xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp (revision fe6060f10f634930ff71b7c50291ddc610da2475)
10b57cec5SDimitry Andric //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This pass eliminates allocas by either converting them into vectors or
100b57cec5SDimitry Andric // by migrating them to local address space.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric 
140b57cec5SDimitry Andric #include "AMDGPU.h"
15e8d8bef9SDimitry Andric #include "GCNSubtarget.h"
160b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h"
170b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
180b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
190b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
20480093f4SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
21480093f4SDimitry Andric #include "llvm/IR/IntrinsicsR600.h"
220b57cec5SDimitry Andric #include "llvm/Pass.h"
230b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h"
240b57cec5SDimitry Andric 
250b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-promote-alloca"
260b57cec5SDimitry Andric 
270b57cec5SDimitry Andric using namespace llvm;
280b57cec5SDimitry Andric 
290b57cec5SDimitry Andric namespace {
300b57cec5SDimitry Andric 
310b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToVector(
320b57cec5SDimitry Andric   "disable-promote-alloca-to-vector",
330b57cec5SDimitry Andric   cl::desc("Disable promote alloca to vector"),
340b57cec5SDimitry Andric   cl::init(false));
350b57cec5SDimitry Andric 
360b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToLDS(
370b57cec5SDimitry Andric   "disable-promote-alloca-to-lds",
380b57cec5SDimitry Andric   cl::desc("Disable promote alloca to LDS"),
390b57cec5SDimitry Andric   cl::init(false));
400b57cec5SDimitry Andric 
415ffd83dbSDimitry Andric static cl::opt<unsigned> PromoteAllocaToVectorLimit(
425ffd83dbSDimitry Andric   "amdgpu-promote-alloca-to-vector-limit",
435ffd83dbSDimitry Andric   cl::desc("Maximum byte size to consider promote alloca to vector"),
445ffd83dbSDimitry Andric   cl::init(0));
455ffd83dbSDimitry Andric 
460b57cec5SDimitry Andric // FIXME: This can create globals so should be a module pass.
470b57cec5SDimitry Andric class AMDGPUPromoteAlloca : public FunctionPass {
48e8d8bef9SDimitry Andric public:
49e8d8bef9SDimitry Andric   static char ID;
50e8d8bef9SDimitry Andric 
51e8d8bef9SDimitry Andric   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
52e8d8bef9SDimitry Andric 
53e8d8bef9SDimitry Andric   bool runOnFunction(Function &F) override;
54e8d8bef9SDimitry Andric 
55e8d8bef9SDimitry Andric   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
56e8d8bef9SDimitry Andric 
57e8d8bef9SDimitry Andric   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
58e8d8bef9SDimitry Andric 
59e8d8bef9SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
60e8d8bef9SDimitry Andric     AU.setPreservesCFG();
61e8d8bef9SDimitry Andric     FunctionPass::getAnalysisUsage(AU);
62e8d8bef9SDimitry Andric   }
63e8d8bef9SDimitry Andric };
64e8d8bef9SDimitry Andric 
65e8d8bef9SDimitry Andric class AMDGPUPromoteAllocaImpl {
660b57cec5SDimitry Andric private:
67e8d8bef9SDimitry Andric   const TargetMachine &TM;
680b57cec5SDimitry Andric   Module *Mod = nullptr;
690b57cec5SDimitry Andric   const DataLayout *DL = nullptr;
700b57cec5SDimitry Andric 
710b57cec5SDimitry Andric   // FIXME: This should be per-kernel.
720b57cec5SDimitry Andric   uint32_t LocalMemLimit = 0;
730b57cec5SDimitry Andric   uint32_t CurrentLocalMemUsage = 0;
745ffd83dbSDimitry Andric   unsigned MaxVGPRs;
750b57cec5SDimitry Andric 
760b57cec5SDimitry Andric   bool IsAMDGCN = false;
770b57cec5SDimitry Andric   bool IsAMDHSA = false;
780b57cec5SDimitry Andric 
790b57cec5SDimitry Andric   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
800b57cec5SDimitry Andric   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
810b57cec5SDimitry Andric 
820b57cec5SDimitry Andric   /// BaseAlloca is the alloca root the search started from.
830b57cec5SDimitry Andric   /// Val may be that alloca or a recursive user of it.
840b57cec5SDimitry Andric   bool collectUsesWithPtrTypes(Value *BaseAlloca,
850b57cec5SDimitry Andric                                Value *Val,
860b57cec5SDimitry Andric                                std::vector<Value*> &WorkList) const;
870b57cec5SDimitry Andric 
880b57cec5SDimitry Andric   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
890b57cec5SDimitry Andric   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
900b57cec5SDimitry Andric   /// Returns true if both operands are derived from the same alloca. Val should
910b57cec5SDimitry Andric   /// be the same value as one of the input operands of UseInst.
920b57cec5SDimitry Andric   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
930b57cec5SDimitry Andric                                        Instruction *UseInst,
940b57cec5SDimitry Andric                                        int OpIdx0, int OpIdx1) const;
950b57cec5SDimitry Andric 
960b57cec5SDimitry Andric   /// Check whether we have enough local memory for promotion.
970b57cec5SDimitry Andric   bool hasSufficientLocalMem(const Function &F);
980b57cec5SDimitry Andric 
990b57cec5SDimitry Andric   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
1000b57cec5SDimitry Andric 
101e8d8bef9SDimitry Andric public:
102e8d8bef9SDimitry Andric   AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
103e8d8bef9SDimitry Andric   bool run(Function &F);
1040b57cec5SDimitry Andric };
1050b57cec5SDimitry Andric 
1065ffd83dbSDimitry Andric class AMDGPUPromoteAllocaToVector : public FunctionPass {
1075ffd83dbSDimitry Andric public:
1085ffd83dbSDimitry Andric   static char ID;
1095ffd83dbSDimitry Andric 
1105ffd83dbSDimitry Andric   AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
1115ffd83dbSDimitry Andric 
1125ffd83dbSDimitry Andric   bool runOnFunction(Function &F) override;
1135ffd83dbSDimitry Andric 
1145ffd83dbSDimitry Andric   StringRef getPassName() const override {
1155ffd83dbSDimitry Andric     return "AMDGPU Promote Alloca to vector";
1165ffd83dbSDimitry Andric   }
1175ffd83dbSDimitry Andric 
1185ffd83dbSDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
1195ffd83dbSDimitry Andric     AU.setPreservesCFG();
1205ffd83dbSDimitry Andric     FunctionPass::getAnalysisUsage(AU);
1215ffd83dbSDimitry Andric   }
1225ffd83dbSDimitry Andric };
1235ffd83dbSDimitry Andric 
1240b57cec5SDimitry Andric } // end anonymous namespace
1250b57cec5SDimitry Andric 
1260b57cec5SDimitry Andric char AMDGPUPromoteAlloca::ID = 0;
1275ffd83dbSDimitry Andric char AMDGPUPromoteAllocaToVector::ID = 0;
1280b57cec5SDimitry Andric 
129*fe6060f1SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
130*fe6060f1SDimitry Andric                       "AMDGPU promote alloca to vector or LDS", false, false)
131*fe6060f1SDimitry Andric // Move LDS uses from functions to kernels before promote alloca for accurate
132*fe6060f1SDimitry Andric // estimation of LDS available
133*fe6060f1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)
134*fe6060f1SDimitry Andric INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
1350b57cec5SDimitry Andric                     "AMDGPU promote alloca to vector or LDS", false, false)
1360b57cec5SDimitry Andric 
1375ffd83dbSDimitry Andric INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
1385ffd83dbSDimitry Andric                 "AMDGPU promote alloca to vector", false, false)
1395ffd83dbSDimitry Andric 
1400b57cec5SDimitry Andric char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
1415ffd83dbSDimitry Andric char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
1420b57cec5SDimitry Andric 
1430b57cec5SDimitry Andric bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
1440b57cec5SDimitry Andric   if (skipFunction(F))
1450b57cec5SDimitry Andric     return false;
1460b57cec5SDimitry Andric 
147e8d8bef9SDimitry Andric   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
148e8d8bef9SDimitry Andric     return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
149e8d8bef9SDimitry Andric   }
1500b57cec5SDimitry Andric   return false;
151e8d8bef9SDimitry Andric }
1520b57cec5SDimitry Andric 
153e8d8bef9SDimitry Andric PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
154e8d8bef9SDimitry Andric                                                FunctionAnalysisManager &AM) {
155e8d8bef9SDimitry Andric   bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
156e8d8bef9SDimitry Andric   if (Changed) {
157e8d8bef9SDimitry Andric     PreservedAnalyses PA;
158e8d8bef9SDimitry Andric     PA.preserveSet<CFGAnalyses>();
159e8d8bef9SDimitry Andric     return PA;
160e8d8bef9SDimitry Andric   }
161e8d8bef9SDimitry Andric   return PreservedAnalyses::all();
162e8d8bef9SDimitry Andric }
163e8d8bef9SDimitry Andric 
164e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::run(Function &F) {
165e8d8bef9SDimitry Andric   Mod = F.getParent();
166e8d8bef9SDimitry Andric   DL = &Mod->getDataLayout();
167e8d8bef9SDimitry Andric 
168e8d8bef9SDimitry Andric   const Triple &TT = TM.getTargetTriple();
1690b57cec5SDimitry Andric   IsAMDGCN = TT.getArch() == Triple::amdgcn;
1700b57cec5SDimitry Andric   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
1710b57cec5SDimitry Andric 
172e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
1730b57cec5SDimitry Andric   if (!ST.isPromoteAllocaEnabled())
1740b57cec5SDimitry Andric     return false;
1750b57cec5SDimitry Andric 
1765ffd83dbSDimitry Andric   if (IsAMDGCN) {
177e8d8bef9SDimitry Andric     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
1785ffd83dbSDimitry Andric     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
1795ffd83dbSDimitry Andric   } else {
1805ffd83dbSDimitry Andric     MaxVGPRs = 128;
1815ffd83dbSDimitry Andric   }
1825ffd83dbSDimitry Andric 
1830b57cec5SDimitry Andric   bool SufficientLDS = hasSufficientLocalMem(F);
1840b57cec5SDimitry Andric   bool Changed = false;
1850b57cec5SDimitry Andric   BasicBlock &EntryBB = *F.begin();
1860b57cec5SDimitry Andric 
1870b57cec5SDimitry Andric   SmallVector<AllocaInst *, 16> Allocas;
1880b57cec5SDimitry Andric   for (Instruction &I : EntryBB) {
1890b57cec5SDimitry Andric     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
1900b57cec5SDimitry Andric       Allocas.push_back(AI);
1910b57cec5SDimitry Andric   }
1920b57cec5SDimitry Andric 
1930b57cec5SDimitry Andric   for (AllocaInst *AI : Allocas) {
1940b57cec5SDimitry Andric     if (handleAlloca(*AI, SufficientLDS))
1950b57cec5SDimitry Andric       Changed = true;
1960b57cec5SDimitry Andric   }
1970b57cec5SDimitry Andric 
1980b57cec5SDimitry Andric   return Changed;
1990b57cec5SDimitry Andric }
2000b57cec5SDimitry Andric 
2010b57cec5SDimitry Andric std::pair<Value *, Value *>
202e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
2030b57cec5SDimitry Andric   const Function &F = *Builder.GetInsertBlock()->getParent();
204e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
2050b57cec5SDimitry Andric 
2060b57cec5SDimitry Andric   if (!IsAMDHSA) {
2070b57cec5SDimitry Andric     Function *LocalSizeYFn
2080b57cec5SDimitry Andric       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
2090b57cec5SDimitry Andric     Function *LocalSizeZFn
2100b57cec5SDimitry Andric       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
2110b57cec5SDimitry Andric 
2120b57cec5SDimitry Andric     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
2130b57cec5SDimitry Andric     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
2140b57cec5SDimitry Andric 
2150b57cec5SDimitry Andric     ST.makeLIDRangeMetadata(LocalSizeY);
2160b57cec5SDimitry Andric     ST.makeLIDRangeMetadata(LocalSizeZ);
2170b57cec5SDimitry Andric 
2180b57cec5SDimitry Andric     return std::make_pair(LocalSizeY, LocalSizeZ);
2190b57cec5SDimitry Andric   }
2200b57cec5SDimitry Andric 
2210b57cec5SDimitry Andric   // We must read the size out of the dispatch pointer.
2220b57cec5SDimitry Andric   assert(IsAMDGCN);
2230b57cec5SDimitry Andric 
2240b57cec5SDimitry Andric   // We are indexing into this struct, and want to extract the workgroup_size_*
2250b57cec5SDimitry Andric   // fields.
2260b57cec5SDimitry Andric   //
2270b57cec5SDimitry Andric   //   typedef struct hsa_kernel_dispatch_packet_s {
2280b57cec5SDimitry Andric   //     uint16_t header;
2290b57cec5SDimitry Andric   //     uint16_t setup;
2300b57cec5SDimitry Andric   //     uint16_t workgroup_size_x ;
2310b57cec5SDimitry Andric   //     uint16_t workgroup_size_y;
2320b57cec5SDimitry Andric   //     uint16_t workgroup_size_z;
2330b57cec5SDimitry Andric   //     uint16_t reserved0;
2340b57cec5SDimitry Andric   //     uint32_t grid_size_x ;
2350b57cec5SDimitry Andric   //     uint32_t grid_size_y ;
2360b57cec5SDimitry Andric   //     uint32_t grid_size_z;
2370b57cec5SDimitry Andric   //
2380b57cec5SDimitry Andric   //     uint32_t private_segment_size;
2390b57cec5SDimitry Andric   //     uint32_t group_segment_size;
2400b57cec5SDimitry Andric   //     uint64_t kernel_object;
2410b57cec5SDimitry Andric   //
2420b57cec5SDimitry Andric   // #ifdef HSA_LARGE_MODEL
2430b57cec5SDimitry Andric   //     void *kernarg_address;
2440b57cec5SDimitry Andric   // #elif defined HSA_LITTLE_ENDIAN
2450b57cec5SDimitry Andric   //     void *kernarg_address;
2460b57cec5SDimitry Andric   //     uint32_t reserved1;
2470b57cec5SDimitry Andric   // #else
2480b57cec5SDimitry Andric   //     uint32_t reserved1;
2490b57cec5SDimitry Andric   //     void *kernarg_address;
2500b57cec5SDimitry Andric   // #endif
2510b57cec5SDimitry Andric   //     uint64_t reserved2;
2520b57cec5SDimitry Andric   //     hsa_signal_t completion_signal; // uint64_t wrapper
2530b57cec5SDimitry Andric   //   } hsa_kernel_dispatch_packet_t
2540b57cec5SDimitry Andric   //
2550b57cec5SDimitry Andric   Function *DispatchPtrFn
2560b57cec5SDimitry Andric     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
2570b57cec5SDimitry Andric 
2580b57cec5SDimitry Andric   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
2590b57cec5SDimitry Andric   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
2600b57cec5SDimitry Andric   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
2610b57cec5SDimitry Andric 
2620b57cec5SDimitry Andric   // Size of the dispatch packet struct.
2630b57cec5SDimitry Andric   DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
2640b57cec5SDimitry Andric 
2650b57cec5SDimitry Andric   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
2660b57cec5SDimitry Andric   Value *CastDispatchPtr = Builder.CreateBitCast(
2670b57cec5SDimitry Andric     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
2680b57cec5SDimitry Andric 
2690b57cec5SDimitry Andric   // We could do a single 64-bit load here, but it's likely that the basic
2700b57cec5SDimitry Andric   // 32-bit and extract sequence is already present, and it is probably easier
2710b57cec5SDimitry Andric   // to CSE this. The loads should be mergable later anyway.
2720b57cec5SDimitry Andric   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
2735ffd83dbSDimitry Andric   LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
2740b57cec5SDimitry Andric 
2750b57cec5SDimitry Andric   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
2765ffd83dbSDimitry Andric   LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
2770b57cec5SDimitry Andric 
2780b57cec5SDimitry Andric   MDNode *MD = MDNode::get(Mod->getContext(), None);
2790b57cec5SDimitry Andric   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
2800b57cec5SDimitry Andric   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
2810b57cec5SDimitry Andric   ST.makeLIDRangeMetadata(LoadZU);
2820b57cec5SDimitry Andric 
2830b57cec5SDimitry Andric   // Extract y component. Upper half of LoadZU should be zero already.
2840b57cec5SDimitry Andric   Value *Y = Builder.CreateLShr(LoadXY, 16);
2850b57cec5SDimitry Andric 
2860b57cec5SDimitry Andric   return std::make_pair(Y, LoadZU);
2870b57cec5SDimitry Andric }
2880b57cec5SDimitry Andric 
289e8d8bef9SDimitry Andric Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
290e8d8bef9SDimitry Andric                                               unsigned N) {
2910b57cec5SDimitry Andric   const AMDGPUSubtarget &ST =
292e8d8bef9SDimitry Andric       AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent());
293480093f4SDimitry Andric   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
2940b57cec5SDimitry Andric 
2950b57cec5SDimitry Andric   switch (N) {
2960b57cec5SDimitry Andric   case 0:
297480093f4SDimitry Andric     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
298480093f4SDimitry Andric                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
2990b57cec5SDimitry Andric     break;
3000b57cec5SDimitry Andric   case 1:
301480093f4SDimitry Andric     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
302480093f4SDimitry Andric                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
3030b57cec5SDimitry Andric     break;
3040b57cec5SDimitry Andric 
3050b57cec5SDimitry Andric   case 2:
306480093f4SDimitry Andric     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
307480093f4SDimitry Andric                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
3080b57cec5SDimitry Andric     break;
3090b57cec5SDimitry Andric   default:
3100b57cec5SDimitry Andric     llvm_unreachable("invalid dimension");
3110b57cec5SDimitry Andric   }
3120b57cec5SDimitry Andric 
3130b57cec5SDimitry Andric   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
3140b57cec5SDimitry Andric   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
3150b57cec5SDimitry Andric   ST.makeLIDRangeMetadata(CI);
3160b57cec5SDimitry Andric 
3170b57cec5SDimitry Andric   return CI;
3180b57cec5SDimitry Andric }
3190b57cec5SDimitry Andric 
3205ffd83dbSDimitry Andric static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
3215ffd83dbSDimitry Andric   return FixedVectorType::get(ArrayTy->getElementType(),
3220b57cec5SDimitry Andric                               ArrayTy->getNumElements());
3230b57cec5SDimitry Andric }
3240b57cec5SDimitry Andric 
3255ffd83dbSDimitry Andric static Value *stripBitcasts(Value *V) {
3265ffd83dbSDimitry Andric   while (Instruction *I = dyn_cast<Instruction>(V)) {
3275ffd83dbSDimitry Andric     if (I->getOpcode() != Instruction::BitCast)
3285ffd83dbSDimitry Andric       break;
3295ffd83dbSDimitry Andric     V = I->getOperand(0);
3305ffd83dbSDimitry Andric   }
3315ffd83dbSDimitry Andric   return V;
3325ffd83dbSDimitry Andric }
3335ffd83dbSDimitry Andric 
3340b57cec5SDimitry Andric static Value *
3350b57cec5SDimitry Andric calculateVectorIndex(Value *Ptr,
3360b57cec5SDimitry Andric                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
3375ffd83dbSDimitry Andric   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
3385ffd83dbSDimitry Andric   if (!GEP)
3395ffd83dbSDimitry Andric     return nullptr;
3400b57cec5SDimitry Andric 
3410b57cec5SDimitry Andric   auto I = GEPIdx.find(GEP);
3420b57cec5SDimitry Andric   return I == GEPIdx.end() ? nullptr : I->second;
3430b57cec5SDimitry Andric }
3440b57cec5SDimitry Andric 
3450b57cec5SDimitry Andric static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
3460b57cec5SDimitry Andric   // FIXME we only support simple cases
3470b57cec5SDimitry Andric   if (GEP->getNumOperands() != 3)
3480b57cec5SDimitry Andric     return nullptr;
3490b57cec5SDimitry Andric 
3500b57cec5SDimitry Andric   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
3510b57cec5SDimitry Andric   if (!I0 || !I0->isZero())
3520b57cec5SDimitry Andric     return nullptr;
3530b57cec5SDimitry Andric 
3540b57cec5SDimitry Andric   return GEP->getOperand(2);
3550b57cec5SDimitry Andric }
3560b57cec5SDimitry Andric 
3570b57cec5SDimitry Andric // Not an instruction handled below to turn into a vector.
3580b57cec5SDimitry Andric //
3590b57cec5SDimitry Andric // TODO: Check isTriviallyVectorizable for calls and handle other
3600b57cec5SDimitry Andric // instructions.
3615ffd83dbSDimitry Andric static bool canVectorizeInst(Instruction *Inst, User *User,
3625ffd83dbSDimitry Andric                              const DataLayout &DL) {
3630b57cec5SDimitry Andric   switch (Inst->getOpcode()) {
3640b57cec5SDimitry Andric   case Instruction::Load: {
3650b57cec5SDimitry Andric     // Currently only handle the case where the Pointer Operand is a GEP.
3660b57cec5SDimitry Andric     // Also we could not vectorize volatile or atomic loads.
3670b57cec5SDimitry Andric     LoadInst *LI = cast<LoadInst>(Inst);
3680b57cec5SDimitry Andric     if (isa<AllocaInst>(User) &&
3690b57cec5SDimitry Andric         LI->getPointerOperandType() == User->getType() &&
3700b57cec5SDimitry Andric         isa<VectorType>(LI->getType()))
3710b57cec5SDimitry Andric       return true;
3725ffd83dbSDimitry Andric 
3735ffd83dbSDimitry Andric     Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
3745ffd83dbSDimitry Andric     if (!PtrInst)
3755ffd83dbSDimitry Andric       return false;
3765ffd83dbSDimitry Andric 
3775ffd83dbSDimitry Andric     return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
3785ffd83dbSDimitry Andric             PtrInst->getOpcode() == Instruction::BitCast) &&
3795ffd83dbSDimitry Andric            LI->isSimple();
3800b57cec5SDimitry Andric   }
3810b57cec5SDimitry Andric   case Instruction::BitCast:
3820b57cec5SDimitry Andric     return true;
3830b57cec5SDimitry Andric   case Instruction::Store: {
3840b57cec5SDimitry Andric     // Must be the stored pointer operand, not a stored value, plus
3850b57cec5SDimitry Andric     // since it should be canonical form, the User should be a GEP.
3860b57cec5SDimitry Andric     // Also we could not vectorize volatile or atomic stores.
3870b57cec5SDimitry Andric     StoreInst *SI = cast<StoreInst>(Inst);
3880b57cec5SDimitry Andric     if (isa<AllocaInst>(User) &&
3890b57cec5SDimitry Andric         SI->getPointerOperandType() == User->getType() &&
3900b57cec5SDimitry Andric         isa<VectorType>(SI->getValueOperand()->getType()))
3910b57cec5SDimitry Andric       return true;
3925ffd83dbSDimitry Andric 
3935ffd83dbSDimitry Andric     Instruction *UserInst = dyn_cast<Instruction>(User);
3945ffd83dbSDimitry Andric     if (!UserInst)
3955ffd83dbSDimitry Andric       return false;
3965ffd83dbSDimitry Andric 
3975ffd83dbSDimitry Andric     return (SI->getPointerOperand() == User) &&
3985ffd83dbSDimitry Andric            (UserInst->getOpcode() == Instruction::GetElementPtr ||
3995ffd83dbSDimitry Andric             UserInst->getOpcode() == Instruction::BitCast) &&
4005ffd83dbSDimitry Andric            SI->isSimple();
4010b57cec5SDimitry Andric   }
4020b57cec5SDimitry Andric   default:
4030b57cec5SDimitry Andric     return false;
4040b57cec5SDimitry Andric   }
4050b57cec5SDimitry Andric }
4060b57cec5SDimitry Andric 
4075ffd83dbSDimitry Andric static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
4085ffd83dbSDimitry Andric                                      unsigned MaxVGPRs) {
4090b57cec5SDimitry Andric 
4100b57cec5SDimitry Andric   if (DisablePromoteAllocaToVector) {
4110b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
4120b57cec5SDimitry Andric     return false;
4130b57cec5SDimitry Andric   }
4140b57cec5SDimitry Andric 
4155ffd83dbSDimitry Andric   Type *AllocaTy = Alloca->getAllocatedType();
4165ffd83dbSDimitry Andric   auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
4175ffd83dbSDimitry Andric   if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
4185ffd83dbSDimitry Andric     if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
4195ffd83dbSDimitry Andric         ArrayTy->getNumElements() > 0)
4205ffd83dbSDimitry Andric       VectorTy = arrayTypeToVecType(ArrayTy);
4215ffd83dbSDimitry Andric   }
4225ffd83dbSDimitry Andric 
4235ffd83dbSDimitry Andric   // Use up to 1/4 of available register budget for vectorization.
4245ffd83dbSDimitry Andric   unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
4255ffd83dbSDimitry Andric                                               : (MaxVGPRs * 32);
4265ffd83dbSDimitry Andric 
4275ffd83dbSDimitry Andric   if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
4285ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "  Alloca too big for vectorization with "
4295ffd83dbSDimitry Andric                       << MaxVGPRs << " registers available\n");
4305ffd83dbSDimitry Andric     return false;
4315ffd83dbSDimitry Andric   }
4320b57cec5SDimitry Andric 
4330b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
4340b57cec5SDimitry Andric 
4350b57cec5SDimitry Andric   // FIXME: There is no reason why we can't support larger arrays, we
4360b57cec5SDimitry Andric   // are just being conservative for now.
4370b57cec5SDimitry Andric   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
4380b57cec5SDimitry Andric   // could also be promoted but we don't currently handle this case
4395ffd83dbSDimitry Andric   if (!VectorTy || VectorTy->getNumElements() > 16 ||
4405ffd83dbSDimitry Andric       VectorTy->getNumElements() < 2) {
4410b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
4420b57cec5SDimitry Andric     return false;
4430b57cec5SDimitry Andric   }
4440b57cec5SDimitry Andric 
4450b57cec5SDimitry Andric   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
4460b57cec5SDimitry Andric   std::vector<Value *> WorkList;
4475ffd83dbSDimitry Andric   SmallVector<User *, 8> Users(Alloca->users());
4485ffd83dbSDimitry Andric   SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
4495ffd83dbSDimitry Andric   Type *VecEltTy = VectorTy->getElementType();
4505ffd83dbSDimitry Andric   while (!Users.empty()) {
4515ffd83dbSDimitry Andric     User *AllocaUser = Users.pop_back_val();
4525ffd83dbSDimitry Andric     User *UseUser = UseUsers.pop_back_val();
4535ffd83dbSDimitry Andric     Instruction *Inst = dyn_cast<Instruction>(AllocaUser);
4545ffd83dbSDimitry Andric 
4550b57cec5SDimitry Andric     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
4560b57cec5SDimitry Andric     if (!GEP) {
4575ffd83dbSDimitry Andric       if (!canVectorizeInst(Inst, UseUser, DL))
4580b57cec5SDimitry Andric         return false;
4590b57cec5SDimitry Andric 
4605ffd83dbSDimitry Andric       if (Inst->getOpcode() == Instruction::BitCast) {
4615ffd83dbSDimitry Andric         Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
4625ffd83dbSDimitry Andric         Type *ToTy = Inst->getType()->getPointerElementType();
4635ffd83dbSDimitry Andric         if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
4645ffd83dbSDimitry Andric             DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
4655ffd83dbSDimitry Andric           continue;
4665ffd83dbSDimitry Andric 
4675ffd83dbSDimitry Andric         for (User *CastUser : Inst->users()) {
4685ffd83dbSDimitry Andric           if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
4695ffd83dbSDimitry Andric             continue;
4705ffd83dbSDimitry Andric           Users.push_back(CastUser);
4715ffd83dbSDimitry Andric           UseUsers.push_back(Inst);
4725ffd83dbSDimitry Andric         }
4735ffd83dbSDimitry Andric 
4745ffd83dbSDimitry Andric         continue;
4755ffd83dbSDimitry Andric       }
4765ffd83dbSDimitry Andric 
4770b57cec5SDimitry Andric       WorkList.push_back(AllocaUser);
4780b57cec5SDimitry Andric       continue;
4790b57cec5SDimitry Andric     }
4800b57cec5SDimitry Andric 
4810b57cec5SDimitry Andric     Value *Index = GEPToVectorIndex(GEP);
4820b57cec5SDimitry Andric 
4830b57cec5SDimitry Andric     // If we can't compute a vector index from this GEP, then we can't
4840b57cec5SDimitry Andric     // promote this alloca to vector.
4850b57cec5SDimitry Andric     if (!Index) {
4860b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
4870b57cec5SDimitry Andric                         << '\n');
4880b57cec5SDimitry Andric       return false;
4890b57cec5SDimitry Andric     }
4900b57cec5SDimitry Andric 
4910b57cec5SDimitry Andric     GEPVectorIdx[GEP] = Index;
4925ffd83dbSDimitry Andric     Users.append(GEP->user_begin(), GEP->user_end());
4935ffd83dbSDimitry Andric     UseUsers.append(GEP->getNumUses(), GEP);
4940b57cec5SDimitry Andric   }
4950b57cec5SDimitry Andric 
4960b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
4970b57cec5SDimitry Andric                     << *VectorTy << '\n');
4980b57cec5SDimitry Andric 
4990b57cec5SDimitry Andric   for (Value *V : WorkList) {
5000b57cec5SDimitry Andric     Instruction *Inst = cast<Instruction>(V);
5010b57cec5SDimitry Andric     IRBuilder<> Builder(Inst);
5020b57cec5SDimitry Andric     switch (Inst->getOpcode()) {
5030b57cec5SDimitry Andric     case Instruction::Load: {
5045ffd83dbSDimitry Andric       if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
5055ffd83dbSDimitry Andric         break;
5065ffd83dbSDimitry Andric 
5075ffd83dbSDimitry Andric       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
5085ffd83dbSDimitry Andric       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
5095ffd83dbSDimitry Andric       if (!Index)
5100b57cec5SDimitry Andric         break;
5110b57cec5SDimitry Andric 
5120b57cec5SDimitry Andric       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
5130b57cec5SDimitry Andric       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
5140b57cec5SDimitry Andric       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
5150b57cec5SDimitry Andric       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
5165ffd83dbSDimitry Andric       if (Inst->getType() != VecEltTy)
5175ffd83dbSDimitry Andric         ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
5180b57cec5SDimitry Andric       Inst->replaceAllUsesWith(ExtractElement);
5190b57cec5SDimitry Andric       Inst->eraseFromParent();
5200b57cec5SDimitry Andric       break;
5210b57cec5SDimitry Andric     }
5220b57cec5SDimitry Andric     case Instruction::Store: {
5230b57cec5SDimitry Andric       StoreInst *SI = cast<StoreInst>(Inst);
5245ffd83dbSDimitry Andric       if (SI->getValueOperand()->getType() == AllocaTy ||
5255ffd83dbSDimitry Andric           SI->getValueOperand()->getType()->isVectorTy())
5265ffd83dbSDimitry Andric         break;
5275ffd83dbSDimitry Andric 
5285ffd83dbSDimitry Andric       Value *Ptr = SI->getPointerOperand();
5295ffd83dbSDimitry Andric       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
5305ffd83dbSDimitry Andric       if (!Index)
5310b57cec5SDimitry Andric         break;
5320b57cec5SDimitry Andric 
5330b57cec5SDimitry Andric       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
5340b57cec5SDimitry Andric       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
5350b57cec5SDimitry Andric       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
5365ffd83dbSDimitry Andric       Value *Elt = SI->getValueOperand();
5375ffd83dbSDimitry Andric       if (Elt->getType() != VecEltTy)
5385ffd83dbSDimitry Andric         Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
5395ffd83dbSDimitry Andric       Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
5400b57cec5SDimitry Andric       Builder.CreateStore(NewVecValue, BitCast);
5410b57cec5SDimitry Andric       Inst->eraseFromParent();
5420b57cec5SDimitry Andric       break;
5430b57cec5SDimitry Andric     }
5440b57cec5SDimitry Andric 
5450b57cec5SDimitry Andric     default:
5460b57cec5SDimitry Andric       llvm_unreachable("Inconsistency in instructions promotable to vector");
5470b57cec5SDimitry Andric     }
5480b57cec5SDimitry Andric   }
5490b57cec5SDimitry Andric   return true;
5500b57cec5SDimitry Andric }
5510b57cec5SDimitry Andric 
5520b57cec5SDimitry Andric static bool isCallPromotable(CallInst *CI) {
5530b57cec5SDimitry Andric   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
5540b57cec5SDimitry Andric   if (!II)
5550b57cec5SDimitry Andric     return false;
5560b57cec5SDimitry Andric 
5570b57cec5SDimitry Andric   switch (II->getIntrinsicID()) {
5580b57cec5SDimitry Andric   case Intrinsic::memcpy:
5590b57cec5SDimitry Andric   case Intrinsic::memmove:
5600b57cec5SDimitry Andric   case Intrinsic::memset:
5610b57cec5SDimitry Andric   case Intrinsic::lifetime_start:
5620b57cec5SDimitry Andric   case Intrinsic::lifetime_end:
5630b57cec5SDimitry Andric   case Intrinsic::invariant_start:
5640b57cec5SDimitry Andric   case Intrinsic::invariant_end:
5650b57cec5SDimitry Andric   case Intrinsic::launder_invariant_group:
5660b57cec5SDimitry Andric   case Intrinsic::strip_invariant_group:
5670b57cec5SDimitry Andric   case Intrinsic::objectsize:
5680b57cec5SDimitry Andric     return true;
5690b57cec5SDimitry Andric   default:
5700b57cec5SDimitry Andric     return false;
5710b57cec5SDimitry Andric   }
5720b57cec5SDimitry Andric }
5730b57cec5SDimitry Andric 
574e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
575e8d8bef9SDimitry Andric     Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
5760b57cec5SDimitry Andric     int OpIdx1) const {
5770b57cec5SDimitry Andric   // Figure out which operand is the one we might not be promoting.
5780b57cec5SDimitry Andric   Value *OtherOp = Inst->getOperand(OpIdx0);
5790b57cec5SDimitry Andric   if (Val == OtherOp)
5800b57cec5SDimitry Andric     OtherOp = Inst->getOperand(OpIdx1);
5810b57cec5SDimitry Andric 
5820b57cec5SDimitry Andric   if (isa<ConstantPointerNull>(OtherOp))
5830b57cec5SDimitry Andric     return true;
5840b57cec5SDimitry Andric 
585e8d8bef9SDimitry Andric   Value *OtherObj = getUnderlyingObject(OtherOp);
5860b57cec5SDimitry Andric   if (!isa<AllocaInst>(OtherObj))
5870b57cec5SDimitry Andric     return false;
5880b57cec5SDimitry Andric 
5890b57cec5SDimitry Andric   // TODO: We should be able to replace undefs with the right pointer type.
5900b57cec5SDimitry Andric 
5910b57cec5SDimitry Andric   // TODO: If we know the other base object is another promotable
5920b57cec5SDimitry Andric   // alloca, not necessarily this alloca, we can do this. The
5930b57cec5SDimitry Andric   // important part is both must have the same address space at
5940b57cec5SDimitry Andric   // the end.
5950b57cec5SDimitry Andric   if (OtherObj != BaseAlloca) {
5960b57cec5SDimitry Andric     LLVM_DEBUG(
5970b57cec5SDimitry Andric         dbgs() << "Found a binary instruction with another alloca object\n");
5980b57cec5SDimitry Andric     return false;
5990b57cec5SDimitry Andric   }
6000b57cec5SDimitry Andric 
6010b57cec5SDimitry Andric   return true;
6020b57cec5SDimitry Andric }
6030b57cec5SDimitry Andric 
604e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
605e8d8bef9SDimitry Andric     Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
6060b57cec5SDimitry Andric 
6070b57cec5SDimitry Andric   for (User *User : Val->users()) {
6080b57cec5SDimitry Andric     if (is_contained(WorkList, User))
6090b57cec5SDimitry Andric       continue;
6100b57cec5SDimitry Andric 
6110b57cec5SDimitry Andric     if (CallInst *CI = dyn_cast<CallInst>(User)) {
6120b57cec5SDimitry Andric       if (!isCallPromotable(CI))
6130b57cec5SDimitry Andric         return false;
6140b57cec5SDimitry Andric 
6150b57cec5SDimitry Andric       WorkList.push_back(User);
6160b57cec5SDimitry Andric       continue;
6170b57cec5SDimitry Andric     }
6180b57cec5SDimitry Andric 
6190b57cec5SDimitry Andric     Instruction *UseInst = cast<Instruction>(User);
6200b57cec5SDimitry Andric     if (UseInst->getOpcode() == Instruction::PtrToInt)
6210b57cec5SDimitry Andric       return false;
6220b57cec5SDimitry Andric 
6230b57cec5SDimitry Andric     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
6240b57cec5SDimitry Andric       if (LI->isVolatile())
6250b57cec5SDimitry Andric         return false;
6260b57cec5SDimitry Andric 
6270b57cec5SDimitry Andric       continue;
6280b57cec5SDimitry Andric     }
6290b57cec5SDimitry Andric 
6300b57cec5SDimitry Andric     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
6310b57cec5SDimitry Andric       if (SI->isVolatile())
6320b57cec5SDimitry Andric         return false;
6330b57cec5SDimitry Andric 
6340b57cec5SDimitry Andric       // Reject if the stored value is not the pointer operand.
6350b57cec5SDimitry Andric       if (SI->getPointerOperand() != Val)
6360b57cec5SDimitry Andric         return false;
6370b57cec5SDimitry Andric     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
6380b57cec5SDimitry Andric       if (RMW->isVolatile())
6390b57cec5SDimitry Andric         return false;
6400b57cec5SDimitry Andric     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
6410b57cec5SDimitry Andric       if (CAS->isVolatile())
6420b57cec5SDimitry Andric         return false;
6430b57cec5SDimitry Andric     }
6440b57cec5SDimitry Andric 
6450b57cec5SDimitry Andric     // Only promote a select if we know that the other select operand
6460b57cec5SDimitry Andric     // is from another pointer that will also be promoted.
6470b57cec5SDimitry Andric     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
6480b57cec5SDimitry Andric       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
6490b57cec5SDimitry Andric         return false;
6500b57cec5SDimitry Andric 
6510b57cec5SDimitry Andric       // May need to rewrite constant operands.
6520b57cec5SDimitry Andric       WorkList.push_back(ICmp);
6530b57cec5SDimitry Andric     }
6540b57cec5SDimitry Andric 
6550b57cec5SDimitry Andric     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
6560b57cec5SDimitry Andric       // Give up if the pointer may be captured.
6570b57cec5SDimitry Andric       if (PointerMayBeCaptured(UseInst, true, true))
6580b57cec5SDimitry Andric         return false;
6590b57cec5SDimitry Andric       // Don't collect the users of this.
6600b57cec5SDimitry Andric       WorkList.push_back(User);
6610b57cec5SDimitry Andric       continue;
6620b57cec5SDimitry Andric     }
6630b57cec5SDimitry Andric 
664*fe6060f1SDimitry Andric     // Do not promote vector/aggregate type instructions. It is hard to track
665*fe6060f1SDimitry Andric     // their users.
666*fe6060f1SDimitry Andric     if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User))
667*fe6060f1SDimitry Andric       return false;
668*fe6060f1SDimitry Andric 
6690b57cec5SDimitry Andric     if (!User->getType()->isPointerTy())
6700b57cec5SDimitry Andric       continue;
6710b57cec5SDimitry Andric 
6720b57cec5SDimitry Andric     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
6730b57cec5SDimitry Andric       // Be conservative if an address could be computed outside the bounds of
6740b57cec5SDimitry Andric       // the alloca.
6750b57cec5SDimitry Andric       if (!GEP->isInBounds())
6760b57cec5SDimitry Andric         return false;
6770b57cec5SDimitry Andric     }
6780b57cec5SDimitry Andric 
6790b57cec5SDimitry Andric     // Only promote a select if we know that the other select operand is from
6800b57cec5SDimitry Andric     // another pointer that will also be promoted.
6810b57cec5SDimitry Andric     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
6820b57cec5SDimitry Andric       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
6830b57cec5SDimitry Andric         return false;
6840b57cec5SDimitry Andric     }
6850b57cec5SDimitry Andric 
6860b57cec5SDimitry Andric     // Repeat for phis.
6870b57cec5SDimitry Andric     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
6880b57cec5SDimitry Andric       // TODO: Handle more complex cases. We should be able to replace loops
6890b57cec5SDimitry Andric       // over arrays.
6900b57cec5SDimitry Andric       switch (Phi->getNumIncomingValues()) {
6910b57cec5SDimitry Andric       case 1:
6920b57cec5SDimitry Andric         break;
6930b57cec5SDimitry Andric       case 2:
6940b57cec5SDimitry Andric         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
6950b57cec5SDimitry Andric           return false;
6960b57cec5SDimitry Andric         break;
6970b57cec5SDimitry Andric       default:
6980b57cec5SDimitry Andric         return false;
6990b57cec5SDimitry Andric       }
7000b57cec5SDimitry Andric     }
7010b57cec5SDimitry Andric 
7020b57cec5SDimitry Andric     WorkList.push_back(User);
7030b57cec5SDimitry Andric     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
7040b57cec5SDimitry Andric       return false;
7050b57cec5SDimitry Andric   }
7060b57cec5SDimitry Andric 
7070b57cec5SDimitry Andric   return true;
7080b57cec5SDimitry Andric }
7090b57cec5SDimitry Andric 
710e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
7110b57cec5SDimitry Andric 
7120b57cec5SDimitry Andric   FunctionType *FTy = F.getFunctionType();
713e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
7140b57cec5SDimitry Andric 
7150b57cec5SDimitry Andric   // If the function has any arguments in the local address space, then it's
7160b57cec5SDimitry Andric   // possible these arguments require the entire local memory space, so
7170b57cec5SDimitry Andric   // we cannot use local memory in the pass.
7180b57cec5SDimitry Andric   for (Type *ParamTy : FTy->params()) {
7190b57cec5SDimitry Andric     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
7200b57cec5SDimitry Andric     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
7210b57cec5SDimitry Andric       LocalMemLimit = 0;
7220b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
7230b57cec5SDimitry Andric                            "local memory disabled.\n");
7240b57cec5SDimitry Andric       return false;
7250b57cec5SDimitry Andric     }
7260b57cec5SDimitry Andric   }
7270b57cec5SDimitry Andric 
7280b57cec5SDimitry Andric   LocalMemLimit = ST.getLocalMemorySize();
7290b57cec5SDimitry Andric   if (LocalMemLimit == 0)
7300b57cec5SDimitry Andric     return false;
7310b57cec5SDimitry Andric 
732e8d8bef9SDimitry Andric   SmallVector<const Constant *, 16> Stack;
733e8d8bef9SDimitry Andric   SmallPtrSet<const Constant *, 8> VisitedConstants;
734e8d8bef9SDimitry Andric   SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
7350b57cec5SDimitry Andric 
736e8d8bef9SDimitry Andric   auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
737e8d8bef9SDimitry Andric     for (const User *U : Val->users()) {
738e8d8bef9SDimitry Andric       if (const Instruction *Use = dyn_cast<Instruction>(U)) {
739e8d8bef9SDimitry Andric         if (Use->getParent()->getParent() == &F)
740e8d8bef9SDimitry Andric           return true;
741e8d8bef9SDimitry Andric       } else {
742e8d8bef9SDimitry Andric         const Constant *C = cast<Constant>(U);
743e8d8bef9SDimitry Andric         if (VisitedConstants.insert(C).second)
744e8d8bef9SDimitry Andric           Stack.push_back(C);
745e8d8bef9SDimitry Andric       }
746e8d8bef9SDimitry Andric     }
747e8d8bef9SDimitry Andric 
748e8d8bef9SDimitry Andric     return false;
749e8d8bef9SDimitry Andric   };
750e8d8bef9SDimitry Andric 
7510b57cec5SDimitry Andric   for (GlobalVariable &GV : Mod->globals()) {
752480093f4SDimitry Andric     if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
7530b57cec5SDimitry Andric       continue;
7540b57cec5SDimitry Andric 
755e8d8bef9SDimitry Andric     if (visitUsers(&GV, &GV)) {
756e8d8bef9SDimitry Andric       UsedLDS.insert(&GV);
757e8d8bef9SDimitry Andric       Stack.clear();
7580b57cec5SDimitry Andric       continue;
759e8d8bef9SDimitry Andric     }
7600b57cec5SDimitry Andric 
761e8d8bef9SDimitry Andric     // For any ConstantExpr uses, we need to recursively search the users until
762e8d8bef9SDimitry Andric     // we see a function.
763e8d8bef9SDimitry Andric     while (!Stack.empty()) {
764e8d8bef9SDimitry Andric       const Constant *C = Stack.pop_back_val();
765e8d8bef9SDimitry Andric       if (visitUsers(&GV, C)) {
766e8d8bef9SDimitry Andric         UsedLDS.insert(&GV);
767e8d8bef9SDimitry Andric         Stack.clear();
7680b57cec5SDimitry Andric         break;
7690b57cec5SDimitry Andric       }
7700b57cec5SDimitry Andric     }
7710b57cec5SDimitry Andric   }
7720b57cec5SDimitry Andric 
773e8d8bef9SDimitry Andric   const DataLayout &DL = Mod->getDataLayout();
774e8d8bef9SDimitry Andric   SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
775e8d8bef9SDimitry Andric   AllocatedSizes.reserve(UsedLDS.size());
776e8d8bef9SDimitry Andric 
777e8d8bef9SDimitry Andric   for (const GlobalVariable *GV : UsedLDS) {
778e8d8bef9SDimitry Andric     Align Alignment =
779e8d8bef9SDimitry Andric         DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
780e8d8bef9SDimitry Andric     uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
781e8d8bef9SDimitry Andric     AllocatedSizes.emplace_back(AllocSize, Alignment);
782e8d8bef9SDimitry Andric   }
783e8d8bef9SDimitry Andric 
784e8d8bef9SDimitry Andric   // Sort to try to estimate the worst case alignment padding
785e8d8bef9SDimitry Andric   //
786e8d8bef9SDimitry Andric   // FIXME: We should really do something to fix the addresses to a more optimal
787e8d8bef9SDimitry Andric   // value instead
788e8d8bef9SDimitry Andric   llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS,
789e8d8bef9SDimitry Andric                                 std::pair<uint64_t, Align> RHS) {
790e8d8bef9SDimitry Andric     return LHS.second < RHS.second;
791e8d8bef9SDimitry Andric   });
792e8d8bef9SDimitry Andric 
793e8d8bef9SDimitry Andric   // Check how much local memory is being used by global objects
794e8d8bef9SDimitry Andric   CurrentLocalMemUsage = 0;
795e8d8bef9SDimitry Andric 
796e8d8bef9SDimitry Andric   // FIXME: Try to account for padding here. The real padding and address is
797e8d8bef9SDimitry Andric   // currently determined from the inverse order of uses in the function when
798e8d8bef9SDimitry Andric   // legalizing, which could also potentially change. We try to estimate the
799e8d8bef9SDimitry Andric   // worst case here, but we probably should fix the addresses earlier.
800e8d8bef9SDimitry Andric   for (auto Alloc : AllocatedSizes) {
801e8d8bef9SDimitry Andric     CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
802e8d8bef9SDimitry Andric     CurrentLocalMemUsage += Alloc.first;
803e8d8bef9SDimitry Andric   }
804e8d8bef9SDimitry Andric 
8050b57cec5SDimitry Andric   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
8060b57cec5SDimitry Andric                                                           F);
8070b57cec5SDimitry Andric 
8080b57cec5SDimitry Andric   // Restrict local memory usage so that we don't drastically reduce occupancy,
8090b57cec5SDimitry Andric   // unless it is already significantly reduced.
8100b57cec5SDimitry Andric 
8110b57cec5SDimitry Andric   // TODO: Have some sort of hint or other heuristics to guess occupancy based
8120b57cec5SDimitry Andric   // on other factors..
8130b57cec5SDimitry Andric   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
8140b57cec5SDimitry Andric   if (OccupancyHint == 0)
8150b57cec5SDimitry Andric     OccupancyHint = 7;
8160b57cec5SDimitry Andric 
8170b57cec5SDimitry Andric   // Clamp to max value.
8180b57cec5SDimitry Andric   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
8190b57cec5SDimitry Andric 
8200b57cec5SDimitry Andric   // Check the hint but ignore it if it's obviously wrong from the existing LDS
8210b57cec5SDimitry Andric   // usage.
8220b57cec5SDimitry Andric   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
8230b57cec5SDimitry Andric 
8240b57cec5SDimitry Andric 
8250b57cec5SDimitry Andric   // Round up to the next tier of usage.
8260b57cec5SDimitry Andric   unsigned MaxSizeWithWaveCount
8270b57cec5SDimitry Andric     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
8280b57cec5SDimitry Andric 
8290b57cec5SDimitry Andric   // Program is possibly broken by using more local mem than available.
8300b57cec5SDimitry Andric   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
8310b57cec5SDimitry Andric     return false;
8320b57cec5SDimitry Andric 
8330b57cec5SDimitry Andric   LocalMemLimit = MaxSizeWithWaveCount;
8340b57cec5SDimitry Andric 
8350b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
8360b57cec5SDimitry Andric                     << " bytes of LDS\n"
8370b57cec5SDimitry Andric                     << "  Rounding size to " << MaxSizeWithWaveCount
8380b57cec5SDimitry Andric                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
8390b57cec5SDimitry Andric                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
8400b57cec5SDimitry Andric                     << " available for promotion\n");
8410b57cec5SDimitry Andric 
8420b57cec5SDimitry Andric   return true;
8430b57cec5SDimitry Andric }
8440b57cec5SDimitry Andric 
8450b57cec5SDimitry Andric // FIXME: Should try to pick the most likely to be profitable allocas first.
846e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
8470b57cec5SDimitry Andric   // Array allocations are probably not worth handling, since an allocation of
8480b57cec5SDimitry Andric   // the array type is the canonical form.
8490b57cec5SDimitry Andric   if (!I.isStaticAlloca() || I.isArrayAllocation())
8500b57cec5SDimitry Andric     return false;
8510b57cec5SDimitry Andric 
8525ffd83dbSDimitry Andric   const DataLayout &DL = Mod->getDataLayout();
8530b57cec5SDimitry Andric   IRBuilder<> Builder(&I);
8540b57cec5SDimitry Andric 
8550b57cec5SDimitry Andric   // First try to replace the alloca with a vector
8560b57cec5SDimitry Andric   Type *AllocaTy = I.getAllocatedType();
8570b57cec5SDimitry Andric 
8580b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
8590b57cec5SDimitry Andric 
8605ffd83dbSDimitry Andric   if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
8610b57cec5SDimitry Andric     return true; // Promoted to vector.
8620b57cec5SDimitry Andric 
8630b57cec5SDimitry Andric   if (DisablePromoteAllocaToLDS)
8640b57cec5SDimitry Andric     return false;
8650b57cec5SDimitry Andric 
8660b57cec5SDimitry Andric   const Function &ContainingFunction = *I.getParent()->getParent();
8670b57cec5SDimitry Andric   CallingConv::ID CC = ContainingFunction.getCallingConv();
8680b57cec5SDimitry Andric 
8690b57cec5SDimitry Andric   // Don't promote the alloca to LDS for shader calling conventions as the work
8700b57cec5SDimitry Andric   // item ID intrinsics are not supported for these calling conventions.
8710b57cec5SDimitry Andric   // Furthermore not all LDS is available for some of the stages.
8720b57cec5SDimitry Andric   switch (CC) {
8730b57cec5SDimitry Andric   case CallingConv::AMDGPU_KERNEL:
8740b57cec5SDimitry Andric   case CallingConv::SPIR_KERNEL:
8750b57cec5SDimitry Andric     break;
8760b57cec5SDimitry Andric   default:
8770b57cec5SDimitry Andric     LLVM_DEBUG(
8780b57cec5SDimitry Andric         dbgs()
8790b57cec5SDimitry Andric         << " promote alloca to LDS not supported with calling convention.\n");
8800b57cec5SDimitry Andric     return false;
8810b57cec5SDimitry Andric   }
8820b57cec5SDimitry Andric 
8830b57cec5SDimitry Andric   // Not likely to have sufficient local memory for promotion.
8840b57cec5SDimitry Andric   if (!SufficientLDS)
8850b57cec5SDimitry Andric     return false;
8860b57cec5SDimitry Andric 
887e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
8880b57cec5SDimitry Andric   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
8890b57cec5SDimitry Andric 
8905ffd83dbSDimitry Andric   Align Alignment =
8915ffd83dbSDimitry Andric       DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
8920b57cec5SDimitry Andric 
8930b57cec5SDimitry Andric   // FIXME: This computed padding is likely wrong since it depends on inverse
8940b57cec5SDimitry Andric   // usage order.
8950b57cec5SDimitry Andric   //
8960b57cec5SDimitry Andric   // FIXME: It is also possible that if we're allowed to use all of the memory
8970b57cec5SDimitry Andric   // could could end up using more than the maximum due to alignment padding.
8980b57cec5SDimitry Andric 
8995ffd83dbSDimitry Andric   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
9000b57cec5SDimitry Andric   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
9010b57cec5SDimitry Andric   NewSize += AllocSize;
9020b57cec5SDimitry Andric 
9030b57cec5SDimitry Andric   if (NewSize > LocalMemLimit) {
9040b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  " << AllocSize
9050b57cec5SDimitry Andric                       << " bytes of local memory not available to promote\n");
9060b57cec5SDimitry Andric     return false;
9070b57cec5SDimitry Andric   }
9080b57cec5SDimitry Andric 
9090b57cec5SDimitry Andric   CurrentLocalMemUsage = NewSize;
9100b57cec5SDimitry Andric 
9110b57cec5SDimitry Andric   std::vector<Value*> WorkList;
9120b57cec5SDimitry Andric 
9130b57cec5SDimitry Andric   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
9140b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
9150b57cec5SDimitry Andric     return false;
9160b57cec5SDimitry Andric   }
9170b57cec5SDimitry Andric 
9180b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
9190b57cec5SDimitry Andric 
9200b57cec5SDimitry Andric   Function *F = I.getParent()->getParent();
9210b57cec5SDimitry Andric 
9220b57cec5SDimitry Andric   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
9230b57cec5SDimitry Andric   GlobalVariable *GV = new GlobalVariable(
9240b57cec5SDimitry Andric       *Mod, GVTy, false, GlobalValue::InternalLinkage,
9250b57cec5SDimitry Andric       UndefValue::get(GVTy),
9260b57cec5SDimitry Andric       Twine(F->getName()) + Twine('.') + I.getName(),
9270b57cec5SDimitry Andric       nullptr,
9280b57cec5SDimitry Andric       GlobalVariable::NotThreadLocal,
9290b57cec5SDimitry Andric       AMDGPUAS::LOCAL_ADDRESS);
9300b57cec5SDimitry Andric   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
9318bcb0991SDimitry Andric   GV->setAlignment(MaybeAlign(I.getAlignment()));
9320b57cec5SDimitry Andric 
9330b57cec5SDimitry Andric   Value *TCntY, *TCntZ;
9340b57cec5SDimitry Andric 
9350b57cec5SDimitry Andric   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
9360b57cec5SDimitry Andric   Value *TIdX = getWorkitemID(Builder, 0);
9370b57cec5SDimitry Andric   Value *TIdY = getWorkitemID(Builder, 1);
9380b57cec5SDimitry Andric   Value *TIdZ = getWorkitemID(Builder, 2);
9390b57cec5SDimitry Andric 
9400b57cec5SDimitry Andric   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
9410b57cec5SDimitry Andric   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
9420b57cec5SDimitry Andric   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
9430b57cec5SDimitry Andric   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
9440b57cec5SDimitry Andric   TID = Builder.CreateAdd(TID, TIdZ);
9450b57cec5SDimitry Andric 
9460b57cec5SDimitry Andric   Value *Indices[] = {
9470b57cec5SDimitry Andric     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
9480b57cec5SDimitry Andric     TID
9490b57cec5SDimitry Andric   };
9500b57cec5SDimitry Andric 
9510b57cec5SDimitry Andric   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
9520b57cec5SDimitry Andric   I.mutateType(Offset->getType());
9530b57cec5SDimitry Andric   I.replaceAllUsesWith(Offset);
9540b57cec5SDimitry Andric   I.eraseFromParent();
9550b57cec5SDimitry Andric 
956*fe6060f1SDimitry Andric   SmallVector<IntrinsicInst *> DeferredIntrs;
957*fe6060f1SDimitry Andric 
9580b57cec5SDimitry Andric   for (Value *V : WorkList) {
9590b57cec5SDimitry Andric     CallInst *Call = dyn_cast<CallInst>(V);
9600b57cec5SDimitry Andric     if (!Call) {
9610b57cec5SDimitry Andric       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
9620b57cec5SDimitry Andric         Value *Src0 = CI->getOperand(0);
963*fe6060f1SDimitry Andric         PointerType *NewTy = PointerType::getWithSamePointeeType(
964*fe6060f1SDimitry Andric             cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS);
9650b57cec5SDimitry Andric 
9660b57cec5SDimitry Andric         if (isa<ConstantPointerNull>(CI->getOperand(0)))
9670b57cec5SDimitry Andric           CI->setOperand(0, ConstantPointerNull::get(NewTy));
9680b57cec5SDimitry Andric 
9690b57cec5SDimitry Andric         if (isa<ConstantPointerNull>(CI->getOperand(1)))
9700b57cec5SDimitry Andric           CI->setOperand(1, ConstantPointerNull::get(NewTy));
9710b57cec5SDimitry Andric 
9720b57cec5SDimitry Andric         continue;
9730b57cec5SDimitry Andric       }
9740b57cec5SDimitry Andric 
9750b57cec5SDimitry Andric       // The operand's value should be corrected on its own and we don't want to
9760b57cec5SDimitry Andric       // touch the users.
9770b57cec5SDimitry Andric       if (isa<AddrSpaceCastInst>(V))
9780b57cec5SDimitry Andric         continue;
9790b57cec5SDimitry Andric 
980*fe6060f1SDimitry Andric       PointerType *NewTy = PointerType::getWithSamePointeeType(
981*fe6060f1SDimitry Andric           cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS);
9820b57cec5SDimitry Andric 
9830b57cec5SDimitry Andric       // FIXME: It doesn't really make sense to try to do this for all
9840b57cec5SDimitry Andric       // instructions.
9850b57cec5SDimitry Andric       V->mutateType(NewTy);
9860b57cec5SDimitry Andric 
9870b57cec5SDimitry Andric       // Adjust the types of any constant operands.
9880b57cec5SDimitry Andric       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
9890b57cec5SDimitry Andric         if (isa<ConstantPointerNull>(SI->getOperand(1)))
9900b57cec5SDimitry Andric           SI->setOperand(1, ConstantPointerNull::get(NewTy));
9910b57cec5SDimitry Andric 
9920b57cec5SDimitry Andric         if (isa<ConstantPointerNull>(SI->getOperand(2)))
9930b57cec5SDimitry Andric           SI->setOperand(2, ConstantPointerNull::get(NewTy));
9940b57cec5SDimitry Andric       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
9950b57cec5SDimitry Andric         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
9960b57cec5SDimitry Andric           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
9970b57cec5SDimitry Andric             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
9980b57cec5SDimitry Andric         }
9990b57cec5SDimitry Andric       }
10000b57cec5SDimitry Andric 
10010b57cec5SDimitry Andric       continue;
10020b57cec5SDimitry Andric     }
10030b57cec5SDimitry Andric 
10040b57cec5SDimitry Andric     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
10050b57cec5SDimitry Andric     Builder.SetInsertPoint(Intr);
10060b57cec5SDimitry Andric     switch (Intr->getIntrinsicID()) {
10070b57cec5SDimitry Andric     case Intrinsic::lifetime_start:
10080b57cec5SDimitry Andric     case Intrinsic::lifetime_end:
10090b57cec5SDimitry Andric       // These intrinsics are for address space 0 only
10100b57cec5SDimitry Andric       Intr->eraseFromParent();
10110b57cec5SDimitry Andric       continue;
1012*fe6060f1SDimitry Andric     case Intrinsic::memcpy:
1013*fe6060f1SDimitry Andric     case Intrinsic::memmove:
1014*fe6060f1SDimitry Andric       // These have 2 pointer operands. In case if second pointer also needs
1015*fe6060f1SDimitry Andric       // to be replaced we defer processing of these intrinsics until all
1016*fe6060f1SDimitry Andric       // other values are processed.
1017*fe6060f1SDimitry Andric       DeferredIntrs.push_back(Intr);
10180b57cec5SDimitry Andric       continue;
10190b57cec5SDimitry Andric     case Intrinsic::memset: {
10200b57cec5SDimitry Andric       MemSetInst *MemSet = cast<MemSetInst>(Intr);
1021480093f4SDimitry Andric       Builder.CreateMemSet(
1022480093f4SDimitry Andric           MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
1023480093f4SDimitry Andric           MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
10240b57cec5SDimitry Andric       Intr->eraseFromParent();
10250b57cec5SDimitry Andric       continue;
10260b57cec5SDimitry Andric     }
10270b57cec5SDimitry Andric     case Intrinsic::invariant_start:
10280b57cec5SDimitry Andric     case Intrinsic::invariant_end:
10290b57cec5SDimitry Andric     case Intrinsic::launder_invariant_group:
10300b57cec5SDimitry Andric     case Intrinsic::strip_invariant_group:
10310b57cec5SDimitry Andric       Intr->eraseFromParent();
10320b57cec5SDimitry Andric       // FIXME: I think the invariant marker should still theoretically apply,
10330b57cec5SDimitry Andric       // but the intrinsics need to be changed to accept pointers with any
10340b57cec5SDimitry Andric       // address space.
10350b57cec5SDimitry Andric       continue;
10360b57cec5SDimitry Andric     case Intrinsic::objectsize: {
10370b57cec5SDimitry Andric       Value *Src = Intr->getOperand(0);
1038*fe6060f1SDimitry Andric       Function *ObjectSize = Intrinsic::getDeclaration(
1039*fe6060f1SDimitry Andric           Mod, Intrinsic::objectsize,
1040*fe6060f1SDimitry Andric           {Intr->getType(),
1041*fe6060f1SDimitry Andric            PointerType::getWithSamePointeeType(
1042*fe6060f1SDimitry Andric                cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)});
10430b57cec5SDimitry Andric 
10440b57cec5SDimitry Andric       CallInst *NewCall = Builder.CreateCall(
10450b57cec5SDimitry Andric           ObjectSize,
10460b57cec5SDimitry Andric           {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
10470b57cec5SDimitry Andric       Intr->replaceAllUsesWith(NewCall);
10480b57cec5SDimitry Andric       Intr->eraseFromParent();
10490b57cec5SDimitry Andric       continue;
10500b57cec5SDimitry Andric     }
10510b57cec5SDimitry Andric     default:
10520b57cec5SDimitry Andric       Intr->print(errs());
10530b57cec5SDimitry Andric       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
10540b57cec5SDimitry Andric     }
10550b57cec5SDimitry Andric   }
1056*fe6060f1SDimitry Andric 
1057*fe6060f1SDimitry Andric   for (IntrinsicInst *Intr : DeferredIntrs) {
1058*fe6060f1SDimitry Andric     Builder.SetInsertPoint(Intr);
1059*fe6060f1SDimitry Andric     Intrinsic::ID ID = Intr->getIntrinsicID();
1060*fe6060f1SDimitry Andric     assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
1061*fe6060f1SDimitry Andric 
1062*fe6060f1SDimitry Andric     MemTransferInst *MI = cast<MemTransferInst>(Intr);
1063*fe6060f1SDimitry Andric     auto *B =
1064*fe6060f1SDimitry Andric       Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(),
1065*fe6060f1SDimitry Andric                                     MI->getRawSource(), MI->getSourceAlign(),
1066*fe6060f1SDimitry Andric                                     MI->getLength(), MI->isVolatile());
1067*fe6060f1SDimitry Andric 
1068*fe6060f1SDimitry Andric     for (unsigned I = 1; I != 3; ++I) {
1069*fe6060f1SDimitry Andric       if (uint64_t Bytes = Intr->getDereferenceableBytes(I)) {
1070*fe6060f1SDimitry Andric         B->addDereferenceableAttr(I, Bytes);
1071*fe6060f1SDimitry Andric       }
1072*fe6060f1SDimitry Andric     }
1073*fe6060f1SDimitry Andric 
1074*fe6060f1SDimitry Andric     Intr->eraseFromParent();
1075*fe6060f1SDimitry Andric   }
1076*fe6060f1SDimitry Andric 
10770b57cec5SDimitry Andric   return true;
10780b57cec5SDimitry Andric }
10790b57cec5SDimitry Andric 
1080e8d8bef9SDimitry Andric bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
1081e8d8bef9SDimitry Andric   // Array allocations are probably not worth handling, since an allocation of
1082e8d8bef9SDimitry Andric   // the array type is the canonical form.
1083e8d8bef9SDimitry Andric   if (!I.isStaticAlloca() || I.isArrayAllocation())
10845ffd83dbSDimitry Andric     return false;
10855ffd83dbSDimitry Andric 
1086e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
1087e8d8bef9SDimitry Andric 
1088e8d8bef9SDimitry Andric   Module *Mod = I.getParent()->getParent()->getParent();
1089e8d8bef9SDimitry Andric   return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
1090e8d8bef9SDimitry Andric }
1091e8d8bef9SDimitry Andric 
1092e8d8bef9SDimitry Andric bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
1093e8d8bef9SDimitry Andric   if (DisablePromoteAllocaToVector)
10945ffd83dbSDimitry Andric     return false;
10955ffd83dbSDimitry Andric 
1096e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
10975ffd83dbSDimitry Andric   if (!ST.isPromoteAllocaEnabled())
10985ffd83dbSDimitry Andric     return false;
10995ffd83dbSDimitry Andric 
1100e8d8bef9SDimitry Andric   unsigned MaxVGPRs;
1101e8d8bef9SDimitry Andric   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1102e8d8bef9SDimitry Andric     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
11035ffd83dbSDimitry Andric     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
11045ffd83dbSDimitry Andric   } else {
11055ffd83dbSDimitry Andric     MaxVGPRs = 128;
11065ffd83dbSDimitry Andric   }
11075ffd83dbSDimitry Andric 
11085ffd83dbSDimitry Andric   bool Changed = false;
11095ffd83dbSDimitry Andric   BasicBlock &EntryBB = *F.begin();
11105ffd83dbSDimitry Andric 
11115ffd83dbSDimitry Andric   SmallVector<AllocaInst *, 16> Allocas;
11125ffd83dbSDimitry Andric   for (Instruction &I : EntryBB) {
11135ffd83dbSDimitry Andric     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
11145ffd83dbSDimitry Andric       Allocas.push_back(AI);
11155ffd83dbSDimitry Andric   }
11165ffd83dbSDimitry Andric 
11175ffd83dbSDimitry Andric   for (AllocaInst *AI : Allocas) {
1118e8d8bef9SDimitry Andric     if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
11195ffd83dbSDimitry Andric       Changed = true;
11205ffd83dbSDimitry Andric   }
11215ffd83dbSDimitry Andric 
11225ffd83dbSDimitry Andric   return Changed;
11235ffd83dbSDimitry Andric }
11245ffd83dbSDimitry Andric 
1125e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
1126e8d8bef9SDimitry Andric   if (skipFunction(F))
11275ffd83dbSDimitry Andric     return false;
1128e8d8bef9SDimitry Andric   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
1129e8d8bef9SDimitry Andric     return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
1130e8d8bef9SDimitry Andric   }
1131e8d8bef9SDimitry Andric   return false;
1132e8d8bef9SDimitry Andric }
11335ffd83dbSDimitry Andric 
1134e8d8bef9SDimitry Andric PreservedAnalyses
1135e8d8bef9SDimitry Andric AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
1136e8d8bef9SDimitry Andric   bool Changed = promoteAllocasToVector(F, TM);
1137e8d8bef9SDimitry Andric   if (Changed) {
1138e8d8bef9SDimitry Andric     PreservedAnalyses PA;
1139e8d8bef9SDimitry Andric     PA.preserveSet<CFGAnalyses>();
1140e8d8bef9SDimitry Andric     return PA;
1141e8d8bef9SDimitry Andric   }
1142e8d8bef9SDimitry Andric   return PreservedAnalyses::all();
11435ffd83dbSDimitry Andric }
11445ffd83dbSDimitry Andric 
11450b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAlloca() {
11460b57cec5SDimitry Andric   return new AMDGPUPromoteAlloca();
11470b57cec5SDimitry Andric }
11485ffd83dbSDimitry Andric 
11495ffd83dbSDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
11505ffd83dbSDimitry Andric   return new AMDGPUPromoteAllocaToVector();
11515ffd83dbSDimitry Andric }
1152