10b57cec5SDimitry Andric //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This pass eliminates allocas by either converting them into vectors or 100b57cec5SDimitry Andric // by migrating them to local address space. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #include "AMDGPU.h" 15*e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 160b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h" 170b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 180b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 190b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 20480093f4SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 21480093f4SDimitry Andric #include "llvm/IR/IntrinsicsR600.h" 220b57cec5SDimitry Andric #include "llvm/Pass.h" 230b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 240b57cec5SDimitry Andric 250b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-promote-alloca" 260b57cec5SDimitry Andric 270b57cec5SDimitry Andric using namespace llvm; 280b57cec5SDimitry Andric 290b57cec5SDimitry Andric namespace { 300b57cec5SDimitry Andric 310b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToVector( 320b57cec5SDimitry Andric "disable-promote-alloca-to-vector", 330b57cec5SDimitry Andric cl::desc("Disable promote alloca to vector"), 340b57cec5SDimitry Andric cl::init(false)); 350b57cec5SDimitry Andric 360b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToLDS( 370b57cec5SDimitry Andric "disable-promote-alloca-to-lds", 380b57cec5SDimitry Andric cl::desc("Disable promote alloca to LDS"), 390b57cec5SDimitry Andric cl::init(false)); 400b57cec5SDimitry Andric 415ffd83dbSDimitry Andric static cl::opt<unsigned> PromoteAllocaToVectorLimit( 425ffd83dbSDimitry Andric "amdgpu-promote-alloca-to-vector-limit", 435ffd83dbSDimitry Andric cl::desc("Maximum byte size to consider promote alloca to vector"), 445ffd83dbSDimitry Andric cl::init(0)); 455ffd83dbSDimitry Andric 460b57cec5SDimitry Andric // FIXME: This can create globals so should be a module pass. 470b57cec5SDimitry Andric class AMDGPUPromoteAlloca : public FunctionPass { 48*e8d8bef9SDimitry Andric public: 49*e8d8bef9SDimitry Andric static char ID; 50*e8d8bef9SDimitry Andric 51*e8d8bef9SDimitry Andric AMDGPUPromoteAlloca() : FunctionPass(ID) {} 52*e8d8bef9SDimitry Andric 53*e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override; 54*e8d8bef9SDimitry Andric 55*e8d8bef9SDimitry Andric StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 56*e8d8bef9SDimitry Andric 57*e8d8bef9SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 58*e8d8bef9SDimitry Andric 59*e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 60*e8d8bef9SDimitry Andric AU.setPreservesCFG(); 61*e8d8bef9SDimitry Andric FunctionPass::getAnalysisUsage(AU); 62*e8d8bef9SDimitry Andric } 63*e8d8bef9SDimitry Andric }; 64*e8d8bef9SDimitry Andric 65*e8d8bef9SDimitry Andric class AMDGPUPromoteAllocaImpl { 660b57cec5SDimitry Andric private: 67*e8d8bef9SDimitry Andric const TargetMachine &TM; 680b57cec5SDimitry Andric Module *Mod = nullptr; 690b57cec5SDimitry Andric const DataLayout *DL = nullptr; 700b57cec5SDimitry Andric 710b57cec5SDimitry Andric // FIXME: This should be per-kernel. 720b57cec5SDimitry Andric uint32_t LocalMemLimit = 0; 730b57cec5SDimitry Andric uint32_t CurrentLocalMemUsage = 0; 745ffd83dbSDimitry Andric unsigned MaxVGPRs; 750b57cec5SDimitry Andric 760b57cec5SDimitry Andric bool IsAMDGCN = false; 770b57cec5SDimitry Andric bool IsAMDHSA = false; 780b57cec5SDimitry Andric 790b57cec5SDimitry Andric std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 800b57cec5SDimitry Andric Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 810b57cec5SDimitry Andric 820b57cec5SDimitry Andric /// BaseAlloca is the alloca root the search started from. 830b57cec5SDimitry Andric /// Val may be that alloca or a recursive user of it. 840b57cec5SDimitry Andric bool collectUsesWithPtrTypes(Value *BaseAlloca, 850b57cec5SDimitry Andric Value *Val, 860b57cec5SDimitry Andric std::vector<Value*> &WorkList) const; 870b57cec5SDimitry Andric 880b57cec5SDimitry Andric /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 890b57cec5SDimitry Andric /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 900b57cec5SDimitry Andric /// Returns true if both operands are derived from the same alloca. Val should 910b57cec5SDimitry Andric /// be the same value as one of the input operands of UseInst. 920b57cec5SDimitry Andric bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 930b57cec5SDimitry Andric Instruction *UseInst, 940b57cec5SDimitry Andric int OpIdx0, int OpIdx1) const; 950b57cec5SDimitry Andric 960b57cec5SDimitry Andric /// Check whether we have enough local memory for promotion. 970b57cec5SDimitry Andric bool hasSufficientLocalMem(const Function &F); 980b57cec5SDimitry Andric 990b57cec5SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 1000b57cec5SDimitry Andric 101*e8d8bef9SDimitry Andric public: 102*e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} 103*e8d8bef9SDimitry Andric bool run(Function &F); 1040b57cec5SDimitry Andric }; 1050b57cec5SDimitry Andric 1065ffd83dbSDimitry Andric class AMDGPUPromoteAllocaToVector : public FunctionPass { 1075ffd83dbSDimitry Andric public: 1085ffd83dbSDimitry Andric static char ID; 1095ffd83dbSDimitry Andric 1105ffd83dbSDimitry Andric AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 1115ffd83dbSDimitry Andric 1125ffd83dbSDimitry Andric bool runOnFunction(Function &F) override; 1135ffd83dbSDimitry Andric 1145ffd83dbSDimitry Andric StringRef getPassName() const override { 1155ffd83dbSDimitry Andric return "AMDGPU Promote Alloca to vector"; 1165ffd83dbSDimitry Andric } 1175ffd83dbSDimitry Andric 1185ffd83dbSDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 1195ffd83dbSDimitry Andric AU.setPreservesCFG(); 1205ffd83dbSDimitry Andric FunctionPass::getAnalysisUsage(AU); 1215ffd83dbSDimitry Andric } 1225ffd83dbSDimitry Andric }; 1235ffd83dbSDimitry Andric 1240b57cec5SDimitry Andric } // end anonymous namespace 1250b57cec5SDimitry Andric 1260b57cec5SDimitry Andric char AMDGPUPromoteAlloca::ID = 0; 1275ffd83dbSDimitry Andric char AMDGPUPromoteAllocaToVector::ID = 0; 1280b57cec5SDimitry Andric 1290b57cec5SDimitry Andric INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 1300b57cec5SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 1310b57cec5SDimitry Andric 1325ffd83dbSDimitry Andric INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 1335ffd83dbSDimitry Andric "AMDGPU promote alloca to vector", false, false) 1345ffd83dbSDimitry Andric 1350b57cec5SDimitry Andric char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 1365ffd83dbSDimitry Andric char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 1370b57cec5SDimitry Andric 1380b57cec5SDimitry Andric bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 1390b57cec5SDimitry Andric if (skipFunction(F)) 1400b57cec5SDimitry Andric return false; 1410b57cec5SDimitry Andric 142*e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 143*e8d8bef9SDimitry Andric return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); 144*e8d8bef9SDimitry Andric } 1450b57cec5SDimitry Andric return false; 146*e8d8bef9SDimitry Andric } 1470b57cec5SDimitry Andric 148*e8d8bef9SDimitry Andric PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 149*e8d8bef9SDimitry Andric FunctionAnalysisManager &AM) { 150*e8d8bef9SDimitry Andric bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); 151*e8d8bef9SDimitry Andric if (Changed) { 152*e8d8bef9SDimitry Andric PreservedAnalyses PA; 153*e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 154*e8d8bef9SDimitry Andric return PA; 155*e8d8bef9SDimitry Andric } 156*e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 157*e8d8bef9SDimitry Andric } 158*e8d8bef9SDimitry Andric 159*e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::run(Function &F) { 160*e8d8bef9SDimitry Andric Mod = F.getParent(); 161*e8d8bef9SDimitry Andric DL = &Mod->getDataLayout(); 162*e8d8bef9SDimitry Andric 163*e8d8bef9SDimitry Andric const Triple &TT = TM.getTargetTriple(); 1640b57cec5SDimitry Andric IsAMDGCN = TT.getArch() == Triple::amdgcn; 1650b57cec5SDimitry Andric IsAMDHSA = TT.getOS() == Triple::AMDHSA; 1660b57cec5SDimitry Andric 167*e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1680b57cec5SDimitry Andric if (!ST.isPromoteAllocaEnabled()) 1690b57cec5SDimitry Andric return false; 1700b57cec5SDimitry Andric 1715ffd83dbSDimitry Andric if (IsAMDGCN) { 172*e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 1735ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 1745ffd83dbSDimitry Andric } else { 1755ffd83dbSDimitry Andric MaxVGPRs = 128; 1765ffd83dbSDimitry Andric } 1775ffd83dbSDimitry Andric 1780b57cec5SDimitry Andric bool SufficientLDS = hasSufficientLocalMem(F); 1790b57cec5SDimitry Andric bool Changed = false; 1800b57cec5SDimitry Andric BasicBlock &EntryBB = *F.begin(); 1810b57cec5SDimitry Andric 1820b57cec5SDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 1830b57cec5SDimitry Andric for (Instruction &I : EntryBB) { 1840b57cec5SDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1850b57cec5SDimitry Andric Allocas.push_back(AI); 1860b57cec5SDimitry Andric } 1870b57cec5SDimitry Andric 1880b57cec5SDimitry Andric for (AllocaInst *AI : Allocas) { 1890b57cec5SDimitry Andric if (handleAlloca(*AI, SufficientLDS)) 1900b57cec5SDimitry Andric Changed = true; 1910b57cec5SDimitry Andric } 1920b57cec5SDimitry Andric 1930b57cec5SDimitry Andric return Changed; 1940b57cec5SDimitry Andric } 1950b57cec5SDimitry Andric 1960b57cec5SDimitry Andric std::pair<Value *, Value *> 197*e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 1980b57cec5SDimitry Andric const Function &F = *Builder.GetInsertBlock()->getParent(); 199*e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 2000b57cec5SDimitry Andric 2010b57cec5SDimitry Andric if (!IsAMDHSA) { 2020b57cec5SDimitry Andric Function *LocalSizeYFn 2030b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 2040b57cec5SDimitry Andric Function *LocalSizeZFn 2050b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 2060b57cec5SDimitry Andric 2070b57cec5SDimitry Andric CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 2080b57cec5SDimitry Andric CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 2090b57cec5SDimitry Andric 2100b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeY); 2110b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeZ); 2120b57cec5SDimitry Andric 2130b57cec5SDimitry Andric return std::make_pair(LocalSizeY, LocalSizeZ); 2140b57cec5SDimitry Andric } 2150b57cec5SDimitry Andric 2160b57cec5SDimitry Andric // We must read the size out of the dispatch pointer. 2170b57cec5SDimitry Andric assert(IsAMDGCN); 2180b57cec5SDimitry Andric 2190b57cec5SDimitry Andric // We are indexing into this struct, and want to extract the workgroup_size_* 2200b57cec5SDimitry Andric // fields. 2210b57cec5SDimitry Andric // 2220b57cec5SDimitry Andric // typedef struct hsa_kernel_dispatch_packet_s { 2230b57cec5SDimitry Andric // uint16_t header; 2240b57cec5SDimitry Andric // uint16_t setup; 2250b57cec5SDimitry Andric // uint16_t workgroup_size_x ; 2260b57cec5SDimitry Andric // uint16_t workgroup_size_y; 2270b57cec5SDimitry Andric // uint16_t workgroup_size_z; 2280b57cec5SDimitry Andric // uint16_t reserved0; 2290b57cec5SDimitry Andric // uint32_t grid_size_x ; 2300b57cec5SDimitry Andric // uint32_t grid_size_y ; 2310b57cec5SDimitry Andric // uint32_t grid_size_z; 2320b57cec5SDimitry Andric // 2330b57cec5SDimitry Andric // uint32_t private_segment_size; 2340b57cec5SDimitry Andric // uint32_t group_segment_size; 2350b57cec5SDimitry Andric // uint64_t kernel_object; 2360b57cec5SDimitry Andric // 2370b57cec5SDimitry Andric // #ifdef HSA_LARGE_MODEL 2380b57cec5SDimitry Andric // void *kernarg_address; 2390b57cec5SDimitry Andric // #elif defined HSA_LITTLE_ENDIAN 2400b57cec5SDimitry Andric // void *kernarg_address; 2410b57cec5SDimitry Andric // uint32_t reserved1; 2420b57cec5SDimitry Andric // #else 2430b57cec5SDimitry Andric // uint32_t reserved1; 2440b57cec5SDimitry Andric // void *kernarg_address; 2450b57cec5SDimitry Andric // #endif 2460b57cec5SDimitry Andric // uint64_t reserved2; 2470b57cec5SDimitry Andric // hsa_signal_t completion_signal; // uint64_t wrapper 2480b57cec5SDimitry Andric // } hsa_kernel_dispatch_packet_t 2490b57cec5SDimitry Andric // 2500b57cec5SDimitry Andric Function *DispatchPtrFn 2510b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 2520b57cec5SDimitry Andric 2530b57cec5SDimitry Andric CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 2540b57cec5SDimitry Andric DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 2550b57cec5SDimitry Andric DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 2560b57cec5SDimitry Andric 2570b57cec5SDimitry Andric // Size of the dispatch packet struct. 2580b57cec5SDimitry Andric DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 2590b57cec5SDimitry Andric 2600b57cec5SDimitry Andric Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 2610b57cec5SDimitry Andric Value *CastDispatchPtr = Builder.CreateBitCast( 2620b57cec5SDimitry Andric DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 2630b57cec5SDimitry Andric 2640b57cec5SDimitry Andric // We could do a single 64-bit load here, but it's likely that the basic 2650b57cec5SDimitry Andric // 32-bit and extract sequence is already present, and it is probably easier 2660b57cec5SDimitry Andric // to CSE this. The loads should be mergable later anyway. 2670b57cec5SDimitry Andric Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 2685ffd83dbSDimitry Andric LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 2690b57cec5SDimitry Andric 2700b57cec5SDimitry Andric Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 2715ffd83dbSDimitry Andric LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 2720b57cec5SDimitry Andric 2730b57cec5SDimitry Andric MDNode *MD = MDNode::get(Mod->getContext(), None); 2740b57cec5SDimitry Andric LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 2750b57cec5SDimitry Andric LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 2760b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LoadZU); 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric // Extract y component. Upper half of LoadZU should be zero already. 2790b57cec5SDimitry Andric Value *Y = Builder.CreateLShr(LoadXY, 16); 2800b57cec5SDimitry Andric 2810b57cec5SDimitry Andric return std::make_pair(Y, LoadZU); 2820b57cec5SDimitry Andric } 2830b57cec5SDimitry Andric 284*e8d8bef9SDimitry Andric Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 285*e8d8bef9SDimitry Andric unsigned N) { 2860b57cec5SDimitry Andric const AMDGPUSubtarget &ST = 287*e8d8bef9SDimitry Andric AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent()); 288480093f4SDimitry Andric Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 2890b57cec5SDimitry Andric 2900b57cec5SDimitry Andric switch (N) { 2910b57cec5SDimitry Andric case 0: 292480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 293480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 2940b57cec5SDimitry Andric break; 2950b57cec5SDimitry Andric case 1: 296480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 297480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 2980b57cec5SDimitry Andric break; 2990b57cec5SDimitry Andric 3000b57cec5SDimitry Andric case 2: 301480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 302480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 3030b57cec5SDimitry Andric break; 3040b57cec5SDimitry Andric default: 3050b57cec5SDimitry Andric llvm_unreachable("invalid dimension"); 3060b57cec5SDimitry Andric } 3070b57cec5SDimitry Andric 3080b57cec5SDimitry Andric Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 3090b57cec5SDimitry Andric CallInst *CI = Builder.CreateCall(WorkitemIdFn); 3100b57cec5SDimitry Andric ST.makeLIDRangeMetadata(CI); 3110b57cec5SDimitry Andric 3120b57cec5SDimitry Andric return CI; 3130b57cec5SDimitry Andric } 3140b57cec5SDimitry Andric 3155ffd83dbSDimitry Andric static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 3165ffd83dbSDimitry Andric return FixedVectorType::get(ArrayTy->getElementType(), 3170b57cec5SDimitry Andric ArrayTy->getNumElements()); 3180b57cec5SDimitry Andric } 3190b57cec5SDimitry Andric 3205ffd83dbSDimitry Andric static Value *stripBitcasts(Value *V) { 3215ffd83dbSDimitry Andric while (Instruction *I = dyn_cast<Instruction>(V)) { 3225ffd83dbSDimitry Andric if (I->getOpcode() != Instruction::BitCast) 3235ffd83dbSDimitry Andric break; 3245ffd83dbSDimitry Andric V = I->getOperand(0); 3255ffd83dbSDimitry Andric } 3265ffd83dbSDimitry Andric return V; 3275ffd83dbSDimitry Andric } 3285ffd83dbSDimitry Andric 3290b57cec5SDimitry Andric static Value * 3300b57cec5SDimitry Andric calculateVectorIndex(Value *Ptr, 3310b57cec5SDimitry Andric const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 3325ffd83dbSDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); 3335ffd83dbSDimitry Andric if (!GEP) 3345ffd83dbSDimitry Andric return nullptr; 3350b57cec5SDimitry Andric 3360b57cec5SDimitry Andric auto I = GEPIdx.find(GEP); 3370b57cec5SDimitry Andric return I == GEPIdx.end() ? nullptr : I->second; 3380b57cec5SDimitry Andric } 3390b57cec5SDimitry Andric 3400b57cec5SDimitry Andric static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 3410b57cec5SDimitry Andric // FIXME we only support simple cases 3420b57cec5SDimitry Andric if (GEP->getNumOperands() != 3) 3430b57cec5SDimitry Andric return nullptr; 3440b57cec5SDimitry Andric 3450b57cec5SDimitry Andric ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3460b57cec5SDimitry Andric if (!I0 || !I0->isZero()) 3470b57cec5SDimitry Andric return nullptr; 3480b57cec5SDimitry Andric 3490b57cec5SDimitry Andric return GEP->getOperand(2); 3500b57cec5SDimitry Andric } 3510b57cec5SDimitry Andric 3520b57cec5SDimitry Andric // Not an instruction handled below to turn into a vector. 3530b57cec5SDimitry Andric // 3540b57cec5SDimitry Andric // TODO: Check isTriviallyVectorizable for calls and handle other 3550b57cec5SDimitry Andric // instructions. 3565ffd83dbSDimitry Andric static bool canVectorizeInst(Instruction *Inst, User *User, 3575ffd83dbSDimitry Andric const DataLayout &DL) { 3580b57cec5SDimitry Andric switch (Inst->getOpcode()) { 3590b57cec5SDimitry Andric case Instruction::Load: { 3600b57cec5SDimitry Andric // Currently only handle the case where the Pointer Operand is a GEP. 3610b57cec5SDimitry Andric // Also we could not vectorize volatile or atomic loads. 3620b57cec5SDimitry Andric LoadInst *LI = cast<LoadInst>(Inst); 3630b57cec5SDimitry Andric if (isa<AllocaInst>(User) && 3640b57cec5SDimitry Andric LI->getPointerOperandType() == User->getType() && 3650b57cec5SDimitry Andric isa<VectorType>(LI->getType())) 3660b57cec5SDimitry Andric return true; 3675ffd83dbSDimitry Andric 3685ffd83dbSDimitry Andric Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 3695ffd83dbSDimitry Andric if (!PtrInst) 3705ffd83dbSDimitry Andric return false; 3715ffd83dbSDimitry Andric 3725ffd83dbSDimitry Andric return (PtrInst->getOpcode() == Instruction::GetElementPtr || 3735ffd83dbSDimitry Andric PtrInst->getOpcode() == Instruction::BitCast) && 3745ffd83dbSDimitry Andric LI->isSimple(); 3750b57cec5SDimitry Andric } 3760b57cec5SDimitry Andric case Instruction::BitCast: 3770b57cec5SDimitry Andric return true; 3780b57cec5SDimitry Andric case Instruction::Store: { 3790b57cec5SDimitry Andric // Must be the stored pointer operand, not a stored value, plus 3800b57cec5SDimitry Andric // since it should be canonical form, the User should be a GEP. 3810b57cec5SDimitry Andric // Also we could not vectorize volatile or atomic stores. 3820b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 3830b57cec5SDimitry Andric if (isa<AllocaInst>(User) && 3840b57cec5SDimitry Andric SI->getPointerOperandType() == User->getType() && 3850b57cec5SDimitry Andric isa<VectorType>(SI->getValueOperand()->getType())) 3860b57cec5SDimitry Andric return true; 3875ffd83dbSDimitry Andric 3885ffd83dbSDimitry Andric Instruction *UserInst = dyn_cast<Instruction>(User); 3895ffd83dbSDimitry Andric if (!UserInst) 3905ffd83dbSDimitry Andric return false; 3915ffd83dbSDimitry Andric 3925ffd83dbSDimitry Andric return (SI->getPointerOperand() == User) && 3935ffd83dbSDimitry Andric (UserInst->getOpcode() == Instruction::GetElementPtr || 3945ffd83dbSDimitry Andric UserInst->getOpcode() == Instruction::BitCast) && 3955ffd83dbSDimitry Andric SI->isSimple(); 3960b57cec5SDimitry Andric } 3970b57cec5SDimitry Andric default: 3980b57cec5SDimitry Andric return false; 3990b57cec5SDimitry Andric } 4000b57cec5SDimitry Andric } 4010b57cec5SDimitry Andric 4025ffd83dbSDimitry Andric static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, 4035ffd83dbSDimitry Andric unsigned MaxVGPRs) { 4040b57cec5SDimitry Andric 4050b57cec5SDimitry Andric if (DisablePromoteAllocaToVector) { 4060b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 4070b57cec5SDimitry Andric return false; 4080b57cec5SDimitry Andric } 4090b57cec5SDimitry Andric 4105ffd83dbSDimitry Andric Type *AllocaTy = Alloca->getAllocatedType(); 4115ffd83dbSDimitry Andric auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 4125ffd83dbSDimitry Andric if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 4135ffd83dbSDimitry Andric if (VectorType::isValidElementType(ArrayTy->getElementType()) && 4145ffd83dbSDimitry Andric ArrayTy->getNumElements() > 0) 4155ffd83dbSDimitry Andric VectorTy = arrayTypeToVecType(ArrayTy); 4165ffd83dbSDimitry Andric } 4175ffd83dbSDimitry Andric 4185ffd83dbSDimitry Andric // Use up to 1/4 of available register budget for vectorization. 4195ffd83dbSDimitry Andric unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 4205ffd83dbSDimitry Andric : (MaxVGPRs * 32); 4215ffd83dbSDimitry Andric 4225ffd83dbSDimitry Andric if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { 4235ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " 4245ffd83dbSDimitry Andric << MaxVGPRs << " registers available\n"); 4255ffd83dbSDimitry Andric return false; 4265ffd83dbSDimitry Andric } 4270b57cec5SDimitry Andric 4280b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 4290b57cec5SDimitry Andric 4300b57cec5SDimitry Andric // FIXME: There is no reason why we can't support larger arrays, we 4310b57cec5SDimitry Andric // are just being conservative for now. 4320b57cec5SDimitry Andric // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 4330b57cec5SDimitry Andric // could also be promoted but we don't currently handle this case 4345ffd83dbSDimitry Andric if (!VectorTy || VectorTy->getNumElements() > 16 || 4355ffd83dbSDimitry Andric VectorTy->getNumElements() < 2) { 4360b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 4370b57cec5SDimitry Andric return false; 4380b57cec5SDimitry Andric } 4390b57cec5SDimitry Andric 4400b57cec5SDimitry Andric std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 4410b57cec5SDimitry Andric std::vector<Value *> WorkList; 4425ffd83dbSDimitry Andric SmallVector<User *, 8> Users(Alloca->users()); 4435ffd83dbSDimitry Andric SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 4445ffd83dbSDimitry Andric Type *VecEltTy = VectorTy->getElementType(); 4455ffd83dbSDimitry Andric while (!Users.empty()) { 4465ffd83dbSDimitry Andric User *AllocaUser = Users.pop_back_val(); 4475ffd83dbSDimitry Andric User *UseUser = UseUsers.pop_back_val(); 4485ffd83dbSDimitry Andric Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 4495ffd83dbSDimitry Andric 4500b57cec5SDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 4510b57cec5SDimitry Andric if (!GEP) { 4525ffd83dbSDimitry Andric if (!canVectorizeInst(Inst, UseUser, DL)) 4530b57cec5SDimitry Andric return false; 4540b57cec5SDimitry Andric 4555ffd83dbSDimitry Andric if (Inst->getOpcode() == Instruction::BitCast) { 4565ffd83dbSDimitry Andric Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 4575ffd83dbSDimitry Andric Type *ToTy = Inst->getType()->getPointerElementType(); 4585ffd83dbSDimitry Andric if (FromTy->isAggregateType() || ToTy->isAggregateType() || 4595ffd83dbSDimitry Andric DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 4605ffd83dbSDimitry Andric continue; 4615ffd83dbSDimitry Andric 4625ffd83dbSDimitry Andric for (User *CastUser : Inst->users()) { 4635ffd83dbSDimitry Andric if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 4645ffd83dbSDimitry Andric continue; 4655ffd83dbSDimitry Andric Users.push_back(CastUser); 4665ffd83dbSDimitry Andric UseUsers.push_back(Inst); 4675ffd83dbSDimitry Andric } 4685ffd83dbSDimitry Andric 4695ffd83dbSDimitry Andric continue; 4705ffd83dbSDimitry Andric } 4715ffd83dbSDimitry Andric 4720b57cec5SDimitry Andric WorkList.push_back(AllocaUser); 4730b57cec5SDimitry Andric continue; 4740b57cec5SDimitry Andric } 4750b57cec5SDimitry Andric 4760b57cec5SDimitry Andric Value *Index = GEPToVectorIndex(GEP); 4770b57cec5SDimitry Andric 4780b57cec5SDimitry Andric // If we can't compute a vector index from this GEP, then we can't 4790b57cec5SDimitry Andric // promote this alloca to vector. 4800b57cec5SDimitry Andric if (!Index) { 4810b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 4820b57cec5SDimitry Andric << '\n'); 4830b57cec5SDimitry Andric return false; 4840b57cec5SDimitry Andric } 4850b57cec5SDimitry Andric 4860b57cec5SDimitry Andric GEPVectorIdx[GEP] = Index; 4875ffd83dbSDimitry Andric Users.append(GEP->user_begin(), GEP->user_end()); 4885ffd83dbSDimitry Andric UseUsers.append(GEP->getNumUses(), GEP); 4890b57cec5SDimitry Andric } 4900b57cec5SDimitry Andric 4910b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 4920b57cec5SDimitry Andric << *VectorTy << '\n'); 4930b57cec5SDimitry Andric 4940b57cec5SDimitry Andric for (Value *V : WorkList) { 4950b57cec5SDimitry Andric Instruction *Inst = cast<Instruction>(V); 4960b57cec5SDimitry Andric IRBuilder<> Builder(Inst); 4970b57cec5SDimitry Andric switch (Inst->getOpcode()) { 4980b57cec5SDimitry Andric case Instruction::Load: { 4995ffd83dbSDimitry Andric if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 5005ffd83dbSDimitry Andric break; 5015ffd83dbSDimitry Andric 5025ffd83dbSDimitry Andric Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 5035ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 5045ffd83dbSDimitry Andric if (!Index) 5050b57cec5SDimitry Andric break; 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 5080b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 5090b57cec5SDimitry Andric Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 5100b57cec5SDimitry Andric Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 5115ffd83dbSDimitry Andric if (Inst->getType() != VecEltTy) 5125ffd83dbSDimitry Andric ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); 5130b57cec5SDimitry Andric Inst->replaceAllUsesWith(ExtractElement); 5140b57cec5SDimitry Andric Inst->eraseFromParent(); 5150b57cec5SDimitry Andric break; 5160b57cec5SDimitry Andric } 5170b57cec5SDimitry Andric case Instruction::Store: { 5180b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 5195ffd83dbSDimitry Andric if (SI->getValueOperand()->getType() == AllocaTy || 5205ffd83dbSDimitry Andric SI->getValueOperand()->getType()->isVectorTy()) 5215ffd83dbSDimitry Andric break; 5225ffd83dbSDimitry Andric 5235ffd83dbSDimitry Andric Value *Ptr = SI->getPointerOperand(); 5245ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 5255ffd83dbSDimitry Andric if (!Index) 5260b57cec5SDimitry Andric break; 5270b57cec5SDimitry Andric 5280b57cec5SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 5290b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 5300b57cec5SDimitry Andric Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 5315ffd83dbSDimitry Andric Value *Elt = SI->getValueOperand(); 5325ffd83dbSDimitry Andric if (Elt->getType() != VecEltTy) 5335ffd83dbSDimitry Andric Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); 5345ffd83dbSDimitry Andric Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 5350b57cec5SDimitry Andric Builder.CreateStore(NewVecValue, BitCast); 5360b57cec5SDimitry Andric Inst->eraseFromParent(); 5370b57cec5SDimitry Andric break; 5380b57cec5SDimitry Andric } 5390b57cec5SDimitry Andric 5400b57cec5SDimitry Andric default: 5410b57cec5SDimitry Andric llvm_unreachable("Inconsistency in instructions promotable to vector"); 5420b57cec5SDimitry Andric } 5430b57cec5SDimitry Andric } 5440b57cec5SDimitry Andric return true; 5450b57cec5SDimitry Andric } 5460b57cec5SDimitry Andric 5470b57cec5SDimitry Andric static bool isCallPromotable(CallInst *CI) { 5480b57cec5SDimitry Andric IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 5490b57cec5SDimitry Andric if (!II) 5500b57cec5SDimitry Andric return false; 5510b57cec5SDimitry Andric 5520b57cec5SDimitry Andric switch (II->getIntrinsicID()) { 5530b57cec5SDimitry Andric case Intrinsic::memcpy: 5540b57cec5SDimitry Andric case Intrinsic::memmove: 5550b57cec5SDimitry Andric case Intrinsic::memset: 5560b57cec5SDimitry Andric case Intrinsic::lifetime_start: 5570b57cec5SDimitry Andric case Intrinsic::lifetime_end: 5580b57cec5SDimitry Andric case Intrinsic::invariant_start: 5590b57cec5SDimitry Andric case Intrinsic::invariant_end: 5600b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 5610b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 5620b57cec5SDimitry Andric case Intrinsic::objectsize: 5630b57cec5SDimitry Andric return true; 5640b57cec5SDimitry Andric default: 5650b57cec5SDimitry Andric return false; 5660b57cec5SDimitry Andric } 5670b57cec5SDimitry Andric } 5680b57cec5SDimitry Andric 569*e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 570*e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 5710b57cec5SDimitry Andric int OpIdx1) const { 5720b57cec5SDimitry Andric // Figure out which operand is the one we might not be promoting. 5730b57cec5SDimitry Andric Value *OtherOp = Inst->getOperand(OpIdx0); 5740b57cec5SDimitry Andric if (Val == OtherOp) 5750b57cec5SDimitry Andric OtherOp = Inst->getOperand(OpIdx1); 5760b57cec5SDimitry Andric 5770b57cec5SDimitry Andric if (isa<ConstantPointerNull>(OtherOp)) 5780b57cec5SDimitry Andric return true; 5790b57cec5SDimitry Andric 580*e8d8bef9SDimitry Andric Value *OtherObj = getUnderlyingObject(OtherOp); 5810b57cec5SDimitry Andric if (!isa<AllocaInst>(OtherObj)) 5820b57cec5SDimitry Andric return false; 5830b57cec5SDimitry Andric 5840b57cec5SDimitry Andric // TODO: We should be able to replace undefs with the right pointer type. 5850b57cec5SDimitry Andric 5860b57cec5SDimitry Andric // TODO: If we know the other base object is another promotable 5870b57cec5SDimitry Andric // alloca, not necessarily this alloca, we can do this. The 5880b57cec5SDimitry Andric // important part is both must have the same address space at 5890b57cec5SDimitry Andric // the end. 5900b57cec5SDimitry Andric if (OtherObj != BaseAlloca) { 5910b57cec5SDimitry Andric LLVM_DEBUG( 5920b57cec5SDimitry Andric dbgs() << "Found a binary instruction with another alloca object\n"); 5930b57cec5SDimitry Andric return false; 5940b57cec5SDimitry Andric } 5950b57cec5SDimitry Andric 5960b57cec5SDimitry Andric return true; 5970b57cec5SDimitry Andric } 5980b57cec5SDimitry Andric 599*e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 600*e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 6010b57cec5SDimitry Andric 6020b57cec5SDimitry Andric for (User *User : Val->users()) { 6030b57cec5SDimitry Andric if (is_contained(WorkList, User)) 6040b57cec5SDimitry Andric continue; 6050b57cec5SDimitry Andric 6060b57cec5SDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(User)) { 6070b57cec5SDimitry Andric if (!isCallPromotable(CI)) 6080b57cec5SDimitry Andric return false; 6090b57cec5SDimitry Andric 6100b57cec5SDimitry Andric WorkList.push_back(User); 6110b57cec5SDimitry Andric continue; 6120b57cec5SDimitry Andric } 6130b57cec5SDimitry Andric 6140b57cec5SDimitry Andric Instruction *UseInst = cast<Instruction>(User); 6150b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::PtrToInt) 6160b57cec5SDimitry Andric return false; 6170b57cec5SDimitry Andric 6180b57cec5SDimitry Andric if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 6190b57cec5SDimitry Andric if (LI->isVolatile()) 6200b57cec5SDimitry Andric return false; 6210b57cec5SDimitry Andric 6220b57cec5SDimitry Andric continue; 6230b57cec5SDimitry Andric } 6240b57cec5SDimitry Andric 6250b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 6260b57cec5SDimitry Andric if (SI->isVolatile()) 6270b57cec5SDimitry Andric return false; 6280b57cec5SDimitry Andric 6290b57cec5SDimitry Andric // Reject if the stored value is not the pointer operand. 6300b57cec5SDimitry Andric if (SI->getPointerOperand() != Val) 6310b57cec5SDimitry Andric return false; 6320b57cec5SDimitry Andric } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 6330b57cec5SDimitry Andric if (RMW->isVolatile()) 6340b57cec5SDimitry Andric return false; 6350b57cec5SDimitry Andric } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 6360b57cec5SDimitry Andric if (CAS->isVolatile()) 6370b57cec5SDimitry Andric return false; 6380b57cec5SDimitry Andric } 6390b57cec5SDimitry Andric 6400b57cec5SDimitry Andric // Only promote a select if we know that the other select operand 6410b57cec5SDimitry Andric // is from another pointer that will also be promoted. 6420b57cec5SDimitry Andric if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 6430b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 6440b57cec5SDimitry Andric return false; 6450b57cec5SDimitry Andric 6460b57cec5SDimitry Andric // May need to rewrite constant operands. 6470b57cec5SDimitry Andric WorkList.push_back(ICmp); 6480b57cec5SDimitry Andric } 6490b57cec5SDimitry Andric 6500b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 6510b57cec5SDimitry Andric // Give up if the pointer may be captured. 6520b57cec5SDimitry Andric if (PointerMayBeCaptured(UseInst, true, true)) 6530b57cec5SDimitry Andric return false; 6540b57cec5SDimitry Andric // Don't collect the users of this. 6550b57cec5SDimitry Andric WorkList.push_back(User); 6560b57cec5SDimitry Andric continue; 6570b57cec5SDimitry Andric } 6580b57cec5SDimitry Andric 6590b57cec5SDimitry Andric if (!User->getType()->isPointerTy()) 6600b57cec5SDimitry Andric continue; 6610b57cec5SDimitry Andric 6620b57cec5SDimitry Andric if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 6630b57cec5SDimitry Andric // Be conservative if an address could be computed outside the bounds of 6640b57cec5SDimitry Andric // the alloca. 6650b57cec5SDimitry Andric if (!GEP->isInBounds()) 6660b57cec5SDimitry Andric return false; 6670b57cec5SDimitry Andric } 6680b57cec5SDimitry Andric 6690b57cec5SDimitry Andric // Only promote a select if we know that the other select operand is from 6700b57cec5SDimitry Andric // another pointer that will also be promoted. 6710b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 6720b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 6730b57cec5SDimitry Andric return false; 6740b57cec5SDimitry Andric } 6750b57cec5SDimitry Andric 6760b57cec5SDimitry Andric // Repeat for phis. 6770b57cec5SDimitry Andric if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 6780b57cec5SDimitry Andric // TODO: Handle more complex cases. We should be able to replace loops 6790b57cec5SDimitry Andric // over arrays. 6800b57cec5SDimitry Andric switch (Phi->getNumIncomingValues()) { 6810b57cec5SDimitry Andric case 1: 6820b57cec5SDimitry Andric break; 6830b57cec5SDimitry Andric case 2: 6840b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 6850b57cec5SDimitry Andric return false; 6860b57cec5SDimitry Andric break; 6870b57cec5SDimitry Andric default: 6880b57cec5SDimitry Andric return false; 6890b57cec5SDimitry Andric } 6900b57cec5SDimitry Andric } 6910b57cec5SDimitry Andric 6920b57cec5SDimitry Andric WorkList.push_back(User); 6930b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 6940b57cec5SDimitry Andric return false; 6950b57cec5SDimitry Andric } 6960b57cec5SDimitry Andric 6970b57cec5SDimitry Andric return true; 6980b57cec5SDimitry Andric } 6990b57cec5SDimitry Andric 700*e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 7010b57cec5SDimitry Andric 7020b57cec5SDimitry Andric FunctionType *FTy = F.getFunctionType(); 703*e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 7040b57cec5SDimitry Andric 7050b57cec5SDimitry Andric // If the function has any arguments in the local address space, then it's 7060b57cec5SDimitry Andric // possible these arguments require the entire local memory space, so 7070b57cec5SDimitry Andric // we cannot use local memory in the pass. 7080b57cec5SDimitry Andric for (Type *ParamTy : FTy->params()) { 7090b57cec5SDimitry Andric PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 7100b57cec5SDimitry Andric if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 7110b57cec5SDimitry Andric LocalMemLimit = 0; 7120b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 7130b57cec5SDimitry Andric "local memory disabled.\n"); 7140b57cec5SDimitry Andric return false; 7150b57cec5SDimitry Andric } 7160b57cec5SDimitry Andric } 7170b57cec5SDimitry Andric 7180b57cec5SDimitry Andric LocalMemLimit = ST.getLocalMemorySize(); 7190b57cec5SDimitry Andric if (LocalMemLimit == 0) 7200b57cec5SDimitry Andric return false; 7210b57cec5SDimitry Andric 722*e8d8bef9SDimitry Andric SmallVector<const Constant *, 16> Stack; 723*e8d8bef9SDimitry Andric SmallPtrSet<const Constant *, 8> VisitedConstants; 724*e8d8bef9SDimitry Andric SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 7250b57cec5SDimitry Andric 726*e8d8bef9SDimitry Andric auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 727*e8d8bef9SDimitry Andric for (const User *U : Val->users()) { 728*e8d8bef9SDimitry Andric if (const Instruction *Use = dyn_cast<Instruction>(U)) { 729*e8d8bef9SDimitry Andric if (Use->getParent()->getParent() == &F) 730*e8d8bef9SDimitry Andric return true; 731*e8d8bef9SDimitry Andric } else { 732*e8d8bef9SDimitry Andric const Constant *C = cast<Constant>(U); 733*e8d8bef9SDimitry Andric if (VisitedConstants.insert(C).second) 734*e8d8bef9SDimitry Andric Stack.push_back(C); 735*e8d8bef9SDimitry Andric } 736*e8d8bef9SDimitry Andric } 737*e8d8bef9SDimitry Andric 738*e8d8bef9SDimitry Andric return false; 739*e8d8bef9SDimitry Andric }; 740*e8d8bef9SDimitry Andric 7410b57cec5SDimitry Andric for (GlobalVariable &GV : Mod->globals()) { 742480093f4SDimitry Andric if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 7430b57cec5SDimitry Andric continue; 7440b57cec5SDimitry Andric 745*e8d8bef9SDimitry Andric if (visitUsers(&GV, &GV)) { 746*e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 747*e8d8bef9SDimitry Andric Stack.clear(); 7480b57cec5SDimitry Andric continue; 749*e8d8bef9SDimitry Andric } 7500b57cec5SDimitry Andric 751*e8d8bef9SDimitry Andric // For any ConstantExpr uses, we need to recursively search the users until 752*e8d8bef9SDimitry Andric // we see a function. 753*e8d8bef9SDimitry Andric while (!Stack.empty()) { 754*e8d8bef9SDimitry Andric const Constant *C = Stack.pop_back_val(); 755*e8d8bef9SDimitry Andric if (visitUsers(&GV, C)) { 756*e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 757*e8d8bef9SDimitry Andric Stack.clear(); 7580b57cec5SDimitry Andric break; 7590b57cec5SDimitry Andric } 7600b57cec5SDimitry Andric } 7610b57cec5SDimitry Andric } 7620b57cec5SDimitry Andric 763*e8d8bef9SDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 764*e8d8bef9SDimitry Andric SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 765*e8d8bef9SDimitry Andric AllocatedSizes.reserve(UsedLDS.size()); 766*e8d8bef9SDimitry Andric 767*e8d8bef9SDimitry Andric for (const GlobalVariable *GV : UsedLDS) { 768*e8d8bef9SDimitry Andric Align Alignment = 769*e8d8bef9SDimitry Andric DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 770*e8d8bef9SDimitry Andric uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 771*e8d8bef9SDimitry Andric AllocatedSizes.emplace_back(AllocSize, Alignment); 772*e8d8bef9SDimitry Andric } 773*e8d8bef9SDimitry Andric 774*e8d8bef9SDimitry Andric // Sort to try to estimate the worst case alignment padding 775*e8d8bef9SDimitry Andric // 776*e8d8bef9SDimitry Andric // FIXME: We should really do something to fix the addresses to a more optimal 777*e8d8bef9SDimitry Andric // value instead 778*e8d8bef9SDimitry Andric llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS, 779*e8d8bef9SDimitry Andric std::pair<uint64_t, Align> RHS) { 780*e8d8bef9SDimitry Andric return LHS.second < RHS.second; 781*e8d8bef9SDimitry Andric }); 782*e8d8bef9SDimitry Andric 783*e8d8bef9SDimitry Andric // Check how much local memory is being used by global objects 784*e8d8bef9SDimitry Andric CurrentLocalMemUsage = 0; 785*e8d8bef9SDimitry Andric 786*e8d8bef9SDimitry Andric // FIXME: Try to account for padding here. The real padding and address is 787*e8d8bef9SDimitry Andric // currently determined from the inverse order of uses in the function when 788*e8d8bef9SDimitry Andric // legalizing, which could also potentially change. We try to estimate the 789*e8d8bef9SDimitry Andric // worst case here, but we probably should fix the addresses earlier. 790*e8d8bef9SDimitry Andric for (auto Alloc : AllocatedSizes) { 791*e8d8bef9SDimitry Andric CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 792*e8d8bef9SDimitry Andric CurrentLocalMemUsage += Alloc.first; 793*e8d8bef9SDimitry Andric } 794*e8d8bef9SDimitry Andric 7950b57cec5SDimitry Andric unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 7960b57cec5SDimitry Andric F); 7970b57cec5SDimitry Andric 7980b57cec5SDimitry Andric // Restrict local memory usage so that we don't drastically reduce occupancy, 7990b57cec5SDimitry Andric // unless it is already significantly reduced. 8000b57cec5SDimitry Andric 8010b57cec5SDimitry Andric // TODO: Have some sort of hint or other heuristics to guess occupancy based 8020b57cec5SDimitry Andric // on other factors.. 8030b57cec5SDimitry Andric unsigned OccupancyHint = ST.getWavesPerEU(F).second; 8040b57cec5SDimitry Andric if (OccupancyHint == 0) 8050b57cec5SDimitry Andric OccupancyHint = 7; 8060b57cec5SDimitry Andric 8070b57cec5SDimitry Andric // Clamp to max value. 8080b57cec5SDimitry Andric OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 8090b57cec5SDimitry Andric 8100b57cec5SDimitry Andric // Check the hint but ignore it if it's obviously wrong from the existing LDS 8110b57cec5SDimitry Andric // usage. 8120b57cec5SDimitry Andric MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 8130b57cec5SDimitry Andric 8140b57cec5SDimitry Andric 8150b57cec5SDimitry Andric // Round up to the next tier of usage. 8160b57cec5SDimitry Andric unsigned MaxSizeWithWaveCount 8170b57cec5SDimitry Andric = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 8180b57cec5SDimitry Andric 8190b57cec5SDimitry Andric // Program is possibly broken by using more local mem than available. 8200b57cec5SDimitry Andric if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 8210b57cec5SDimitry Andric return false; 8220b57cec5SDimitry Andric 8230b57cec5SDimitry Andric LocalMemLimit = MaxSizeWithWaveCount; 8240b57cec5SDimitry Andric 8250b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 8260b57cec5SDimitry Andric << " bytes of LDS\n" 8270b57cec5SDimitry Andric << " Rounding size to " << MaxSizeWithWaveCount 8280b57cec5SDimitry Andric << " with a maximum occupancy of " << MaxOccupancy << '\n' 8290b57cec5SDimitry Andric << " and " << (LocalMemLimit - CurrentLocalMemUsage) 8300b57cec5SDimitry Andric << " available for promotion\n"); 8310b57cec5SDimitry Andric 8320b57cec5SDimitry Andric return true; 8330b57cec5SDimitry Andric } 8340b57cec5SDimitry Andric 8350b57cec5SDimitry Andric // FIXME: Should try to pick the most likely to be profitable allocas first. 836*e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { 8370b57cec5SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 8380b57cec5SDimitry Andric // the array type is the canonical form. 8390b57cec5SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 8400b57cec5SDimitry Andric return false; 8410b57cec5SDimitry Andric 8425ffd83dbSDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 8430b57cec5SDimitry Andric IRBuilder<> Builder(&I); 8440b57cec5SDimitry Andric 8450b57cec5SDimitry Andric // First try to replace the alloca with a vector 8460b57cec5SDimitry Andric Type *AllocaTy = I.getAllocatedType(); 8470b57cec5SDimitry Andric 8480b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 8490b57cec5SDimitry Andric 8505ffd83dbSDimitry Andric if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) 8510b57cec5SDimitry Andric return true; // Promoted to vector. 8520b57cec5SDimitry Andric 8530b57cec5SDimitry Andric if (DisablePromoteAllocaToLDS) 8540b57cec5SDimitry Andric return false; 8550b57cec5SDimitry Andric 8560b57cec5SDimitry Andric const Function &ContainingFunction = *I.getParent()->getParent(); 8570b57cec5SDimitry Andric CallingConv::ID CC = ContainingFunction.getCallingConv(); 8580b57cec5SDimitry Andric 8590b57cec5SDimitry Andric // Don't promote the alloca to LDS for shader calling conventions as the work 8600b57cec5SDimitry Andric // item ID intrinsics are not supported for these calling conventions. 8610b57cec5SDimitry Andric // Furthermore not all LDS is available for some of the stages. 8620b57cec5SDimitry Andric switch (CC) { 8630b57cec5SDimitry Andric case CallingConv::AMDGPU_KERNEL: 8640b57cec5SDimitry Andric case CallingConv::SPIR_KERNEL: 8650b57cec5SDimitry Andric break; 8660b57cec5SDimitry Andric default: 8670b57cec5SDimitry Andric LLVM_DEBUG( 8680b57cec5SDimitry Andric dbgs() 8690b57cec5SDimitry Andric << " promote alloca to LDS not supported with calling convention.\n"); 8700b57cec5SDimitry Andric return false; 8710b57cec5SDimitry Andric } 8720b57cec5SDimitry Andric 8730b57cec5SDimitry Andric // Not likely to have sufficient local memory for promotion. 8740b57cec5SDimitry Andric if (!SufficientLDS) 8750b57cec5SDimitry Andric return false; 8760b57cec5SDimitry Andric 877*e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 8780b57cec5SDimitry Andric unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 8790b57cec5SDimitry Andric 8805ffd83dbSDimitry Andric Align Alignment = 8815ffd83dbSDimitry Andric DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 8820b57cec5SDimitry Andric 8830b57cec5SDimitry Andric // FIXME: This computed padding is likely wrong since it depends on inverse 8840b57cec5SDimitry Andric // usage order. 8850b57cec5SDimitry Andric // 8860b57cec5SDimitry Andric // FIXME: It is also possible that if we're allowed to use all of the memory 8870b57cec5SDimitry Andric // could could end up using more than the maximum due to alignment padding. 8880b57cec5SDimitry Andric 8895ffd83dbSDimitry Andric uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 8900b57cec5SDimitry Andric uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 8910b57cec5SDimitry Andric NewSize += AllocSize; 8920b57cec5SDimitry Andric 8930b57cec5SDimitry Andric if (NewSize > LocalMemLimit) { 8940b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << AllocSize 8950b57cec5SDimitry Andric << " bytes of local memory not available to promote\n"); 8960b57cec5SDimitry Andric return false; 8970b57cec5SDimitry Andric } 8980b57cec5SDimitry Andric 8990b57cec5SDimitry Andric CurrentLocalMemUsage = NewSize; 9000b57cec5SDimitry Andric 9010b57cec5SDimitry Andric std::vector<Value*> WorkList; 9020b57cec5SDimitry Andric 9030b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 9040b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 9050b57cec5SDimitry Andric return false; 9060b57cec5SDimitry Andric } 9070b57cec5SDimitry Andric 9080b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 9090b57cec5SDimitry Andric 9100b57cec5SDimitry Andric Function *F = I.getParent()->getParent(); 9110b57cec5SDimitry Andric 9120b57cec5SDimitry Andric Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 9130b57cec5SDimitry Andric GlobalVariable *GV = new GlobalVariable( 9140b57cec5SDimitry Andric *Mod, GVTy, false, GlobalValue::InternalLinkage, 9150b57cec5SDimitry Andric UndefValue::get(GVTy), 9160b57cec5SDimitry Andric Twine(F->getName()) + Twine('.') + I.getName(), 9170b57cec5SDimitry Andric nullptr, 9180b57cec5SDimitry Andric GlobalVariable::NotThreadLocal, 9190b57cec5SDimitry Andric AMDGPUAS::LOCAL_ADDRESS); 9200b57cec5SDimitry Andric GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 9218bcb0991SDimitry Andric GV->setAlignment(MaybeAlign(I.getAlignment())); 9220b57cec5SDimitry Andric 9230b57cec5SDimitry Andric Value *TCntY, *TCntZ; 9240b57cec5SDimitry Andric 9250b57cec5SDimitry Andric std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 9260b57cec5SDimitry Andric Value *TIdX = getWorkitemID(Builder, 0); 9270b57cec5SDimitry Andric Value *TIdY = getWorkitemID(Builder, 1); 9280b57cec5SDimitry Andric Value *TIdZ = getWorkitemID(Builder, 2); 9290b57cec5SDimitry Andric 9300b57cec5SDimitry Andric Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 9310b57cec5SDimitry Andric Tmp0 = Builder.CreateMul(Tmp0, TIdX); 9320b57cec5SDimitry Andric Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 9330b57cec5SDimitry Andric Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 9340b57cec5SDimitry Andric TID = Builder.CreateAdd(TID, TIdZ); 9350b57cec5SDimitry Andric 9360b57cec5SDimitry Andric Value *Indices[] = { 9370b57cec5SDimitry Andric Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 9380b57cec5SDimitry Andric TID 9390b57cec5SDimitry Andric }; 9400b57cec5SDimitry Andric 9410b57cec5SDimitry Andric Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 9420b57cec5SDimitry Andric I.mutateType(Offset->getType()); 9430b57cec5SDimitry Andric I.replaceAllUsesWith(Offset); 9440b57cec5SDimitry Andric I.eraseFromParent(); 9450b57cec5SDimitry Andric 9460b57cec5SDimitry Andric for (Value *V : WorkList) { 9470b57cec5SDimitry Andric CallInst *Call = dyn_cast<CallInst>(V); 9480b57cec5SDimitry Andric if (!Call) { 9490b57cec5SDimitry Andric if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 9500b57cec5SDimitry Andric Value *Src0 = CI->getOperand(0); 9510b57cec5SDimitry Andric Type *EltTy = Src0->getType()->getPointerElementType(); 9520b57cec5SDimitry Andric PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 9530b57cec5SDimitry Andric 9540b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(0))) 9550b57cec5SDimitry Andric CI->setOperand(0, ConstantPointerNull::get(NewTy)); 9560b57cec5SDimitry Andric 9570b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(1))) 9580b57cec5SDimitry Andric CI->setOperand(1, ConstantPointerNull::get(NewTy)); 9590b57cec5SDimitry Andric 9600b57cec5SDimitry Andric continue; 9610b57cec5SDimitry Andric } 9620b57cec5SDimitry Andric 9630b57cec5SDimitry Andric // The operand's value should be corrected on its own and we don't want to 9640b57cec5SDimitry Andric // touch the users. 9650b57cec5SDimitry Andric if (isa<AddrSpaceCastInst>(V)) 9660b57cec5SDimitry Andric continue; 9670b57cec5SDimitry Andric 9680b57cec5SDimitry Andric Type *EltTy = V->getType()->getPointerElementType(); 9690b57cec5SDimitry Andric PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 9700b57cec5SDimitry Andric 9710b57cec5SDimitry Andric // FIXME: It doesn't really make sense to try to do this for all 9720b57cec5SDimitry Andric // instructions. 9730b57cec5SDimitry Andric V->mutateType(NewTy); 9740b57cec5SDimitry Andric 9750b57cec5SDimitry Andric // Adjust the types of any constant operands. 9760b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 9770b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(1))) 9780b57cec5SDimitry Andric SI->setOperand(1, ConstantPointerNull::get(NewTy)); 9790b57cec5SDimitry Andric 9800b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(2))) 9810b57cec5SDimitry Andric SI->setOperand(2, ConstantPointerNull::get(NewTy)); 9820b57cec5SDimitry Andric } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 9830b57cec5SDimitry Andric for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 9840b57cec5SDimitry Andric if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 9850b57cec5SDimitry Andric Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 9860b57cec5SDimitry Andric } 9870b57cec5SDimitry Andric } 9880b57cec5SDimitry Andric 9890b57cec5SDimitry Andric continue; 9900b57cec5SDimitry Andric } 9910b57cec5SDimitry Andric 9920b57cec5SDimitry Andric IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 9930b57cec5SDimitry Andric Builder.SetInsertPoint(Intr); 9940b57cec5SDimitry Andric switch (Intr->getIntrinsicID()) { 9950b57cec5SDimitry Andric case Intrinsic::lifetime_start: 9960b57cec5SDimitry Andric case Intrinsic::lifetime_end: 9970b57cec5SDimitry Andric // These intrinsics are for address space 0 only 9980b57cec5SDimitry Andric Intr->eraseFromParent(); 9990b57cec5SDimitry Andric continue; 10000b57cec5SDimitry Andric case Intrinsic::memcpy: { 10010b57cec5SDimitry Andric MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 1002480093f4SDimitry Andric Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(), 1003480093f4SDimitry Andric MemCpy->getRawSource(), MemCpy->getSourceAlign(), 10040b57cec5SDimitry Andric MemCpy->getLength(), MemCpy->isVolatile()); 10050b57cec5SDimitry Andric Intr->eraseFromParent(); 10060b57cec5SDimitry Andric continue; 10070b57cec5SDimitry Andric } 10080b57cec5SDimitry Andric case Intrinsic::memmove: { 10090b57cec5SDimitry Andric MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 1010480093f4SDimitry Andric Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(), 1011480093f4SDimitry Andric MemMove->getRawSource(), MemMove->getSourceAlign(), 10120b57cec5SDimitry Andric MemMove->getLength(), MemMove->isVolatile()); 10130b57cec5SDimitry Andric Intr->eraseFromParent(); 10140b57cec5SDimitry Andric continue; 10150b57cec5SDimitry Andric } 10160b57cec5SDimitry Andric case Intrinsic::memset: { 10170b57cec5SDimitry Andric MemSetInst *MemSet = cast<MemSetInst>(Intr); 1018480093f4SDimitry Andric Builder.CreateMemSet( 1019480093f4SDimitry Andric MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 1020480093f4SDimitry Andric MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 10210b57cec5SDimitry Andric Intr->eraseFromParent(); 10220b57cec5SDimitry Andric continue; 10230b57cec5SDimitry Andric } 10240b57cec5SDimitry Andric case Intrinsic::invariant_start: 10250b57cec5SDimitry Andric case Intrinsic::invariant_end: 10260b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 10270b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 10280b57cec5SDimitry Andric Intr->eraseFromParent(); 10290b57cec5SDimitry Andric // FIXME: I think the invariant marker should still theoretically apply, 10300b57cec5SDimitry Andric // but the intrinsics need to be changed to accept pointers with any 10310b57cec5SDimitry Andric // address space. 10320b57cec5SDimitry Andric continue; 10330b57cec5SDimitry Andric case Intrinsic::objectsize: { 10340b57cec5SDimitry Andric Value *Src = Intr->getOperand(0); 10350b57cec5SDimitry Andric Type *SrcTy = Src->getType()->getPointerElementType(); 10360b57cec5SDimitry Andric Function *ObjectSize = Intrinsic::getDeclaration(Mod, 10370b57cec5SDimitry Andric Intrinsic::objectsize, 10380b57cec5SDimitry Andric { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 10390b57cec5SDimitry Andric ); 10400b57cec5SDimitry Andric 10410b57cec5SDimitry Andric CallInst *NewCall = Builder.CreateCall( 10420b57cec5SDimitry Andric ObjectSize, 10430b57cec5SDimitry Andric {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 10440b57cec5SDimitry Andric Intr->replaceAllUsesWith(NewCall); 10450b57cec5SDimitry Andric Intr->eraseFromParent(); 10460b57cec5SDimitry Andric continue; 10470b57cec5SDimitry Andric } 10480b57cec5SDimitry Andric default: 10490b57cec5SDimitry Andric Intr->print(errs()); 10500b57cec5SDimitry Andric llvm_unreachable("Don't know how to promote alloca intrinsic use."); 10510b57cec5SDimitry Andric } 10520b57cec5SDimitry Andric } 10530b57cec5SDimitry Andric return true; 10540b57cec5SDimitry Andric } 10550b57cec5SDimitry Andric 1056*e8d8bef9SDimitry Andric bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { 1057*e8d8bef9SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 1058*e8d8bef9SDimitry Andric // the array type is the canonical form. 1059*e8d8bef9SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 10605ffd83dbSDimitry Andric return false; 10615ffd83dbSDimitry Andric 1062*e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1063*e8d8bef9SDimitry Andric 1064*e8d8bef9SDimitry Andric Module *Mod = I.getParent()->getParent()->getParent(); 1065*e8d8bef9SDimitry Andric return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); 1066*e8d8bef9SDimitry Andric } 1067*e8d8bef9SDimitry Andric 1068*e8d8bef9SDimitry Andric bool promoteAllocasToVector(Function &F, TargetMachine &TM) { 1069*e8d8bef9SDimitry Andric if (DisablePromoteAllocaToVector) 10705ffd83dbSDimitry Andric return false; 10715ffd83dbSDimitry Andric 1072*e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 10735ffd83dbSDimitry Andric if (!ST.isPromoteAllocaEnabled()) 10745ffd83dbSDimitry Andric return false; 10755ffd83dbSDimitry Andric 1076*e8d8bef9SDimitry Andric unsigned MaxVGPRs; 1077*e8d8bef9SDimitry Andric if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1078*e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 10795ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 10805ffd83dbSDimitry Andric } else { 10815ffd83dbSDimitry Andric MaxVGPRs = 128; 10825ffd83dbSDimitry Andric } 10835ffd83dbSDimitry Andric 10845ffd83dbSDimitry Andric bool Changed = false; 10855ffd83dbSDimitry Andric BasicBlock &EntryBB = *F.begin(); 10865ffd83dbSDimitry Andric 10875ffd83dbSDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 10885ffd83dbSDimitry Andric for (Instruction &I : EntryBB) { 10895ffd83dbSDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 10905ffd83dbSDimitry Andric Allocas.push_back(AI); 10915ffd83dbSDimitry Andric } 10925ffd83dbSDimitry Andric 10935ffd83dbSDimitry Andric for (AllocaInst *AI : Allocas) { 1094*e8d8bef9SDimitry Andric if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) 10955ffd83dbSDimitry Andric Changed = true; 10965ffd83dbSDimitry Andric } 10975ffd83dbSDimitry Andric 10985ffd83dbSDimitry Andric return Changed; 10995ffd83dbSDimitry Andric } 11005ffd83dbSDimitry Andric 1101*e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1102*e8d8bef9SDimitry Andric if (skipFunction(F)) 11035ffd83dbSDimitry Andric return false; 1104*e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1105*e8d8bef9SDimitry Andric return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); 1106*e8d8bef9SDimitry Andric } 1107*e8d8bef9SDimitry Andric return false; 1108*e8d8bef9SDimitry Andric } 11095ffd83dbSDimitry Andric 1110*e8d8bef9SDimitry Andric PreservedAnalyses 1111*e8d8bef9SDimitry Andric AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 1112*e8d8bef9SDimitry Andric bool Changed = promoteAllocasToVector(F, TM); 1113*e8d8bef9SDimitry Andric if (Changed) { 1114*e8d8bef9SDimitry Andric PreservedAnalyses PA; 1115*e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 1116*e8d8bef9SDimitry Andric return PA; 1117*e8d8bef9SDimitry Andric } 1118*e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 11195ffd83dbSDimitry Andric } 11205ffd83dbSDimitry Andric 11210b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAlloca() { 11220b57cec5SDimitry Andric return new AMDGPUPromoteAlloca(); 11230b57cec5SDimitry Andric } 11245ffd83dbSDimitry Andric 11255ffd83dbSDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 11265ffd83dbSDimitry Andric return new AMDGPUPromoteAllocaToVector(); 11275ffd83dbSDimitry Andric } 1128