10b57cec5SDimitry Andric //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This pass eliminates allocas by either converting them into vectors or 100b57cec5SDimitry Andric // by migrating them to local address space. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #include "AMDGPU.h" 15e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 160b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h" 170b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 180b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 190b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 20480093f4SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 21480093f4SDimitry Andric #include "llvm/IR/IntrinsicsR600.h" 220b57cec5SDimitry Andric #include "llvm/Pass.h" 230b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 240b57cec5SDimitry Andric 250b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-promote-alloca" 260b57cec5SDimitry Andric 270b57cec5SDimitry Andric using namespace llvm; 280b57cec5SDimitry Andric 290b57cec5SDimitry Andric namespace { 300b57cec5SDimitry Andric 310b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToVector( 320b57cec5SDimitry Andric "disable-promote-alloca-to-vector", 330b57cec5SDimitry Andric cl::desc("Disable promote alloca to vector"), 340b57cec5SDimitry Andric cl::init(false)); 350b57cec5SDimitry Andric 360b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToLDS( 370b57cec5SDimitry Andric "disable-promote-alloca-to-lds", 380b57cec5SDimitry Andric cl::desc("Disable promote alloca to LDS"), 390b57cec5SDimitry Andric cl::init(false)); 400b57cec5SDimitry Andric 415ffd83dbSDimitry Andric static cl::opt<unsigned> PromoteAllocaToVectorLimit( 425ffd83dbSDimitry Andric "amdgpu-promote-alloca-to-vector-limit", 435ffd83dbSDimitry Andric cl::desc("Maximum byte size to consider promote alloca to vector"), 445ffd83dbSDimitry Andric cl::init(0)); 455ffd83dbSDimitry Andric 460b57cec5SDimitry Andric // FIXME: This can create globals so should be a module pass. 470b57cec5SDimitry Andric class AMDGPUPromoteAlloca : public FunctionPass { 48e8d8bef9SDimitry Andric public: 49e8d8bef9SDimitry Andric static char ID; 50e8d8bef9SDimitry Andric 51e8d8bef9SDimitry Andric AMDGPUPromoteAlloca() : FunctionPass(ID) {} 52e8d8bef9SDimitry Andric 53e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override; 54e8d8bef9SDimitry Andric 55e8d8bef9SDimitry Andric StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 56e8d8bef9SDimitry Andric 57e8d8bef9SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 58e8d8bef9SDimitry Andric 59e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 60e8d8bef9SDimitry Andric AU.setPreservesCFG(); 61e8d8bef9SDimitry Andric FunctionPass::getAnalysisUsage(AU); 62e8d8bef9SDimitry Andric } 63e8d8bef9SDimitry Andric }; 64e8d8bef9SDimitry Andric 65e8d8bef9SDimitry Andric class AMDGPUPromoteAllocaImpl { 660b57cec5SDimitry Andric private: 67e8d8bef9SDimitry Andric const TargetMachine &TM; 680b57cec5SDimitry Andric Module *Mod = nullptr; 690b57cec5SDimitry Andric const DataLayout *DL = nullptr; 700b57cec5SDimitry Andric 710b57cec5SDimitry Andric // FIXME: This should be per-kernel. 720b57cec5SDimitry Andric uint32_t LocalMemLimit = 0; 730b57cec5SDimitry Andric uint32_t CurrentLocalMemUsage = 0; 745ffd83dbSDimitry Andric unsigned MaxVGPRs; 750b57cec5SDimitry Andric 760b57cec5SDimitry Andric bool IsAMDGCN = false; 770b57cec5SDimitry Andric bool IsAMDHSA = false; 780b57cec5SDimitry Andric 790b57cec5SDimitry Andric std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 800b57cec5SDimitry Andric Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 810b57cec5SDimitry Andric 820b57cec5SDimitry Andric /// BaseAlloca is the alloca root the search started from. 830b57cec5SDimitry Andric /// Val may be that alloca or a recursive user of it. 840b57cec5SDimitry Andric bool collectUsesWithPtrTypes(Value *BaseAlloca, 850b57cec5SDimitry Andric Value *Val, 860b57cec5SDimitry Andric std::vector<Value*> &WorkList) const; 870b57cec5SDimitry Andric 880b57cec5SDimitry Andric /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 890b57cec5SDimitry Andric /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 900b57cec5SDimitry Andric /// Returns true if both operands are derived from the same alloca. Val should 910b57cec5SDimitry Andric /// be the same value as one of the input operands of UseInst. 920b57cec5SDimitry Andric bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 930b57cec5SDimitry Andric Instruction *UseInst, 940b57cec5SDimitry Andric int OpIdx0, int OpIdx1) const; 950b57cec5SDimitry Andric 960b57cec5SDimitry Andric /// Check whether we have enough local memory for promotion. 970b57cec5SDimitry Andric bool hasSufficientLocalMem(const Function &F); 980b57cec5SDimitry Andric 990b57cec5SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 1000b57cec5SDimitry Andric 101e8d8bef9SDimitry Andric public: 102e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} 103e8d8bef9SDimitry Andric bool run(Function &F); 1040b57cec5SDimitry Andric }; 1050b57cec5SDimitry Andric 1065ffd83dbSDimitry Andric class AMDGPUPromoteAllocaToVector : public FunctionPass { 1075ffd83dbSDimitry Andric public: 1085ffd83dbSDimitry Andric static char ID; 1095ffd83dbSDimitry Andric 1105ffd83dbSDimitry Andric AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 1115ffd83dbSDimitry Andric 1125ffd83dbSDimitry Andric bool runOnFunction(Function &F) override; 1135ffd83dbSDimitry Andric 1145ffd83dbSDimitry Andric StringRef getPassName() const override { 1155ffd83dbSDimitry Andric return "AMDGPU Promote Alloca to vector"; 1165ffd83dbSDimitry Andric } 1175ffd83dbSDimitry Andric 1185ffd83dbSDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 1195ffd83dbSDimitry Andric AU.setPreservesCFG(); 1205ffd83dbSDimitry Andric FunctionPass::getAnalysisUsage(AU); 1215ffd83dbSDimitry Andric } 1225ffd83dbSDimitry Andric }; 1235ffd83dbSDimitry Andric 1240b57cec5SDimitry Andric } // end anonymous namespace 1250b57cec5SDimitry Andric 1260b57cec5SDimitry Andric char AMDGPUPromoteAlloca::ID = 0; 1275ffd83dbSDimitry Andric char AMDGPUPromoteAllocaToVector::ID = 0; 1280b57cec5SDimitry Andric 129*fe6060f1SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 130*fe6060f1SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 131*fe6060f1SDimitry Andric // Move LDS uses from functions to kernels before promote alloca for accurate 132*fe6060f1SDimitry Andric // estimation of LDS available 133*fe6060f1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS) 134*fe6060f1SDimitry Andric INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 1350b57cec5SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 1360b57cec5SDimitry Andric 1375ffd83dbSDimitry Andric INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 1385ffd83dbSDimitry Andric "AMDGPU promote alloca to vector", false, false) 1395ffd83dbSDimitry Andric 1400b57cec5SDimitry Andric char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 1415ffd83dbSDimitry Andric char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 1420b57cec5SDimitry Andric 1430b57cec5SDimitry Andric bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 1440b57cec5SDimitry Andric if (skipFunction(F)) 1450b57cec5SDimitry Andric return false; 1460b57cec5SDimitry Andric 147e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 148e8d8bef9SDimitry Andric return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); 149e8d8bef9SDimitry Andric } 1500b57cec5SDimitry Andric return false; 151e8d8bef9SDimitry Andric } 1520b57cec5SDimitry Andric 153e8d8bef9SDimitry Andric PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 154e8d8bef9SDimitry Andric FunctionAnalysisManager &AM) { 155e8d8bef9SDimitry Andric bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); 156e8d8bef9SDimitry Andric if (Changed) { 157e8d8bef9SDimitry Andric PreservedAnalyses PA; 158e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 159e8d8bef9SDimitry Andric return PA; 160e8d8bef9SDimitry Andric } 161e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 162e8d8bef9SDimitry Andric } 163e8d8bef9SDimitry Andric 164e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::run(Function &F) { 165e8d8bef9SDimitry Andric Mod = F.getParent(); 166e8d8bef9SDimitry Andric DL = &Mod->getDataLayout(); 167e8d8bef9SDimitry Andric 168e8d8bef9SDimitry Andric const Triple &TT = TM.getTargetTriple(); 1690b57cec5SDimitry Andric IsAMDGCN = TT.getArch() == Triple::amdgcn; 1700b57cec5SDimitry Andric IsAMDHSA = TT.getOS() == Triple::AMDHSA; 1710b57cec5SDimitry Andric 172e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1730b57cec5SDimitry Andric if (!ST.isPromoteAllocaEnabled()) 1740b57cec5SDimitry Andric return false; 1750b57cec5SDimitry Andric 1765ffd83dbSDimitry Andric if (IsAMDGCN) { 177e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 1785ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 1795ffd83dbSDimitry Andric } else { 1805ffd83dbSDimitry Andric MaxVGPRs = 128; 1815ffd83dbSDimitry Andric } 1825ffd83dbSDimitry Andric 1830b57cec5SDimitry Andric bool SufficientLDS = hasSufficientLocalMem(F); 1840b57cec5SDimitry Andric bool Changed = false; 1850b57cec5SDimitry Andric BasicBlock &EntryBB = *F.begin(); 1860b57cec5SDimitry Andric 1870b57cec5SDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 1880b57cec5SDimitry Andric for (Instruction &I : EntryBB) { 1890b57cec5SDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1900b57cec5SDimitry Andric Allocas.push_back(AI); 1910b57cec5SDimitry Andric } 1920b57cec5SDimitry Andric 1930b57cec5SDimitry Andric for (AllocaInst *AI : Allocas) { 1940b57cec5SDimitry Andric if (handleAlloca(*AI, SufficientLDS)) 1950b57cec5SDimitry Andric Changed = true; 1960b57cec5SDimitry Andric } 1970b57cec5SDimitry Andric 1980b57cec5SDimitry Andric return Changed; 1990b57cec5SDimitry Andric } 2000b57cec5SDimitry Andric 2010b57cec5SDimitry Andric std::pair<Value *, Value *> 202e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 2030b57cec5SDimitry Andric const Function &F = *Builder.GetInsertBlock()->getParent(); 204e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 2050b57cec5SDimitry Andric 2060b57cec5SDimitry Andric if (!IsAMDHSA) { 2070b57cec5SDimitry Andric Function *LocalSizeYFn 2080b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 2090b57cec5SDimitry Andric Function *LocalSizeZFn 2100b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 2110b57cec5SDimitry Andric 2120b57cec5SDimitry Andric CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 2130b57cec5SDimitry Andric CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 2140b57cec5SDimitry Andric 2150b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeY); 2160b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeZ); 2170b57cec5SDimitry Andric 2180b57cec5SDimitry Andric return std::make_pair(LocalSizeY, LocalSizeZ); 2190b57cec5SDimitry Andric } 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric // We must read the size out of the dispatch pointer. 2220b57cec5SDimitry Andric assert(IsAMDGCN); 2230b57cec5SDimitry Andric 2240b57cec5SDimitry Andric // We are indexing into this struct, and want to extract the workgroup_size_* 2250b57cec5SDimitry Andric // fields. 2260b57cec5SDimitry Andric // 2270b57cec5SDimitry Andric // typedef struct hsa_kernel_dispatch_packet_s { 2280b57cec5SDimitry Andric // uint16_t header; 2290b57cec5SDimitry Andric // uint16_t setup; 2300b57cec5SDimitry Andric // uint16_t workgroup_size_x ; 2310b57cec5SDimitry Andric // uint16_t workgroup_size_y; 2320b57cec5SDimitry Andric // uint16_t workgroup_size_z; 2330b57cec5SDimitry Andric // uint16_t reserved0; 2340b57cec5SDimitry Andric // uint32_t grid_size_x ; 2350b57cec5SDimitry Andric // uint32_t grid_size_y ; 2360b57cec5SDimitry Andric // uint32_t grid_size_z; 2370b57cec5SDimitry Andric // 2380b57cec5SDimitry Andric // uint32_t private_segment_size; 2390b57cec5SDimitry Andric // uint32_t group_segment_size; 2400b57cec5SDimitry Andric // uint64_t kernel_object; 2410b57cec5SDimitry Andric // 2420b57cec5SDimitry Andric // #ifdef HSA_LARGE_MODEL 2430b57cec5SDimitry Andric // void *kernarg_address; 2440b57cec5SDimitry Andric // #elif defined HSA_LITTLE_ENDIAN 2450b57cec5SDimitry Andric // void *kernarg_address; 2460b57cec5SDimitry Andric // uint32_t reserved1; 2470b57cec5SDimitry Andric // #else 2480b57cec5SDimitry Andric // uint32_t reserved1; 2490b57cec5SDimitry Andric // void *kernarg_address; 2500b57cec5SDimitry Andric // #endif 2510b57cec5SDimitry Andric // uint64_t reserved2; 2520b57cec5SDimitry Andric // hsa_signal_t completion_signal; // uint64_t wrapper 2530b57cec5SDimitry Andric // } hsa_kernel_dispatch_packet_t 2540b57cec5SDimitry Andric // 2550b57cec5SDimitry Andric Function *DispatchPtrFn 2560b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 2570b57cec5SDimitry Andric 2580b57cec5SDimitry Andric CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 2590b57cec5SDimitry Andric DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 2600b57cec5SDimitry Andric DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 2610b57cec5SDimitry Andric 2620b57cec5SDimitry Andric // Size of the dispatch packet struct. 2630b57cec5SDimitry Andric DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 2640b57cec5SDimitry Andric 2650b57cec5SDimitry Andric Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 2660b57cec5SDimitry Andric Value *CastDispatchPtr = Builder.CreateBitCast( 2670b57cec5SDimitry Andric DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 2680b57cec5SDimitry Andric 2690b57cec5SDimitry Andric // We could do a single 64-bit load here, but it's likely that the basic 2700b57cec5SDimitry Andric // 32-bit and extract sequence is already present, and it is probably easier 2710b57cec5SDimitry Andric // to CSE this. The loads should be mergable later anyway. 2720b57cec5SDimitry Andric Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 2735ffd83dbSDimitry Andric LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 2740b57cec5SDimitry Andric 2750b57cec5SDimitry Andric Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 2765ffd83dbSDimitry Andric LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric MDNode *MD = MDNode::get(Mod->getContext(), None); 2790b57cec5SDimitry Andric LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 2800b57cec5SDimitry Andric LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 2810b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LoadZU); 2820b57cec5SDimitry Andric 2830b57cec5SDimitry Andric // Extract y component. Upper half of LoadZU should be zero already. 2840b57cec5SDimitry Andric Value *Y = Builder.CreateLShr(LoadXY, 16); 2850b57cec5SDimitry Andric 2860b57cec5SDimitry Andric return std::make_pair(Y, LoadZU); 2870b57cec5SDimitry Andric } 2880b57cec5SDimitry Andric 289e8d8bef9SDimitry Andric Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 290e8d8bef9SDimitry Andric unsigned N) { 2910b57cec5SDimitry Andric const AMDGPUSubtarget &ST = 292e8d8bef9SDimitry Andric AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent()); 293480093f4SDimitry Andric Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 2940b57cec5SDimitry Andric 2950b57cec5SDimitry Andric switch (N) { 2960b57cec5SDimitry Andric case 0: 297480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 298480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 2990b57cec5SDimitry Andric break; 3000b57cec5SDimitry Andric case 1: 301480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 302480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 3030b57cec5SDimitry Andric break; 3040b57cec5SDimitry Andric 3050b57cec5SDimitry Andric case 2: 306480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 307480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 3080b57cec5SDimitry Andric break; 3090b57cec5SDimitry Andric default: 3100b57cec5SDimitry Andric llvm_unreachable("invalid dimension"); 3110b57cec5SDimitry Andric } 3120b57cec5SDimitry Andric 3130b57cec5SDimitry Andric Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 3140b57cec5SDimitry Andric CallInst *CI = Builder.CreateCall(WorkitemIdFn); 3150b57cec5SDimitry Andric ST.makeLIDRangeMetadata(CI); 3160b57cec5SDimitry Andric 3170b57cec5SDimitry Andric return CI; 3180b57cec5SDimitry Andric } 3190b57cec5SDimitry Andric 3205ffd83dbSDimitry Andric static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 3215ffd83dbSDimitry Andric return FixedVectorType::get(ArrayTy->getElementType(), 3220b57cec5SDimitry Andric ArrayTy->getNumElements()); 3230b57cec5SDimitry Andric } 3240b57cec5SDimitry Andric 3255ffd83dbSDimitry Andric static Value *stripBitcasts(Value *V) { 3265ffd83dbSDimitry Andric while (Instruction *I = dyn_cast<Instruction>(V)) { 3275ffd83dbSDimitry Andric if (I->getOpcode() != Instruction::BitCast) 3285ffd83dbSDimitry Andric break; 3295ffd83dbSDimitry Andric V = I->getOperand(0); 3305ffd83dbSDimitry Andric } 3315ffd83dbSDimitry Andric return V; 3325ffd83dbSDimitry Andric } 3335ffd83dbSDimitry Andric 3340b57cec5SDimitry Andric static Value * 3350b57cec5SDimitry Andric calculateVectorIndex(Value *Ptr, 3360b57cec5SDimitry Andric const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 3375ffd83dbSDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); 3385ffd83dbSDimitry Andric if (!GEP) 3395ffd83dbSDimitry Andric return nullptr; 3400b57cec5SDimitry Andric 3410b57cec5SDimitry Andric auto I = GEPIdx.find(GEP); 3420b57cec5SDimitry Andric return I == GEPIdx.end() ? nullptr : I->second; 3430b57cec5SDimitry Andric } 3440b57cec5SDimitry Andric 3450b57cec5SDimitry Andric static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 3460b57cec5SDimitry Andric // FIXME we only support simple cases 3470b57cec5SDimitry Andric if (GEP->getNumOperands() != 3) 3480b57cec5SDimitry Andric return nullptr; 3490b57cec5SDimitry Andric 3500b57cec5SDimitry Andric ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3510b57cec5SDimitry Andric if (!I0 || !I0->isZero()) 3520b57cec5SDimitry Andric return nullptr; 3530b57cec5SDimitry Andric 3540b57cec5SDimitry Andric return GEP->getOperand(2); 3550b57cec5SDimitry Andric } 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric // Not an instruction handled below to turn into a vector. 3580b57cec5SDimitry Andric // 3590b57cec5SDimitry Andric // TODO: Check isTriviallyVectorizable for calls and handle other 3600b57cec5SDimitry Andric // instructions. 3615ffd83dbSDimitry Andric static bool canVectorizeInst(Instruction *Inst, User *User, 3625ffd83dbSDimitry Andric const DataLayout &DL) { 3630b57cec5SDimitry Andric switch (Inst->getOpcode()) { 3640b57cec5SDimitry Andric case Instruction::Load: { 3650b57cec5SDimitry Andric // Currently only handle the case where the Pointer Operand is a GEP. 3660b57cec5SDimitry Andric // Also we could not vectorize volatile or atomic loads. 3670b57cec5SDimitry Andric LoadInst *LI = cast<LoadInst>(Inst); 3680b57cec5SDimitry Andric if (isa<AllocaInst>(User) && 3690b57cec5SDimitry Andric LI->getPointerOperandType() == User->getType() && 3700b57cec5SDimitry Andric isa<VectorType>(LI->getType())) 3710b57cec5SDimitry Andric return true; 3725ffd83dbSDimitry Andric 3735ffd83dbSDimitry Andric Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 3745ffd83dbSDimitry Andric if (!PtrInst) 3755ffd83dbSDimitry Andric return false; 3765ffd83dbSDimitry Andric 3775ffd83dbSDimitry Andric return (PtrInst->getOpcode() == Instruction::GetElementPtr || 3785ffd83dbSDimitry Andric PtrInst->getOpcode() == Instruction::BitCast) && 3795ffd83dbSDimitry Andric LI->isSimple(); 3800b57cec5SDimitry Andric } 3810b57cec5SDimitry Andric case Instruction::BitCast: 3820b57cec5SDimitry Andric return true; 3830b57cec5SDimitry Andric case Instruction::Store: { 3840b57cec5SDimitry Andric // Must be the stored pointer operand, not a stored value, plus 3850b57cec5SDimitry Andric // since it should be canonical form, the User should be a GEP. 3860b57cec5SDimitry Andric // Also we could not vectorize volatile or atomic stores. 3870b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 3880b57cec5SDimitry Andric if (isa<AllocaInst>(User) && 3890b57cec5SDimitry Andric SI->getPointerOperandType() == User->getType() && 3900b57cec5SDimitry Andric isa<VectorType>(SI->getValueOperand()->getType())) 3910b57cec5SDimitry Andric return true; 3925ffd83dbSDimitry Andric 3935ffd83dbSDimitry Andric Instruction *UserInst = dyn_cast<Instruction>(User); 3945ffd83dbSDimitry Andric if (!UserInst) 3955ffd83dbSDimitry Andric return false; 3965ffd83dbSDimitry Andric 3975ffd83dbSDimitry Andric return (SI->getPointerOperand() == User) && 3985ffd83dbSDimitry Andric (UserInst->getOpcode() == Instruction::GetElementPtr || 3995ffd83dbSDimitry Andric UserInst->getOpcode() == Instruction::BitCast) && 4005ffd83dbSDimitry Andric SI->isSimple(); 4010b57cec5SDimitry Andric } 4020b57cec5SDimitry Andric default: 4030b57cec5SDimitry Andric return false; 4040b57cec5SDimitry Andric } 4050b57cec5SDimitry Andric } 4060b57cec5SDimitry Andric 4075ffd83dbSDimitry Andric static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, 4085ffd83dbSDimitry Andric unsigned MaxVGPRs) { 4090b57cec5SDimitry Andric 4100b57cec5SDimitry Andric if (DisablePromoteAllocaToVector) { 4110b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 4120b57cec5SDimitry Andric return false; 4130b57cec5SDimitry Andric } 4140b57cec5SDimitry Andric 4155ffd83dbSDimitry Andric Type *AllocaTy = Alloca->getAllocatedType(); 4165ffd83dbSDimitry Andric auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 4175ffd83dbSDimitry Andric if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 4185ffd83dbSDimitry Andric if (VectorType::isValidElementType(ArrayTy->getElementType()) && 4195ffd83dbSDimitry Andric ArrayTy->getNumElements() > 0) 4205ffd83dbSDimitry Andric VectorTy = arrayTypeToVecType(ArrayTy); 4215ffd83dbSDimitry Andric } 4225ffd83dbSDimitry Andric 4235ffd83dbSDimitry Andric // Use up to 1/4 of available register budget for vectorization. 4245ffd83dbSDimitry Andric unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 4255ffd83dbSDimitry Andric : (MaxVGPRs * 32); 4265ffd83dbSDimitry Andric 4275ffd83dbSDimitry Andric if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { 4285ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " 4295ffd83dbSDimitry Andric << MaxVGPRs << " registers available\n"); 4305ffd83dbSDimitry Andric return false; 4315ffd83dbSDimitry Andric } 4320b57cec5SDimitry Andric 4330b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 4340b57cec5SDimitry Andric 4350b57cec5SDimitry Andric // FIXME: There is no reason why we can't support larger arrays, we 4360b57cec5SDimitry Andric // are just being conservative for now. 4370b57cec5SDimitry Andric // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 4380b57cec5SDimitry Andric // could also be promoted but we don't currently handle this case 4395ffd83dbSDimitry Andric if (!VectorTy || VectorTy->getNumElements() > 16 || 4405ffd83dbSDimitry Andric VectorTy->getNumElements() < 2) { 4410b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 4420b57cec5SDimitry Andric return false; 4430b57cec5SDimitry Andric } 4440b57cec5SDimitry Andric 4450b57cec5SDimitry Andric std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 4460b57cec5SDimitry Andric std::vector<Value *> WorkList; 4475ffd83dbSDimitry Andric SmallVector<User *, 8> Users(Alloca->users()); 4485ffd83dbSDimitry Andric SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 4495ffd83dbSDimitry Andric Type *VecEltTy = VectorTy->getElementType(); 4505ffd83dbSDimitry Andric while (!Users.empty()) { 4515ffd83dbSDimitry Andric User *AllocaUser = Users.pop_back_val(); 4525ffd83dbSDimitry Andric User *UseUser = UseUsers.pop_back_val(); 4535ffd83dbSDimitry Andric Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 4545ffd83dbSDimitry Andric 4550b57cec5SDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 4560b57cec5SDimitry Andric if (!GEP) { 4575ffd83dbSDimitry Andric if (!canVectorizeInst(Inst, UseUser, DL)) 4580b57cec5SDimitry Andric return false; 4590b57cec5SDimitry Andric 4605ffd83dbSDimitry Andric if (Inst->getOpcode() == Instruction::BitCast) { 4615ffd83dbSDimitry Andric Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 4625ffd83dbSDimitry Andric Type *ToTy = Inst->getType()->getPointerElementType(); 4635ffd83dbSDimitry Andric if (FromTy->isAggregateType() || ToTy->isAggregateType() || 4645ffd83dbSDimitry Andric DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 4655ffd83dbSDimitry Andric continue; 4665ffd83dbSDimitry Andric 4675ffd83dbSDimitry Andric for (User *CastUser : Inst->users()) { 4685ffd83dbSDimitry Andric if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 4695ffd83dbSDimitry Andric continue; 4705ffd83dbSDimitry Andric Users.push_back(CastUser); 4715ffd83dbSDimitry Andric UseUsers.push_back(Inst); 4725ffd83dbSDimitry Andric } 4735ffd83dbSDimitry Andric 4745ffd83dbSDimitry Andric continue; 4755ffd83dbSDimitry Andric } 4765ffd83dbSDimitry Andric 4770b57cec5SDimitry Andric WorkList.push_back(AllocaUser); 4780b57cec5SDimitry Andric continue; 4790b57cec5SDimitry Andric } 4800b57cec5SDimitry Andric 4810b57cec5SDimitry Andric Value *Index = GEPToVectorIndex(GEP); 4820b57cec5SDimitry Andric 4830b57cec5SDimitry Andric // If we can't compute a vector index from this GEP, then we can't 4840b57cec5SDimitry Andric // promote this alloca to vector. 4850b57cec5SDimitry Andric if (!Index) { 4860b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 4870b57cec5SDimitry Andric << '\n'); 4880b57cec5SDimitry Andric return false; 4890b57cec5SDimitry Andric } 4900b57cec5SDimitry Andric 4910b57cec5SDimitry Andric GEPVectorIdx[GEP] = Index; 4925ffd83dbSDimitry Andric Users.append(GEP->user_begin(), GEP->user_end()); 4935ffd83dbSDimitry Andric UseUsers.append(GEP->getNumUses(), GEP); 4940b57cec5SDimitry Andric } 4950b57cec5SDimitry Andric 4960b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 4970b57cec5SDimitry Andric << *VectorTy << '\n'); 4980b57cec5SDimitry Andric 4990b57cec5SDimitry Andric for (Value *V : WorkList) { 5000b57cec5SDimitry Andric Instruction *Inst = cast<Instruction>(V); 5010b57cec5SDimitry Andric IRBuilder<> Builder(Inst); 5020b57cec5SDimitry Andric switch (Inst->getOpcode()) { 5030b57cec5SDimitry Andric case Instruction::Load: { 5045ffd83dbSDimitry Andric if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 5055ffd83dbSDimitry Andric break; 5065ffd83dbSDimitry Andric 5075ffd83dbSDimitry Andric Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 5085ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 5095ffd83dbSDimitry Andric if (!Index) 5100b57cec5SDimitry Andric break; 5110b57cec5SDimitry Andric 5120b57cec5SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 5130b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 5140b57cec5SDimitry Andric Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 5150b57cec5SDimitry Andric Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 5165ffd83dbSDimitry Andric if (Inst->getType() != VecEltTy) 5175ffd83dbSDimitry Andric ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); 5180b57cec5SDimitry Andric Inst->replaceAllUsesWith(ExtractElement); 5190b57cec5SDimitry Andric Inst->eraseFromParent(); 5200b57cec5SDimitry Andric break; 5210b57cec5SDimitry Andric } 5220b57cec5SDimitry Andric case Instruction::Store: { 5230b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 5245ffd83dbSDimitry Andric if (SI->getValueOperand()->getType() == AllocaTy || 5255ffd83dbSDimitry Andric SI->getValueOperand()->getType()->isVectorTy()) 5265ffd83dbSDimitry Andric break; 5275ffd83dbSDimitry Andric 5285ffd83dbSDimitry Andric Value *Ptr = SI->getPointerOperand(); 5295ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 5305ffd83dbSDimitry Andric if (!Index) 5310b57cec5SDimitry Andric break; 5320b57cec5SDimitry Andric 5330b57cec5SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 5340b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 5350b57cec5SDimitry Andric Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 5365ffd83dbSDimitry Andric Value *Elt = SI->getValueOperand(); 5375ffd83dbSDimitry Andric if (Elt->getType() != VecEltTy) 5385ffd83dbSDimitry Andric Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); 5395ffd83dbSDimitry Andric Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 5400b57cec5SDimitry Andric Builder.CreateStore(NewVecValue, BitCast); 5410b57cec5SDimitry Andric Inst->eraseFromParent(); 5420b57cec5SDimitry Andric break; 5430b57cec5SDimitry Andric } 5440b57cec5SDimitry Andric 5450b57cec5SDimitry Andric default: 5460b57cec5SDimitry Andric llvm_unreachable("Inconsistency in instructions promotable to vector"); 5470b57cec5SDimitry Andric } 5480b57cec5SDimitry Andric } 5490b57cec5SDimitry Andric return true; 5500b57cec5SDimitry Andric } 5510b57cec5SDimitry Andric 5520b57cec5SDimitry Andric static bool isCallPromotable(CallInst *CI) { 5530b57cec5SDimitry Andric IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 5540b57cec5SDimitry Andric if (!II) 5550b57cec5SDimitry Andric return false; 5560b57cec5SDimitry Andric 5570b57cec5SDimitry Andric switch (II->getIntrinsicID()) { 5580b57cec5SDimitry Andric case Intrinsic::memcpy: 5590b57cec5SDimitry Andric case Intrinsic::memmove: 5600b57cec5SDimitry Andric case Intrinsic::memset: 5610b57cec5SDimitry Andric case Intrinsic::lifetime_start: 5620b57cec5SDimitry Andric case Intrinsic::lifetime_end: 5630b57cec5SDimitry Andric case Intrinsic::invariant_start: 5640b57cec5SDimitry Andric case Intrinsic::invariant_end: 5650b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 5660b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 5670b57cec5SDimitry Andric case Intrinsic::objectsize: 5680b57cec5SDimitry Andric return true; 5690b57cec5SDimitry Andric default: 5700b57cec5SDimitry Andric return false; 5710b57cec5SDimitry Andric } 5720b57cec5SDimitry Andric } 5730b57cec5SDimitry Andric 574e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 575e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 5760b57cec5SDimitry Andric int OpIdx1) const { 5770b57cec5SDimitry Andric // Figure out which operand is the one we might not be promoting. 5780b57cec5SDimitry Andric Value *OtherOp = Inst->getOperand(OpIdx0); 5790b57cec5SDimitry Andric if (Val == OtherOp) 5800b57cec5SDimitry Andric OtherOp = Inst->getOperand(OpIdx1); 5810b57cec5SDimitry Andric 5820b57cec5SDimitry Andric if (isa<ConstantPointerNull>(OtherOp)) 5830b57cec5SDimitry Andric return true; 5840b57cec5SDimitry Andric 585e8d8bef9SDimitry Andric Value *OtherObj = getUnderlyingObject(OtherOp); 5860b57cec5SDimitry Andric if (!isa<AllocaInst>(OtherObj)) 5870b57cec5SDimitry Andric return false; 5880b57cec5SDimitry Andric 5890b57cec5SDimitry Andric // TODO: We should be able to replace undefs with the right pointer type. 5900b57cec5SDimitry Andric 5910b57cec5SDimitry Andric // TODO: If we know the other base object is another promotable 5920b57cec5SDimitry Andric // alloca, not necessarily this alloca, we can do this. The 5930b57cec5SDimitry Andric // important part is both must have the same address space at 5940b57cec5SDimitry Andric // the end. 5950b57cec5SDimitry Andric if (OtherObj != BaseAlloca) { 5960b57cec5SDimitry Andric LLVM_DEBUG( 5970b57cec5SDimitry Andric dbgs() << "Found a binary instruction with another alloca object\n"); 5980b57cec5SDimitry Andric return false; 5990b57cec5SDimitry Andric } 6000b57cec5SDimitry Andric 6010b57cec5SDimitry Andric return true; 6020b57cec5SDimitry Andric } 6030b57cec5SDimitry Andric 604e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 605e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 6060b57cec5SDimitry Andric 6070b57cec5SDimitry Andric for (User *User : Val->users()) { 6080b57cec5SDimitry Andric if (is_contained(WorkList, User)) 6090b57cec5SDimitry Andric continue; 6100b57cec5SDimitry Andric 6110b57cec5SDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(User)) { 6120b57cec5SDimitry Andric if (!isCallPromotable(CI)) 6130b57cec5SDimitry Andric return false; 6140b57cec5SDimitry Andric 6150b57cec5SDimitry Andric WorkList.push_back(User); 6160b57cec5SDimitry Andric continue; 6170b57cec5SDimitry Andric } 6180b57cec5SDimitry Andric 6190b57cec5SDimitry Andric Instruction *UseInst = cast<Instruction>(User); 6200b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::PtrToInt) 6210b57cec5SDimitry Andric return false; 6220b57cec5SDimitry Andric 6230b57cec5SDimitry Andric if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 6240b57cec5SDimitry Andric if (LI->isVolatile()) 6250b57cec5SDimitry Andric return false; 6260b57cec5SDimitry Andric 6270b57cec5SDimitry Andric continue; 6280b57cec5SDimitry Andric } 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 6310b57cec5SDimitry Andric if (SI->isVolatile()) 6320b57cec5SDimitry Andric return false; 6330b57cec5SDimitry Andric 6340b57cec5SDimitry Andric // Reject if the stored value is not the pointer operand. 6350b57cec5SDimitry Andric if (SI->getPointerOperand() != Val) 6360b57cec5SDimitry Andric return false; 6370b57cec5SDimitry Andric } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 6380b57cec5SDimitry Andric if (RMW->isVolatile()) 6390b57cec5SDimitry Andric return false; 6400b57cec5SDimitry Andric } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 6410b57cec5SDimitry Andric if (CAS->isVolatile()) 6420b57cec5SDimitry Andric return false; 6430b57cec5SDimitry Andric } 6440b57cec5SDimitry Andric 6450b57cec5SDimitry Andric // Only promote a select if we know that the other select operand 6460b57cec5SDimitry Andric // is from another pointer that will also be promoted. 6470b57cec5SDimitry Andric if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 6480b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 6490b57cec5SDimitry Andric return false; 6500b57cec5SDimitry Andric 6510b57cec5SDimitry Andric // May need to rewrite constant operands. 6520b57cec5SDimitry Andric WorkList.push_back(ICmp); 6530b57cec5SDimitry Andric } 6540b57cec5SDimitry Andric 6550b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 6560b57cec5SDimitry Andric // Give up if the pointer may be captured. 6570b57cec5SDimitry Andric if (PointerMayBeCaptured(UseInst, true, true)) 6580b57cec5SDimitry Andric return false; 6590b57cec5SDimitry Andric // Don't collect the users of this. 6600b57cec5SDimitry Andric WorkList.push_back(User); 6610b57cec5SDimitry Andric continue; 6620b57cec5SDimitry Andric } 6630b57cec5SDimitry Andric 664*fe6060f1SDimitry Andric // Do not promote vector/aggregate type instructions. It is hard to track 665*fe6060f1SDimitry Andric // their users. 666*fe6060f1SDimitry Andric if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 667*fe6060f1SDimitry Andric return false; 668*fe6060f1SDimitry Andric 6690b57cec5SDimitry Andric if (!User->getType()->isPointerTy()) 6700b57cec5SDimitry Andric continue; 6710b57cec5SDimitry Andric 6720b57cec5SDimitry Andric if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 6730b57cec5SDimitry Andric // Be conservative if an address could be computed outside the bounds of 6740b57cec5SDimitry Andric // the alloca. 6750b57cec5SDimitry Andric if (!GEP->isInBounds()) 6760b57cec5SDimitry Andric return false; 6770b57cec5SDimitry Andric } 6780b57cec5SDimitry Andric 6790b57cec5SDimitry Andric // Only promote a select if we know that the other select operand is from 6800b57cec5SDimitry Andric // another pointer that will also be promoted. 6810b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 6820b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 6830b57cec5SDimitry Andric return false; 6840b57cec5SDimitry Andric } 6850b57cec5SDimitry Andric 6860b57cec5SDimitry Andric // Repeat for phis. 6870b57cec5SDimitry Andric if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 6880b57cec5SDimitry Andric // TODO: Handle more complex cases. We should be able to replace loops 6890b57cec5SDimitry Andric // over arrays. 6900b57cec5SDimitry Andric switch (Phi->getNumIncomingValues()) { 6910b57cec5SDimitry Andric case 1: 6920b57cec5SDimitry Andric break; 6930b57cec5SDimitry Andric case 2: 6940b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 6950b57cec5SDimitry Andric return false; 6960b57cec5SDimitry Andric break; 6970b57cec5SDimitry Andric default: 6980b57cec5SDimitry Andric return false; 6990b57cec5SDimitry Andric } 7000b57cec5SDimitry Andric } 7010b57cec5SDimitry Andric 7020b57cec5SDimitry Andric WorkList.push_back(User); 7030b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 7040b57cec5SDimitry Andric return false; 7050b57cec5SDimitry Andric } 7060b57cec5SDimitry Andric 7070b57cec5SDimitry Andric return true; 7080b57cec5SDimitry Andric } 7090b57cec5SDimitry Andric 710e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 7110b57cec5SDimitry Andric 7120b57cec5SDimitry Andric FunctionType *FTy = F.getFunctionType(); 713e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 7140b57cec5SDimitry Andric 7150b57cec5SDimitry Andric // If the function has any arguments in the local address space, then it's 7160b57cec5SDimitry Andric // possible these arguments require the entire local memory space, so 7170b57cec5SDimitry Andric // we cannot use local memory in the pass. 7180b57cec5SDimitry Andric for (Type *ParamTy : FTy->params()) { 7190b57cec5SDimitry Andric PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 7200b57cec5SDimitry Andric if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 7210b57cec5SDimitry Andric LocalMemLimit = 0; 7220b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 7230b57cec5SDimitry Andric "local memory disabled.\n"); 7240b57cec5SDimitry Andric return false; 7250b57cec5SDimitry Andric } 7260b57cec5SDimitry Andric } 7270b57cec5SDimitry Andric 7280b57cec5SDimitry Andric LocalMemLimit = ST.getLocalMemorySize(); 7290b57cec5SDimitry Andric if (LocalMemLimit == 0) 7300b57cec5SDimitry Andric return false; 7310b57cec5SDimitry Andric 732e8d8bef9SDimitry Andric SmallVector<const Constant *, 16> Stack; 733e8d8bef9SDimitry Andric SmallPtrSet<const Constant *, 8> VisitedConstants; 734e8d8bef9SDimitry Andric SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 7350b57cec5SDimitry Andric 736e8d8bef9SDimitry Andric auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 737e8d8bef9SDimitry Andric for (const User *U : Val->users()) { 738e8d8bef9SDimitry Andric if (const Instruction *Use = dyn_cast<Instruction>(U)) { 739e8d8bef9SDimitry Andric if (Use->getParent()->getParent() == &F) 740e8d8bef9SDimitry Andric return true; 741e8d8bef9SDimitry Andric } else { 742e8d8bef9SDimitry Andric const Constant *C = cast<Constant>(U); 743e8d8bef9SDimitry Andric if (VisitedConstants.insert(C).second) 744e8d8bef9SDimitry Andric Stack.push_back(C); 745e8d8bef9SDimitry Andric } 746e8d8bef9SDimitry Andric } 747e8d8bef9SDimitry Andric 748e8d8bef9SDimitry Andric return false; 749e8d8bef9SDimitry Andric }; 750e8d8bef9SDimitry Andric 7510b57cec5SDimitry Andric for (GlobalVariable &GV : Mod->globals()) { 752480093f4SDimitry Andric if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 7530b57cec5SDimitry Andric continue; 7540b57cec5SDimitry Andric 755e8d8bef9SDimitry Andric if (visitUsers(&GV, &GV)) { 756e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 757e8d8bef9SDimitry Andric Stack.clear(); 7580b57cec5SDimitry Andric continue; 759e8d8bef9SDimitry Andric } 7600b57cec5SDimitry Andric 761e8d8bef9SDimitry Andric // For any ConstantExpr uses, we need to recursively search the users until 762e8d8bef9SDimitry Andric // we see a function. 763e8d8bef9SDimitry Andric while (!Stack.empty()) { 764e8d8bef9SDimitry Andric const Constant *C = Stack.pop_back_val(); 765e8d8bef9SDimitry Andric if (visitUsers(&GV, C)) { 766e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 767e8d8bef9SDimitry Andric Stack.clear(); 7680b57cec5SDimitry Andric break; 7690b57cec5SDimitry Andric } 7700b57cec5SDimitry Andric } 7710b57cec5SDimitry Andric } 7720b57cec5SDimitry Andric 773e8d8bef9SDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 774e8d8bef9SDimitry Andric SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 775e8d8bef9SDimitry Andric AllocatedSizes.reserve(UsedLDS.size()); 776e8d8bef9SDimitry Andric 777e8d8bef9SDimitry Andric for (const GlobalVariable *GV : UsedLDS) { 778e8d8bef9SDimitry Andric Align Alignment = 779e8d8bef9SDimitry Andric DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 780e8d8bef9SDimitry Andric uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 781e8d8bef9SDimitry Andric AllocatedSizes.emplace_back(AllocSize, Alignment); 782e8d8bef9SDimitry Andric } 783e8d8bef9SDimitry Andric 784e8d8bef9SDimitry Andric // Sort to try to estimate the worst case alignment padding 785e8d8bef9SDimitry Andric // 786e8d8bef9SDimitry Andric // FIXME: We should really do something to fix the addresses to a more optimal 787e8d8bef9SDimitry Andric // value instead 788e8d8bef9SDimitry Andric llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS, 789e8d8bef9SDimitry Andric std::pair<uint64_t, Align> RHS) { 790e8d8bef9SDimitry Andric return LHS.second < RHS.second; 791e8d8bef9SDimitry Andric }); 792e8d8bef9SDimitry Andric 793e8d8bef9SDimitry Andric // Check how much local memory is being used by global objects 794e8d8bef9SDimitry Andric CurrentLocalMemUsage = 0; 795e8d8bef9SDimitry Andric 796e8d8bef9SDimitry Andric // FIXME: Try to account for padding here. The real padding and address is 797e8d8bef9SDimitry Andric // currently determined from the inverse order of uses in the function when 798e8d8bef9SDimitry Andric // legalizing, which could also potentially change. We try to estimate the 799e8d8bef9SDimitry Andric // worst case here, but we probably should fix the addresses earlier. 800e8d8bef9SDimitry Andric for (auto Alloc : AllocatedSizes) { 801e8d8bef9SDimitry Andric CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 802e8d8bef9SDimitry Andric CurrentLocalMemUsage += Alloc.first; 803e8d8bef9SDimitry Andric } 804e8d8bef9SDimitry Andric 8050b57cec5SDimitry Andric unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 8060b57cec5SDimitry Andric F); 8070b57cec5SDimitry Andric 8080b57cec5SDimitry Andric // Restrict local memory usage so that we don't drastically reduce occupancy, 8090b57cec5SDimitry Andric // unless it is already significantly reduced. 8100b57cec5SDimitry Andric 8110b57cec5SDimitry Andric // TODO: Have some sort of hint or other heuristics to guess occupancy based 8120b57cec5SDimitry Andric // on other factors.. 8130b57cec5SDimitry Andric unsigned OccupancyHint = ST.getWavesPerEU(F).second; 8140b57cec5SDimitry Andric if (OccupancyHint == 0) 8150b57cec5SDimitry Andric OccupancyHint = 7; 8160b57cec5SDimitry Andric 8170b57cec5SDimitry Andric // Clamp to max value. 8180b57cec5SDimitry Andric OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 8190b57cec5SDimitry Andric 8200b57cec5SDimitry Andric // Check the hint but ignore it if it's obviously wrong from the existing LDS 8210b57cec5SDimitry Andric // usage. 8220b57cec5SDimitry Andric MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 8230b57cec5SDimitry Andric 8240b57cec5SDimitry Andric 8250b57cec5SDimitry Andric // Round up to the next tier of usage. 8260b57cec5SDimitry Andric unsigned MaxSizeWithWaveCount 8270b57cec5SDimitry Andric = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 8280b57cec5SDimitry Andric 8290b57cec5SDimitry Andric // Program is possibly broken by using more local mem than available. 8300b57cec5SDimitry Andric if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 8310b57cec5SDimitry Andric return false; 8320b57cec5SDimitry Andric 8330b57cec5SDimitry Andric LocalMemLimit = MaxSizeWithWaveCount; 8340b57cec5SDimitry Andric 8350b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 8360b57cec5SDimitry Andric << " bytes of LDS\n" 8370b57cec5SDimitry Andric << " Rounding size to " << MaxSizeWithWaveCount 8380b57cec5SDimitry Andric << " with a maximum occupancy of " << MaxOccupancy << '\n' 8390b57cec5SDimitry Andric << " and " << (LocalMemLimit - CurrentLocalMemUsage) 8400b57cec5SDimitry Andric << " available for promotion\n"); 8410b57cec5SDimitry Andric 8420b57cec5SDimitry Andric return true; 8430b57cec5SDimitry Andric } 8440b57cec5SDimitry Andric 8450b57cec5SDimitry Andric // FIXME: Should try to pick the most likely to be profitable allocas first. 846e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { 8470b57cec5SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 8480b57cec5SDimitry Andric // the array type is the canonical form. 8490b57cec5SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 8500b57cec5SDimitry Andric return false; 8510b57cec5SDimitry Andric 8525ffd83dbSDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 8530b57cec5SDimitry Andric IRBuilder<> Builder(&I); 8540b57cec5SDimitry Andric 8550b57cec5SDimitry Andric // First try to replace the alloca with a vector 8560b57cec5SDimitry Andric Type *AllocaTy = I.getAllocatedType(); 8570b57cec5SDimitry Andric 8580b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 8590b57cec5SDimitry Andric 8605ffd83dbSDimitry Andric if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) 8610b57cec5SDimitry Andric return true; // Promoted to vector. 8620b57cec5SDimitry Andric 8630b57cec5SDimitry Andric if (DisablePromoteAllocaToLDS) 8640b57cec5SDimitry Andric return false; 8650b57cec5SDimitry Andric 8660b57cec5SDimitry Andric const Function &ContainingFunction = *I.getParent()->getParent(); 8670b57cec5SDimitry Andric CallingConv::ID CC = ContainingFunction.getCallingConv(); 8680b57cec5SDimitry Andric 8690b57cec5SDimitry Andric // Don't promote the alloca to LDS for shader calling conventions as the work 8700b57cec5SDimitry Andric // item ID intrinsics are not supported for these calling conventions. 8710b57cec5SDimitry Andric // Furthermore not all LDS is available for some of the stages. 8720b57cec5SDimitry Andric switch (CC) { 8730b57cec5SDimitry Andric case CallingConv::AMDGPU_KERNEL: 8740b57cec5SDimitry Andric case CallingConv::SPIR_KERNEL: 8750b57cec5SDimitry Andric break; 8760b57cec5SDimitry Andric default: 8770b57cec5SDimitry Andric LLVM_DEBUG( 8780b57cec5SDimitry Andric dbgs() 8790b57cec5SDimitry Andric << " promote alloca to LDS not supported with calling convention.\n"); 8800b57cec5SDimitry Andric return false; 8810b57cec5SDimitry Andric } 8820b57cec5SDimitry Andric 8830b57cec5SDimitry Andric // Not likely to have sufficient local memory for promotion. 8840b57cec5SDimitry Andric if (!SufficientLDS) 8850b57cec5SDimitry Andric return false; 8860b57cec5SDimitry Andric 887e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 8880b57cec5SDimitry Andric unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 8890b57cec5SDimitry Andric 8905ffd83dbSDimitry Andric Align Alignment = 8915ffd83dbSDimitry Andric DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 8920b57cec5SDimitry Andric 8930b57cec5SDimitry Andric // FIXME: This computed padding is likely wrong since it depends on inverse 8940b57cec5SDimitry Andric // usage order. 8950b57cec5SDimitry Andric // 8960b57cec5SDimitry Andric // FIXME: It is also possible that if we're allowed to use all of the memory 8970b57cec5SDimitry Andric // could could end up using more than the maximum due to alignment padding. 8980b57cec5SDimitry Andric 8995ffd83dbSDimitry Andric uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 9000b57cec5SDimitry Andric uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 9010b57cec5SDimitry Andric NewSize += AllocSize; 9020b57cec5SDimitry Andric 9030b57cec5SDimitry Andric if (NewSize > LocalMemLimit) { 9040b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << AllocSize 9050b57cec5SDimitry Andric << " bytes of local memory not available to promote\n"); 9060b57cec5SDimitry Andric return false; 9070b57cec5SDimitry Andric } 9080b57cec5SDimitry Andric 9090b57cec5SDimitry Andric CurrentLocalMemUsage = NewSize; 9100b57cec5SDimitry Andric 9110b57cec5SDimitry Andric std::vector<Value*> WorkList; 9120b57cec5SDimitry Andric 9130b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 9140b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 9150b57cec5SDimitry Andric return false; 9160b57cec5SDimitry Andric } 9170b57cec5SDimitry Andric 9180b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 9190b57cec5SDimitry Andric 9200b57cec5SDimitry Andric Function *F = I.getParent()->getParent(); 9210b57cec5SDimitry Andric 9220b57cec5SDimitry Andric Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 9230b57cec5SDimitry Andric GlobalVariable *GV = new GlobalVariable( 9240b57cec5SDimitry Andric *Mod, GVTy, false, GlobalValue::InternalLinkage, 9250b57cec5SDimitry Andric UndefValue::get(GVTy), 9260b57cec5SDimitry Andric Twine(F->getName()) + Twine('.') + I.getName(), 9270b57cec5SDimitry Andric nullptr, 9280b57cec5SDimitry Andric GlobalVariable::NotThreadLocal, 9290b57cec5SDimitry Andric AMDGPUAS::LOCAL_ADDRESS); 9300b57cec5SDimitry Andric GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 9318bcb0991SDimitry Andric GV->setAlignment(MaybeAlign(I.getAlignment())); 9320b57cec5SDimitry Andric 9330b57cec5SDimitry Andric Value *TCntY, *TCntZ; 9340b57cec5SDimitry Andric 9350b57cec5SDimitry Andric std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 9360b57cec5SDimitry Andric Value *TIdX = getWorkitemID(Builder, 0); 9370b57cec5SDimitry Andric Value *TIdY = getWorkitemID(Builder, 1); 9380b57cec5SDimitry Andric Value *TIdZ = getWorkitemID(Builder, 2); 9390b57cec5SDimitry Andric 9400b57cec5SDimitry Andric Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 9410b57cec5SDimitry Andric Tmp0 = Builder.CreateMul(Tmp0, TIdX); 9420b57cec5SDimitry Andric Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 9430b57cec5SDimitry Andric Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 9440b57cec5SDimitry Andric TID = Builder.CreateAdd(TID, TIdZ); 9450b57cec5SDimitry Andric 9460b57cec5SDimitry Andric Value *Indices[] = { 9470b57cec5SDimitry Andric Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 9480b57cec5SDimitry Andric TID 9490b57cec5SDimitry Andric }; 9500b57cec5SDimitry Andric 9510b57cec5SDimitry Andric Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 9520b57cec5SDimitry Andric I.mutateType(Offset->getType()); 9530b57cec5SDimitry Andric I.replaceAllUsesWith(Offset); 9540b57cec5SDimitry Andric I.eraseFromParent(); 9550b57cec5SDimitry Andric 956*fe6060f1SDimitry Andric SmallVector<IntrinsicInst *> DeferredIntrs; 957*fe6060f1SDimitry Andric 9580b57cec5SDimitry Andric for (Value *V : WorkList) { 9590b57cec5SDimitry Andric CallInst *Call = dyn_cast<CallInst>(V); 9600b57cec5SDimitry Andric if (!Call) { 9610b57cec5SDimitry Andric if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 9620b57cec5SDimitry Andric Value *Src0 = CI->getOperand(0); 963*fe6060f1SDimitry Andric PointerType *NewTy = PointerType::getWithSamePointeeType( 964*fe6060f1SDimitry Andric cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); 9650b57cec5SDimitry Andric 9660b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(0))) 9670b57cec5SDimitry Andric CI->setOperand(0, ConstantPointerNull::get(NewTy)); 9680b57cec5SDimitry Andric 9690b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(1))) 9700b57cec5SDimitry Andric CI->setOperand(1, ConstantPointerNull::get(NewTy)); 9710b57cec5SDimitry Andric 9720b57cec5SDimitry Andric continue; 9730b57cec5SDimitry Andric } 9740b57cec5SDimitry Andric 9750b57cec5SDimitry Andric // The operand's value should be corrected on its own and we don't want to 9760b57cec5SDimitry Andric // touch the users. 9770b57cec5SDimitry Andric if (isa<AddrSpaceCastInst>(V)) 9780b57cec5SDimitry Andric continue; 9790b57cec5SDimitry Andric 980*fe6060f1SDimitry Andric PointerType *NewTy = PointerType::getWithSamePointeeType( 981*fe6060f1SDimitry Andric cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS); 9820b57cec5SDimitry Andric 9830b57cec5SDimitry Andric // FIXME: It doesn't really make sense to try to do this for all 9840b57cec5SDimitry Andric // instructions. 9850b57cec5SDimitry Andric V->mutateType(NewTy); 9860b57cec5SDimitry Andric 9870b57cec5SDimitry Andric // Adjust the types of any constant operands. 9880b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 9890b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(1))) 9900b57cec5SDimitry Andric SI->setOperand(1, ConstantPointerNull::get(NewTy)); 9910b57cec5SDimitry Andric 9920b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(2))) 9930b57cec5SDimitry Andric SI->setOperand(2, ConstantPointerNull::get(NewTy)); 9940b57cec5SDimitry Andric } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 9950b57cec5SDimitry Andric for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 9960b57cec5SDimitry Andric if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 9970b57cec5SDimitry Andric Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 9980b57cec5SDimitry Andric } 9990b57cec5SDimitry Andric } 10000b57cec5SDimitry Andric 10010b57cec5SDimitry Andric continue; 10020b57cec5SDimitry Andric } 10030b57cec5SDimitry Andric 10040b57cec5SDimitry Andric IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 10050b57cec5SDimitry Andric Builder.SetInsertPoint(Intr); 10060b57cec5SDimitry Andric switch (Intr->getIntrinsicID()) { 10070b57cec5SDimitry Andric case Intrinsic::lifetime_start: 10080b57cec5SDimitry Andric case Intrinsic::lifetime_end: 10090b57cec5SDimitry Andric // These intrinsics are for address space 0 only 10100b57cec5SDimitry Andric Intr->eraseFromParent(); 10110b57cec5SDimitry Andric continue; 1012*fe6060f1SDimitry Andric case Intrinsic::memcpy: 1013*fe6060f1SDimitry Andric case Intrinsic::memmove: 1014*fe6060f1SDimitry Andric // These have 2 pointer operands. In case if second pointer also needs 1015*fe6060f1SDimitry Andric // to be replaced we defer processing of these intrinsics until all 1016*fe6060f1SDimitry Andric // other values are processed. 1017*fe6060f1SDimitry Andric DeferredIntrs.push_back(Intr); 10180b57cec5SDimitry Andric continue; 10190b57cec5SDimitry Andric case Intrinsic::memset: { 10200b57cec5SDimitry Andric MemSetInst *MemSet = cast<MemSetInst>(Intr); 1021480093f4SDimitry Andric Builder.CreateMemSet( 1022480093f4SDimitry Andric MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 1023480093f4SDimitry Andric MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 10240b57cec5SDimitry Andric Intr->eraseFromParent(); 10250b57cec5SDimitry Andric continue; 10260b57cec5SDimitry Andric } 10270b57cec5SDimitry Andric case Intrinsic::invariant_start: 10280b57cec5SDimitry Andric case Intrinsic::invariant_end: 10290b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 10300b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 10310b57cec5SDimitry Andric Intr->eraseFromParent(); 10320b57cec5SDimitry Andric // FIXME: I think the invariant marker should still theoretically apply, 10330b57cec5SDimitry Andric // but the intrinsics need to be changed to accept pointers with any 10340b57cec5SDimitry Andric // address space. 10350b57cec5SDimitry Andric continue; 10360b57cec5SDimitry Andric case Intrinsic::objectsize: { 10370b57cec5SDimitry Andric Value *Src = Intr->getOperand(0); 1038*fe6060f1SDimitry Andric Function *ObjectSize = Intrinsic::getDeclaration( 1039*fe6060f1SDimitry Andric Mod, Intrinsic::objectsize, 1040*fe6060f1SDimitry Andric {Intr->getType(), 1041*fe6060f1SDimitry Andric PointerType::getWithSamePointeeType( 1042*fe6060f1SDimitry Andric cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); 10430b57cec5SDimitry Andric 10440b57cec5SDimitry Andric CallInst *NewCall = Builder.CreateCall( 10450b57cec5SDimitry Andric ObjectSize, 10460b57cec5SDimitry Andric {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 10470b57cec5SDimitry Andric Intr->replaceAllUsesWith(NewCall); 10480b57cec5SDimitry Andric Intr->eraseFromParent(); 10490b57cec5SDimitry Andric continue; 10500b57cec5SDimitry Andric } 10510b57cec5SDimitry Andric default: 10520b57cec5SDimitry Andric Intr->print(errs()); 10530b57cec5SDimitry Andric llvm_unreachable("Don't know how to promote alloca intrinsic use."); 10540b57cec5SDimitry Andric } 10550b57cec5SDimitry Andric } 1056*fe6060f1SDimitry Andric 1057*fe6060f1SDimitry Andric for (IntrinsicInst *Intr : DeferredIntrs) { 1058*fe6060f1SDimitry Andric Builder.SetInsertPoint(Intr); 1059*fe6060f1SDimitry Andric Intrinsic::ID ID = Intr->getIntrinsicID(); 1060*fe6060f1SDimitry Andric assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1061*fe6060f1SDimitry Andric 1062*fe6060f1SDimitry Andric MemTransferInst *MI = cast<MemTransferInst>(Intr); 1063*fe6060f1SDimitry Andric auto *B = 1064*fe6060f1SDimitry Andric Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), 1065*fe6060f1SDimitry Andric MI->getRawSource(), MI->getSourceAlign(), 1066*fe6060f1SDimitry Andric MI->getLength(), MI->isVolatile()); 1067*fe6060f1SDimitry Andric 1068*fe6060f1SDimitry Andric for (unsigned I = 1; I != 3; ++I) { 1069*fe6060f1SDimitry Andric if (uint64_t Bytes = Intr->getDereferenceableBytes(I)) { 1070*fe6060f1SDimitry Andric B->addDereferenceableAttr(I, Bytes); 1071*fe6060f1SDimitry Andric } 1072*fe6060f1SDimitry Andric } 1073*fe6060f1SDimitry Andric 1074*fe6060f1SDimitry Andric Intr->eraseFromParent(); 1075*fe6060f1SDimitry Andric } 1076*fe6060f1SDimitry Andric 10770b57cec5SDimitry Andric return true; 10780b57cec5SDimitry Andric } 10790b57cec5SDimitry Andric 1080e8d8bef9SDimitry Andric bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { 1081e8d8bef9SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 1082e8d8bef9SDimitry Andric // the array type is the canonical form. 1083e8d8bef9SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 10845ffd83dbSDimitry Andric return false; 10855ffd83dbSDimitry Andric 1086e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1087e8d8bef9SDimitry Andric 1088e8d8bef9SDimitry Andric Module *Mod = I.getParent()->getParent()->getParent(); 1089e8d8bef9SDimitry Andric return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); 1090e8d8bef9SDimitry Andric } 1091e8d8bef9SDimitry Andric 1092e8d8bef9SDimitry Andric bool promoteAllocasToVector(Function &F, TargetMachine &TM) { 1093e8d8bef9SDimitry Andric if (DisablePromoteAllocaToVector) 10945ffd83dbSDimitry Andric return false; 10955ffd83dbSDimitry Andric 1096e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 10975ffd83dbSDimitry Andric if (!ST.isPromoteAllocaEnabled()) 10985ffd83dbSDimitry Andric return false; 10995ffd83dbSDimitry Andric 1100e8d8bef9SDimitry Andric unsigned MaxVGPRs; 1101e8d8bef9SDimitry Andric if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1102e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 11035ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 11045ffd83dbSDimitry Andric } else { 11055ffd83dbSDimitry Andric MaxVGPRs = 128; 11065ffd83dbSDimitry Andric } 11075ffd83dbSDimitry Andric 11085ffd83dbSDimitry Andric bool Changed = false; 11095ffd83dbSDimitry Andric BasicBlock &EntryBB = *F.begin(); 11105ffd83dbSDimitry Andric 11115ffd83dbSDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 11125ffd83dbSDimitry Andric for (Instruction &I : EntryBB) { 11135ffd83dbSDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 11145ffd83dbSDimitry Andric Allocas.push_back(AI); 11155ffd83dbSDimitry Andric } 11165ffd83dbSDimitry Andric 11175ffd83dbSDimitry Andric for (AllocaInst *AI : Allocas) { 1118e8d8bef9SDimitry Andric if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) 11195ffd83dbSDimitry Andric Changed = true; 11205ffd83dbSDimitry Andric } 11215ffd83dbSDimitry Andric 11225ffd83dbSDimitry Andric return Changed; 11235ffd83dbSDimitry Andric } 11245ffd83dbSDimitry Andric 1125e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1126e8d8bef9SDimitry Andric if (skipFunction(F)) 11275ffd83dbSDimitry Andric return false; 1128e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1129e8d8bef9SDimitry Andric return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); 1130e8d8bef9SDimitry Andric } 1131e8d8bef9SDimitry Andric return false; 1132e8d8bef9SDimitry Andric } 11335ffd83dbSDimitry Andric 1134e8d8bef9SDimitry Andric PreservedAnalyses 1135e8d8bef9SDimitry Andric AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 1136e8d8bef9SDimitry Andric bool Changed = promoteAllocasToVector(F, TM); 1137e8d8bef9SDimitry Andric if (Changed) { 1138e8d8bef9SDimitry Andric PreservedAnalyses PA; 1139e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 1140e8d8bef9SDimitry Andric return PA; 1141e8d8bef9SDimitry Andric } 1142e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 11435ffd83dbSDimitry Andric } 11445ffd83dbSDimitry Andric 11450b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAlloca() { 11460b57cec5SDimitry Andric return new AMDGPUPromoteAlloca(); 11470b57cec5SDimitry Andric } 11485ffd83dbSDimitry Andric 11495ffd83dbSDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 11505ffd83dbSDimitry Andric return new AMDGPUPromoteAllocaToVector(); 11515ffd83dbSDimitry Andric } 1152