10b57cec5SDimitry Andric //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This pass eliminates allocas by either converting them into vectors or 100b57cec5SDimitry Andric // by migrating them to local address space. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #include "AMDGPU.h" 15e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 161fd87a68SDimitry Andric #include "Utils/AMDGPUBaseInfo.h" 170b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h" 180b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 190b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 200b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 211fd87a68SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 22480093f4SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 23480093f4SDimitry Andric #include "llvm/IR/IntrinsicsR600.h" 240b57cec5SDimitry Andric #include "llvm/Pass.h" 250b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 260b57cec5SDimitry Andric 270b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-promote-alloca" 280b57cec5SDimitry Andric 290b57cec5SDimitry Andric using namespace llvm; 300b57cec5SDimitry Andric 310b57cec5SDimitry Andric namespace { 320b57cec5SDimitry Andric 330b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToVector( 340b57cec5SDimitry Andric "disable-promote-alloca-to-vector", 350b57cec5SDimitry Andric cl::desc("Disable promote alloca to vector"), 360b57cec5SDimitry Andric cl::init(false)); 370b57cec5SDimitry Andric 380b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToLDS( 390b57cec5SDimitry Andric "disable-promote-alloca-to-lds", 400b57cec5SDimitry Andric cl::desc("Disable promote alloca to LDS"), 410b57cec5SDimitry Andric cl::init(false)); 420b57cec5SDimitry Andric 435ffd83dbSDimitry Andric static cl::opt<unsigned> PromoteAllocaToVectorLimit( 445ffd83dbSDimitry Andric "amdgpu-promote-alloca-to-vector-limit", 455ffd83dbSDimitry Andric cl::desc("Maximum byte size to consider promote alloca to vector"), 465ffd83dbSDimitry Andric cl::init(0)); 475ffd83dbSDimitry Andric 480b57cec5SDimitry Andric // FIXME: This can create globals so should be a module pass. 490b57cec5SDimitry Andric class AMDGPUPromoteAlloca : public FunctionPass { 50e8d8bef9SDimitry Andric public: 51e8d8bef9SDimitry Andric static char ID; 52e8d8bef9SDimitry Andric 53e8d8bef9SDimitry Andric AMDGPUPromoteAlloca() : FunctionPass(ID) {} 54e8d8bef9SDimitry Andric 55e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override; 56e8d8bef9SDimitry Andric 57e8d8bef9SDimitry Andric StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 58e8d8bef9SDimitry Andric 59e8d8bef9SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 60e8d8bef9SDimitry Andric 61e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 62e8d8bef9SDimitry Andric AU.setPreservesCFG(); 63e8d8bef9SDimitry Andric FunctionPass::getAnalysisUsage(AU); 64e8d8bef9SDimitry Andric } 65e8d8bef9SDimitry Andric }; 66e8d8bef9SDimitry Andric 67e8d8bef9SDimitry Andric class AMDGPUPromoteAllocaImpl { 680b57cec5SDimitry Andric private: 69e8d8bef9SDimitry Andric const TargetMachine &TM; 700b57cec5SDimitry Andric Module *Mod = nullptr; 710b57cec5SDimitry Andric const DataLayout *DL = nullptr; 720b57cec5SDimitry Andric 730b57cec5SDimitry Andric // FIXME: This should be per-kernel. 740b57cec5SDimitry Andric uint32_t LocalMemLimit = 0; 750b57cec5SDimitry Andric uint32_t CurrentLocalMemUsage = 0; 765ffd83dbSDimitry Andric unsigned MaxVGPRs; 770b57cec5SDimitry Andric 780b57cec5SDimitry Andric bool IsAMDGCN = false; 790b57cec5SDimitry Andric bool IsAMDHSA = false; 800b57cec5SDimitry Andric 810b57cec5SDimitry Andric std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 820b57cec5SDimitry Andric Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 830b57cec5SDimitry Andric 840b57cec5SDimitry Andric /// BaseAlloca is the alloca root the search started from. 850b57cec5SDimitry Andric /// Val may be that alloca or a recursive user of it. 860b57cec5SDimitry Andric bool collectUsesWithPtrTypes(Value *BaseAlloca, 870b57cec5SDimitry Andric Value *Val, 880b57cec5SDimitry Andric std::vector<Value*> &WorkList) const; 890b57cec5SDimitry Andric 900b57cec5SDimitry Andric /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 910b57cec5SDimitry Andric /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 920b57cec5SDimitry Andric /// Returns true if both operands are derived from the same alloca. Val should 930b57cec5SDimitry Andric /// be the same value as one of the input operands of UseInst. 940b57cec5SDimitry Andric bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 950b57cec5SDimitry Andric Instruction *UseInst, 960b57cec5SDimitry Andric int OpIdx0, int OpIdx1) const; 970b57cec5SDimitry Andric 980b57cec5SDimitry Andric /// Check whether we have enough local memory for promotion. 990b57cec5SDimitry Andric bool hasSufficientLocalMem(const Function &F); 1000b57cec5SDimitry Andric 1010b57cec5SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 1020b57cec5SDimitry Andric 103e8d8bef9SDimitry Andric public: 104e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} 105e8d8bef9SDimitry Andric bool run(Function &F); 1060b57cec5SDimitry Andric }; 1070b57cec5SDimitry Andric 1085ffd83dbSDimitry Andric class AMDGPUPromoteAllocaToVector : public FunctionPass { 1095ffd83dbSDimitry Andric public: 1105ffd83dbSDimitry Andric static char ID; 1115ffd83dbSDimitry Andric 1125ffd83dbSDimitry Andric AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 1135ffd83dbSDimitry Andric 1145ffd83dbSDimitry Andric bool runOnFunction(Function &F) override; 1155ffd83dbSDimitry Andric 1165ffd83dbSDimitry Andric StringRef getPassName() const override { 1175ffd83dbSDimitry Andric return "AMDGPU Promote Alloca to vector"; 1185ffd83dbSDimitry Andric } 1195ffd83dbSDimitry Andric 1205ffd83dbSDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 1215ffd83dbSDimitry Andric AU.setPreservesCFG(); 1225ffd83dbSDimitry Andric FunctionPass::getAnalysisUsage(AU); 1235ffd83dbSDimitry Andric } 1245ffd83dbSDimitry Andric }; 1255ffd83dbSDimitry Andric 1260b57cec5SDimitry Andric } // end anonymous namespace 1270b57cec5SDimitry Andric 1280b57cec5SDimitry Andric char AMDGPUPromoteAlloca::ID = 0; 1295ffd83dbSDimitry Andric char AMDGPUPromoteAllocaToVector::ID = 0; 1300b57cec5SDimitry Andric 131fe6060f1SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 132fe6060f1SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 133fe6060f1SDimitry Andric // Move LDS uses from functions to kernels before promote alloca for accurate 134fe6060f1SDimitry Andric // estimation of LDS available 135fe6060f1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS) 136fe6060f1SDimitry Andric INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 1370b57cec5SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 1380b57cec5SDimitry Andric 1395ffd83dbSDimitry Andric INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 1405ffd83dbSDimitry Andric "AMDGPU promote alloca to vector", false, false) 1415ffd83dbSDimitry Andric 1420b57cec5SDimitry Andric char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 1435ffd83dbSDimitry Andric char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 1440b57cec5SDimitry Andric 1450b57cec5SDimitry Andric bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 1460b57cec5SDimitry Andric if (skipFunction(F)) 1470b57cec5SDimitry Andric return false; 1480b57cec5SDimitry Andric 149e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 150e8d8bef9SDimitry Andric return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); 151e8d8bef9SDimitry Andric } 1520b57cec5SDimitry Andric return false; 153e8d8bef9SDimitry Andric } 1540b57cec5SDimitry Andric 155e8d8bef9SDimitry Andric PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 156e8d8bef9SDimitry Andric FunctionAnalysisManager &AM) { 157e8d8bef9SDimitry Andric bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); 158e8d8bef9SDimitry Andric if (Changed) { 159e8d8bef9SDimitry Andric PreservedAnalyses PA; 160e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 161e8d8bef9SDimitry Andric return PA; 162e8d8bef9SDimitry Andric } 163e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 164e8d8bef9SDimitry Andric } 165e8d8bef9SDimitry Andric 166e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::run(Function &F) { 167e8d8bef9SDimitry Andric Mod = F.getParent(); 168e8d8bef9SDimitry Andric DL = &Mod->getDataLayout(); 169e8d8bef9SDimitry Andric 170e8d8bef9SDimitry Andric const Triple &TT = TM.getTargetTriple(); 1710b57cec5SDimitry Andric IsAMDGCN = TT.getArch() == Triple::amdgcn; 1720b57cec5SDimitry Andric IsAMDHSA = TT.getOS() == Triple::AMDHSA; 1730b57cec5SDimitry Andric 174e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1750b57cec5SDimitry Andric if (!ST.isPromoteAllocaEnabled()) 1760b57cec5SDimitry Andric return false; 1770b57cec5SDimitry Andric 1785ffd83dbSDimitry Andric if (IsAMDGCN) { 179e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 1805ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 181349cc55cSDimitry Andric // A non-entry function has only 32 caller preserved registers. 182349cc55cSDimitry Andric // Do not promote alloca which will force spilling. 183349cc55cSDimitry Andric if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) 184349cc55cSDimitry Andric MaxVGPRs = std::min(MaxVGPRs, 32u); 1855ffd83dbSDimitry Andric } else { 1865ffd83dbSDimitry Andric MaxVGPRs = 128; 1875ffd83dbSDimitry Andric } 1885ffd83dbSDimitry Andric 1890b57cec5SDimitry Andric bool SufficientLDS = hasSufficientLocalMem(F); 1900b57cec5SDimitry Andric bool Changed = false; 1910b57cec5SDimitry Andric BasicBlock &EntryBB = *F.begin(); 1920b57cec5SDimitry Andric 1930b57cec5SDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 1940b57cec5SDimitry Andric for (Instruction &I : EntryBB) { 1950b57cec5SDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1960b57cec5SDimitry Andric Allocas.push_back(AI); 1970b57cec5SDimitry Andric } 1980b57cec5SDimitry Andric 1990b57cec5SDimitry Andric for (AllocaInst *AI : Allocas) { 2000b57cec5SDimitry Andric if (handleAlloca(*AI, SufficientLDS)) 2010b57cec5SDimitry Andric Changed = true; 2020b57cec5SDimitry Andric } 2030b57cec5SDimitry Andric 2040b57cec5SDimitry Andric return Changed; 2050b57cec5SDimitry Andric } 2060b57cec5SDimitry Andric 2070b57cec5SDimitry Andric std::pair<Value *, Value *> 208e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 209349cc55cSDimitry Andric Function &F = *Builder.GetInsertBlock()->getParent(); 210e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 2110b57cec5SDimitry Andric 2120b57cec5SDimitry Andric if (!IsAMDHSA) { 2130b57cec5SDimitry Andric Function *LocalSizeYFn 2140b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 2150b57cec5SDimitry Andric Function *LocalSizeZFn 2160b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 2170b57cec5SDimitry Andric 2180b57cec5SDimitry Andric CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 2190b57cec5SDimitry Andric CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeY); 2220b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeZ); 2230b57cec5SDimitry Andric 224*bdd1243dSDimitry Andric return std::pair(LocalSizeY, LocalSizeZ); 2250b57cec5SDimitry Andric } 2260b57cec5SDimitry Andric 2270b57cec5SDimitry Andric // We must read the size out of the dispatch pointer. 2280b57cec5SDimitry Andric assert(IsAMDGCN); 2290b57cec5SDimitry Andric 2300b57cec5SDimitry Andric // We are indexing into this struct, and want to extract the workgroup_size_* 2310b57cec5SDimitry Andric // fields. 2320b57cec5SDimitry Andric // 2330b57cec5SDimitry Andric // typedef struct hsa_kernel_dispatch_packet_s { 2340b57cec5SDimitry Andric // uint16_t header; 2350b57cec5SDimitry Andric // uint16_t setup; 2360b57cec5SDimitry Andric // uint16_t workgroup_size_x ; 2370b57cec5SDimitry Andric // uint16_t workgroup_size_y; 2380b57cec5SDimitry Andric // uint16_t workgroup_size_z; 2390b57cec5SDimitry Andric // uint16_t reserved0; 2400b57cec5SDimitry Andric // uint32_t grid_size_x ; 2410b57cec5SDimitry Andric // uint32_t grid_size_y ; 2420b57cec5SDimitry Andric // uint32_t grid_size_z; 2430b57cec5SDimitry Andric // 2440b57cec5SDimitry Andric // uint32_t private_segment_size; 2450b57cec5SDimitry Andric // uint32_t group_segment_size; 2460b57cec5SDimitry Andric // uint64_t kernel_object; 2470b57cec5SDimitry Andric // 2480b57cec5SDimitry Andric // #ifdef HSA_LARGE_MODEL 2490b57cec5SDimitry Andric // void *kernarg_address; 2500b57cec5SDimitry Andric // #elif defined HSA_LITTLE_ENDIAN 2510b57cec5SDimitry Andric // void *kernarg_address; 2520b57cec5SDimitry Andric // uint32_t reserved1; 2530b57cec5SDimitry Andric // #else 2540b57cec5SDimitry Andric // uint32_t reserved1; 2550b57cec5SDimitry Andric // void *kernarg_address; 2560b57cec5SDimitry Andric // #endif 2570b57cec5SDimitry Andric // uint64_t reserved2; 2580b57cec5SDimitry Andric // hsa_signal_t completion_signal; // uint64_t wrapper 2590b57cec5SDimitry Andric // } hsa_kernel_dispatch_packet_t 2600b57cec5SDimitry Andric // 2610b57cec5SDimitry Andric Function *DispatchPtrFn 2620b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 2630b57cec5SDimitry Andric 2640b57cec5SDimitry Andric CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 265349cc55cSDimitry Andric DispatchPtr->addRetAttr(Attribute::NoAlias); 266349cc55cSDimitry Andric DispatchPtr->addRetAttr(Attribute::NonNull); 267349cc55cSDimitry Andric F.removeFnAttr("amdgpu-no-dispatch-ptr"); 2680b57cec5SDimitry Andric 2690b57cec5SDimitry Andric // Size of the dispatch packet struct. 270349cc55cSDimitry Andric DispatchPtr->addDereferenceableRetAttr(64); 2710b57cec5SDimitry Andric 2720b57cec5SDimitry Andric Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 2730b57cec5SDimitry Andric Value *CastDispatchPtr = Builder.CreateBitCast( 2740b57cec5SDimitry Andric DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 2750b57cec5SDimitry Andric 2760b57cec5SDimitry Andric // We could do a single 64-bit load here, but it's likely that the basic 2770b57cec5SDimitry Andric // 32-bit and extract sequence is already present, and it is probably easier 278349cc55cSDimitry Andric // to CSE this. The loads should be mergeable later anyway. 2790b57cec5SDimitry Andric Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 2805ffd83dbSDimitry Andric LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 2810b57cec5SDimitry Andric 2820b57cec5SDimitry Andric Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 2835ffd83dbSDimitry Andric LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 2840b57cec5SDimitry Andric 285*bdd1243dSDimitry Andric MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt); 2860b57cec5SDimitry Andric LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 2870b57cec5SDimitry Andric LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 2880b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LoadZU); 2890b57cec5SDimitry Andric 2900b57cec5SDimitry Andric // Extract y component. Upper half of LoadZU should be zero already. 2910b57cec5SDimitry Andric Value *Y = Builder.CreateLShr(LoadXY, 16); 2920b57cec5SDimitry Andric 293*bdd1243dSDimitry Andric return std::pair(Y, LoadZU); 2940b57cec5SDimitry Andric } 2950b57cec5SDimitry Andric 296e8d8bef9SDimitry Andric Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 297e8d8bef9SDimitry Andric unsigned N) { 298349cc55cSDimitry Andric Function *F = Builder.GetInsertBlock()->getParent(); 299349cc55cSDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 300480093f4SDimitry Andric Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 301349cc55cSDimitry Andric StringRef AttrName; 3020b57cec5SDimitry Andric 3030b57cec5SDimitry Andric switch (N) { 3040b57cec5SDimitry Andric case 0: 305480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 306480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 307349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-x"; 3080b57cec5SDimitry Andric break; 3090b57cec5SDimitry Andric case 1: 310480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 311480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 312349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-y"; 3130b57cec5SDimitry Andric break; 3140b57cec5SDimitry Andric 3150b57cec5SDimitry Andric case 2: 316480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 317480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 318349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-z"; 3190b57cec5SDimitry Andric break; 3200b57cec5SDimitry Andric default: 3210b57cec5SDimitry Andric llvm_unreachable("invalid dimension"); 3220b57cec5SDimitry Andric } 3230b57cec5SDimitry Andric 3240b57cec5SDimitry Andric Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 3250b57cec5SDimitry Andric CallInst *CI = Builder.CreateCall(WorkitemIdFn); 3260b57cec5SDimitry Andric ST.makeLIDRangeMetadata(CI); 327349cc55cSDimitry Andric F->removeFnAttr(AttrName); 3280b57cec5SDimitry Andric 3290b57cec5SDimitry Andric return CI; 3300b57cec5SDimitry Andric } 3310b57cec5SDimitry Andric 3325ffd83dbSDimitry Andric static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 3335ffd83dbSDimitry Andric return FixedVectorType::get(ArrayTy->getElementType(), 3340b57cec5SDimitry Andric ArrayTy->getNumElements()); 3350b57cec5SDimitry Andric } 3360b57cec5SDimitry Andric 3370b57cec5SDimitry Andric static Value * 3380b57cec5SDimitry Andric calculateVectorIndex(Value *Ptr, 3390b57cec5SDimitry Andric const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 34081ad6265SDimitry Andric auto *GEP = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()); 3415ffd83dbSDimitry Andric if (!GEP) 34281ad6265SDimitry Andric return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext())); 3430b57cec5SDimitry Andric 3440b57cec5SDimitry Andric auto I = GEPIdx.find(GEP); 34581ad6265SDimitry Andric assert(I != GEPIdx.end() && "Must have entry for GEP!"); 34681ad6265SDimitry Andric return I->second; 3470b57cec5SDimitry Andric } 3480b57cec5SDimitry Andric 34981ad6265SDimitry Andric static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca, 35081ad6265SDimitry Andric Type *VecElemTy, const DataLayout &DL) { 35181ad6265SDimitry Andric // TODO: Extracting a "multiple of X" from a GEP might be a useful generic 35281ad6265SDimitry Andric // helper. 35381ad6265SDimitry Andric unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType()); 35481ad6265SDimitry Andric MapVector<Value *, APInt> VarOffsets; 35581ad6265SDimitry Andric APInt ConstOffset(BW, 0); 35681ad6265SDimitry Andric if (GEP->getPointerOperand()->stripPointerCasts() != Alloca || 35781ad6265SDimitry Andric !GEP->collectOffset(DL, BW, VarOffsets, ConstOffset)) 3580b57cec5SDimitry Andric return nullptr; 3590b57cec5SDimitry Andric 36081ad6265SDimitry Andric unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy); 36181ad6265SDimitry Andric if (VarOffsets.size() > 1) 3620b57cec5SDimitry Andric return nullptr; 3630b57cec5SDimitry Andric 36481ad6265SDimitry Andric if (VarOffsets.size() == 1) { 36581ad6265SDimitry Andric // Only handle cases where we don't need to insert extra arithmetic 3660b57cec5SDimitry Andric // instructions. 36781ad6265SDimitry Andric const auto &VarOffset = VarOffsets.front(); 36881ad6265SDimitry Andric if (!ConstOffset.isZero() || VarOffset.second != VecElemSize) 36981ad6265SDimitry Andric return nullptr; 37081ad6265SDimitry Andric return VarOffset.first; 3710b57cec5SDimitry Andric } 3725ffd83dbSDimitry Andric 37381ad6265SDimitry Andric APInt Quot; 37481ad6265SDimitry Andric uint64_t Rem; 37581ad6265SDimitry Andric APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem); 37681ad6265SDimitry Andric if (Rem != 0) 37781ad6265SDimitry Andric return nullptr; 3785ffd83dbSDimitry Andric 37981ad6265SDimitry Andric return ConstantInt::get(GEP->getContext(), Quot); 3800b57cec5SDimitry Andric } 3810b57cec5SDimitry Andric 382*bdd1243dSDimitry Andric struct MemTransferInfo { 383*bdd1243dSDimitry Andric ConstantInt *SrcIndex = nullptr; 384*bdd1243dSDimitry Andric ConstantInt *DestIndex = nullptr; 385*bdd1243dSDimitry Andric }; 386*bdd1243dSDimitry Andric 3875ffd83dbSDimitry Andric static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, 3885ffd83dbSDimitry Andric unsigned MaxVGPRs) { 3890b57cec5SDimitry Andric 3900b57cec5SDimitry Andric if (DisablePromoteAllocaToVector) { 3910b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 3920b57cec5SDimitry Andric return false; 3930b57cec5SDimitry Andric } 3940b57cec5SDimitry Andric 3955ffd83dbSDimitry Andric Type *AllocaTy = Alloca->getAllocatedType(); 3965ffd83dbSDimitry Andric auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 3975ffd83dbSDimitry Andric if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 3985ffd83dbSDimitry Andric if (VectorType::isValidElementType(ArrayTy->getElementType()) && 3995ffd83dbSDimitry Andric ArrayTy->getNumElements() > 0) 4005ffd83dbSDimitry Andric VectorTy = arrayTypeToVecType(ArrayTy); 4015ffd83dbSDimitry Andric } 4025ffd83dbSDimitry Andric 4035ffd83dbSDimitry Andric // Use up to 1/4 of available register budget for vectorization. 4045ffd83dbSDimitry Andric unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 4055ffd83dbSDimitry Andric : (MaxVGPRs * 32); 4065ffd83dbSDimitry Andric 4075ffd83dbSDimitry Andric if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { 4085ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " 4095ffd83dbSDimitry Andric << MaxVGPRs << " registers available\n"); 4105ffd83dbSDimitry Andric return false; 4115ffd83dbSDimitry Andric } 4120b57cec5SDimitry Andric 4130b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 4140b57cec5SDimitry Andric 4150b57cec5SDimitry Andric // FIXME: There is no reason why we can't support larger arrays, we 4160b57cec5SDimitry Andric // are just being conservative for now. 4170b57cec5SDimitry Andric // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 4180b57cec5SDimitry Andric // could also be promoted but we don't currently handle this case 4195ffd83dbSDimitry Andric if (!VectorTy || VectorTy->getNumElements() > 16 || 4205ffd83dbSDimitry Andric VectorTy->getNumElements() < 2) { 4210b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 4220b57cec5SDimitry Andric return false; 4230b57cec5SDimitry Andric } 4240b57cec5SDimitry Andric 4250b57cec5SDimitry Andric std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 42681ad6265SDimitry Andric SmallVector<Instruction *> WorkList; 427*bdd1243dSDimitry Andric SmallVector<Instruction *> DeferredInsts; 42881ad6265SDimitry Andric SmallVector<Use *, 8> Uses; 429*bdd1243dSDimitry Andric DenseMap<MemTransferInst *, MemTransferInfo> TransferInfo; 430*bdd1243dSDimitry Andric 43181ad6265SDimitry Andric for (Use &U : Alloca->uses()) 43281ad6265SDimitry Andric Uses.push_back(&U); 4335ffd83dbSDimitry Andric 43481ad6265SDimitry Andric Type *VecEltTy = VectorTy->getElementType(); 435*bdd1243dSDimitry Andric unsigned ElementSize = DL.getTypeSizeInBits(VecEltTy) / 8; 43681ad6265SDimitry Andric while (!Uses.empty()) { 43781ad6265SDimitry Andric Use *U = Uses.pop_back_val(); 438*bdd1243dSDimitry Andric Instruction *Inst = cast<Instruction>(U->getUser()); 43981ad6265SDimitry Andric 44081ad6265SDimitry Andric if (Value *Ptr = getLoadStorePointerOperand(Inst)) { 44181ad6265SDimitry Andric // This is a store of the pointer, not to the pointer. 44281ad6265SDimitry Andric if (isa<StoreInst>(Inst) && 44381ad6265SDimitry Andric U->getOperandNo() != StoreInst::getPointerOperandIndex()) 4440b57cec5SDimitry Andric return false; 4450b57cec5SDimitry Andric 44681ad6265SDimitry Andric Type *AccessTy = getLoadStoreType(Inst); 44781ad6265SDimitry Andric Ptr = Ptr->stripPointerCasts(); 44881ad6265SDimitry Andric 44981ad6265SDimitry Andric // Alloca already accessed as vector, leave alone. 45081ad6265SDimitry Andric if (Ptr == Alloca && DL.getTypeStoreSize(Alloca->getAllocatedType()) == 45181ad6265SDimitry Andric DL.getTypeStoreSize(AccessTy)) 4525ffd83dbSDimitry Andric continue; 4535ffd83dbSDimitry Andric 45481ad6265SDimitry Andric // Check that this is a simple access of a vector element. 45581ad6265SDimitry Andric bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple() 45681ad6265SDimitry Andric : cast<StoreInst>(Inst)->isSimple(); 45781ad6265SDimitry Andric if (!IsSimple || 45881ad6265SDimitry Andric !CastInst::isBitOrNoopPointerCastable(VecEltTy, AccessTy, DL)) 45981ad6265SDimitry Andric return false; 4605ffd83dbSDimitry Andric 46181ad6265SDimitry Andric WorkList.push_back(Inst); 4625ffd83dbSDimitry Andric continue; 4635ffd83dbSDimitry Andric } 4645ffd83dbSDimitry Andric 46581ad6265SDimitry Andric if (isa<BitCastInst>(Inst)) { 46681ad6265SDimitry Andric // Look through bitcasts. 46781ad6265SDimitry Andric for (Use &U : Inst->uses()) 46881ad6265SDimitry Andric Uses.push_back(&U); 4690b57cec5SDimitry Andric continue; 4700b57cec5SDimitry Andric } 4710b57cec5SDimitry Andric 47281ad6265SDimitry Andric if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 4730b57cec5SDimitry Andric // If we can't compute a vector index from this GEP, then we can't 4740b57cec5SDimitry Andric // promote this alloca to vector. 47581ad6265SDimitry Andric Value *Index = GEPToVectorIndex(GEP, Alloca, VecEltTy, DL); 4760b57cec5SDimitry Andric if (!Index) { 4770b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 4780b57cec5SDimitry Andric << '\n'); 4790b57cec5SDimitry Andric return false; 4800b57cec5SDimitry Andric } 4810b57cec5SDimitry Andric 4820b57cec5SDimitry Andric GEPVectorIdx[GEP] = Index; 48381ad6265SDimitry Andric for (Use &U : Inst->uses()) 48481ad6265SDimitry Andric Uses.push_back(&U); 48581ad6265SDimitry Andric continue; 48681ad6265SDimitry Andric } 48781ad6265SDimitry Andric 488*bdd1243dSDimitry Andric if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) { 489*bdd1243dSDimitry Andric if (TransferInst->isVolatile()) 490*bdd1243dSDimitry Andric return false; 491*bdd1243dSDimitry Andric 492*bdd1243dSDimitry Andric ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength()); 493*bdd1243dSDimitry Andric if (!Len || !!(Len->getZExtValue() % ElementSize)) 494*bdd1243dSDimitry Andric return false; 495*bdd1243dSDimitry Andric 496*bdd1243dSDimitry Andric if (!TransferInfo.count(TransferInst)) { 497*bdd1243dSDimitry Andric DeferredInsts.push_back(Inst); 498*bdd1243dSDimitry Andric WorkList.push_back(Inst); 499*bdd1243dSDimitry Andric TransferInfo[TransferInst] = MemTransferInfo(); 500*bdd1243dSDimitry Andric } 501*bdd1243dSDimitry Andric 502*bdd1243dSDimitry Andric auto getPointerIndexOfAlloca = [&](Value *Ptr) -> ConstantInt * { 503*bdd1243dSDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 504*bdd1243dSDimitry Andric if (Ptr != Alloca && !GEPVectorIdx.count(GEP)) 505*bdd1243dSDimitry Andric return nullptr; 506*bdd1243dSDimitry Andric 507*bdd1243dSDimitry Andric return dyn_cast<ConstantInt>(calculateVectorIndex(Ptr, GEPVectorIdx)); 508*bdd1243dSDimitry Andric }; 509*bdd1243dSDimitry Andric 510*bdd1243dSDimitry Andric unsigned OpNum = U->getOperandNo(); 511*bdd1243dSDimitry Andric MemTransferInfo *TI = &TransferInfo[TransferInst]; 512*bdd1243dSDimitry Andric if (OpNum == 0) { 513*bdd1243dSDimitry Andric Value *Dest = TransferInst->getDest(); 514*bdd1243dSDimitry Andric ConstantInt *Index = getPointerIndexOfAlloca(Dest); 515*bdd1243dSDimitry Andric if (!Index) 516*bdd1243dSDimitry Andric return false; 517*bdd1243dSDimitry Andric TI->DestIndex = Index; 518*bdd1243dSDimitry Andric } else { 519*bdd1243dSDimitry Andric assert(OpNum == 1); 520*bdd1243dSDimitry Andric Value *Src = TransferInst->getSource(); 521*bdd1243dSDimitry Andric ConstantInt *Index = getPointerIndexOfAlloca(Src); 522*bdd1243dSDimitry Andric if (!Index) 523*bdd1243dSDimitry Andric return false; 524*bdd1243dSDimitry Andric TI->SrcIndex = Index; 525*bdd1243dSDimitry Andric } 526*bdd1243dSDimitry Andric continue; 527*bdd1243dSDimitry Andric } 528*bdd1243dSDimitry Andric 52981ad6265SDimitry Andric // Ignore assume-like intrinsics and comparisons used in assumes. 53081ad6265SDimitry Andric if (isAssumeLikeIntrinsic(Inst)) 53181ad6265SDimitry Andric continue; 53281ad6265SDimitry Andric 53381ad6265SDimitry Andric if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) { 53481ad6265SDimitry Andric return isAssumeLikeIntrinsic(cast<Instruction>(U)); 53581ad6265SDimitry Andric })) 53681ad6265SDimitry Andric continue; 53781ad6265SDimitry Andric 53881ad6265SDimitry Andric // Unknown user. 53981ad6265SDimitry Andric return false; 5400b57cec5SDimitry Andric } 5410b57cec5SDimitry Andric 542*bdd1243dSDimitry Andric while (!DeferredInsts.empty()) { 543*bdd1243dSDimitry Andric Instruction *Inst = DeferredInsts.pop_back_val(); 544*bdd1243dSDimitry Andric MemTransferInst *TransferInst = cast<MemTransferInst>(Inst); 545*bdd1243dSDimitry Andric // TODO: Support the case if the pointers are from different alloca or 546*bdd1243dSDimitry Andric // from different address spaces. 547*bdd1243dSDimitry Andric MemTransferInfo &Info = TransferInfo[TransferInst]; 548*bdd1243dSDimitry Andric if (!Info.SrcIndex || !Info.DestIndex) 549*bdd1243dSDimitry Andric return false; 550*bdd1243dSDimitry Andric } 551*bdd1243dSDimitry Andric 5520b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 5530b57cec5SDimitry Andric << *VectorTy << '\n'); 5540b57cec5SDimitry Andric 55581ad6265SDimitry Andric for (Instruction *Inst : WorkList) { 5560b57cec5SDimitry Andric IRBuilder<> Builder(Inst); 5570b57cec5SDimitry Andric switch (Inst->getOpcode()) { 5580b57cec5SDimitry Andric case Instruction::Load: { 5595ffd83dbSDimitry Andric Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 5605ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 56181ad6265SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(Alloca->getAddressSpace()); 5620b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 563*bdd1243dSDimitry Andric Value *VecValue = 564*bdd1243dSDimitry Andric Builder.CreateAlignedLoad(VectorTy, BitCast, Alloca->getAlign()); 5650b57cec5SDimitry Andric Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 5665ffd83dbSDimitry Andric if (Inst->getType() != VecEltTy) 5675ffd83dbSDimitry Andric ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); 5680b57cec5SDimitry Andric Inst->replaceAllUsesWith(ExtractElement); 5690b57cec5SDimitry Andric Inst->eraseFromParent(); 5700b57cec5SDimitry Andric break; 5710b57cec5SDimitry Andric } 5720b57cec5SDimitry Andric case Instruction::Store: { 5730b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 5745ffd83dbSDimitry Andric Value *Ptr = SI->getPointerOperand(); 5755ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 57681ad6265SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(Alloca->getAddressSpace()); 5770b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 578*bdd1243dSDimitry Andric Value *VecValue = 579*bdd1243dSDimitry Andric Builder.CreateAlignedLoad(VectorTy, BitCast, Alloca->getAlign()); 5805ffd83dbSDimitry Andric Value *Elt = SI->getValueOperand(); 5815ffd83dbSDimitry Andric if (Elt->getType() != VecEltTy) 5825ffd83dbSDimitry Andric Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); 5835ffd83dbSDimitry Andric Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 584*bdd1243dSDimitry Andric Builder.CreateAlignedStore(NewVecValue, BitCast, Alloca->getAlign()); 5850b57cec5SDimitry Andric Inst->eraseFromParent(); 5860b57cec5SDimitry Andric break; 5870b57cec5SDimitry Andric } 588*bdd1243dSDimitry Andric case Instruction::Call: { 589*bdd1243dSDimitry Andric if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst)) { 590*bdd1243dSDimitry Andric ConstantInt *Length = cast<ConstantInt>(MTI->getLength()); 591*bdd1243dSDimitry Andric unsigned NumCopied = Length->getZExtValue() / ElementSize; 592*bdd1243dSDimitry Andric MemTransferInfo *TI = &TransferInfo[cast<MemTransferInst>(Inst)]; 593*bdd1243dSDimitry Andric unsigned SrcBegin = TI->SrcIndex->getZExtValue(); 594*bdd1243dSDimitry Andric unsigned DestBegin = TI->DestIndex->getZExtValue(); 595*bdd1243dSDimitry Andric 596*bdd1243dSDimitry Andric SmallVector<int> Mask; 597*bdd1243dSDimitry Andric for (unsigned Idx = 0; Idx < VectorTy->getNumElements(); ++Idx) { 598*bdd1243dSDimitry Andric if (Idx >= DestBegin && Idx < DestBegin + NumCopied) { 599*bdd1243dSDimitry Andric Mask.push_back(SrcBegin++); 600*bdd1243dSDimitry Andric } else { 601*bdd1243dSDimitry Andric Mask.push_back(Idx); 602*bdd1243dSDimitry Andric } 603*bdd1243dSDimitry Andric } 604*bdd1243dSDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(Alloca->getAddressSpace()); 605*bdd1243dSDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 606*bdd1243dSDimitry Andric Value *VecValue = 607*bdd1243dSDimitry Andric Builder.CreateAlignedLoad(VectorTy, BitCast, Alloca->getAlign()); 608*bdd1243dSDimitry Andric Value *NewVecValue = Builder.CreateShuffleVector(VecValue, Mask); 609*bdd1243dSDimitry Andric Builder.CreateAlignedStore(NewVecValue, BitCast, Alloca->getAlign()); 610*bdd1243dSDimitry Andric 611*bdd1243dSDimitry Andric Inst->eraseFromParent(); 612*bdd1243dSDimitry Andric } else { 613*bdd1243dSDimitry Andric llvm_unreachable("Unsupported call when promoting alloca to vector"); 614*bdd1243dSDimitry Andric } 615*bdd1243dSDimitry Andric break; 616*bdd1243dSDimitry Andric } 6170b57cec5SDimitry Andric 6180b57cec5SDimitry Andric default: 6190b57cec5SDimitry Andric llvm_unreachable("Inconsistency in instructions promotable to vector"); 6200b57cec5SDimitry Andric } 6210b57cec5SDimitry Andric } 6220b57cec5SDimitry Andric return true; 6230b57cec5SDimitry Andric } 6240b57cec5SDimitry Andric 6250b57cec5SDimitry Andric static bool isCallPromotable(CallInst *CI) { 6260b57cec5SDimitry Andric IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 6270b57cec5SDimitry Andric if (!II) 6280b57cec5SDimitry Andric return false; 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric switch (II->getIntrinsicID()) { 6310b57cec5SDimitry Andric case Intrinsic::memcpy: 6320b57cec5SDimitry Andric case Intrinsic::memmove: 6330b57cec5SDimitry Andric case Intrinsic::memset: 6340b57cec5SDimitry Andric case Intrinsic::lifetime_start: 6350b57cec5SDimitry Andric case Intrinsic::lifetime_end: 6360b57cec5SDimitry Andric case Intrinsic::invariant_start: 6370b57cec5SDimitry Andric case Intrinsic::invariant_end: 6380b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 6390b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 6400b57cec5SDimitry Andric case Intrinsic::objectsize: 6410b57cec5SDimitry Andric return true; 6420b57cec5SDimitry Andric default: 6430b57cec5SDimitry Andric return false; 6440b57cec5SDimitry Andric } 6450b57cec5SDimitry Andric } 6460b57cec5SDimitry Andric 647e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 648e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 6490b57cec5SDimitry Andric int OpIdx1) const { 6500b57cec5SDimitry Andric // Figure out which operand is the one we might not be promoting. 6510b57cec5SDimitry Andric Value *OtherOp = Inst->getOperand(OpIdx0); 6520b57cec5SDimitry Andric if (Val == OtherOp) 6530b57cec5SDimitry Andric OtherOp = Inst->getOperand(OpIdx1); 6540b57cec5SDimitry Andric 6550b57cec5SDimitry Andric if (isa<ConstantPointerNull>(OtherOp)) 6560b57cec5SDimitry Andric return true; 6570b57cec5SDimitry Andric 658e8d8bef9SDimitry Andric Value *OtherObj = getUnderlyingObject(OtherOp); 6590b57cec5SDimitry Andric if (!isa<AllocaInst>(OtherObj)) 6600b57cec5SDimitry Andric return false; 6610b57cec5SDimitry Andric 6620b57cec5SDimitry Andric // TODO: We should be able to replace undefs with the right pointer type. 6630b57cec5SDimitry Andric 6640b57cec5SDimitry Andric // TODO: If we know the other base object is another promotable 6650b57cec5SDimitry Andric // alloca, not necessarily this alloca, we can do this. The 6660b57cec5SDimitry Andric // important part is both must have the same address space at 6670b57cec5SDimitry Andric // the end. 6680b57cec5SDimitry Andric if (OtherObj != BaseAlloca) { 6690b57cec5SDimitry Andric LLVM_DEBUG( 6700b57cec5SDimitry Andric dbgs() << "Found a binary instruction with another alloca object\n"); 6710b57cec5SDimitry Andric return false; 6720b57cec5SDimitry Andric } 6730b57cec5SDimitry Andric 6740b57cec5SDimitry Andric return true; 6750b57cec5SDimitry Andric } 6760b57cec5SDimitry Andric 677e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 678e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 6790b57cec5SDimitry Andric 6800b57cec5SDimitry Andric for (User *User : Val->users()) { 6810b57cec5SDimitry Andric if (is_contained(WorkList, User)) 6820b57cec5SDimitry Andric continue; 6830b57cec5SDimitry Andric 6840b57cec5SDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(User)) { 6850b57cec5SDimitry Andric if (!isCallPromotable(CI)) 6860b57cec5SDimitry Andric return false; 6870b57cec5SDimitry Andric 6880b57cec5SDimitry Andric WorkList.push_back(User); 6890b57cec5SDimitry Andric continue; 6900b57cec5SDimitry Andric } 6910b57cec5SDimitry Andric 6920b57cec5SDimitry Andric Instruction *UseInst = cast<Instruction>(User); 6930b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::PtrToInt) 6940b57cec5SDimitry Andric return false; 6950b57cec5SDimitry Andric 6960b57cec5SDimitry Andric if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 6970b57cec5SDimitry Andric if (LI->isVolatile()) 6980b57cec5SDimitry Andric return false; 6990b57cec5SDimitry Andric 7000b57cec5SDimitry Andric continue; 7010b57cec5SDimitry Andric } 7020b57cec5SDimitry Andric 7030b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 7040b57cec5SDimitry Andric if (SI->isVolatile()) 7050b57cec5SDimitry Andric return false; 7060b57cec5SDimitry Andric 7070b57cec5SDimitry Andric // Reject if the stored value is not the pointer operand. 7080b57cec5SDimitry Andric if (SI->getPointerOperand() != Val) 7090b57cec5SDimitry Andric return false; 7100b57cec5SDimitry Andric } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 7110b57cec5SDimitry Andric if (RMW->isVolatile()) 7120b57cec5SDimitry Andric return false; 7130b57cec5SDimitry Andric } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 7140b57cec5SDimitry Andric if (CAS->isVolatile()) 7150b57cec5SDimitry Andric return false; 7160b57cec5SDimitry Andric } 7170b57cec5SDimitry Andric 7180b57cec5SDimitry Andric // Only promote a select if we know that the other select operand 7190b57cec5SDimitry Andric // is from another pointer that will also be promoted. 7200b57cec5SDimitry Andric if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 7210b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 7220b57cec5SDimitry Andric return false; 7230b57cec5SDimitry Andric 7240b57cec5SDimitry Andric // May need to rewrite constant operands. 7250b57cec5SDimitry Andric WorkList.push_back(ICmp); 7260b57cec5SDimitry Andric } 7270b57cec5SDimitry Andric 7280b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 7290b57cec5SDimitry Andric // Give up if the pointer may be captured. 7300b57cec5SDimitry Andric if (PointerMayBeCaptured(UseInst, true, true)) 7310b57cec5SDimitry Andric return false; 7320b57cec5SDimitry Andric // Don't collect the users of this. 7330b57cec5SDimitry Andric WorkList.push_back(User); 7340b57cec5SDimitry Andric continue; 7350b57cec5SDimitry Andric } 7360b57cec5SDimitry Andric 737fe6060f1SDimitry Andric // Do not promote vector/aggregate type instructions. It is hard to track 738fe6060f1SDimitry Andric // their users. 739fe6060f1SDimitry Andric if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 740fe6060f1SDimitry Andric return false; 741fe6060f1SDimitry Andric 7420b57cec5SDimitry Andric if (!User->getType()->isPointerTy()) 7430b57cec5SDimitry Andric continue; 7440b57cec5SDimitry Andric 7450b57cec5SDimitry Andric if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 7460b57cec5SDimitry Andric // Be conservative if an address could be computed outside the bounds of 7470b57cec5SDimitry Andric // the alloca. 7480b57cec5SDimitry Andric if (!GEP->isInBounds()) 7490b57cec5SDimitry Andric return false; 7500b57cec5SDimitry Andric } 7510b57cec5SDimitry Andric 7520b57cec5SDimitry Andric // Only promote a select if we know that the other select operand is from 7530b57cec5SDimitry Andric // another pointer that will also be promoted. 7540b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 7550b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 7560b57cec5SDimitry Andric return false; 7570b57cec5SDimitry Andric } 7580b57cec5SDimitry Andric 7590b57cec5SDimitry Andric // Repeat for phis. 7600b57cec5SDimitry Andric if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 7610b57cec5SDimitry Andric // TODO: Handle more complex cases. We should be able to replace loops 7620b57cec5SDimitry Andric // over arrays. 7630b57cec5SDimitry Andric switch (Phi->getNumIncomingValues()) { 7640b57cec5SDimitry Andric case 1: 7650b57cec5SDimitry Andric break; 7660b57cec5SDimitry Andric case 2: 7670b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 7680b57cec5SDimitry Andric return false; 7690b57cec5SDimitry Andric break; 7700b57cec5SDimitry Andric default: 7710b57cec5SDimitry Andric return false; 7720b57cec5SDimitry Andric } 7730b57cec5SDimitry Andric } 7740b57cec5SDimitry Andric 7750b57cec5SDimitry Andric WorkList.push_back(User); 7760b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 7770b57cec5SDimitry Andric return false; 7780b57cec5SDimitry Andric } 7790b57cec5SDimitry Andric 7800b57cec5SDimitry Andric return true; 7810b57cec5SDimitry Andric } 7820b57cec5SDimitry Andric 783e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 7840b57cec5SDimitry Andric 7850b57cec5SDimitry Andric FunctionType *FTy = F.getFunctionType(); 786e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 7870b57cec5SDimitry Andric 7880b57cec5SDimitry Andric // If the function has any arguments in the local address space, then it's 7890b57cec5SDimitry Andric // possible these arguments require the entire local memory space, so 7900b57cec5SDimitry Andric // we cannot use local memory in the pass. 7910b57cec5SDimitry Andric for (Type *ParamTy : FTy->params()) { 7920b57cec5SDimitry Andric PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 7930b57cec5SDimitry Andric if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 7940b57cec5SDimitry Andric LocalMemLimit = 0; 7950b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 7960b57cec5SDimitry Andric "local memory disabled.\n"); 7970b57cec5SDimitry Andric return false; 7980b57cec5SDimitry Andric } 7990b57cec5SDimitry Andric } 8000b57cec5SDimitry Andric 801*bdd1243dSDimitry Andric LocalMemLimit = ST.getAddressableLocalMemorySize(); 8020b57cec5SDimitry Andric if (LocalMemLimit == 0) 8030b57cec5SDimitry Andric return false; 8040b57cec5SDimitry Andric 805e8d8bef9SDimitry Andric SmallVector<const Constant *, 16> Stack; 806e8d8bef9SDimitry Andric SmallPtrSet<const Constant *, 8> VisitedConstants; 807e8d8bef9SDimitry Andric SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 8080b57cec5SDimitry Andric 809e8d8bef9SDimitry Andric auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 810e8d8bef9SDimitry Andric for (const User *U : Val->users()) { 811e8d8bef9SDimitry Andric if (const Instruction *Use = dyn_cast<Instruction>(U)) { 812e8d8bef9SDimitry Andric if (Use->getParent()->getParent() == &F) 813e8d8bef9SDimitry Andric return true; 814e8d8bef9SDimitry Andric } else { 815e8d8bef9SDimitry Andric const Constant *C = cast<Constant>(U); 816e8d8bef9SDimitry Andric if (VisitedConstants.insert(C).second) 817e8d8bef9SDimitry Andric Stack.push_back(C); 818e8d8bef9SDimitry Andric } 819e8d8bef9SDimitry Andric } 820e8d8bef9SDimitry Andric 821e8d8bef9SDimitry Andric return false; 822e8d8bef9SDimitry Andric }; 823e8d8bef9SDimitry Andric 8240b57cec5SDimitry Andric for (GlobalVariable &GV : Mod->globals()) { 825480093f4SDimitry Andric if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 8260b57cec5SDimitry Andric continue; 8270b57cec5SDimitry Andric 828e8d8bef9SDimitry Andric if (visitUsers(&GV, &GV)) { 829e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 830e8d8bef9SDimitry Andric Stack.clear(); 8310b57cec5SDimitry Andric continue; 832e8d8bef9SDimitry Andric } 8330b57cec5SDimitry Andric 834e8d8bef9SDimitry Andric // For any ConstantExpr uses, we need to recursively search the users until 835e8d8bef9SDimitry Andric // we see a function. 836e8d8bef9SDimitry Andric while (!Stack.empty()) { 837e8d8bef9SDimitry Andric const Constant *C = Stack.pop_back_val(); 838e8d8bef9SDimitry Andric if (visitUsers(&GV, C)) { 839e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 840e8d8bef9SDimitry Andric Stack.clear(); 8410b57cec5SDimitry Andric break; 8420b57cec5SDimitry Andric } 8430b57cec5SDimitry Andric } 8440b57cec5SDimitry Andric } 8450b57cec5SDimitry Andric 846e8d8bef9SDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 847e8d8bef9SDimitry Andric SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 848e8d8bef9SDimitry Andric AllocatedSizes.reserve(UsedLDS.size()); 849e8d8bef9SDimitry Andric 850e8d8bef9SDimitry Andric for (const GlobalVariable *GV : UsedLDS) { 851e8d8bef9SDimitry Andric Align Alignment = 852e8d8bef9SDimitry Andric DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 853e8d8bef9SDimitry Andric uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 85404eeddc0SDimitry Andric 85504eeddc0SDimitry Andric // HIP uses an extern unsized array in local address space for dynamically 85604eeddc0SDimitry Andric // allocated shared memory. In that case, we have to disable the promotion. 85704eeddc0SDimitry Andric if (GV->hasExternalLinkage() && AllocSize == 0) { 85804eeddc0SDimitry Andric LocalMemLimit = 0; 85904eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated " 86004eeddc0SDimitry Andric "local memory. Promoting to local memory " 86104eeddc0SDimitry Andric "disabled.\n"); 86204eeddc0SDimitry Andric return false; 86304eeddc0SDimitry Andric } 86404eeddc0SDimitry Andric 865e8d8bef9SDimitry Andric AllocatedSizes.emplace_back(AllocSize, Alignment); 866e8d8bef9SDimitry Andric } 867e8d8bef9SDimitry Andric 868e8d8bef9SDimitry Andric // Sort to try to estimate the worst case alignment padding 869e8d8bef9SDimitry Andric // 870e8d8bef9SDimitry Andric // FIXME: We should really do something to fix the addresses to a more optimal 871e8d8bef9SDimitry Andric // value instead 87281ad6265SDimitry Andric llvm::sort(AllocatedSizes, llvm::less_second()); 873e8d8bef9SDimitry Andric 874e8d8bef9SDimitry Andric // Check how much local memory is being used by global objects 875e8d8bef9SDimitry Andric CurrentLocalMemUsage = 0; 876e8d8bef9SDimitry Andric 877e8d8bef9SDimitry Andric // FIXME: Try to account for padding here. The real padding and address is 878e8d8bef9SDimitry Andric // currently determined from the inverse order of uses in the function when 879e8d8bef9SDimitry Andric // legalizing, which could also potentially change. We try to estimate the 880e8d8bef9SDimitry Andric // worst case here, but we probably should fix the addresses earlier. 881e8d8bef9SDimitry Andric for (auto Alloc : AllocatedSizes) { 882e8d8bef9SDimitry Andric CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 883e8d8bef9SDimitry Andric CurrentLocalMemUsage += Alloc.first; 884e8d8bef9SDimitry Andric } 885e8d8bef9SDimitry Andric 8860b57cec5SDimitry Andric unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 8870b57cec5SDimitry Andric F); 8880b57cec5SDimitry Andric 8890b57cec5SDimitry Andric // Restrict local memory usage so that we don't drastically reduce occupancy, 8900b57cec5SDimitry Andric // unless it is already significantly reduced. 8910b57cec5SDimitry Andric 8920b57cec5SDimitry Andric // TODO: Have some sort of hint or other heuristics to guess occupancy based 8930b57cec5SDimitry Andric // on other factors.. 8940b57cec5SDimitry Andric unsigned OccupancyHint = ST.getWavesPerEU(F).second; 8950b57cec5SDimitry Andric if (OccupancyHint == 0) 8960b57cec5SDimitry Andric OccupancyHint = 7; 8970b57cec5SDimitry Andric 8980b57cec5SDimitry Andric // Clamp to max value. 8990b57cec5SDimitry Andric OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 9000b57cec5SDimitry Andric 9010b57cec5SDimitry Andric // Check the hint but ignore it if it's obviously wrong from the existing LDS 9020b57cec5SDimitry Andric // usage. 9030b57cec5SDimitry Andric MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 9040b57cec5SDimitry Andric 9050b57cec5SDimitry Andric 9060b57cec5SDimitry Andric // Round up to the next tier of usage. 9070b57cec5SDimitry Andric unsigned MaxSizeWithWaveCount 9080b57cec5SDimitry Andric = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 9090b57cec5SDimitry Andric 9100b57cec5SDimitry Andric // Program is possibly broken by using more local mem than available. 9110b57cec5SDimitry Andric if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 9120b57cec5SDimitry Andric return false; 9130b57cec5SDimitry Andric 9140b57cec5SDimitry Andric LocalMemLimit = MaxSizeWithWaveCount; 9150b57cec5SDimitry Andric 9160b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 9170b57cec5SDimitry Andric << " bytes of LDS\n" 9180b57cec5SDimitry Andric << " Rounding size to " << MaxSizeWithWaveCount 9190b57cec5SDimitry Andric << " with a maximum occupancy of " << MaxOccupancy << '\n' 9200b57cec5SDimitry Andric << " and " << (LocalMemLimit - CurrentLocalMemUsage) 9210b57cec5SDimitry Andric << " available for promotion\n"); 9220b57cec5SDimitry Andric 9230b57cec5SDimitry Andric return true; 9240b57cec5SDimitry Andric } 9250b57cec5SDimitry Andric 9260b57cec5SDimitry Andric // FIXME: Should try to pick the most likely to be profitable allocas first. 927e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { 9280b57cec5SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 9290b57cec5SDimitry Andric // the array type is the canonical form. 9300b57cec5SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 9310b57cec5SDimitry Andric return false; 9320b57cec5SDimitry Andric 9335ffd83dbSDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 9340b57cec5SDimitry Andric IRBuilder<> Builder(&I); 9350b57cec5SDimitry Andric 9360b57cec5SDimitry Andric // First try to replace the alloca with a vector 9370b57cec5SDimitry Andric Type *AllocaTy = I.getAllocatedType(); 9380b57cec5SDimitry Andric 9390b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 9400b57cec5SDimitry Andric 9415ffd83dbSDimitry Andric if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) 9420b57cec5SDimitry Andric return true; // Promoted to vector. 9430b57cec5SDimitry Andric 9440b57cec5SDimitry Andric if (DisablePromoteAllocaToLDS) 9450b57cec5SDimitry Andric return false; 9460b57cec5SDimitry Andric 9470b57cec5SDimitry Andric const Function &ContainingFunction = *I.getParent()->getParent(); 9480b57cec5SDimitry Andric CallingConv::ID CC = ContainingFunction.getCallingConv(); 9490b57cec5SDimitry Andric 9500b57cec5SDimitry Andric // Don't promote the alloca to LDS for shader calling conventions as the work 9510b57cec5SDimitry Andric // item ID intrinsics are not supported for these calling conventions. 9520b57cec5SDimitry Andric // Furthermore not all LDS is available for some of the stages. 9530b57cec5SDimitry Andric switch (CC) { 9540b57cec5SDimitry Andric case CallingConv::AMDGPU_KERNEL: 9550b57cec5SDimitry Andric case CallingConv::SPIR_KERNEL: 9560b57cec5SDimitry Andric break; 9570b57cec5SDimitry Andric default: 9580b57cec5SDimitry Andric LLVM_DEBUG( 9590b57cec5SDimitry Andric dbgs() 9600b57cec5SDimitry Andric << " promote alloca to LDS not supported with calling convention.\n"); 9610b57cec5SDimitry Andric return false; 9620b57cec5SDimitry Andric } 9630b57cec5SDimitry Andric 9640b57cec5SDimitry Andric // Not likely to have sufficient local memory for promotion. 9650b57cec5SDimitry Andric if (!SufficientLDS) 9660b57cec5SDimitry Andric return false; 9670b57cec5SDimitry Andric 968e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 9690b57cec5SDimitry Andric unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 9700b57cec5SDimitry Andric 9715ffd83dbSDimitry Andric Align Alignment = 9725ffd83dbSDimitry Andric DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 9730b57cec5SDimitry Andric 9740b57cec5SDimitry Andric // FIXME: This computed padding is likely wrong since it depends on inverse 9750b57cec5SDimitry Andric // usage order. 9760b57cec5SDimitry Andric // 9770b57cec5SDimitry Andric // FIXME: It is also possible that if we're allowed to use all of the memory 97881ad6265SDimitry Andric // could end up using more than the maximum due to alignment padding. 9790b57cec5SDimitry Andric 9805ffd83dbSDimitry Andric uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 9810b57cec5SDimitry Andric uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 9820b57cec5SDimitry Andric NewSize += AllocSize; 9830b57cec5SDimitry Andric 9840b57cec5SDimitry Andric if (NewSize > LocalMemLimit) { 9850b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << AllocSize 9860b57cec5SDimitry Andric << " bytes of local memory not available to promote\n"); 9870b57cec5SDimitry Andric return false; 9880b57cec5SDimitry Andric } 9890b57cec5SDimitry Andric 9900b57cec5SDimitry Andric CurrentLocalMemUsage = NewSize; 9910b57cec5SDimitry Andric 9920b57cec5SDimitry Andric std::vector<Value*> WorkList; 9930b57cec5SDimitry Andric 9940b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 9950b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 9960b57cec5SDimitry Andric return false; 9970b57cec5SDimitry Andric } 9980b57cec5SDimitry Andric 9990b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 10000b57cec5SDimitry Andric 10010b57cec5SDimitry Andric Function *F = I.getParent()->getParent(); 10020b57cec5SDimitry Andric 10030b57cec5SDimitry Andric Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 10040b57cec5SDimitry Andric GlobalVariable *GV = new GlobalVariable( 1005*bdd1243dSDimitry Andric *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy), 1006*bdd1243dSDimitry Andric Twine(F->getName()) + Twine('.') + I.getName(), nullptr, 1007*bdd1243dSDimitry Andric GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); 10080b57cec5SDimitry Andric GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 10090eae32dcSDimitry Andric GV->setAlignment(I.getAlign()); 10100b57cec5SDimitry Andric 10110b57cec5SDimitry Andric Value *TCntY, *TCntZ; 10120b57cec5SDimitry Andric 10130b57cec5SDimitry Andric std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 10140b57cec5SDimitry Andric Value *TIdX = getWorkitemID(Builder, 0); 10150b57cec5SDimitry Andric Value *TIdY = getWorkitemID(Builder, 1); 10160b57cec5SDimitry Andric Value *TIdZ = getWorkitemID(Builder, 2); 10170b57cec5SDimitry Andric 10180b57cec5SDimitry Andric Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 10190b57cec5SDimitry Andric Tmp0 = Builder.CreateMul(Tmp0, TIdX); 10200b57cec5SDimitry Andric Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 10210b57cec5SDimitry Andric Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 10220b57cec5SDimitry Andric TID = Builder.CreateAdd(TID, TIdZ); 10230b57cec5SDimitry Andric 10240b57cec5SDimitry Andric Value *Indices[] = { 10250b57cec5SDimitry Andric Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 10260b57cec5SDimitry Andric TID 10270b57cec5SDimitry Andric }; 10280b57cec5SDimitry Andric 10290b57cec5SDimitry Andric Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 10300b57cec5SDimitry Andric I.mutateType(Offset->getType()); 10310b57cec5SDimitry Andric I.replaceAllUsesWith(Offset); 10320b57cec5SDimitry Andric I.eraseFromParent(); 10330b57cec5SDimitry Andric 1034fe6060f1SDimitry Andric SmallVector<IntrinsicInst *> DeferredIntrs; 1035fe6060f1SDimitry Andric 10360b57cec5SDimitry Andric for (Value *V : WorkList) { 10370b57cec5SDimitry Andric CallInst *Call = dyn_cast<CallInst>(V); 10380b57cec5SDimitry Andric if (!Call) { 10390b57cec5SDimitry Andric if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 10400b57cec5SDimitry Andric Value *Src0 = CI->getOperand(0); 1041fe6060f1SDimitry Andric PointerType *NewTy = PointerType::getWithSamePointeeType( 1042fe6060f1SDimitry Andric cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); 10430b57cec5SDimitry Andric 10440b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(0))) 10450b57cec5SDimitry Andric CI->setOperand(0, ConstantPointerNull::get(NewTy)); 10460b57cec5SDimitry Andric 10470b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(1))) 10480b57cec5SDimitry Andric CI->setOperand(1, ConstantPointerNull::get(NewTy)); 10490b57cec5SDimitry Andric 10500b57cec5SDimitry Andric continue; 10510b57cec5SDimitry Andric } 10520b57cec5SDimitry Andric 10530b57cec5SDimitry Andric // The operand's value should be corrected on its own and we don't want to 10540b57cec5SDimitry Andric // touch the users. 10550b57cec5SDimitry Andric if (isa<AddrSpaceCastInst>(V)) 10560b57cec5SDimitry Andric continue; 10570b57cec5SDimitry Andric 1058fe6060f1SDimitry Andric PointerType *NewTy = PointerType::getWithSamePointeeType( 1059fe6060f1SDimitry Andric cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS); 10600b57cec5SDimitry Andric 10610b57cec5SDimitry Andric // FIXME: It doesn't really make sense to try to do this for all 10620b57cec5SDimitry Andric // instructions. 10630b57cec5SDimitry Andric V->mutateType(NewTy); 10640b57cec5SDimitry Andric 10650b57cec5SDimitry Andric // Adjust the types of any constant operands. 10660b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 10670b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(1))) 10680b57cec5SDimitry Andric SI->setOperand(1, ConstantPointerNull::get(NewTy)); 10690b57cec5SDimitry Andric 10700b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(2))) 10710b57cec5SDimitry Andric SI->setOperand(2, ConstantPointerNull::get(NewTy)); 10720b57cec5SDimitry Andric } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 10730b57cec5SDimitry Andric for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 10740b57cec5SDimitry Andric if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 10750b57cec5SDimitry Andric Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 10760b57cec5SDimitry Andric } 10770b57cec5SDimitry Andric } 10780b57cec5SDimitry Andric 10790b57cec5SDimitry Andric continue; 10800b57cec5SDimitry Andric } 10810b57cec5SDimitry Andric 10820b57cec5SDimitry Andric IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 10830b57cec5SDimitry Andric Builder.SetInsertPoint(Intr); 10840b57cec5SDimitry Andric switch (Intr->getIntrinsicID()) { 10850b57cec5SDimitry Andric case Intrinsic::lifetime_start: 10860b57cec5SDimitry Andric case Intrinsic::lifetime_end: 10870b57cec5SDimitry Andric // These intrinsics are for address space 0 only 10880b57cec5SDimitry Andric Intr->eraseFromParent(); 10890b57cec5SDimitry Andric continue; 1090fe6060f1SDimitry Andric case Intrinsic::memcpy: 1091fe6060f1SDimitry Andric case Intrinsic::memmove: 1092fe6060f1SDimitry Andric // These have 2 pointer operands. In case if second pointer also needs 1093fe6060f1SDimitry Andric // to be replaced we defer processing of these intrinsics until all 1094fe6060f1SDimitry Andric // other values are processed. 1095fe6060f1SDimitry Andric DeferredIntrs.push_back(Intr); 10960b57cec5SDimitry Andric continue; 10970b57cec5SDimitry Andric case Intrinsic::memset: { 10980b57cec5SDimitry Andric MemSetInst *MemSet = cast<MemSetInst>(Intr); 1099*bdd1243dSDimitry Andric Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 1100*bdd1243dSDimitry Andric MemSet->getLength(), MemSet->getDestAlign(), 1101*bdd1243dSDimitry Andric MemSet->isVolatile()); 11020b57cec5SDimitry Andric Intr->eraseFromParent(); 11030b57cec5SDimitry Andric continue; 11040b57cec5SDimitry Andric } 11050b57cec5SDimitry Andric case Intrinsic::invariant_start: 11060b57cec5SDimitry Andric case Intrinsic::invariant_end: 11070b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 11080b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 11090b57cec5SDimitry Andric Intr->eraseFromParent(); 11100b57cec5SDimitry Andric // FIXME: I think the invariant marker should still theoretically apply, 11110b57cec5SDimitry Andric // but the intrinsics need to be changed to accept pointers with any 11120b57cec5SDimitry Andric // address space. 11130b57cec5SDimitry Andric continue; 11140b57cec5SDimitry Andric case Intrinsic::objectsize: { 11150b57cec5SDimitry Andric Value *Src = Intr->getOperand(0); 1116fe6060f1SDimitry Andric Function *ObjectSize = Intrinsic::getDeclaration( 1117fe6060f1SDimitry Andric Mod, Intrinsic::objectsize, 1118fe6060f1SDimitry Andric {Intr->getType(), 1119fe6060f1SDimitry Andric PointerType::getWithSamePointeeType( 1120fe6060f1SDimitry Andric cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); 11210b57cec5SDimitry Andric 11220b57cec5SDimitry Andric CallInst *NewCall = Builder.CreateCall( 11230b57cec5SDimitry Andric ObjectSize, 11240b57cec5SDimitry Andric {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 11250b57cec5SDimitry Andric Intr->replaceAllUsesWith(NewCall); 11260b57cec5SDimitry Andric Intr->eraseFromParent(); 11270b57cec5SDimitry Andric continue; 11280b57cec5SDimitry Andric } 11290b57cec5SDimitry Andric default: 11300b57cec5SDimitry Andric Intr->print(errs()); 11310b57cec5SDimitry Andric llvm_unreachable("Don't know how to promote alloca intrinsic use."); 11320b57cec5SDimitry Andric } 11330b57cec5SDimitry Andric } 1134fe6060f1SDimitry Andric 1135fe6060f1SDimitry Andric for (IntrinsicInst *Intr : DeferredIntrs) { 1136fe6060f1SDimitry Andric Builder.SetInsertPoint(Intr); 1137fe6060f1SDimitry Andric Intrinsic::ID ID = Intr->getIntrinsicID(); 1138fe6060f1SDimitry Andric assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1139fe6060f1SDimitry Andric 1140fe6060f1SDimitry Andric MemTransferInst *MI = cast<MemTransferInst>(Intr); 1141fe6060f1SDimitry Andric auto *B = 1142fe6060f1SDimitry Andric Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), 1143fe6060f1SDimitry Andric MI->getRawSource(), MI->getSourceAlign(), 1144fe6060f1SDimitry Andric MI->getLength(), MI->isVolatile()); 1145fe6060f1SDimitry Andric 1146349cc55cSDimitry Andric for (unsigned I = 0; I != 2; ++I) { 1147349cc55cSDimitry Andric if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1148349cc55cSDimitry Andric B->addDereferenceableParamAttr(I, Bytes); 1149fe6060f1SDimitry Andric } 1150fe6060f1SDimitry Andric } 1151fe6060f1SDimitry Andric 1152fe6060f1SDimitry Andric Intr->eraseFromParent(); 1153fe6060f1SDimitry Andric } 1154fe6060f1SDimitry Andric 11550b57cec5SDimitry Andric return true; 11560b57cec5SDimitry Andric } 11570b57cec5SDimitry Andric 1158e8d8bef9SDimitry Andric bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { 1159e8d8bef9SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 1160e8d8bef9SDimitry Andric // the array type is the canonical form. 1161e8d8bef9SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 11625ffd83dbSDimitry Andric return false; 11635ffd83dbSDimitry Andric 1164e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1165e8d8bef9SDimitry Andric 1166e8d8bef9SDimitry Andric Module *Mod = I.getParent()->getParent()->getParent(); 1167e8d8bef9SDimitry Andric return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); 1168e8d8bef9SDimitry Andric } 1169e8d8bef9SDimitry Andric 1170e8d8bef9SDimitry Andric bool promoteAllocasToVector(Function &F, TargetMachine &TM) { 1171e8d8bef9SDimitry Andric if (DisablePromoteAllocaToVector) 11725ffd83dbSDimitry Andric return false; 11735ffd83dbSDimitry Andric 1174e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 11755ffd83dbSDimitry Andric if (!ST.isPromoteAllocaEnabled()) 11765ffd83dbSDimitry Andric return false; 11775ffd83dbSDimitry Andric 1178e8d8bef9SDimitry Andric unsigned MaxVGPRs; 1179e8d8bef9SDimitry Andric if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1180e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 11815ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 1182349cc55cSDimitry Andric // A non-entry function has only 32 caller preserved registers. 1183349cc55cSDimitry Andric // Do not promote alloca which will force spilling. 1184349cc55cSDimitry Andric if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) 1185349cc55cSDimitry Andric MaxVGPRs = std::min(MaxVGPRs, 32u); 11865ffd83dbSDimitry Andric } else { 11875ffd83dbSDimitry Andric MaxVGPRs = 128; 11885ffd83dbSDimitry Andric } 11895ffd83dbSDimitry Andric 11905ffd83dbSDimitry Andric bool Changed = false; 11915ffd83dbSDimitry Andric BasicBlock &EntryBB = *F.begin(); 11925ffd83dbSDimitry Andric 11935ffd83dbSDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 11945ffd83dbSDimitry Andric for (Instruction &I : EntryBB) { 11955ffd83dbSDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 11965ffd83dbSDimitry Andric Allocas.push_back(AI); 11975ffd83dbSDimitry Andric } 11985ffd83dbSDimitry Andric 11995ffd83dbSDimitry Andric for (AllocaInst *AI : Allocas) { 1200e8d8bef9SDimitry Andric if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) 12015ffd83dbSDimitry Andric Changed = true; 12025ffd83dbSDimitry Andric } 12035ffd83dbSDimitry Andric 12045ffd83dbSDimitry Andric return Changed; 12055ffd83dbSDimitry Andric } 12065ffd83dbSDimitry Andric 1207e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1208e8d8bef9SDimitry Andric if (skipFunction(F)) 12095ffd83dbSDimitry Andric return false; 1210e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1211e8d8bef9SDimitry Andric return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); 1212e8d8bef9SDimitry Andric } 1213e8d8bef9SDimitry Andric return false; 1214e8d8bef9SDimitry Andric } 12155ffd83dbSDimitry Andric 1216e8d8bef9SDimitry Andric PreservedAnalyses 1217e8d8bef9SDimitry Andric AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 1218e8d8bef9SDimitry Andric bool Changed = promoteAllocasToVector(F, TM); 1219e8d8bef9SDimitry Andric if (Changed) { 1220e8d8bef9SDimitry Andric PreservedAnalyses PA; 1221e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 1222e8d8bef9SDimitry Andric return PA; 1223e8d8bef9SDimitry Andric } 1224e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 12255ffd83dbSDimitry Andric } 12265ffd83dbSDimitry Andric 12270b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAlloca() { 12280b57cec5SDimitry Andric return new AMDGPUPromoteAlloca(); 12290b57cec5SDimitry Andric } 12305ffd83dbSDimitry Andric 12315ffd83dbSDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 12325ffd83dbSDimitry Andric return new AMDGPUPromoteAllocaToVector(); 12335ffd83dbSDimitry Andric } 1234