xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp (revision 1fd87a682ad7442327078e1eeb63edc4258f9815)
10b57cec5SDimitry Andric //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This pass eliminates allocas by either converting them into vectors or
100b57cec5SDimitry Andric // by migrating them to local address space.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric 
140b57cec5SDimitry Andric #include "AMDGPU.h"
15e8d8bef9SDimitry Andric #include "GCNSubtarget.h"
16*1fd87a68SDimitry Andric #include "Utils/AMDGPUBaseInfo.h"
170b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h"
180b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
190b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
200b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
21*1fd87a68SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
22480093f4SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
23480093f4SDimitry Andric #include "llvm/IR/IntrinsicsR600.h"
240b57cec5SDimitry Andric #include "llvm/Pass.h"
250b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h"
260b57cec5SDimitry Andric 
270b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-promote-alloca"
280b57cec5SDimitry Andric 
290b57cec5SDimitry Andric using namespace llvm;
300b57cec5SDimitry Andric 
310b57cec5SDimitry Andric namespace {
320b57cec5SDimitry Andric 
330b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToVector(
340b57cec5SDimitry Andric   "disable-promote-alloca-to-vector",
350b57cec5SDimitry Andric   cl::desc("Disable promote alloca to vector"),
360b57cec5SDimitry Andric   cl::init(false));
370b57cec5SDimitry Andric 
380b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToLDS(
390b57cec5SDimitry Andric   "disable-promote-alloca-to-lds",
400b57cec5SDimitry Andric   cl::desc("Disable promote alloca to LDS"),
410b57cec5SDimitry Andric   cl::init(false));
420b57cec5SDimitry Andric 
435ffd83dbSDimitry Andric static cl::opt<unsigned> PromoteAllocaToVectorLimit(
445ffd83dbSDimitry Andric   "amdgpu-promote-alloca-to-vector-limit",
455ffd83dbSDimitry Andric   cl::desc("Maximum byte size to consider promote alloca to vector"),
465ffd83dbSDimitry Andric   cl::init(0));
475ffd83dbSDimitry Andric 
480b57cec5SDimitry Andric // FIXME: This can create globals so should be a module pass.
490b57cec5SDimitry Andric class AMDGPUPromoteAlloca : public FunctionPass {
50e8d8bef9SDimitry Andric public:
51e8d8bef9SDimitry Andric   static char ID;
52e8d8bef9SDimitry Andric 
53e8d8bef9SDimitry Andric   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
54e8d8bef9SDimitry Andric 
55e8d8bef9SDimitry Andric   bool runOnFunction(Function &F) override;
56e8d8bef9SDimitry Andric 
57e8d8bef9SDimitry Andric   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
58e8d8bef9SDimitry Andric 
59e8d8bef9SDimitry Andric   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
60e8d8bef9SDimitry Andric 
61e8d8bef9SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
62e8d8bef9SDimitry Andric     AU.setPreservesCFG();
63e8d8bef9SDimitry Andric     FunctionPass::getAnalysisUsage(AU);
64e8d8bef9SDimitry Andric   }
65e8d8bef9SDimitry Andric };
66e8d8bef9SDimitry Andric 
67e8d8bef9SDimitry Andric class AMDGPUPromoteAllocaImpl {
680b57cec5SDimitry Andric private:
69e8d8bef9SDimitry Andric   const TargetMachine &TM;
700b57cec5SDimitry Andric   Module *Mod = nullptr;
710b57cec5SDimitry Andric   const DataLayout *DL = nullptr;
720b57cec5SDimitry Andric 
730b57cec5SDimitry Andric   // FIXME: This should be per-kernel.
740b57cec5SDimitry Andric   uint32_t LocalMemLimit = 0;
750b57cec5SDimitry Andric   uint32_t CurrentLocalMemUsage = 0;
765ffd83dbSDimitry Andric   unsigned MaxVGPRs;
770b57cec5SDimitry Andric 
780b57cec5SDimitry Andric   bool IsAMDGCN = false;
790b57cec5SDimitry Andric   bool IsAMDHSA = false;
800b57cec5SDimitry Andric 
810b57cec5SDimitry Andric   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
820b57cec5SDimitry Andric   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
830b57cec5SDimitry Andric 
840b57cec5SDimitry Andric   /// BaseAlloca is the alloca root the search started from.
850b57cec5SDimitry Andric   /// Val may be that alloca or a recursive user of it.
860b57cec5SDimitry Andric   bool collectUsesWithPtrTypes(Value *BaseAlloca,
870b57cec5SDimitry Andric                                Value *Val,
880b57cec5SDimitry Andric                                std::vector<Value*> &WorkList) const;
890b57cec5SDimitry Andric 
900b57cec5SDimitry Andric   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
910b57cec5SDimitry Andric   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
920b57cec5SDimitry Andric   /// Returns true if both operands are derived from the same alloca. Val should
930b57cec5SDimitry Andric   /// be the same value as one of the input operands of UseInst.
940b57cec5SDimitry Andric   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
950b57cec5SDimitry Andric                                        Instruction *UseInst,
960b57cec5SDimitry Andric                                        int OpIdx0, int OpIdx1) const;
970b57cec5SDimitry Andric 
980b57cec5SDimitry Andric   /// Check whether we have enough local memory for promotion.
990b57cec5SDimitry Andric   bool hasSufficientLocalMem(const Function &F);
1000b57cec5SDimitry Andric 
1010b57cec5SDimitry Andric   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
1020b57cec5SDimitry Andric 
103e8d8bef9SDimitry Andric public:
104e8d8bef9SDimitry Andric   AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
105e8d8bef9SDimitry Andric   bool run(Function &F);
1060b57cec5SDimitry Andric };
1070b57cec5SDimitry Andric 
1085ffd83dbSDimitry Andric class AMDGPUPromoteAllocaToVector : public FunctionPass {
1095ffd83dbSDimitry Andric public:
1105ffd83dbSDimitry Andric   static char ID;
1115ffd83dbSDimitry Andric 
1125ffd83dbSDimitry Andric   AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
1135ffd83dbSDimitry Andric 
1145ffd83dbSDimitry Andric   bool runOnFunction(Function &F) override;
1155ffd83dbSDimitry Andric 
1165ffd83dbSDimitry Andric   StringRef getPassName() const override {
1175ffd83dbSDimitry Andric     return "AMDGPU Promote Alloca to vector";
1185ffd83dbSDimitry Andric   }
1195ffd83dbSDimitry Andric 
1205ffd83dbSDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
1215ffd83dbSDimitry Andric     AU.setPreservesCFG();
1225ffd83dbSDimitry Andric     FunctionPass::getAnalysisUsage(AU);
1235ffd83dbSDimitry Andric   }
1245ffd83dbSDimitry Andric };
1255ffd83dbSDimitry Andric 
1260b57cec5SDimitry Andric } // end anonymous namespace
1270b57cec5SDimitry Andric 
1280b57cec5SDimitry Andric char AMDGPUPromoteAlloca::ID = 0;
1295ffd83dbSDimitry Andric char AMDGPUPromoteAllocaToVector::ID = 0;
1300b57cec5SDimitry Andric 
131fe6060f1SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
132fe6060f1SDimitry Andric                       "AMDGPU promote alloca to vector or LDS", false, false)
133fe6060f1SDimitry Andric // Move LDS uses from functions to kernels before promote alloca for accurate
134fe6060f1SDimitry Andric // estimation of LDS available
135fe6060f1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)
136fe6060f1SDimitry Andric INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
1370b57cec5SDimitry Andric                     "AMDGPU promote alloca to vector or LDS", false, false)
1380b57cec5SDimitry Andric 
1395ffd83dbSDimitry Andric INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
1405ffd83dbSDimitry Andric                 "AMDGPU promote alloca to vector", false, false)
1415ffd83dbSDimitry Andric 
1420b57cec5SDimitry Andric char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
1435ffd83dbSDimitry Andric char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
1440b57cec5SDimitry Andric 
1450b57cec5SDimitry Andric bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
1460b57cec5SDimitry Andric   if (skipFunction(F))
1470b57cec5SDimitry Andric     return false;
1480b57cec5SDimitry Andric 
149e8d8bef9SDimitry Andric   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
150e8d8bef9SDimitry Andric     return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
151e8d8bef9SDimitry Andric   }
1520b57cec5SDimitry Andric   return false;
153e8d8bef9SDimitry Andric }
1540b57cec5SDimitry Andric 
155e8d8bef9SDimitry Andric PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
156e8d8bef9SDimitry Andric                                                FunctionAnalysisManager &AM) {
157e8d8bef9SDimitry Andric   bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
158e8d8bef9SDimitry Andric   if (Changed) {
159e8d8bef9SDimitry Andric     PreservedAnalyses PA;
160e8d8bef9SDimitry Andric     PA.preserveSet<CFGAnalyses>();
161e8d8bef9SDimitry Andric     return PA;
162e8d8bef9SDimitry Andric   }
163e8d8bef9SDimitry Andric   return PreservedAnalyses::all();
164e8d8bef9SDimitry Andric }
165e8d8bef9SDimitry Andric 
166e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::run(Function &F) {
167e8d8bef9SDimitry Andric   Mod = F.getParent();
168e8d8bef9SDimitry Andric   DL = &Mod->getDataLayout();
169e8d8bef9SDimitry Andric 
170e8d8bef9SDimitry Andric   const Triple &TT = TM.getTargetTriple();
1710b57cec5SDimitry Andric   IsAMDGCN = TT.getArch() == Triple::amdgcn;
1720b57cec5SDimitry Andric   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
1730b57cec5SDimitry Andric 
174e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
1750b57cec5SDimitry Andric   if (!ST.isPromoteAllocaEnabled())
1760b57cec5SDimitry Andric     return false;
1770b57cec5SDimitry Andric 
1785ffd83dbSDimitry Andric   if (IsAMDGCN) {
179e8d8bef9SDimitry Andric     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
1805ffd83dbSDimitry Andric     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
181349cc55cSDimitry Andric     // A non-entry function has only 32 caller preserved registers.
182349cc55cSDimitry Andric     // Do not promote alloca which will force spilling.
183349cc55cSDimitry Andric     if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
184349cc55cSDimitry Andric       MaxVGPRs = std::min(MaxVGPRs, 32u);
1855ffd83dbSDimitry Andric   } else {
1865ffd83dbSDimitry Andric     MaxVGPRs = 128;
1875ffd83dbSDimitry Andric   }
1885ffd83dbSDimitry Andric 
1890b57cec5SDimitry Andric   bool SufficientLDS = hasSufficientLocalMem(F);
1900b57cec5SDimitry Andric   bool Changed = false;
1910b57cec5SDimitry Andric   BasicBlock &EntryBB = *F.begin();
1920b57cec5SDimitry Andric 
1930b57cec5SDimitry Andric   SmallVector<AllocaInst *, 16> Allocas;
1940b57cec5SDimitry Andric   for (Instruction &I : EntryBB) {
1950b57cec5SDimitry Andric     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
1960b57cec5SDimitry Andric       Allocas.push_back(AI);
1970b57cec5SDimitry Andric   }
1980b57cec5SDimitry Andric 
1990b57cec5SDimitry Andric   for (AllocaInst *AI : Allocas) {
2000b57cec5SDimitry Andric     if (handleAlloca(*AI, SufficientLDS))
2010b57cec5SDimitry Andric       Changed = true;
2020b57cec5SDimitry Andric   }
2030b57cec5SDimitry Andric 
2040b57cec5SDimitry Andric   return Changed;
2050b57cec5SDimitry Andric }
2060b57cec5SDimitry Andric 
2070b57cec5SDimitry Andric std::pair<Value *, Value *>
208e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
209349cc55cSDimitry Andric   Function &F = *Builder.GetInsertBlock()->getParent();
210e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
2110b57cec5SDimitry Andric 
2120b57cec5SDimitry Andric   if (!IsAMDHSA) {
2130b57cec5SDimitry Andric     Function *LocalSizeYFn
2140b57cec5SDimitry Andric       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
2150b57cec5SDimitry Andric     Function *LocalSizeZFn
2160b57cec5SDimitry Andric       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
2170b57cec5SDimitry Andric 
2180b57cec5SDimitry Andric     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
2190b57cec5SDimitry Andric     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
2200b57cec5SDimitry Andric 
2210b57cec5SDimitry Andric     ST.makeLIDRangeMetadata(LocalSizeY);
2220b57cec5SDimitry Andric     ST.makeLIDRangeMetadata(LocalSizeZ);
2230b57cec5SDimitry Andric 
2240b57cec5SDimitry Andric     return std::make_pair(LocalSizeY, LocalSizeZ);
2250b57cec5SDimitry Andric   }
2260b57cec5SDimitry Andric 
2270b57cec5SDimitry Andric   // We must read the size out of the dispatch pointer.
2280b57cec5SDimitry Andric   assert(IsAMDGCN);
2290b57cec5SDimitry Andric 
2300b57cec5SDimitry Andric   // We are indexing into this struct, and want to extract the workgroup_size_*
2310b57cec5SDimitry Andric   // fields.
2320b57cec5SDimitry Andric   //
2330b57cec5SDimitry Andric   //   typedef struct hsa_kernel_dispatch_packet_s {
2340b57cec5SDimitry Andric   //     uint16_t header;
2350b57cec5SDimitry Andric   //     uint16_t setup;
2360b57cec5SDimitry Andric   //     uint16_t workgroup_size_x ;
2370b57cec5SDimitry Andric   //     uint16_t workgroup_size_y;
2380b57cec5SDimitry Andric   //     uint16_t workgroup_size_z;
2390b57cec5SDimitry Andric   //     uint16_t reserved0;
2400b57cec5SDimitry Andric   //     uint32_t grid_size_x ;
2410b57cec5SDimitry Andric   //     uint32_t grid_size_y ;
2420b57cec5SDimitry Andric   //     uint32_t grid_size_z;
2430b57cec5SDimitry Andric   //
2440b57cec5SDimitry Andric   //     uint32_t private_segment_size;
2450b57cec5SDimitry Andric   //     uint32_t group_segment_size;
2460b57cec5SDimitry Andric   //     uint64_t kernel_object;
2470b57cec5SDimitry Andric   //
2480b57cec5SDimitry Andric   // #ifdef HSA_LARGE_MODEL
2490b57cec5SDimitry Andric   //     void *kernarg_address;
2500b57cec5SDimitry Andric   // #elif defined HSA_LITTLE_ENDIAN
2510b57cec5SDimitry Andric   //     void *kernarg_address;
2520b57cec5SDimitry Andric   //     uint32_t reserved1;
2530b57cec5SDimitry Andric   // #else
2540b57cec5SDimitry Andric   //     uint32_t reserved1;
2550b57cec5SDimitry Andric   //     void *kernarg_address;
2560b57cec5SDimitry Andric   // #endif
2570b57cec5SDimitry Andric   //     uint64_t reserved2;
2580b57cec5SDimitry Andric   //     hsa_signal_t completion_signal; // uint64_t wrapper
2590b57cec5SDimitry Andric   //   } hsa_kernel_dispatch_packet_t
2600b57cec5SDimitry Andric   //
2610b57cec5SDimitry Andric   Function *DispatchPtrFn
2620b57cec5SDimitry Andric     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
2630b57cec5SDimitry Andric 
2640b57cec5SDimitry Andric   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
265349cc55cSDimitry Andric   DispatchPtr->addRetAttr(Attribute::NoAlias);
266349cc55cSDimitry Andric   DispatchPtr->addRetAttr(Attribute::NonNull);
267349cc55cSDimitry Andric   F.removeFnAttr("amdgpu-no-dispatch-ptr");
2680b57cec5SDimitry Andric 
2690b57cec5SDimitry Andric   // Size of the dispatch packet struct.
270349cc55cSDimitry Andric   DispatchPtr->addDereferenceableRetAttr(64);
2710b57cec5SDimitry Andric 
2720b57cec5SDimitry Andric   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
2730b57cec5SDimitry Andric   Value *CastDispatchPtr = Builder.CreateBitCast(
2740b57cec5SDimitry Andric     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
2750b57cec5SDimitry Andric 
2760b57cec5SDimitry Andric   // We could do a single 64-bit load here, but it's likely that the basic
2770b57cec5SDimitry Andric   // 32-bit and extract sequence is already present, and it is probably easier
278349cc55cSDimitry Andric   // to CSE this. The loads should be mergeable later anyway.
2790b57cec5SDimitry Andric   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
2805ffd83dbSDimitry Andric   LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
2810b57cec5SDimitry Andric 
2820b57cec5SDimitry Andric   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
2835ffd83dbSDimitry Andric   LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
2840b57cec5SDimitry Andric 
2850b57cec5SDimitry Andric   MDNode *MD = MDNode::get(Mod->getContext(), None);
2860b57cec5SDimitry Andric   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
2870b57cec5SDimitry Andric   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
2880b57cec5SDimitry Andric   ST.makeLIDRangeMetadata(LoadZU);
2890b57cec5SDimitry Andric 
2900b57cec5SDimitry Andric   // Extract y component. Upper half of LoadZU should be zero already.
2910b57cec5SDimitry Andric   Value *Y = Builder.CreateLShr(LoadXY, 16);
2920b57cec5SDimitry Andric 
2930b57cec5SDimitry Andric   return std::make_pair(Y, LoadZU);
2940b57cec5SDimitry Andric }
2950b57cec5SDimitry Andric 
296e8d8bef9SDimitry Andric Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
297e8d8bef9SDimitry Andric                                               unsigned N) {
298349cc55cSDimitry Andric   Function *F = Builder.GetInsertBlock()->getParent();
299349cc55cSDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F);
300480093f4SDimitry Andric   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
301349cc55cSDimitry Andric   StringRef AttrName;
3020b57cec5SDimitry Andric 
3030b57cec5SDimitry Andric   switch (N) {
3040b57cec5SDimitry Andric   case 0:
305480093f4SDimitry Andric     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
306480093f4SDimitry Andric                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
307349cc55cSDimitry Andric     AttrName = "amdgpu-no-workitem-id-x";
3080b57cec5SDimitry Andric     break;
3090b57cec5SDimitry Andric   case 1:
310480093f4SDimitry Andric     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
311480093f4SDimitry Andric                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
312349cc55cSDimitry Andric     AttrName = "amdgpu-no-workitem-id-y";
3130b57cec5SDimitry Andric     break;
3140b57cec5SDimitry Andric 
3150b57cec5SDimitry Andric   case 2:
316480093f4SDimitry Andric     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
317480093f4SDimitry Andric                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
318349cc55cSDimitry Andric     AttrName = "amdgpu-no-workitem-id-z";
3190b57cec5SDimitry Andric     break;
3200b57cec5SDimitry Andric   default:
3210b57cec5SDimitry Andric     llvm_unreachable("invalid dimension");
3220b57cec5SDimitry Andric   }
3230b57cec5SDimitry Andric 
3240b57cec5SDimitry Andric   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
3250b57cec5SDimitry Andric   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
3260b57cec5SDimitry Andric   ST.makeLIDRangeMetadata(CI);
327349cc55cSDimitry Andric   F->removeFnAttr(AttrName);
3280b57cec5SDimitry Andric 
3290b57cec5SDimitry Andric   return CI;
3300b57cec5SDimitry Andric }
3310b57cec5SDimitry Andric 
3325ffd83dbSDimitry Andric static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
3335ffd83dbSDimitry Andric   return FixedVectorType::get(ArrayTy->getElementType(),
3340b57cec5SDimitry Andric                               ArrayTy->getNumElements());
3350b57cec5SDimitry Andric }
3360b57cec5SDimitry Andric 
3375ffd83dbSDimitry Andric static Value *stripBitcasts(Value *V) {
3385ffd83dbSDimitry Andric   while (Instruction *I = dyn_cast<Instruction>(V)) {
3395ffd83dbSDimitry Andric     if (I->getOpcode() != Instruction::BitCast)
3405ffd83dbSDimitry Andric       break;
3415ffd83dbSDimitry Andric     V = I->getOperand(0);
3425ffd83dbSDimitry Andric   }
3435ffd83dbSDimitry Andric   return V;
3445ffd83dbSDimitry Andric }
3455ffd83dbSDimitry Andric 
3460b57cec5SDimitry Andric static Value *
3470b57cec5SDimitry Andric calculateVectorIndex(Value *Ptr,
3480b57cec5SDimitry Andric                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
3495ffd83dbSDimitry Andric   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
3505ffd83dbSDimitry Andric   if (!GEP)
3515ffd83dbSDimitry Andric     return nullptr;
3520b57cec5SDimitry Andric 
3530b57cec5SDimitry Andric   auto I = GEPIdx.find(GEP);
3540b57cec5SDimitry Andric   return I == GEPIdx.end() ? nullptr : I->second;
3550b57cec5SDimitry Andric }
3560b57cec5SDimitry Andric 
3570b57cec5SDimitry Andric static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
3580b57cec5SDimitry Andric   // FIXME we only support simple cases
3590b57cec5SDimitry Andric   if (GEP->getNumOperands() != 3)
3600b57cec5SDimitry Andric     return nullptr;
3610b57cec5SDimitry Andric 
3620b57cec5SDimitry Andric   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
3630b57cec5SDimitry Andric   if (!I0 || !I0->isZero())
3640b57cec5SDimitry Andric     return nullptr;
3650b57cec5SDimitry Andric 
3660b57cec5SDimitry Andric   return GEP->getOperand(2);
3670b57cec5SDimitry Andric }
3680b57cec5SDimitry Andric 
3690b57cec5SDimitry Andric // Not an instruction handled below to turn into a vector.
3700b57cec5SDimitry Andric //
3710b57cec5SDimitry Andric // TODO: Check isTriviallyVectorizable for calls and handle other
3720b57cec5SDimitry Andric // instructions.
3735ffd83dbSDimitry Andric static bool canVectorizeInst(Instruction *Inst, User *User,
3745ffd83dbSDimitry Andric                              const DataLayout &DL) {
3750b57cec5SDimitry Andric   switch (Inst->getOpcode()) {
3760b57cec5SDimitry Andric   case Instruction::Load: {
3770b57cec5SDimitry Andric     // Currently only handle the case where the Pointer Operand is a GEP.
3780b57cec5SDimitry Andric     // Also we could not vectorize volatile or atomic loads.
3790b57cec5SDimitry Andric     LoadInst *LI = cast<LoadInst>(Inst);
3800b57cec5SDimitry Andric     if (isa<AllocaInst>(User) &&
3810b57cec5SDimitry Andric         LI->getPointerOperandType() == User->getType() &&
3820b57cec5SDimitry Andric         isa<VectorType>(LI->getType()))
3830b57cec5SDimitry Andric       return true;
3845ffd83dbSDimitry Andric 
3855ffd83dbSDimitry Andric     Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
3865ffd83dbSDimitry Andric     if (!PtrInst)
3875ffd83dbSDimitry Andric       return false;
3885ffd83dbSDimitry Andric 
3895ffd83dbSDimitry Andric     return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
3905ffd83dbSDimitry Andric             PtrInst->getOpcode() == Instruction::BitCast) &&
3915ffd83dbSDimitry Andric            LI->isSimple();
3920b57cec5SDimitry Andric   }
3930b57cec5SDimitry Andric   case Instruction::BitCast:
3940b57cec5SDimitry Andric     return true;
3950b57cec5SDimitry Andric   case Instruction::Store: {
3960b57cec5SDimitry Andric     // Must be the stored pointer operand, not a stored value, plus
3970b57cec5SDimitry Andric     // since it should be canonical form, the User should be a GEP.
3980b57cec5SDimitry Andric     // Also we could not vectorize volatile or atomic stores.
3990b57cec5SDimitry Andric     StoreInst *SI = cast<StoreInst>(Inst);
4000b57cec5SDimitry Andric     if (isa<AllocaInst>(User) &&
4010b57cec5SDimitry Andric         SI->getPointerOperandType() == User->getType() &&
4020b57cec5SDimitry Andric         isa<VectorType>(SI->getValueOperand()->getType()))
4030b57cec5SDimitry Andric       return true;
4045ffd83dbSDimitry Andric 
4055ffd83dbSDimitry Andric     Instruction *UserInst = dyn_cast<Instruction>(User);
4065ffd83dbSDimitry Andric     if (!UserInst)
4075ffd83dbSDimitry Andric       return false;
4085ffd83dbSDimitry Andric 
4095ffd83dbSDimitry Andric     return (SI->getPointerOperand() == User) &&
4105ffd83dbSDimitry Andric            (UserInst->getOpcode() == Instruction::GetElementPtr ||
4115ffd83dbSDimitry Andric             UserInst->getOpcode() == Instruction::BitCast) &&
4125ffd83dbSDimitry Andric            SI->isSimple();
4130b57cec5SDimitry Andric   }
4140b57cec5SDimitry Andric   default:
4150b57cec5SDimitry Andric     return false;
4160b57cec5SDimitry Andric   }
4170b57cec5SDimitry Andric }
4180b57cec5SDimitry Andric 
4195ffd83dbSDimitry Andric static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
4205ffd83dbSDimitry Andric                                      unsigned MaxVGPRs) {
4210b57cec5SDimitry Andric 
4220b57cec5SDimitry Andric   if (DisablePromoteAllocaToVector) {
4230b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
4240b57cec5SDimitry Andric     return false;
4250b57cec5SDimitry Andric   }
4260b57cec5SDimitry Andric 
4275ffd83dbSDimitry Andric   Type *AllocaTy = Alloca->getAllocatedType();
4285ffd83dbSDimitry Andric   auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
4295ffd83dbSDimitry Andric   if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
4305ffd83dbSDimitry Andric     if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
4315ffd83dbSDimitry Andric         ArrayTy->getNumElements() > 0)
4325ffd83dbSDimitry Andric       VectorTy = arrayTypeToVecType(ArrayTy);
4335ffd83dbSDimitry Andric   }
4345ffd83dbSDimitry Andric 
4355ffd83dbSDimitry Andric   // Use up to 1/4 of available register budget for vectorization.
4365ffd83dbSDimitry Andric   unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
4375ffd83dbSDimitry Andric                                               : (MaxVGPRs * 32);
4385ffd83dbSDimitry Andric 
4395ffd83dbSDimitry Andric   if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
4405ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "  Alloca too big for vectorization with "
4415ffd83dbSDimitry Andric                       << MaxVGPRs << " registers available\n");
4425ffd83dbSDimitry Andric     return false;
4435ffd83dbSDimitry Andric   }
4440b57cec5SDimitry Andric 
4450b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
4460b57cec5SDimitry Andric 
4470b57cec5SDimitry Andric   // FIXME: There is no reason why we can't support larger arrays, we
4480b57cec5SDimitry Andric   // are just being conservative for now.
4490b57cec5SDimitry Andric   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
4500b57cec5SDimitry Andric   // could also be promoted but we don't currently handle this case
4515ffd83dbSDimitry Andric   if (!VectorTy || VectorTy->getNumElements() > 16 ||
4525ffd83dbSDimitry Andric       VectorTy->getNumElements() < 2) {
4530b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
4540b57cec5SDimitry Andric     return false;
4550b57cec5SDimitry Andric   }
4560b57cec5SDimitry Andric 
4570b57cec5SDimitry Andric   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
4580b57cec5SDimitry Andric   std::vector<Value *> WorkList;
4595ffd83dbSDimitry Andric   SmallVector<User *, 8> Users(Alloca->users());
4605ffd83dbSDimitry Andric   SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
4615ffd83dbSDimitry Andric   Type *VecEltTy = VectorTy->getElementType();
4625ffd83dbSDimitry Andric   while (!Users.empty()) {
4635ffd83dbSDimitry Andric     User *AllocaUser = Users.pop_back_val();
4645ffd83dbSDimitry Andric     User *UseUser = UseUsers.pop_back_val();
4655ffd83dbSDimitry Andric     Instruction *Inst = dyn_cast<Instruction>(AllocaUser);
4665ffd83dbSDimitry Andric 
4670b57cec5SDimitry Andric     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
4680b57cec5SDimitry Andric     if (!GEP) {
4695ffd83dbSDimitry Andric       if (!canVectorizeInst(Inst, UseUser, DL))
4700b57cec5SDimitry Andric         return false;
4710b57cec5SDimitry Andric 
4725ffd83dbSDimitry Andric       if (Inst->getOpcode() == Instruction::BitCast) {
4735ffd83dbSDimitry Andric         Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
4745ffd83dbSDimitry Andric         Type *ToTy = Inst->getType()->getPointerElementType();
4755ffd83dbSDimitry Andric         if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
4765ffd83dbSDimitry Andric             DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
4775ffd83dbSDimitry Andric           continue;
4785ffd83dbSDimitry Andric 
4795ffd83dbSDimitry Andric         for (User *CastUser : Inst->users()) {
4805ffd83dbSDimitry Andric           if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
4815ffd83dbSDimitry Andric             continue;
4825ffd83dbSDimitry Andric           Users.push_back(CastUser);
4835ffd83dbSDimitry Andric           UseUsers.push_back(Inst);
4845ffd83dbSDimitry Andric         }
4855ffd83dbSDimitry Andric 
4865ffd83dbSDimitry Andric         continue;
4875ffd83dbSDimitry Andric       }
4885ffd83dbSDimitry Andric 
4890b57cec5SDimitry Andric       WorkList.push_back(AllocaUser);
4900b57cec5SDimitry Andric       continue;
4910b57cec5SDimitry Andric     }
4920b57cec5SDimitry Andric 
4930b57cec5SDimitry Andric     Value *Index = GEPToVectorIndex(GEP);
4940b57cec5SDimitry Andric 
4950b57cec5SDimitry Andric     // If we can't compute a vector index from this GEP, then we can't
4960b57cec5SDimitry Andric     // promote this alloca to vector.
4970b57cec5SDimitry Andric     if (!Index) {
4980b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
4990b57cec5SDimitry Andric                         << '\n');
5000b57cec5SDimitry Andric       return false;
5010b57cec5SDimitry Andric     }
5020b57cec5SDimitry Andric 
5030b57cec5SDimitry Andric     GEPVectorIdx[GEP] = Index;
5045ffd83dbSDimitry Andric     Users.append(GEP->user_begin(), GEP->user_end());
5055ffd83dbSDimitry Andric     UseUsers.append(GEP->getNumUses(), GEP);
5060b57cec5SDimitry Andric   }
5070b57cec5SDimitry Andric 
5080b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
5090b57cec5SDimitry Andric                     << *VectorTy << '\n');
5100b57cec5SDimitry Andric 
5110b57cec5SDimitry Andric   for (Value *V : WorkList) {
5120b57cec5SDimitry Andric     Instruction *Inst = cast<Instruction>(V);
5130b57cec5SDimitry Andric     IRBuilder<> Builder(Inst);
5140b57cec5SDimitry Andric     switch (Inst->getOpcode()) {
5150b57cec5SDimitry Andric     case Instruction::Load: {
5165ffd83dbSDimitry Andric       if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
5175ffd83dbSDimitry Andric         break;
5185ffd83dbSDimitry Andric 
5195ffd83dbSDimitry Andric       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
5205ffd83dbSDimitry Andric       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
5215ffd83dbSDimitry Andric       if (!Index)
5220b57cec5SDimitry Andric         break;
5230b57cec5SDimitry Andric 
5240b57cec5SDimitry Andric       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
5250b57cec5SDimitry Andric       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
5260b57cec5SDimitry Andric       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
5270b57cec5SDimitry Andric       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
5285ffd83dbSDimitry Andric       if (Inst->getType() != VecEltTy)
5295ffd83dbSDimitry Andric         ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
5300b57cec5SDimitry Andric       Inst->replaceAllUsesWith(ExtractElement);
5310b57cec5SDimitry Andric       Inst->eraseFromParent();
5320b57cec5SDimitry Andric       break;
5330b57cec5SDimitry Andric     }
5340b57cec5SDimitry Andric     case Instruction::Store: {
5350b57cec5SDimitry Andric       StoreInst *SI = cast<StoreInst>(Inst);
5365ffd83dbSDimitry Andric       if (SI->getValueOperand()->getType() == AllocaTy ||
5375ffd83dbSDimitry Andric           SI->getValueOperand()->getType()->isVectorTy())
5385ffd83dbSDimitry Andric         break;
5395ffd83dbSDimitry Andric 
5405ffd83dbSDimitry Andric       Value *Ptr = SI->getPointerOperand();
5415ffd83dbSDimitry Andric       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
5425ffd83dbSDimitry Andric       if (!Index)
5430b57cec5SDimitry Andric         break;
5440b57cec5SDimitry Andric 
5450b57cec5SDimitry Andric       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
5460b57cec5SDimitry Andric       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
5470b57cec5SDimitry Andric       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
5485ffd83dbSDimitry Andric       Value *Elt = SI->getValueOperand();
5495ffd83dbSDimitry Andric       if (Elt->getType() != VecEltTy)
5505ffd83dbSDimitry Andric         Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
5515ffd83dbSDimitry Andric       Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
5520b57cec5SDimitry Andric       Builder.CreateStore(NewVecValue, BitCast);
5530b57cec5SDimitry Andric       Inst->eraseFromParent();
5540b57cec5SDimitry Andric       break;
5550b57cec5SDimitry Andric     }
5560b57cec5SDimitry Andric 
5570b57cec5SDimitry Andric     default:
5580b57cec5SDimitry Andric       llvm_unreachable("Inconsistency in instructions promotable to vector");
5590b57cec5SDimitry Andric     }
5600b57cec5SDimitry Andric   }
5610b57cec5SDimitry Andric   return true;
5620b57cec5SDimitry Andric }
5630b57cec5SDimitry Andric 
5640b57cec5SDimitry Andric static bool isCallPromotable(CallInst *CI) {
5650b57cec5SDimitry Andric   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
5660b57cec5SDimitry Andric   if (!II)
5670b57cec5SDimitry Andric     return false;
5680b57cec5SDimitry Andric 
5690b57cec5SDimitry Andric   switch (II->getIntrinsicID()) {
5700b57cec5SDimitry Andric   case Intrinsic::memcpy:
5710b57cec5SDimitry Andric   case Intrinsic::memmove:
5720b57cec5SDimitry Andric   case Intrinsic::memset:
5730b57cec5SDimitry Andric   case Intrinsic::lifetime_start:
5740b57cec5SDimitry Andric   case Intrinsic::lifetime_end:
5750b57cec5SDimitry Andric   case Intrinsic::invariant_start:
5760b57cec5SDimitry Andric   case Intrinsic::invariant_end:
5770b57cec5SDimitry Andric   case Intrinsic::launder_invariant_group:
5780b57cec5SDimitry Andric   case Intrinsic::strip_invariant_group:
5790b57cec5SDimitry Andric   case Intrinsic::objectsize:
5800b57cec5SDimitry Andric     return true;
5810b57cec5SDimitry Andric   default:
5820b57cec5SDimitry Andric     return false;
5830b57cec5SDimitry Andric   }
5840b57cec5SDimitry Andric }
5850b57cec5SDimitry Andric 
586e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
587e8d8bef9SDimitry Andric     Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
5880b57cec5SDimitry Andric     int OpIdx1) const {
5890b57cec5SDimitry Andric   // Figure out which operand is the one we might not be promoting.
5900b57cec5SDimitry Andric   Value *OtherOp = Inst->getOperand(OpIdx0);
5910b57cec5SDimitry Andric   if (Val == OtherOp)
5920b57cec5SDimitry Andric     OtherOp = Inst->getOperand(OpIdx1);
5930b57cec5SDimitry Andric 
5940b57cec5SDimitry Andric   if (isa<ConstantPointerNull>(OtherOp))
5950b57cec5SDimitry Andric     return true;
5960b57cec5SDimitry Andric 
597e8d8bef9SDimitry Andric   Value *OtherObj = getUnderlyingObject(OtherOp);
5980b57cec5SDimitry Andric   if (!isa<AllocaInst>(OtherObj))
5990b57cec5SDimitry Andric     return false;
6000b57cec5SDimitry Andric 
6010b57cec5SDimitry Andric   // TODO: We should be able to replace undefs with the right pointer type.
6020b57cec5SDimitry Andric 
6030b57cec5SDimitry Andric   // TODO: If we know the other base object is another promotable
6040b57cec5SDimitry Andric   // alloca, not necessarily this alloca, we can do this. The
6050b57cec5SDimitry Andric   // important part is both must have the same address space at
6060b57cec5SDimitry Andric   // the end.
6070b57cec5SDimitry Andric   if (OtherObj != BaseAlloca) {
6080b57cec5SDimitry Andric     LLVM_DEBUG(
6090b57cec5SDimitry Andric         dbgs() << "Found a binary instruction with another alloca object\n");
6100b57cec5SDimitry Andric     return false;
6110b57cec5SDimitry Andric   }
6120b57cec5SDimitry Andric 
6130b57cec5SDimitry Andric   return true;
6140b57cec5SDimitry Andric }
6150b57cec5SDimitry Andric 
616e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
617e8d8bef9SDimitry Andric     Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
6180b57cec5SDimitry Andric 
6190b57cec5SDimitry Andric   for (User *User : Val->users()) {
6200b57cec5SDimitry Andric     if (is_contained(WorkList, User))
6210b57cec5SDimitry Andric       continue;
6220b57cec5SDimitry Andric 
6230b57cec5SDimitry Andric     if (CallInst *CI = dyn_cast<CallInst>(User)) {
6240b57cec5SDimitry Andric       if (!isCallPromotable(CI))
6250b57cec5SDimitry Andric         return false;
6260b57cec5SDimitry Andric 
6270b57cec5SDimitry Andric       WorkList.push_back(User);
6280b57cec5SDimitry Andric       continue;
6290b57cec5SDimitry Andric     }
6300b57cec5SDimitry Andric 
6310b57cec5SDimitry Andric     Instruction *UseInst = cast<Instruction>(User);
6320b57cec5SDimitry Andric     if (UseInst->getOpcode() == Instruction::PtrToInt)
6330b57cec5SDimitry Andric       return false;
6340b57cec5SDimitry Andric 
6350b57cec5SDimitry Andric     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
6360b57cec5SDimitry Andric       if (LI->isVolatile())
6370b57cec5SDimitry Andric         return false;
6380b57cec5SDimitry Andric 
6390b57cec5SDimitry Andric       continue;
6400b57cec5SDimitry Andric     }
6410b57cec5SDimitry Andric 
6420b57cec5SDimitry Andric     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
6430b57cec5SDimitry Andric       if (SI->isVolatile())
6440b57cec5SDimitry Andric         return false;
6450b57cec5SDimitry Andric 
6460b57cec5SDimitry Andric       // Reject if the stored value is not the pointer operand.
6470b57cec5SDimitry Andric       if (SI->getPointerOperand() != Val)
6480b57cec5SDimitry Andric         return false;
6490b57cec5SDimitry Andric     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
6500b57cec5SDimitry Andric       if (RMW->isVolatile())
6510b57cec5SDimitry Andric         return false;
6520b57cec5SDimitry Andric     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
6530b57cec5SDimitry Andric       if (CAS->isVolatile())
6540b57cec5SDimitry Andric         return false;
6550b57cec5SDimitry Andric     }
6560b57cec5SDimitry Andric 
6570b57cec5SDimitry Andric     // Only promote a select if we know that the other select operand
6580b57cec5SDimitry Andric     // is from another pointer that will also be promoted.
6590b57cec5SDimitry Andric     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
6600b57cec5SDimitry Andric       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
6610b57cec5SDimitry Andric         return false;
6620b57cec5SDimitry Andric 
6630b57cec5SDimitry Andric       // May need to rewrite constant operands.
6640b57cec5SDimitry Andric       WorkList.push_back(ICmp);
6650b57cec5SDimitry Andric     }
6660b57cec5SDimitry Andric 
6670b57cec5SDimitry Andric     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
6680b57cec5SDimitry Andric       // Give up if the pointer may be captured.
6690b57cec5SDimitry Andric       if (PointerMayBeCaptured(UseInst, true, true))
6700b57cec5SDimitry Andric         return false;
6710b57cec5SDimitry Andric       // Don't collect the users of this.
6720b57cec5SDimitry Andric       WorkList.push_back(User);
6730b57cec5SDimitry Andric       continue;
6740b57cec5SDimitry Andric     }
6750b57cec5SDimitry Andric 
676fe6060f1SDimitry Andric     // Do not promote vector/aggregate type instructions. It is hard to track
677fe6060f1SDimitry Andric     // their users.
678fe6060f1SDimitry Andric     if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User))
679fe6060f1SDimitry Andric       return false;
680fe6060f1SDimitry Andric 
6810b57cec5SDimitry Andric     if (!User->getType()->isPointerTy())
6820b57cec5SDimitry Andric       continue;
6830b57cec5SDimitry Andric 
6840b57cec5SDimitry Andric     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
6850b57cec5SDimitry Andric       // Be conservative if an address could be computed outside the bounds of
6860b57cec5SDimitry Andric       // the alloca.
6870b57cec5SDimitry Andric       if (!GEP->isInBounds())
6880b57cec5SDimitry Andric         return false;
6890b57cec5SDimitry Andric     }
6900b57cec5SDimitry Andric 
6910b57cec5SDimitry Andric     // Only promote a select if we know that the other select operand is from
6920b57cec5SDimitry Andric     // another pointer that will also be promoted.
6930b57cec5SDimitry Andric     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
6940b57cec5SDimitry Andric       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
6950b57cec5SDimitry Andric         return false;
6960b57cec5SDimitry Andric     }
6970b57cec5SDimitry Andric 
6980b57cec5SDimitry Andric     // Repeat for phis.
6990b57cec5SDimitry Andric     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
7000b57cec5SDimitry Andric       // TODO: Handle more complex cases. We should be able to replace loops
7010b57cec5SDimitry Andric       // over arrays.
7020b57cec5SDimitry Andric       switch (Phi->getNumIncomingValues()) {
7030b57cec5SDimitry Andric       case 1:
7040b57cec5SDimitry Andric         break;
7050b57cec5SDimitry Andric       case 2:
7060b57cec5SDimitry Andric         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
7070b57cec5SDimitry Andric           return false;
7080b57cec5SDimitry Andric         break;
7090b57cec5SDimitry Andric       default:
7100b57cec5SDimitry Andric         return false;
7110b57cec5SDimitry Andric       }
7120b57cec5SDimitry Andric     }
7130b57cec5SDimitry Andric 
7140b57cec5SDimitry Andric     WorkList.push_back(User);
7150b57cec5SDimitry Andric     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
7160b57cec5SDimitry Andric       return false;
7170b57cec5SDimitry Andric   }
7180b57cec5SDimitry Andric 
7190b57cec5SDimitry Andric   return true;
7200b57cec5SDimitry Andric }
7210b57cec5SDimitry Andric 
722e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
7230b57cec5SDimitry Andric 
7240b57cec5SDimitry Andric   FunctionType *FTy = F.getFunctionType();
725e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
7260b57cec5SDimitry Andric 
7270b57cec5SDimitry Andric   // If the function has any arguments in the local address space, then it's
7280b57cec5SDimitry Andric   // possible these arguments require the entire local memory space, so
7290b57cec5SDimitry Andric   // we cannot use local memory in the pass.
7300b57cec5SDimitry Andric   for (Type *ParamTy : FTy->params()) {
7310b57cec5SDimitry Andric     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
7320b57cec5SDimitry Andric     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
7330b57cec5SDimitry Andric       LocalMemLimit = 0;
7340b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
7350b57cec5SDimitry Andric                            "local memory disabled.\n");
7360b57cec5SDimitry Andric       return false;
7370b57cec5SDimitry Andric     }
7380b57cec5SDimitry Andric   }
7390b57cec5SDimitry Andric 
7400b57cec5SDimitry Andric   LocalMemLimit = ST.getLocalMemorySize();
7410b57cec5SDimitry Andric   if (LocalMemLimit == 0)
7420b57cec5SDimitry Andric     return false;
7430b57cec5SDimitry Andric 
744e8d8bef9SDimitry Andric   SmallVector<const Constant *, 16> Stack;
745e8d8bef9SDimitry Andric   SmallPtrSet<const Constant *, 8> VisitedConstants;
746e8d8bef9SDimitry Andric   SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
7470b57cec5SDimitry Andric 
748e8d8bef9SDimitry Andric   auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
749e8d8bef9SDimitry Andric     for (const User *U : Val->users()) {
750e8d8bef9SDimitry Andric       if (const Instruction *Use = dyn_cast<Instruction>(U)) {
751e8d8bef9SDimitry Andric         if (Use->getParent()->getParent() == &F)
752e8d8bef9SDimitry Andric           return true;
753e8d8bef9SDimitry Andric       } else {
754e8d8bef9SDimitry Andric         const Constant *C = cast<Constant>(U);
755e8d8bef9SDimitry Andric         if (VisitedConstants.insert(C).second)
756e8d8bef9SDimitry Andric           Stack.push_back(C);
757e8d8bef9SDimitry Andric       }
758e8d8bef9SDimitry Andric     }
759e8d8bef9SDimitry Andric 
760e8d8bef9SDimitry Andric     return false;
761e8d8bef9SDimitry Andric   };
762e8d8bef9SDimitry Andric 
7630b57cec5SDimitry Andric   for (GlobalVariable &GV : Mod->globals()) {
764480093f4SDimitry Andric     if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
7650b57cec5SDimitry Andric       continue;
7660b57cec5SDimitry Andric 
767e8d8bef9SDimitry Andric     if (visitUsers(&GV, &GV)) {
768e8d8bef9SDimitry Andric       UsedLDS.insert(&GV);
769e8d8bef9SDimitry Andric       Stack.clear();
7700b57cec5SDimitry Andric       continue;
771e8d8bef9SDimitry Andric     }
7720b57cec5SDimitry Andric 
773e8d8bef9SDimitry Andric     // For any ConstantExpr uses, we need to recursively search the users until
774e8d8bef9SDimitry Andric     // we see a function.
775e8d8bef9SDimitry Andric     while (!Stack.empty()) {
776e8d8bef9SDimitry Andric       const Constant *C = Stack.pop_back_val();
777e8d8bef9SDimitry Andric       if (visitUsers(&GV, C)) {
778e8d8bef9SDimitry Andric         UsedLDS.insert(&GV);
779e8d8bef9SDimitry Andric         Stack.clear();
7800b57cec5SDimitry Andric         break;
7810b57cec5SDimitry Andric       }
7820b57cec5SDimitry Andric     }
7830b57cec5SDimitry Andric   }
7840b57cec5SDimitry Andric 
785e8d8bef9SDimitry Andric   const DataLayout &DL = Mod->getDataLayout();
786e8d8bef9SDimitry Andric   SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
787e8d8bef9SDimitry Andric   AllocatedSizes.reserve(UsedLDS.size());
788e8d8bef9SDimitry Andric 
789e8d8bef9SDimitry Andric   for (const GlobalVariable *GV : UsedLDS) {
790e8d8bef9SDimitry Andric     Align Alignment =
791e8d8bef9SDimitry Andric         DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
792e8d8bef9SDimitry Andric     uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
79304eeddc0SDimitry Andric 
79404eeddc0SDimitry Andric     // HIP uses an extern unsized array in local address space for dynamically
79504eeddc0SDimitry Andric     // allocated shared memory.  In that case, we have to disable the promotion.
79604eeddc0SDimitry Andric     if (GV->hasExternalLinkage() && AllocSize == 0) {
79704eeddc0SDimitry Andric       LocalMemLimit = 0;
79804eeddc0SDimitry Andric       LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated "
79904eeddc0SDimitry Andric                            "local memory. Promoting to local memory "
80004eeddc0SDimitry Andric                            "disabled.\n");
80104eeddc0SDimitry Andric       return false;
80204eeddc0SDimitry Andric     }
80304eeddc0SDimitry Andric 
804e8d8bef9SDimitry Andric     AllocatedSizes.emplace_back(AllocSize, Alignment);
805e8d8bef9SDimitry Andric   }
806e8d8bef9SDimitry Andric 
807e8d8bef9SDimitry Andric   // Sort to try to estimate the worst case alignment padding
808e8d8bef9SDimitry Andric   //
809e8d8bef9SDimitry Andric   // FIXME: We should really do something to fix the addresses to a more optimal
810e8d8bef9SDimitry Andric   // value instead
811e8d8bef9SDimitry Andric   llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS,
812e8d8bef9SDimitry Andric                                 std::pair<uint64_t, Align> RHS) {
813e8d8bef9SDimitry Andric     return LHS.second < RHS.second;
814e8d8bef9SDimitry Andric   });
815e8d8bef9SDimitry Andric 
816e8d8bef9SDimitry Andric   // Check how much local memory is being used by global objects
817e8d8bef9SDimitry Andric   CurrentLocalMemUsage = 0;
818e8d8bef9SDimitry Andric 
819e8d8bef9SDimitry Andric   // FIXME: Try to account for padding here. The real padding and address is
820e8d8bef9SDimitry Andric   // currently determined from the inverse order of uses in the function when
821e8d8bef9SDimitry Andric   // legalizing, which could also potentially change. We try to estimate the
822e8d8bef9SDimitry Andric   // worst case here, but we probably should fix the addresses earlier.
823e8d8bef9SDimitry Andric   for (auto Alloc : AllocatedSizes) {
824e8d8bef9SDimitry Andric     CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
825e8d8bef9SDimitry Andric     CurrentLocalMemUsage += Alloc.first;
826e8d8bef9SDimitry Andric   }
827e8d8bef9SDimitry Andric 
8280b57cec5SDimitry Andric   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
8290b57cec5SDimitry Andric                                                           F);
8300b57cec5SDimitry Andric 
8310b57cec5SDimitry Andric   // Restrict local memory usage so that we don't drastically reduce occupancy,
8320b57cec5SDimitry Andric   // unless it is already significantly reduced.
8330b57cec5SDimitry Andric 
8340b57cec5SDimitry Andric   // TODO: Have some sort of hint or other heuristics to guess occupancy based
8350b57cec5SDimitry Andric   // on other factors..
8360b57cec5SDimitry Andric   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
8370b57cec5SDimitry Andric   if (OccupancyHint == 0)
8380b57cec5SDimitry Andric     OccupancyHint = 7;
8390b57cec5SDimitry Andric 
8400b57cec5SDimitry Andric   // Clamp to max value.
8410b57cec5SDimitry Andric   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
8420b57cec5SDimitry Andric 
8430b57cec5SDimitry Andric   // Check the hint but ignore it if it's obviously wrong from the existing LDS
8440b57cec5SDimitry Andric   // usage.
8450b57cec5SDimitry Andric   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
8460b57cec5SDimitry Andric 
8470b57cec5SDimitry Andric 
8480b57cec5SDimitry Andric   // Round up to the next tier of usage.
8490b57cec5SDimitry Andric   unsigned MaxSizeWithWaveCount
8500b57cec5SDimitry Andric     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
8510b57cec5SDimitry Andric 
8520b57cec5SDimitry Andric   // Program is possibly broken by using more local mem than available.
8530b57cec5SDimitry Andric   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
8540b57cec5SDimitry Andric     return false;
8550b57cec5SDimitry Andric 
8560b57cec5SDimitry Andric   LocalMemLimit = MaxSizeWithWaveCount;
8570b57cec5SDimitry Andric 
8580b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
8590b57cec5SDimitry Andric                     << " bytes of LDS\n"
8600b57cec5SDimitry Andric                     << "  Rounding size to " << MaxSizeWithWaveCount
8610b57cec5SDimitry Andric                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
8620b57cec5SDimitry Andric                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
8630b57cec5SDimitry Andric                     << " available for promotion\n");
8640b57cec5SDimitry Andric 
8650b57cec5SDimitry Andric   return true;
8660b57cec5SDimitry Andric }
8670b57cec5SDimitry Andric 
8680b57cec5SDimitry Andric // FIXME: Should try to pick the most likely to be profitable allocas first.
869e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
8700b57cec5SDimitry Andric   // Array allocations are probably not worth handling, since an allocation of
8710b57cec5SDimitry Andric   // the array type is the canonical form.
8720b57cec5SDimitry Andric   if (!I.isStaticAlloca() || I.isArrayAllocation())
8730b57cec5SDimitry Andric     return false;
8740b57cec5SDimitry Andric 
8755ffd83dbSDimitry Andric   const DataLayout &DL = Mod->getDataLayout();
8760b57cec5SDimitry Andric   IRBuilder<> Builder(&I);
8770b57cec5SDimitry Andric 
8780b57cec5SDimitry Andric   // First try to replace the alloca with a vector
8790b57cec5SDimitry Andric   Type *AllocaTy = I.getAllocatedType();
8800b57cec5SDimitry Andric 
8810b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
8820b57cec5SDimitry Andric 
8835ffd83dbSDimitry Andric   if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
8840b57cec5SDimitry Andric     return true; // Promoted to vector.
8850b57cec5SDimitry Andric 
8860b57cec5SDimitry Andric   if (DisablePromoteAllocaToLDS)
8870b57cec5SDimitry Andric     return false;
8880b57cec5SDimitry Andric 
8890b57cec5SDimitry Andric   const Function &ContainingFunction = *I.getParent()->getParent();
8900b57cec5SDimitry Andric   CallingConv::ID CC = ContainingFunction.getCallingConv();
8910b57cec5SDimitry Andric 
8920b57cec5SDimitry Andric   // Don't promote the alloca to LDS for shader calling conventions as the work
8930b57cec5SDimitry Andric   // item ID intrinsics are not supported for these calling conventions.
8940b57cec5SDimitry Andric   // Furthermore not all LDS is available for some of the stages.
8950b57cec5SDimitry Andric   switch (CC) {
8960b57cec5SDimitry Andric   case CallingConv::AMDGPU_KERNEL:
8970b57cec5SDimitry Andric   case CallingConv::SPIR_KERNEL:
8980b57cec5SDimitry Andric     break;
8990b57cec5SDimitry Andric   default:
9000b57cec5SDimitry Andric     LLVM_DEBUG(
9010b57cec5SDimitry Andric         dbgs()
9020b57cec5SDimitry Andric         << " promote alloca to LDS not supported with calling convention.\n");
9030b57cec5SDimitry Andric     return false;
9040b57cec5SDimitry Andric   }
9050b57cec5SDimitry Andric 
9060b57cec5SDimitry Andric   // Not likely to have sufficient local memory for promotion.
9070b57cec5SDimitry Andric   if (!SufficientLDS)
9080b57cec5SDimitry Andric     return false;
9090b57cec5SDimitry Andric 
910e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
9110b57cec5SDimitry Andric   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
9120b57cec5SDimitry Andric 
9135ffd83dbSDimitry Andric   Align Alignment =
9145ffd83dbSDimitry Andric       DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
9150b57cec5SDimitry Andric 
9160b57cec5SDimitry Andric   // FIXME: This computed padding is likely wrong since it depends on inverse
9170b57cec5SDimitry Andric   // usage order.
9180b57cec5SDimitry Andric   //
9190b57cec5SDimitry Andric   // FIXME: It is also possible that if we're allowed to use all of the memory
9200b57cec5SDimitry Andric   // could could end up using more than the maximum due to alignment padding.
9210b57cec5SDimitry Andric 
9225ffd83dbSDimitry Andric   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
9230b57cec5SDimitry Andric   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
9240b57cec5SDimitry Andric   NewSize += AllocSize;
9250b57cec5SDimitry Andric 
9260b57cec5SDimitry Andric   if (NewSize > LocalMemLimit) {
9270b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  " << AllocSize
9280b57cec5SDimitry Andric                       << " bytes of local memory not available to promote\n");
9290b57cec5SDimitry Andric     return false;
9300b57cec5SDimitry Andric   }
9310b57cec5SDimitry Andric 
9320b57cec5SDimitry Andric   CurrentLocalMemUsage = NewSize;
9330b57cec5SDimitry Andric 
9340b57cec5SDimitry Andric   std::vector<Value*> WorkList;
9350b57cec5SDimitry Andric 
9360b57cec5SDimitry Andric   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
9370b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
9380b57cec5SDimitry Andric     return false;
9390b57cec5SDimitry Andric   }
9400b57cec5SDimitry Andric 
9410b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
9420b57cec5SDimitry Andric 
9430b57cec5SDimitry Andric   Function *F = I.getParent()->getParent();
9440b57cec5SDimitry Andric 
9450b57cec5SDimitry Andric   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
9460b57cec5SDimitry Andric   GlobalVariable *GV = new GlobalVariable(
9470b57cec5SDimitry Andric       *Mod, GVTy, false, GlobalValue::InternalLinkage,
9480b57cec5SDimitry Andric       UndefValue::get(GVTy),
9490b57cec5SDimitry Andric       Twine(F->getName()) + Twine('.') + I.getName(),
9500b57cec5SDimitry Andric       nullptr,
9510b57cec5SDimitry Andric       GlobalVariable::NotThreadLocal,
9520b57cec5SDimitry Andric       AMDGPUAS::LOCAL_ADDRESS);
9530b57cec5SDimitry Andric   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
9540eae32dcSDimitry Andric   GV->setAlignment(I.getAlign());
9550b57cec5SDimitry Andric 
9560b57cec5SDimitry Andric   Value *TCntY, *TCntZ;
9570b57cec5SDimitry Andric 
9580b57cec5SDimitry Andric   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
9590b57cec5SDimitry Andric   Value *TIdX = getWorkitemID(Builder, 0);
9600b57cec5SDimitry Andric   Value *TIdY = getWorkitemID(Builder, 1);
9610b57cec5SDimitry Andric   Value *TIdZ = getWorkitemID(Builder, 2);
9620b57cec5SDimitry Andric 
9630b57cec5SDimitry Andric   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
9640b57cec5SDimitry Andric   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
9650b57cec5SDimitry Andric   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
9660b57cec5SDimitry Andric   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
9670b57cec5SDimitry Andric   TID = Builder.CreateAdd(TID, TIdZ);
9680b57cec5SDimitry Andric 
9690b57cec5SDimitry Andric   Value *Indices[] = {
9700b57cec5SDimitry Andric     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
9710b57cec5SDimitry Andric     TID
9720b57cec5SDimitry Andric   };
9730b57cec5SDimitry Andric 
9740b57cec5SDimitry Andric   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
9750b57cec5SDimitry Andric   I.mutateType(Offset->getType());
9760b57cec5SDimitry Andric   I.replaceAllUsesWith(Offset);
9770b57cec5SDimitry Andric   I.eraseFromParent();
9780b57cec5SDimitry Andric 
979fe6060f1SDimitry Andric   SmallVector<IntrinsicInst *> DeferredIntrs;
980fe6060f1SDimitry Andric 
9810b57cec5SDimitry Andric   for (Value *V : WorkList) {
9820b57cec5SDimitry Andric     CallInst *Call = dyn_cast<CallInst>(V);
9830b57cec5SDimitry Andric     if (!Call) {
9840b57cec5SDimitry Andric       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
9850b57cec5SDimitry Andric         Value *Src0 = CI->getOperand(0);
986fe6060f1SDimitry Andric         PointerType *NewTy = PointerType::getWithSamePointeeType(
987fe6060f1SDimitry Andric             cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS);
9880b57cec5SDimitry Andric 
9890b57cec5SDimitry Andric         if (isa<ConstantPointerNull>(CI->getOperand(0)))
9900b57cec5SDimitry Andric           CI->setOperand(0, ConstantPointerNull::get(NewTy));
9910b57cec5SDimitry Andric 
9920b57cec5SDimitry Andric         if (isa<ConstantPointerNull>(CI->getOperand(1)))
9930b57cec5SDimitry Andric           CI->setOperand(1, ConstantPointerNull::get(NewTy));
9940b57cec5SDimitry Andric 
9950b57cec5SDimitry Andric         continue;
9960b57cec5SDimitry Andric       }
9970b57cec5SDimitry Andric 
9980b57cec5SDimitry Andric       // The operand's value should be corrected on its own and we don't want to
9990b57cec5SDimitry Andric       // touch the users.
10000b57cec5SDimitry Andric       if (isa<AddrSpaceCastInst>(V))
10010b57cec5SDimitry Andric         continue;
10020b57cec5SDimitry Andric 
1003fe6060f1SDimitry Andric       PointerType *NewTy = PointerType::getWithSamePointeeType(
1004fe6060f1SDimitry Andric           cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS);
10050b57cec5SDimitry Andric 
10060b57cec5SDimitry Andric       // FIXME: It doesn't really make sense to try to do this for all
10070b57cec5SDimitry Andric       // instructions.
10080b57cec5SDimitry Andric       V->mutateType(NewTy);
10090b57cec5SDimitry Andric 
10100b57cec5SDimitry Andric       // Adjust the types of any constant operands.
10110b57cec5SDimitry Andric       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
10120b57cec5SDimitry Andric         if (isa<ConstantPointerNull>(SI->getOperand(1)))
10130b57cec5SDimitry Andric           SI->setOperand(1, ConstantPointerNull::get(NewTy));
10140b57cec5SDimitry Andric 
10150b57cec5SDimitry Andric         if (isa<ConstantPointerNull>(SI->getOperand(2)))
10160b57cec5SDimitry Andric           SI->setOperand(2, ConstantPointerNull::get(NewTy));
10170b57cec5SDimitry Andric       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
10180b57cec5SDimitry Andric         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
10190b57cec5SDimitry Andric           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
10200b57cec5SDimitry Andric             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
10210b57cec5SDimitry Andric         }
10220b57cec5SDimitry Andric       }
10230b57cec5SDimitry Andric 
10240b57cec5SDimitry Andric       continue;
10250b57cec5SDimitry Andric     }
10260b57cec5SDimitry Andric 
10270b57cec5SDimitry Andric     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
10280b57cec5SDimitry Andric     Builder.SetInsertPoint(Intr);
10290b57cec5SDimitry Andric     switch (Intr->getIntrinsicID()) {
10300b57cec5SDimitry Andric     case Intrinsic::lifetime_start:
10310b57cec5SDimitry Andric     case Intrinsic::lifetime_end:
10320b57cec5SDimitry Andric       // These intrinsics are for address space 0 only
10330b57cec5SDimitry Andric       Intr->eraseFromParent();
10340b57cec5SDimitry Andric       continue;
1035fe6060f1SDimitry Andric     case Intrinsic::memcpy:
1036fe6060f1SDimitry Andric     case Intrinsic::memmove:
1037fe6060f1SDimitry Andric       // These have 2 pointer operands. In case if second pointer also needs
1038fe6060f1SDimitry Andric       // to be replaced we defer processing of these intrinsics until all
1039fe6060f1SDimitry Andric       // other values are processed.
1040fe6060f1SDimitry Andric       DeferredIntrs.push_back(Intr);
10410b57cec5SDimitry Andric       continue;
10420b57cec5SDimitry Andric     case Intrinsic::memset: {
10430b57cec5SDimitry Andric       MemSetInst *MemSet = cast<MemSetInst>(Intr);
1044480093f4SDimitry Andric       Builder.CreateMemSet(
1045480093f4SDimitry Andric           MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
1046480093f4SDimitry Andric           MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
10470b57cec5SDimitry Andric       Intr->eraseFromParent();
10480b57cec5SDimitry Andric       continue;
10490b57cec5SDimitry Andric     }
10500b57cec5SDimitry Andric     case Intrinsic::invariant_start:
10510b57cec5SDimitry Andric     case Intrinsic::invariant_end:
10520b57cec5SDimitry Andric     case Intrinsic::launder_invariant_group:
10530b57cec5SDimitry Andric     case Intrinsic::strip_invariant_group:
10540b57cec5SDimitry Andric       Intr->eraseFromParent();
10550b57cec5SDimitry Andric       // FIXME: I think the invariant marker should still theoretically apply,
10560b57cec5SDimitry Andric       // but the intrinsics need to be changed to accept pointers with any
10570b57cec5SDimitry Andric       // address space.
10580b57cec5SDimitry Andric       continue;
10590b57cec5SDimitry Andric     case Intrinsic::objectsize: {
10600b57cec5SDimitry Andric       Value *Src = Intr->getOperand(0);
1061fe6060f1SDimitry Andric       Function *ObjectSize = Intrinsic::getDeclaration(
1062fe6060f1SDimitry Andric           Mod, Intrinsic::objectsize,
1063fe6060f1SDimitry Andric           {Intr->getType(),
1064fe6060f1SDimitry Andric            PointerType::getWithSamePointeeType(
1065fe6060f1SDimitry Andric                cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)});
10660b57cec5SDimitry Andric 
10670b57cec5SDimitry Andric       CallInst *NewCall = Builder.CreateCall(
10680b57cec5SDimitry Andric           ObjectSize,
10690b57cec5SDimitry Andric           {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
10700b57cec5SDimitry Andric       Intr->replaceAllUsesWith(NewCall);
10710b57cec5SDimitry Andric       Intr->eraseFromParent();
10720b57cec5SDimitry Andric       continue;
10730b57cec5SDimitry Andric     }
10740b57cec5SDimitry Andric     default:
10750b57cec5SDimitry Andric       Intr->print(errs());
10760b57cec5SDimitry Andric       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
10770b57cec5SDimitry Andric     }
10780b57cec5SDimitry Andric   }
1079fe6060f1SDimitry Andric 
1080fe6060f1SDimitry Andric   for (IntrinsicInst *Intr : DeferredIntrs) {
1081fe6060f1SDimitry Andric     Builder.SetInsertPoint(Intr);
1082fe6060f1SDimitry Andric     Intrinsic::ID ID = Intr->getIntrinsicID();
1083fe6060f1SDimitry Andric     assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
1084fe6060f1SDimitry Andric 
1085fe6060f1SDimitry Andric     MemTransferInst *MI = cast<MemTransferInst>(Intr);
1086fe6060f1SDimitry Andric     auto *B =
1087fe6060f1SDimitry Andric       Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(),
1088fe6060f1SDimitry Andric                                     MI->getRawSource(), MI->getSourceAlign(),
1089fe6060f1SDimitry Andric                                     MI->getLength(), MI->isVolatile());
1090fe6060f1SDimitry Andric 
1091349cc55cSDimitry Andric     for (unsigned I = 0; I != 2; ++I) {
1092349cc55cSDimitry Andric       if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) {
1093349cc55cSDimitry Andric         B->addDereferenceableParamAttr(I, Bytes);
1094fe6060f1SDimitry Andric       }
1095fe6060f1SDimitry Andric     }
1096fe6060f1SDimitry Andric 
1097fe6060f1SDimitry Andric     Intr->eraseFromParent();
1098fe6060f1SDimitry Andric   }
1099fe6060f1SDimitry Andric 
11000b57cec5SDimitry Andric   return true;
11010b57cec5SDimitry Andric }
11020b57cec5SDimitry Andric 
1103e8d8bef9SDimitry Andric bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
1104e8d8bef9SDimitry Andric   // Array allocations are probably not worth handling, since an allocation of
1105e8d8bef9SDimitry Andric   // the array type is the canonical form.
1106e8d8bef9SDimitry Andric   if (!I.isStaticAlloca() || I.isArrayAllocation())
11075ffd83dbSDimitry Andric     return false;
11085ffd83dbSDimitry Andric 
1109e8d8bef9SDimitry Andric   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
1110e8d8bef9SDimitry Andric 
1111e8d8bef9SDimitry Andric   Module *Mod = I.getParent()->getParent()->getParent();
1112e8d8bef9SDimitry Andric   return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
1113e8d8bef9SDimitry Andric }
1114e8d8bef9SDimitry Andric 
1115e8d8bef9SDimitry Andric bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
1116e8d8bef9SDimitry Andric   if (DisablePromoteAllocaToVector)
11175ffd83dbSDimitry Andric     return false;
11185ffd83dbSDimitry Andric 
1119e8d8bef9SDimitry Andric   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
11205ffd83dbSDimitry Andric   if (!ST.isPromoteAllocaEnabled())
11215ffd83dbSDimitry Andric     return false;
11225ffd83dbSDimitry Andric 
1123e8d8bef9SDimitry Andric   unsigned MaxVGPRs;
1124e8d8bef9SDimitry Andric   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1125e8d8bef9SDimitry Andric     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
11265ffd83dbSDimitry Andric     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
1127349cc55cSDimitry Andric     // A non-entry function has only 32 caller preserved registers.
1128349cc55cSDimitry Andric     // Do not promote alloca which will force spilling.
1129349cc55cSDimitry Andric     if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
1130349cc55cSDimitry Andric       MaxVGPRs = std::min(MaxVGPRs, 32u);
11315ffd83dbSDimitry Andric   } else {
11325ffd83dbSDimitry Andric     MaxVGPRs = 128;
11335ffd83dbSDimitry Andric   }
11345ffd83dbSDimitry Andric 
11355ffd83dbSDimitry Andric   bool Changed = false;
11365ffd83dbSDimitry Andric   BasicBlock &EntryBB = *F.begin();
11375ffd83dbSDimitry Andric 
11385ffd83dbSDimitry Andric   SmallVector<AllocaInst *, 16> Allocas;
11395ffd83dbSDimitry Andric   for (Instruction &I : EntryBB) {
11405ffd83dbSDimitry Andric     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
11415ffd83dbSDimitry Andric       Allocas.push_back(AI);
11425ffd83dbSDimitry Andric   }
11435ffd83dbSDimitry Andric 
11445ffd83dbSDimitry Andric   for (AllocaInst *AI : Allocas) {
1145e8d8bef9SDimitry Andric     if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
11465ffd83dbSDimitry Andric       Changed = true;
11475ffd83dbSDimitry Andric   }
11485ffd83dbSDimitry Andric 
11495ffd83dbSDimitry Andric   return Changed;
11505ffd83dbSDimitry Andric }
11515ffd83dbSDimitry Andric 
1152e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
1153e8d8bef9SDimitry Andric   if (skipFunction(F))
11545ffd83dbSDimitry Andric     return false;
1155e8d8bef9SDimitry Andric   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
1156e8d8bef9SDimitry Andric     return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
1157e8d8bef9SDimitry Andric   }
1158e8d8bef9SDimitry Andric   return false;
1159e8d8bef9SDimitry Andric }
11605ffd83dbSDimitry Andric 
1161e8d8bef9SDimitry Andric PreservedAnalyses
1162e8d8bef9SDimitry Andric AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
1163e8d8bef9SDimitry Andric   bool Changed = promoteAllocasToVector(F, TM);
1164e8d8bef9SDimitry Andric   if (Changed) {
1165e8d8bef9SDimitry Andric     PreservedAnalyses PA;
1166e8d8bef9SDimitry Andric     PA.preserveSet<CFGAnalyses>();
1167e8d8bef9SDimitry Andric     return PA;
1168e8d8bef9SDimitry Andric   }
1169e8d8bef9SDimitry Andric   return PreservedAnalyses::all();
11705ffd83dbSDimitry Andric }
11715ffd83dbSDimitry Andric 
11720b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAlloca() {
11730b57cec5SDimitry Andric   return new AMDGPUPromoteAlloca();
11740b57cec5SDimitry Andric }
11755ffd83dbSDimitry Andric 
11765ffd83dbSDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
11775ffd83dbSDimitry Andric   return new AMDGPUPromoteAllocaToVector();
11785ffd83dbSDimitry Andric }
1179