing into this struct, and want to extract the workgroup_size_* 994 // fields. 995 // 996 // typedef struct hsa_kernel_dispatch_packet_s { 997 // uint16_t header; 998 // uint16_t setup; 999 // uint16_t workgroup_size_x ; 1000 // uint16_t workgroup_size_y; 1001 // uint16_t workgroup_size_z; 1002 // uint16_t reserved0; 1003 // uint32_t grid_size_x ; 1004 // uint32_t grid_size_y ; 1005 // uint32_t grid_size_z; 1006 // 1007 // uint32_t private_segment_size; 1008 // uint32_t group_segment_size; 1009 // uint64_t kernel_object; 1010 // 1011 // #ifdef HSA_LARGE_MODEL 1012 // void *kernarg_address; 1013 // #elif defined HSA_LITTLE_ENDIAN 1014 // void *kernarg_address; 1015 // uint32_t reserved1; 1016 // #else 1017 // uint32_t reserved1; 1018 // void *kernarg_address; 1019 // #endif 1020 // uint64_t reserved2; 1021 // hsa_signal_t completion_signal; // uint64_t wrapper 1022 // } hsa_kernel_dispatch_packet_t 1023 // 1024 Function *DispatchPtrFn = 1025 Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 1026 1027 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 1028 DispatchPtr->addRetAttr(Attribute::NoAlias); 1029 DispatchPtr->addRetAttr(Attribute::NonNull); 1030 F.removeFnAttr("amdgpu-no-dispatch-ptr"); 1031 1032 // Size of the dispatch packet struct. 1033 DispatchPtr->addDereferenceableRetAttr(64); 1034 1035 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 1036 Value *CastDispatchPtr = Builder.CreateBitCast( 1037 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 1038 1039 // We could do a single 64-bit load here, but it's likely that the basic 1040 // 32-bit and extract sequence is already present, and it is probably easier 1041 // to CSE this. The loads should be mergeable later anyway. 1042 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 1043 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 1044 1045 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 1046 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 1047 1048 MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt); 1049 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 1050 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 1051 ST.makeLIDRangeMetadata(LoadZU); 1052 1053 // Extract y component. Upper half of LoadZU should be zero already. 1054 Value *Y = Builder.CreateLShr(LoadXY, 16); 1055 1056 return std::pair(Y, LoadZU); 1057 } 1058 1059 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 1060 unsigned N) { 1061 Function *F = Builder.GetInsertBlock()->getParent(); 1062 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 1063 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 1064 StringRef AttrName; 1065 1066 switch (N) { 1067 case 0: 1068 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 1069 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 1070 AttrName = "amdgpu-no-workitem-id-x"; 1071 break; 1072 case 1: 1073 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 1074 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 1075 AttrName = "amdgpu-no-workitem-id-y"; 1076 break; 1077 1078 case 2: 1079 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 1080 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 1081 AttrName = "amdgpu-no-workitem-id-z"; 1082 break; 1083 default: 1084 llvm_unreachable("invalid dimension"); 1085 } 1086 1087 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 1088 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 1089 ST.makeLIDRangeMetadata(CI); 1090 F->removeFnAttr(AttrName); 1091 1092 return CI; 1093 } 1094 1095 static bool isCallPromotable(CallInst *CI) { 1096 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1097 if (!II) 1098 return false; 1099 1100 switch (II->getIntrinsicID()) { 1101 case Intrinsic::memcpy: 1102 case Intrinsic::memmove: 1103 case Intrinsic::memset: 1104 case Intrinsic::lifetime_start: 1105 case Intrinsic::lifetime_end: 1106 case Intrinsic::invariant_start: 1107 case Intrinsic::invariant_end: 1108 case Intrinsic::launder_invariant_group: 1109 case Intrinsic::strip_invariant_group: 1110 case Intrinsic::objectsize: 1111 return true; 1112 default: 1113 return false; 1114 } 1115 } 1116 1117 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 1118 Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 1119 int OpIdx1) const { 1120 // Figure out which operand is the one we might not be promoting. 1121 Value *OtherOp = Inst->getOperand(OpIdx0); 1122 if (Val == OtherOp) 1123 OtherOp = Inst->getOperand(OpIdx1); 1124 1125 if (isa<ConstantPointerNull>(OtherOp)) 1126 return true; 1127 1128 Value *OtherObj = getUnderlyingObject(OtherOp); 1129 if (!isa<AllocaInst>(OtherObj)) 1130 return false; 1131 1132 // TODO: We should be able to replace undefs with the right pointer type. 1133 1134 // TODO: If we know the other base object is another promotable 1135 // alloca, not necessarily this alloca, we can do this. The 1136 // important part is both must have the same address space at 1137 // the end. 1138 if (OtherObj != BaseAlloca) { 1139 LLVM_DEBUG( 1140 dbgs() << "Found a binary instruction with another alloca object\n"); 1141 return false; 1142 } 1143 1144 return true; 1145 } 1146 1147 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 1148 Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 1149 1150 for (User *User : Val->users()) { 1151 if (is_contained(WorkList, User)) 1152 continue; 1153 1154 if (CallInst *CI = dyn_cast<CallInst>(User)) { 1155 if (!isCallPromotable(CI)) 1156 return false; 1157 1158 WorkList.push_back(User); 1159 continue; 1160 } 1161 1162 Instruction *UseInst = cast<Instruction>(User); 1163 if (UseInst->getOpcode() == Instruction::PtrToInt) 1164 return false; 1165 1166 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 1167 if (LI->isVolatile()) 1168 return false; 1169 1170 continue; 1171 } 1172 1173 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 1174 if (SI->isVolatile()) 1175 return false; 1176 1177 // Reject if the stored value is not the pointer operand. 1178 if (SI->getPointerOperand() != Val) 1179 return false; 1180 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 1181 if (RMW->isVolatile()) 1182 return false; 1183 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 1184 if (CAS->isVolatile()) 1185 return false; 1186 } 1187 1188 // Only promote a select if we know that the other select operand 1189 // is from another pointer that will also be promoted. 1190 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 1191 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 1192 return false; 1193 1194 // May need to rewrite constant operands. 1195 WorkList.push_back(ICmp); 1196 } 1197 1198 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 1199 // Give up if the pointer may be captured. 1200 if (PointerMayBeCaptured(UseInst, true, true)) 1201 return false; 1202 // Don't collect the users of this. 1203 WorkList.push_back(User); 1204 continue; 1205 } 1206 1207 // Do not promote vector/aggregate type instructions. It is hard to track 1208 // their users. 1209 if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 1210 return false; 1211 1212 if (!User->getType()->isPointerTy()) 1213 continue; 1214 1215 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 1216 // Be conservative if an address could be computed outside the bounds of 1217 // the alloca. 1218 if (!GEP->isInBounds()) 1219 return false; 1220 } 1221 1222 // Only promote a select if we know that the other select operand is from 1223 // another pointer that will also be promoted. 1224 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 1225 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 1226 return false; 1227 } 1228 1229 // Repeat for phis. 1230 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 1231 // TODO: Handle more complex cases. We should be able to replace loops 1232 // over arrays. 1233 switch (Phi->getNumIncomingValues()) { 1234 case 1: 1235 break; 1236 case 2: 1237 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 1238 return false; 1239 break; 1240 default: 1241 return false; 1242 } 1243 } 1244 1245 WorkList.push_back(User); 1246 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 1247 return false; 1248 } 1249 1250 return true; 1251 } 1252 1253 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 1254 1255 FunctionType *FTy = F.getFunctionType(); 1256 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1257 1258 // If the function has any arguments in the local address space, then it's 1259 // possible these arguments require the entire local memory space, so 1260 // we cannot use local memory in the pass. 1261 for (Type *ParamTy : FTy->params()) { 1262 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 1263 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 1264 LocalMemLimit = 0; 1265 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 1266 "local memory disabled.\n"); 1267 return false; 1268 } 1269 } 1270 1271 LocalMemLimit = ST.getAddressableLocalMemorySize(); 1272 if (LocalMemLimit == 0) 1273 return false; 1274 1275 SmallVector<const Constant *, 16> Stack; 1276 SmallPtrSet<const Constant *, 8> VisitedConstants; 1277 SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 1278 1279 auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 1280 for (const User *U : Val->users()) { 1281 if (const Instruction *Use = dyn_cast<Instruction>(U)) { 1282 if (Use->getParent()->getParent() == &F) 1283 return true; 1284 } else { 1285 const Constant *C = cast<Constant>(U); 1286 if (VisitedConstants.insert(C).second) 1287 Stack.push_back(C); 1288 } 1289 } 1290 1291 return false; 1292 }; 1293 1294 for (GlobalVariable &GV : Mod->globals()) { 1295 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 1296 continue; 1297 1298 if (visitUsers(&GV, &GV)) { 1299 UsedLDS.insert(&GV); 1300 Stack.clear(); 1301 continue; 1302 } 1303 1304 // For any ConstantExpr uses, we need to recursively search the users until 1305 // we see a function. 1306 while (!Stack.empty()) { 1307 const Constant *C = Stack.pop_back_val(); 1308 if (visitUsers(&GV, C)) { 1309 UsedLDS.insert(&GV); 1310 Stack.clear(); 1311 break; 1312 } 1313 } 1314 } 1315 1316 const DataLayout &DL = Mod->getDataLayout(); 1317 SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 1318 AllocatedSizes.reserve(UsedLDS.size()); 1319 1320 for (const GlobalVariable *GV : UsedLDS) { 1321 Align Alignment = 1322 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 1323 uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 1324 1325 // HIP uses an extern unsized array in local address space for dynamically 1326 // allocated shared memory. In that case, we have to disable the promotion. 1327 if (GV->hasExternalLinkage() && AllocSize == 0) { 1328 LocalMemLimit = 0; 1329 LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated " 1330 "local memory. Promoting to local memory " 1331 "disabled.\n"); 1332 return false; 1333 } 1334 1335 AllocatedSizes.emplace_back(AllocSize, Alignment); 1336 } 1337 1338 // Sort to try to estimate the worst case alignment padding 1339 // 1340 // FIXME: We should really do something to fix the addresses to a more optimal 1341 // value instead 1342 llvm::sort(AllocatedSizes, llvm::less_second()); 1343 1344 // Check how much local memory is being used by global objects 1345 CurrentLocalMemUsage = 0; 1346 1347 // FIXME: Try to account for padding here. The real padding and address is 1348 // currently determined from the inverse order of uses in the function when 1349 // legalizing, which could also potentially change. We try to estimate the 1350 // worst case here, but we probably should fix the addresses earlier. 1351 for (auto Alloc : AllocatedSizes) { 1352 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 1353 CurrentLocalMemUsage += Alloc.first; 1354 } 1355 1356 unsigned MaxOccupancy = 1357 ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, F); 1358 1359 // Restrict local memory usage so that we don't drastically reduce occupancy, 1360 // unless it is already significantly reduced. 1361 1362 // TODO: Have some sort of hint or other heuristics to guess occupancy based 1363 // on other factors.. 1364 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 1365 if (OccupancyHint == 0) 1366 OccupancyHint = 7; 1367 1368 // Clamp to max value. 1369 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 1370 1371 // Check the hint but ignore it if it's obviously wrong from the existing LDS 1372 // usage. 1373 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 1374 1375 // Round up to the next tier of usage. 1376 unsigned MaxSizeWithWaveCount = 1377 ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 1378 1379 // Program is possibly broken by using more local mem than available. 1380 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 1381 return false; 1382 1383 LocalMemLimit = MaxSizeWithWaveCount; 1384 1385 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 1386 << " bytes of LDS\n" 1387 << " Rounding size to " << MaxSizeWithWaveCount 1388 << " with a maximum occupancy of " << MaxOccupancy << '\n' 1389 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 1390 << " available for promotion\n"); 1391 1392 return true; 1393 } 1394 1395 // FIXME: Should try to pick the most likely to be profitable allocas first. 1396 bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToLDS(AllocaInst &I, 1397 bool SufficientLDS) { 1398 LLVM_DEBUG(dbgs() << "Trying to promote to LDS: " << I << '\n'); 1399 1400 if (DisablePromoteAllocaToLDS) { 1401 LLVM_DEBUG(dbgs() << " Promote alloca to LDS is disabled\n"); 1402 return false; 1403 } 1404 1405 const DataLayout &DL = Mod->getDataLayout(); 1406 IRBuilder<> Builder(&I); 1407 1408 const Function &ContainingFunction = *I.getParent()->getParent(); 1409 CallingConv::ID CC = ContainingFunction.getCallingConv(); 1410 1411 // Don't promote the alloca to LDS for shader calling conventions as the work 1412 // item ID intrinsics are not supported for these calling conventions. 1413 // Furthermore not all LDS is available for some of the stages. 1414 switch (CC) { 1415 case CallingConv::AMDGPU_KERNEL: 1416 case CallingConv::SPIR_KERNEL: 1417 break; 1418 default: 1419 LLVM_DEBUG( 1420 dbgs() 1421 << " promote alloca to LDS not supported with calling convention.\n"); 1422 return false; 1423 } 1424 1425 // Not likely to have sufficient local memory for promotion. 1426 if (!SufficientLDS) 1427 return false; 1428 1429 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 1430 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 1431 1432 Align Alignment = 1433 DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 1434 1435 // FIXME: This computed padding is likely wrong since it depends on inverse 1436 // usage order. 1437 // 1438 // FIXME: It is also possible that if we're allowed to use all of the memory 1439 // could end up using more than the maximum due to alignment padding. 1440 1441 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 1442 uint32_t AllocSize = 1443 WorkGroupSize * DL.getTypeAllocSize(I.getAllocatedType()); 1444 NewSize += AllocSize; 1445 1446 if (NewSize > LocalMemLimit) { 1447 LLVM_DEBUG(dbgs() << " " << AllocSize 1448 << " bytes of local memory not available to promote\n"); 1449 return false; 1450 } 1451 1452 CurrentLocalMemUsage = NewSize; 1453 1454 std::vector<Value *> WorkList; 1455 1456 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 1457 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 1458 return false; 1459 } 1460 1461 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 1462 1463 Function *F = I.getParent()->getParent(); 1464 1465 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 1466 GlobalVariable *GV = new GlobalVariable( 1467 *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy), 1468 Twine(F->getName()) + Twine('.') + I.getName(), nullptr, 1469 GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); 1470 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1471 GV->setAlignment(I.getAlign()); 1472 1473 Value *TCntY, *TCntZ; 1474 1475 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 1476 Value *TIdX = getWorkitemID(Builder, 0); 1477 Value *TIdY = getWorkitemID(Builder, 1); 1478 Value *TIdZ = getWorkitemID(Builder, 2); 1479 1480 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 1481 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 1482 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 1483 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 1484 TID = Builder.CreateAdd(TID, TIdZ); 1485 1486 LLVMContext &Context = Mod->getContext(); 1487 Value *Indices[] = {Constant::getNullValue(Type::getInt32Ty(Context)), TID}; 1488 1489 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 1490 I.mutateType(Offset->getType()); 1491 I.replaceAllUsesWith(Offset); 1492 I.eraseFromParent(); 1493 1494 SmallVector<IntrinsicInst *> DeferredIntrs; 1495 1496 for (Value *V : WorkList) { 1497 CallInst *Call = dyn_cast<CallInst>(V); 1498 if (!Call) { 1499 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 1500 PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); 1501 1502 if (isa<ConstantPointerNull>(CI->getOperand(0))) 1503 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 1504 1505 if (isa<ConstantPointerNull>(CI->getOperand(1))) 1506 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 1507 1508 continue; 1509 } 1510 1511 // The operand's value should be corrected on its own and we don't want to 1512 // touch the users. 1513 if (isa<AddrSpaceCastInst>(V)) 1514 continue; 1515 1516 PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS); 1517 1518 // FIXME: It doesn't really make sense to try to do this for all 1519 // instructions. 1520 V->mutateType(NewTy); 1521 1522 // Adjust the types of any constant operands. 1523 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1524 if (isa<ConstantPointerNull>(SI->getOperand(1))) 1525 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 1526 1527 if (isa<ConstantPointerNull>(SI->getOperand(2))) 1528 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 1529 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 1530 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1531 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 1532 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 1533 } 1534 } 1535 1536 continue; 1537 } 1538 1539 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 1540 Builder.SetInsertPoint(Intr); 1541 switch (Intr->getIntrinsicID()) { 1542 case Intrinsic::lifetime_start: 1543 case Intrinsic::lifetime_end: 1544 // These intrinsics are for address space 0 only 1545 Intr->eraseFromParent(); 1546 continue; 1547 case Intrinsic::memcpy: 1548 case Intrinsic::memmove: 1549 // These have 2 pointer operands. In case if second pointer also needs 1550 // to be replaced we defer processing of these intrinsics until all 1551 // other values are processed. 1552 DeferredIntrs.push_back(Intr); 1553 continue; 1554 case Intrinsic::memset: { 1555 MemSetInst *MemSet = cast<MemSetInst>(Intr); 1556 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 1557 MemSet->getLength(), MemSet->getDestAlign(), 1558 MemSet->isVolatile()); 1559 Intr->eraseFromParent(); 1560 continue; 1561 } 1562 case Intrinsic::invariant_start: 1563 case Intrinsic::invariant_end: 1564 case Intrinsic::launder_invariant_group: 1565 case Intrinsic::strip_invariant_group: 1566 Intr->eraseFromParent(); 1567 // FIXME: I think the invariant marker should still theoretically apply, 1568 // but the intrinsics need to be changed to accept pointers with any 1569 // address space. 1570 continue; 1571 case Intrinsic::objectsize: { 1572 Value *Src = Intr->getOperand(0); 1573 Function *ObjectSize = Intrinsic::getDeclaration( 1574 Mod, Intrinsic::objectsize, 1575 {Intr->getType(), 1576 PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS)}); 1577 1578 CallInst *NewCall = Builder.CreateCall( 1579 ObjectSize, 1580 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 1581 Intr->replaceAllUsesWith(NewCall); 1582 Intr->eraseFromParent(); 1583 continue; 1584 } 1585 default: 1586 Intr->print(errs()); 1587 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1588 } 1589 } 1590 1591 for (IntrinsicInst *Intr : DeferredIntrs) { 1592 Builder.SetInsertPoint(Intr); 1593 Intrinsic::ID ID = Intr->getIntrinsicID(); 1594 assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1595 1596 MemTransferInst *MI = cast<MemTransferInst>(Intr); 1597 auto *B = Builder.CreateMemTransferInst( 1598 ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(), 1599 MI->getSourceAlign(), MI->getLength(), MI->isVolatile()); 1600 1601 for (unsigned I = 0; I != 2; ++I) { 1602 if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1603 B->addDereferenceableParamAttr(I, Bytes); 1604 } 1605 } 1606 1607 Intr->eraseFromParent(); 1608 } 1609 1610 return true; 1611 } 1612