10b57cec5SDimitry Andric //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This pass eliminates allocas by either converting them into vectors or 100b57cec5SDimitry Andric // by migrating them to local address space. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #include "AMDGPU.h" 15e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 16*1fd87a68SDimitry Andric #include "Utils/AMDGPUBaseInfo.h" 170b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h" 180b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 190b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 200b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 21*1fd87a68SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 22480093f4SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 23480093f4SDimitry Andric #include "llvm/IR/IntrinsicsR600.h" 240b57cec5SDimitry Andric #include "llvm/Pass.h" 250b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 260b57cec5SDimitry Andric 270b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-promote-alloca" 280b57cec5SDimitry Andric 290b57cec5SDimitry Andric using namespace llvm; 300b57cec5SDimitry Andric 310b57cec5SDimitry Andric namespace { 320b57cec5SDimitry Andric 330b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToVector( 340b57cec5SDimitry Andric "disable-promote-alloca-to-vector", 350b57cec5SDimitry Andric cl::desc("Disable promote alloca to vector"), 360b57cec5SDimitry Andric cl::init(false)); 370b57cec5SDimitry Andric 380b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToLDS( 390b57cec5SDimitry Andric "disable-promote-alloca-to-lds", 400b57cec5SDimitry Andric cl::desc("Disable promote alloca to LDS"), 410b57cec5SDimitry Andric cl::init(false)); 420b57cec5SDimitry Andric 435ffd83dbSDimitry Andric static cl::opt<unsigned> PromoteAllocaToVectorLimit( 445ffd83dbSDimitry Andric "amdgpu-promote-alloca-to-vector-limit", 455ffd83dbSDimitry Andric cl::desc("Maximum byte size to consider promote alloca to vector"), 465ffd83dbSDimitry Andric cl::init(0)); 475ffd83dbSDimitry Andric 480b57cec5SDimitry Andric // FIXME: This can create globals so should be a module pass. 490b57cec5SDimitry Andric class AMDGPUPromoteAlloca : public FunctionPass { 50e8d8bef9SDimitry Andric public: 51e8d8bef9SDimitry Andric static char ID; 52e8d8bef9SDimitry Andric 53e8d8bef9SDimitry Andric AMDGPUPromoteAlloca() : FunctionPass(ID) {} 54e8d8bef9SDimitry Andric 55e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override; 56e8d8bef9SDimitry Andric 57e8d8bef9SDimitry Andric StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 58e8d8bef9SDimitry Andric 59e8d8bef9SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 60e8d8bef9SDimitry Andric 61e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 62e8d8bef9SDimitry Andric AU.setPreservesCFG(); 63e8d8bef9SDimitry Andric FunctionPass::getAnalysisUsage(AU); 64e8d8bef9SDimitry Andric } 65e8d8bef9SDimitry Andric }; 66e8d8bef9SDimitry Andric 67e8d8bef9SDimitry Andric class AMDGPUPromoteAllocaImpl { 680b57cec5SDimitry Andric private: 69e8d8bef9SDimitry Andric const TargetMachine &TM; 700b57cec5SDimitry Andric Module *Mod = nullptr; 710b57cec5SDimitry Andric const DataLayout *DL = nullptr; 720b57cec5SDimitry Andric 730b57cec5SDimitry Andric // FIXME: This should be per-kernel. 740b57cec5SDimitry Andric uint32_t LocalMemLimit = 0; 750b57cec5SDimitry Andric uint32_t CurrentLocalMemUsage = 0; 765ffd83dbSDimitry Andric unsigned MaxVGPRs; 770b57cec5SDimitry Andric 780b57cec5SDimitry Andric bool IsAMDGCN = false; 790b57cec5SDimitry Andric bool IsAMDHSA = false; 800b57cec5SDimitry Andric 810b57cec5SDimitry Andric std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 820b57cec5SDimitry Andric Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 830b57cec5SDimitry Andric 840b57cec5SDimitry Andric /// BaseAlloca is the alloca root the search started from. 850b57cec5SDimitry Andric /// Val may be that alloca or a recursive user of it. 860b57cec5SDimitry Andric bool collectUsesWithPtrTypes(Value *BaseAlloca, 870b57cec5SDimitry Andric Value *Val, 880b57cec5SDimitry Andric std::vector<Value*> &WorkList) const; 890b57cec5SDimitry Andric 900b57cec5SDimitry Andric /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 910b57cec5SDimitry Andric /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 920b57cec5SDimitry Andric /// Returns true if both operands are derived from the same alloca. Val should 930b57cec5SDimitry Andric /// be the same value as one of the input operands of UseInst. 940b57cec5SDimitry Andric bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 950b57cec5SDimitry Andric Instruction *UseInst, 960b57cec5SDimitry Andric int OpIdx0, int OpIdx1) const; 970b57cec5SDimitry Andric 980b57cec5SDimitry Andric /// Check whether we have enough local memory for promotion. 990b57cec5SDimitry Andric bool hasSufficientLocalMem(const Function &F); 1000b57cec5SDimitry Andric 1010b57cec5SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 1020b57cec5SDimitry Andric 103e8d8bef9SDimitry Andric public: 104e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} 105e8d8bef9SDimitry Andric bool run(Function &F); 1060b57cec5SDimitry Andric }; 1070b57cec5SDimitry Andric 1085ffd83dbSDimitry Andric class AMDGPUPromoteAllocaToVector : public FunctionPass { 1095ffd83dbSDimitry Andric public: 1105ffd83dbSDimitry Andric static char ID; 1115ffd83dbSDimitry Andric 1125ffd83dbSDimitry Andric AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 1135ffd83dbSDimitry Andric 1145ffd83dbSDimitry Andric bool runOnFunction(Function &F) override; 1155ffd83dbSDimitry Andric 1165ffd83dbSDimitry Andric StringRef getPassName() const override { 1175ffd83dbSDimitry Andric return "AMDGPU Promote Alloca to vector"; 1185ffd83dbSDimitry Andric } 1195ffd83dbSDimitry Andric 1205ffd83dbSDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 1215ffd83dbSDimitry Andric AU.setPreservesCFG(); 1225ffd83dbSDimitry Andric FunctionPass::getAnalysisUsage(AU); 1235ffd83dbSDimitry Andric } 1245ffd83dbSDimitry Andric }; 1255ffd83dbSDimitry Andric 1260b57cec5SDimitry Andric } // end anonymous namespace 1270b57cec5SDimitry Andric 1280b57cec5SDimitry Andric char AMDGPUPromoteAlloca::ID = 0; 1295ffd83dbSDimitry Andric char AMDGPUPromoteAllocaToVector::ID = 0; 1300b57cec5SDimitry Andric 131fe6060f1SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 132fe6060f1SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 133fe6060f1SDimitry Andric // Move LDS uses from functions to kernels before promote alloca for accurate 134fe6060f1SDimitry Andric // estimation of LDS available 135fe6060f1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS) 136fe6060f1SDimitry Andric INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 1370b57cec5SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 1380b57cec5SDimitry Andric 1395ffd83dbSDimitry Andric INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 1405ffd83dbSDimitry Andric "AMDGPU promote alloca to vector", false, false) 1415ffd83dbSDimitry Andric 1420b57cec5SDimitry Andric char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 1435ffd83dbSDimitry Andric char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 1440b57cec5SDimitry Andric 1450b57cec5SDimitry Andric bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 1460b57cec5SDimitry Andric if (skipFunction(F)) 1470b57cec5SDimitry Andric return false; 1480b57cec5SDimitry Andric 149e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 150e8d8bef9SDimitry Andric return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); 151e8d8bef9SDimitry Andric } 1520b57cec5SDimitry Andric return false; 153e8d8bef9SDimitry Andric } 1540b57cec5SDimitry Andric 155e8d8bef9SDimitry Andric PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 156e8d8bef9SDimitry Andric FunctionAnalysisManager &AM) { 157e8d8bef9SDimitry Andric bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); 158e8d8bef9SDimitry Andric if (Changed) { 159e8d8bef9SDimitry Andric PreservedAnalyses PA; 160e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 161e8d8bef9SDimitry Andric return PA; 162e8d8bef9SDimitry Andric } 163e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 164e8d8bef9SDimitry Andric } 165e8d8bef9SDimitry Andric 166e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::run(Function &F) { 167e8d8bef9SDimitry Andric Mod = F.getParent(); 168e8d8bef9SDimitry Andric DL = &Mod->getDataLayout(); 169e8d8bef9SDimitry Andric 170e8d8bef9SDimitry Andric const Triple &TT = TM.getTargetTriple(); 1710b57cec5SDimitry Andric IsAMDGCN = TT.getArch() == Triple::amdgcn; 1720b57cec5SDimitry Andric IsAMDHSA = TT.getOS() == Triple::AMDHSA; 1730b57cec5SDimitry Andric 174e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1750b57cec5SDimitry Andric if (!ST.isPromoteAllocaEnabled()) 1760b57cec5SDimitry Andric return false; 1770b57cec5SDimitry Andric 1785ffd83dbSDimitry Andric if (IsAMDGCN) { 179e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 1805ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 181349cc55cSDimitry Andric // A non-entry function has only 32 caller preserved registers. 182349cc55cSDimitry Andric // Do not promote alloca which will force spilling. 183349cc55cSDimitry Andric if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) 184349cc55cSDimitry Andric MaxVGPRs = std::min(MaxVGPRs, 32u); 1855ffd83dbSDimitry Andric } else { 1865ffd83dbSDimitry Andric MaxVGPRs = 128; 1875ffd83dbSDimitry Andric } 1885ffd83dbSDimitry Andric 1890b57cec5SDimitry Andric bool SufficientLDS = hasSufficientLocalMem(F); 1900b57cec5SDimitry Andric bool Changed = false; 1910b57cec5SDimitry Andric BasicBlock &EntryBB = *F.begin(); 1920b57cec5SDimitry Andric 1930b57cec5SDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 1940b57cec5SDimitry Andric for (Instruction &I : EntryBB) { 1950b57cec5SDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1960b57cec5SDimitry Andric Allocas.push_back(AI); 1970b57cec5SDimitry Andric } 1980b57cec5SDimitry Andric 1990b57cec5SDimitry Andric for (AllocaInst *AI : Allocas) { 2000b57cec5SDimitry Andric if (handleAlloca(*AI, SufficientLDS)) 2010b57cec5SDimitry Andric Changed = true; 2020b57cec5SDimitry Andric } 2030b57cec5SDimitry Andric 2040b57cec5SDimitry Andric return Changed; 2050b57cec5SDimitry Andric } 2060b57cec5SDimitry Andric 2070b57cec5SDimitry Andric std::pair<Value *, Value *> 208e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 209349cc55cSDimitry Andric Function &F = *Builder.GetInsertBlock()->getParent(); 210e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 2110b57cec5SDimitry Andric 2120b57cec5SDimitry Andric if (!IsAMDHSA) { 2130b57cec5SDimitry Andric Function *LocalSizeYFn 2140b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 2150b57cec5SDimitry Andric Function *LocalSizeZFn 2160b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 2170b57cec5SDimitry Andric 2180b57cec5SDimitry Andric CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 2190b57cec5SDimitry Andric CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeY); 2220b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeZ); 2230b57cec5SDimitry Andric 2240b57cec5SDimitry Andric return std::make_pair(LocalSizeY, LocalSizeZ); 2250b57cec5SDimitry Andric } 2260b57cec5SDimitry Andric 2270b57cec5SDimitry Andric // We must read the size out of the dispatch pointer. 2280b57cec5SDimitry Andric assert(IsAMDGCN); 2290b57cec5SDimitry Andric 2300b57cec5SDimitry Andric // We are indexing into this struct, and want to extract the workgroup_size_* 2310b57cec5SDimitry Andric // fields. 2320b57cec5SDimitry Andric // 2330b57cec5SDimitry Andric // typedef struct hsa_kernel_dispatch_packet_s { 2340b57cec5SDimitry Andric // uint16_t header; 2350b57cec5SDimitry Andric // uint16_t setup; 2360b57cec5SDimitry Andric // uint16_t workgroup_size_x ; 2370b57cec5SDimitry Andric // uint16_t workgroup_size_y; 2380b57cec5SDimitry Andric // uint16_t workgroup_size_z; 2390b57cec5SDimitry Andric // uint16_t reserved0; 2400b57cec5SDimitry Andric // uint32_t grid_size_x ; 2410b57cec5SDimitry Andric // uint32_t grid_size_y ; 2420b57cec5SDimitry Andric // uint32_t grid_size_z; 2430b57cec5SDimitry Andric // 2440b57cec5SDimitry Andric // uint32_t private_segment_size; 2450b57cec5SDimitry Andric // uint32_t group_segment_size; 2460b57cec5SDimitry Andric // uint64_t kernel_object; 2470b57cec5SDimitry Andric // 2480b57cec5SDimitry Andric // #ifdef HSA_LARGE_MODEL 2490b57cec5SDimitry Andric // void *kernarg_address; 2500b57cec5SDimitry Andric // #elif defined HSA_LITTLE_ENDIAN 2510b57cec5SDimitry Andric // void *kernarg_address; 2520b57cec5SDimitry Andric // uint32_t reserved1; 2530b57cec5SDimitry Andric // #else 2540b57cec5SDimitry Andric // uint32_t reserved1; 2550b57cec5SDimitry Andric // void *kernarg_address; 2560b57cec5SDimitry Andric // #endif 2570b57cec5SDimitry Andric // uint64_t reserved2; 2580b57cec5SDimitry Andric // hsa_signal_t completion_signal; // uint64_t wrapper 2590b57cec5SDimitry Andric // } hsa_kernel_dispatch_packet_t 2600b57cec5SDimitry Andric // 2610b57cec5SDimitry Andric Function *DispatchPtrFn 2620b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 2630b57cec5SDimitry Andric 2640b57cec5SDimitry Andric CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 265349cc55cSDimitry Andric DispatchPtr->addRetAttr(Attribute::NoAlias); 266349cc55cSDimitry Andric DispatchPtr->addRetAttr(Attribute::NonNull); 267349cc55cSDimitry Andric F.removeFnAttr("amdgpu-no-dispatch-ptr"); 2680b57cec5SDimitry Andric 2690b57cec5SDimitry Andric // Size of the dispatch packet struct. 270349cc55cSDimitry Andric DispatchPtr->addDereferenceableRetAttr(64); 2710b57cec5SDimitry Andric 2720b57cec5SDimitry Andric Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 2730b57cec5SDimitry Andric Value *CastDispatchPtr = Builder.CreateBitCast( 2740b57cec5SDimitry Andric DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 2750b57cec5SDimitry Andric 2760b57cec5SDimitry Andric // We could do a single 64-bit load here, but it's likely that the basic 2770b57cec5SDimitry Andric // 32-bit and extract sequence is already present, and it is probably easier 278349cc55cSDimitry Andric // to CSE this. The loads should be mergeable later anyway. 2790b57cec5SDimitry Andric Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 2805ffd83dbSDimitry Andric LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 2810b57cec5SDimitry Andric 2820b57cec5SDimitry Andric Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 2835ffd83dbSDimitry Andric LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 2840b57cec5SDimitry Andric 2850b57cec5SDimitry Andric MDNode *MD = MDNode::get(Mod->getContext(), None); 2860b57cec5SDimitry Andric LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 2870b57cec5SDimitry Andric LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 2880b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LoadZU); 2890b57cec5SDimitry Andric 2900b57cec5SDimitry Andric // Extract y component. Upper half of LoadZU should be zero already. 2910b57cec5SDimitry Andric Value *Y = Builder.CreateLShr(LoadXY, 16); 2920b57cec5SDimitry Andric 2930b57cec5SDimitry Andric return std::make_pair(Y, LoadZU); 2940b57cec5SDimitry Andric } 2950b57cec5SDimitry Andric 296e8d8bef9SDimitry Andric Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 297e8d8bef9SDimitry Andric unsigned N) { 298349cc55cSDimitry Andric Function *F = Builder.GetInsertBlock()->getParent(); 299349cc55cSDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 300480093f4SDimitry Andric Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 301349cc55cSDimitry Andric StringRef AttrName; 3020b57cec5SDimitry Andric 3030b57cec5SDimitry Andric switch (N) { 3040b57cec5SDimitry Andric case 0: 305480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 306480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 307349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-x"; 3080b57cec5SDimitry Andric break; 3090b57cec5SDimitry Andric case 1: 310480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 311480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 312349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-y"; 3130b57cec5SDimitry Andric break; 3140b57cec5SDimitry Andric 3150b57cec5SDimitry Andric case 2: 316480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 317480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 318349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-z"; 3190b57cec5SDimitry Andric break; 3200b57cec5SDimitry Andric default: 3210b57cec5SDimitry Andric llvm_unreachable("invalid dimension"); 3220b57cec5SDimitry Andric } 3230b57cec5SDimitry Andric 3240b57cec5SDimitry Andric Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 3250b57cec5SDimitry Andric CallInst *CI = Builder.CreateCall(WorkitemIdFn); 3260b57cec5SDimitry Andric ST.makeLIDRangeMetadata(CI); 327349cc55cSDimitry Andric F->removeFnAttr(AttrName); 3280b57cec5SDimitry Andric 3290b57cec5SDimitry Andric return CI; 3300b57cec5SDimitry Andric } 3310b57cec5SDimitry Andric 3325ffd83dbSDimitry Andric static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 3335ffd83dbSDimitry Andric return FixedVectorType::get(ArrayTy->getElementType(), 3340b57cec5SDimitry Andric ArrayTy->getNumElements()); 3350b57cec5SDimitry Andric } 3360b57cec5SDimitry Andric 3375ffd83dbSDimitry Andric static Value *stripBitcasts(Value *V) { 3385ffd83dbSDimitry Andric while (Instruction *I = dyn_cast<Instruction>(V)) { 3395ffd83dbSDimitry Andric if (I->getOpcode() != Instruction::BitCast) 3405ffd83dbSDimitry Andric break; 3415ffd83dbSDimitry Andric V = I->getOperand(0); 3425ffd83dbSDimitry Andric } 3435ffd83dbSDimitry Andric return V; 3445ffd83dbSDimitry Andric } 3455ffd83dbSDimitry Andric 3460b57cec5SDimitry Andric static Value * 3470b57cec5SDimitry Andric calculateVectorIndex(Value *Ptr, 3480b57cec5SDimitry Andric const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 3495ffd83dbSDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); 3505ffd83dbSDimitry Andric if (!GEP) 3515ffd83dbSDimitry Andric return nullptr; 3520b57cec5SDimitry Andric 3530b57cec5SDimitry Andric auto I = GEPIdx.find(GEP); 3540b57cec5SDimitry Andric return I == GEPIdx.end() ? nullptr : I->second; 3550b57cec5SDimitry Andric } 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 3580b57cec5SDimitry Andric // FIXME we only support simple cases 3590b57cec5SDimitry Andric if (GEP->getNumOperands() != 3) 3600b57cec5SDimitry Andric return nullptr; 3610b57cec5SDimitry Andric 3620b57cec5SDimitry Andric ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3630b57cec5SDimitry Andric if (!I0 || !I0->isZero()) 3640b57cec5SDimitry Andric return nullptr; 3650b57cec5SDimitry Andric 3660b57cec5SDimitry Andric return GEP->getOperand(2); 3670b57cec5SDimitry Andric } 3680b57cec5SDimitry Andric 3690b57cec5SDimitry Andric // Not an instruction handled below to turn into a vector. 3700b57cec5SDimitry Andric // 3710b57cec5SDimitry Andric // TODO: Check isTriviallyVectorizable for calls and handle other 3720b57cec5SDimitry Andric // instructions. 3735ffd83dbSDimitry Andric static bool canVectorizeInst(Instruction *Inst, User *User, 3745ffd83dbSDimitry Andric const DataLayout &DL) { 3750b57cec5SDimitry Andric switch (Inst->getOpcode()) { 3760b57cec5SDimitry Andric case Instruction::Load: { 3770b57cec5SDimitry Andric // Currently only handle the case where the Pointer Operand is a GEP. 3780b57cec5SDimitry Andric // Also we could not vectorize volatile or atomic loads. 3790b57cec5SDimitry Andric LoadInst *LI = cast<LoadInst>(Inst); 3800b57cec5SDimitry Andric if (isa<AllocaInst>(User) && 3810b57cec5SDimitry Andric LI->getPointerOperandType() == User->getType() && 3820b57cec5SDimitry Andric isa<VectorType>(LI->getType())) 3830b57cec5SDimitry Andric return true; 3845ffd83dbSDimitry Andric 3855ffd83dbSDimitry Andric Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 3865ffd83dbSDimitry Andric if (!PtrInst) 3875ffd83dbSDimitry Andric return false; 3885ffd83dbSDimitry Andric 3895ffd83dbSDimitry Andric return (PtrInst->getOpcode() == Instruction::GetElementPtr || 3905ffd83dbSDimitry Andric PtrInst->getOpcode() == Instruction::BitCast) && 3915ffd83dbSDimitry Andric LI->isSimple(); 3920b57cec5SDimitry Andric } 3930b57cec5SDimitry Andric case Instruction::BitCast: 3940b57cec5SDimitry Andric return true; 3950b57cec5SDimitry Andric case Instruction::Store: { 3960b57cec5SDimitry Andric // Must be the stored pointer operand, not a stored value, plus 3970b57cec5SDimitry Andric // since it should be canonical form, the User should be a GEP. 3980b57cec5SDimitry Andric // Also we could not vectorize volatile or atomic stores. 3990b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 4000b57cec5SDimitry Andric if (isa<AllocaInst>(User) && 4010b57cec5SDimitry Andric SI->getPointerOperandType() == User->getType() && 4020b57cec5SDimitry Andric isa<VectorType>(SI->getValueOperand()->getType())) 4030b57cec5SDimitry Andric return true; 4045ffd83dbSDimitry Andric 4055ffd83dbSDimitry Andric Instruction *UserInst = dyn_cast<Instruction>(User); 4065ffd83dbSDimitry Andric if (!UserInst) 4075ffd83dbSDimitry Andric return false; 4085ffd83dbSDimitry Andric 4095ffd83dbSDimitry Andric return (SI->getPointerOperand() == User) && 4105ffd83dbSDimitry Andric (UserInst->getOpcode() == Instruction::GetElementPtr || 4115ffd83dbSDimitry Andric UserInst->getOpcode() == Instruction::BitCast) && 4125ffd83dbSDimitry Andric SI->isSimple(); 4130b57cec5SDimitry Andric } 4140b57cec5SDimitry Andric default: 4150b57cec5SDimitry Andric return false; 4160b57cec5SDimitry Andric } 4170b57cec5SDimitry Andric } 4180b57cec5SDimitry Andric 4195ffd83dbSDimitry Andric static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, 4205ffd83dbSDimitry Andric unsigned MaxVGPRs) { 4210b57cec5SDimitry Andric 4220b57cec5SDimitry Andric if (DisablePromoteAllocaToVector) { 4230b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 4240b57cec5SDimitry Andric return false; 4250b57cec5SDimitry Andric } 4260b57cec5SDimitry Andric 4275ffd83dbSDimitry Andric Type *AllocaTy = Alloca->getAllocatedType(); 4285ffd83dbSDimitry Andric auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 4295ffd83dbSDimitry Andric if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 4305ffd83dbSDimitry Andric if (VectorType::isValidElementType(ArrayTy->getElementType()) && 4315ffd83dbSDimitry Andric ArrayTy->getNumElements() > 0) 4325ffd83dbSDimitry Andric VectorTy = arrayTypeToVecType(ArrayTy); 4335ffd83dbSDimitry Andric } 4345ffd83dbSDimitry Andric 4355ffd83dbSDimitry Andric // Use up to 1/4 of available register budget for vectorization. 4365ffd83dbSDimitry Andric unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 4375ffd83dbSDimitry Andric : (MaxVGPRs * 32); 4385ffd83dbSDimitry Andric 4395ffd83dbSDimitry Andric if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { 4405ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " 4415ffd83dbSDimitry Andric << MaxVGPRs << " registers available\n"); 4425ffd83dbSDimitry Andric return false; 4435ffd83dbSDimitry Andric } 4440b57cec5SDimitry Andric 4450b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 4460b57cec5SDimitry Andric 4470b57cec5SDimitry Andric // FIXME: There is no reason why we can't support larger arrays, we 4480b57cec5SDimitry Andric // are just being conservative for now. 4490b57cec5SDimitry Andric // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 4500b57cec5SDimitry Andric // could also be promoted but we don't currently handle this case 4515ffd83dbSDimitry Andric if (!VectorTy || VectorTy->getNumElements() > 16 || 4525ffd83dbSDimitry Andric VectorTy->getNumElements() < 2) { 4530b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 4540b57cec5SDimitry Andric return false; 4550b57cec5SDimitry Andric } 4560b57cec5SDimitry Andric 4570b57cec5SDimitry Andric std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 4580b57cec5SDimitry Andric std::vector<Value *> WorkList; 4595ffd83dbSDimitry Andric SmallVector<User *, 8> Users(Alloca->users()); 4605ffd83dbSDimitry Andric SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 4615ffd83dbSDimitry Andric Type *VecEltTy = VectorTy->getElementType(); 4625ffd83dbSDimitry Andric while (!Users.empty()) { 4635ffd83dbSDimitry Andric User *AllocaUser = Users.pop_back_val(); 4645ffd83dbSDimitry Andric User *UseUser = UseUsers.pop_back_val(); 4655ffd83dbSDimitry Andric Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 4665ffd83dbSDimitry Andric 4670b57cec5SDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 4680b57cec5SDimitry Andric if (!GEP) { 4695ffd83dbSDimitry Andric if (!canVectorizeInst(Inst, UseUser, DL)) 4700b57cec5SDimitry Andric return false; 4710b57cec5SDimitry Andric 4725ffd83dbSDimitry Andric if (Inst->getOpcode() == Instruction::BitCast) { 4735ffd83dbSDimitry Andric Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 4745ffd83dbSDimitry Andric Type *ToTy = Inst->getType()->getPointerElementType(); 4755ffd83dbSDimitry Andric if (FromTy->isAggregateType() || ToTy->isAggregateType() || 4765ffd83dbSDimitry Andric DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 4775ffd83dbSDimitry Andric continue; 4785ffd83dbSDimitry Andric 4795ffd83dbSDimitry Andric for (User *CastUser : Inst->users()) { 4805ffd83dbSDimitry Andric if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 4815ffd83dbSDimitry Andric continue; 4825ffd83dbSDimitry Andric Users.push_back(CastUser); 4835ffd83dbSDimitry Andric UseUsers.push_back(Inst); 4845ffd83dbSDimitry Andric } 4855ffd83dbSDimitry Andric 4865ffd83dbSDimitry Andric continue; 4875ffd83dbSDimitry Andric } 4885ffd83dbSDimitry Andric 4890b57cec5SDimitry Andric WorkList.push_back(AllocaUser); 4900b57cec5SDimitry Andric continue; 4910b57cec5SDimitry Andric } 4920b57cec5SDimitry Andric 4930b57cec5SDimitry Andric Value *Index = GEPToVectorIndex(GEP); 4940b57cec5SDimitry Andric 4950b57cec5SDimitry Andric // If we can't compute a vector index from this GEP, then we can't 4960b57cec5SDimitry Andric // promote this alloca to vector. 4970b57cec5SDimitry Andric if (!Index) { 4980b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 4990b57cec5SDimitry Andric << '\n'); 5000b57cec5SDimitry Andric return false; 5010b57cec5SDimitry Andric } 5020b57cec5SDimitry Andric 5030b57cec5SDimitry Andric GEPVectorIdx[GEP] = Index; 5045ffd83dbSDimitry Andric Users.append(GEP->user_begin(), GEP->user_end()); 5055ffd83dbSDimitry Andric UseUsers.append(GEP->getNumUses(), GEP); 5060b57cec5SDimitry Andric } 5070b57cec5SDimitry Andric 5080b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 5090b57cec5SDimitry Andric << *VectorTy << '\n'); 5100b57cec5SDimitry Andric 5110b57cec5SDimitry Andric for (Value *V : WorkList) { 5120b57cec5SDimitry Andric Instruction *Inst = cast<Instruction>(V); 5130b57cec5SDimitry Andric IRBuilder<> Builder(Inst); 5140b57cec5SDimitry Andric switch (Inst->getOpcode()) { 5150b57cec5SDimitry Andric case Instruction::Load: { 5165ffd83dbSDimitry Andric if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 5175ffd83dbSDimitry Andric break; 5185ffd83dbSDimitry Andric 5195ffd83dbSDimitry Andric Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 5205ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 5215ffd83dbSDimitry Andric if (!Index) 5220b57cec5SDimitry Andric break; 5230b57cec5SDimitry Andric 5240b57cec5SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 5250b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 5260b57cec5SDimitry Andric Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 5270b57cec5SDimitry Andric Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 5285ffd83dbSDimitry Andric if (Inst->getType() != VecEltTy) 5295ffd83dbSDimitry Andric ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); 5300b57cec5SDimitry Andric Inst->replaceAllUsesWith(ExtractElement); 5310b57cec5SDimitry Andric Inst->eraseFromParent(); 5320b57cec5SDimitry Andric break; 5330b57cec5SDimitry Andric } 5340b57cec5SDimitry Andric case Instruction::Store: { 5350b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 5365ffd83dbSDimitry Andric if (SI->getValueOperand()->getType() == AllocaTy || 5375ffd83dbSDimitry Andric SI->getValueOperand()->getType()->isVectorTy()) 5385ffd83dbSDimitry Andric break; 5395ffd83dbSDimitry Andric 5405ffd83dbSDimitry Andric Value *Ptr = SI->getPointerOperand(); 5415ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 5425ffd83dbSDimitry Andric if (!Index) 5430b57cec5SDimitry Andric break; 5440b57cec5SDimitry Andric 5450b57cec5SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 5460b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 5470b57cec5SDimitry Andric Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 5485ffd83dbSDimitry Andric Value *Elt = SI->getValueOperand(); 5495ffd83dbSDimitry Andric if (Elt->getType() != VecEltTy) 5505ffd83dbSDimitry Andric Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); 5515ffd83dbSDimitry Andric Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 5520b57cec5SDimitry Andric Builder.CreateStore(NewVecValue, BitCast); 5530b57cec5SDimitry Andric Inst->eraseFromParent(); 5540b57cec5SDimitry Andric break; 5550b57cec5SDimitry Andric } 5560b57cec5SDimitry Andric 5570b57cec5SDimitry Andric default: 5580b57cec5SDimitry Andric llvm_unreachable("Inconsistency in instructions promotable to vector"); 5590b57cec5SDimitry Andric } 5600b57cec5SDimitry Andric } 5610b57cec5SDimitry Andric return true; 5620b57cec5SDimitry Andric } 5630b57cec5SDimitry Andric 5640b57cec5SDimitry Andric static bool isCallPromotable(CallInst *CI) { 5650b57cec5SDimitry Andric IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 5660b57cec5SDimitry Andric if (!II) 5670b57cec5SDimitry Andric return false; 5680b57cec5SDimitry Andric 5690b57cec5SDimitry Andric switch (II->getIntrinsicID()) { 5700b57cec5SDimitry Andric case Intrinsic::memcpy: 5710b57cec5SDimitry Andric case Intrinsic::memmove: 5720b57cec5SDimitry Andric case Intrinsic::memset: 5730b57cec5SDimitry Andric case Intrinsic::lifetime_start: 5740b57cec5SDimitry Andric case Intrinsic::lifetime_end: 5750b57cec5SDimitry Andric case Intrinsic::invariant_start: 5760b57cec5SDimitry Andric case Intrinsic::invariant_end: 5770b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 5780b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 5790b57cec5SDimitry Andric case Intrinsic::objectsize: 5800b57cec5SDimitry Andric return true; 5810b57cec5SDimitry Andric default: 5820b57cec5SDimitry Andric return false; 5830b57cec5SDimitry Andric } 5840b57cec5SDimitry Andric } 5850b57cec5SDimitry Andric 586e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 587e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 5880b57cec5SDimitry Andric int OpIdx1) const { 5890b57cec5SDimitry Andric // Figure out which operand is the one we might not be promoting. 5900b57cec5SDimitry Andric Value *OtherOp = Inst->getOperand(OpIdx0); 5910b57cec5SDimitry Andric if (Val == OtherOp) 5920b57cec5SDimitry Andric OtherOp = Inst->getOperand(OpIdx1); 5930b57cec5SDimitry Andric 5940b57cec5SDimitry Andric if (isa<ConstantPointerNull>(OtherOp)) 5950b57cec5SDimitry Andric return true; 5960b57cec5SDimitry Andric 597e8d8bef9SDimitry Andric Value *OtherObj = getUnderlyingObject(OtherOp); 5980b57cec5SDimitry Andric if (!isa<AllocaInst>(OtherObj)) 5990b57cec5SDimitry Andric return false; 6000b57cec5SDimitry Andric 6010b57cec5SDimitry Andric // TODO: We should be able to replace undefs with the right pointer type. 6020b57cec5SDimitry Andric 6030b57cec5SDimitry Andric // TODO: If we know the other base object is another promotable 6040b57cec5SDimitry Andric // alloca, not necessarily this alloca, we can do this. The 6050b57cec5SDimitry Andric // important part is both must have the same address space at 6060b57cec5SDimitry Andric // the end. 6070b57cec5SDimitry Andric if (OtherObj != BaseAlloca) { 6080b57cec5SDimitry Andric LLVM_DEBUG( 6090b57cec5SDimitry Andric dbgs() << "Found a binary instruction with another alloca object\n"); 6100b57cec5SDimitry Andric return false; 6110b57cec5SDimitry Andric } 6120b57cec5SDimitry Andric 6130b57cec5SDimitry Andric return true; 6140b57cec5SDimitry Andric } 6150b57cec5SDimitry Andric 616e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 617e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 6180b57cec5SDimitry Andric 6190b57cec5SDimitry Andric for (User *User : Val->users()) { 6200b57cec5SDimitry Andric if (is_contained(WorkList, User)) 6210b57cec5SDimitry Andric continue; 6220b57cec5SDimitry Andric 6230b57cec5SDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(User)) { 6240b57cec5SDimitry Andric if (!isCallPromotable(CI)) 6250b57cec5SDimitry Andric return false; 6260b57cec5SDimitry Andric 6270b57cec5SDimitry Andric WorkList.push_back(User); 6280b57cec5SDimitry Andric continue; 6290b57cec5SDimitry Andric } 6300b57cec5SDimitry Andric 6310b57cec5SDimitry Andric Instruction *UseInst = cast<Instruction>(User); 6320b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::PtrToInt) 6330b57cec5SDimitry Andric return false; 6340b57cec5SDimitry Andric 6350b57cec5SDimitry Andric if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 6360b57cec5SDimitry Andric if (LI->isVolatile()) 6370b57cec5SDimitry Andric return false; 6380b57cec5SDimitry Andric 6390b57cec5SDimitry Andric continue; 6400b57cec5SDimitry Andric } 6410b57cec5SDimitry Andric 6420b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 6430b57cec5SDimitry Andric if (SI->isVolatile()) 6440b57cec5SDimitry Andric return false; 6450b57cec5SDimitry Andric 6460b57cec5SDimitry Andric // Reject if the stored value is not the pointer operand. 6470b57cec5SDimitry Andric if (SI->getPointerOperand() != Val) 6480b57cec5SDimitry Andric return false; 6490b57cec5SDimitry Andric } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 6500b57cec5SDimitry Andric if (RMW->isVolatile()) 6510b57cec5SDimitry Andric return false; 6520b57cec5SDimitry Andric } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 6530b57cec5SDimitry Andric if (CAS->isVolatile()) 6540b57cec5SDimitry Andric return false; 6550b57cec5SDimitry Andric } 6560b57cec5SDimitry Andric 6570b57cec5SDimitry Andric // Only promote a select if we know that the other select operand 6580b57cec5SDimitry Andric // is from another pointer that will also be promoted. 6590b57cec5SDimitry Andric if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 6600b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 6610b57cec5SDimitry Andric return false; 6620b57cec5SDimitry Andric 6630b57cec5SDimitry Andric // May need to rewrite constant operands. 6640b57cec5SDimitry Andric WorkList.push_back(ICmp); 6650b57cec5SDimitry Andric } 6660b57cec5SDimitry Andric 6670b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 6680b57cec5SDimitry Andric // Give up if the pointer may be captured. 6690b57cec5SDimitry Andric if (PointerMayBeCaptured(UseInst, true, true)) 6700b57cec5SDimitry Andric return false; 6710b57cec5SDimitry Andric // Don't collect the users of this. 6720b57cec5SDimitry Andric WorkList.push_back(User); 6730b57cec5SDimitry Andric continue; 6740b57cec5SDimitry Andric } 6750b57cec5SDimitry Andric 676fe6060f1SDimitry Andric // Do not promote vector/aggregate type instructions. It is hard to track 677fe6060f1SDimitry Andric // their users. 678fe6060f1SDimitry Andric if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 679fe6060f1SDimitry Andric return false; 680fe6060f1SDimitry Andric 6810b57cec5SDimitry Andric if (!User->getType()->isPointerTy()) 6820b57cec5SDimitry Andric continue; 6830b57cec5SDimitry Andric 6840b57cec5SDimitry Andric if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 6850b57cec5SDimitry Andric // Be conservative if an address could be computed outside the bounds of 6860b57cec5SDimitry Andric // the alloca. 6870b57cec5SDimitry Andric if (!GEP->isInBounds()) 6880b57cec5SDimitry Andric return false; 6890b57cec5SDimitry Andric } 6900b57cec5SDimitry Andric 6910b57cec5SDimitry Andric // Only promote a select if we know that the other select operand is from 6920b57cec5SDimitry Andric // another pointer that will also be promoted. 6930b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 6940b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 6950b57cec5SDimitry Andric return false; 6960b57cec5SDimitry Andric } 6970b57cec5SDimitry Andric 6980b57cec5SDimitry Andric // Repeat for phis. 6990b57cec5SDimitry Andric if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 7000b57cec5SDimitry Andric // TODO: Handle more complex cases. We should be able to replace loops 7010b57cec5SDimitry Andric // over arrays. 7020b57cec5SDimitry Andric switch (Phi->getNumIncomingValues()) { 7030b57cec5SDimitry Andric case 1: 7040b57cec5SDimitry Andric break; 7050b57cec5SDimitry Andric case 2: 7060b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 7070b57cec5SDimitry Andric return false; 7080b57cec5SDimitry Andric break; 7090b57cec5SDimitry Andric default: 7100b57cec5SDimitry Andric return false; 7110b57cec5SDimitry Andric } 7120b57cec5SDimitry Andric } 7130b57cec5SDimitry Andric 7140b57cec5SDimitry Andric WorkList.push_back(User); 7150b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 7160b57cec5SDimitry Andric return false; 7170b57cec5SDimitry Andric } 7180b57cec5SDimitry Andric 7190b57cec5SDimitry Andric return true; 7200b57cec5SDimitry Andric } 7210b57cec5SDimitry Andric 722e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 7230b57cec5SDimitry Andric 7240b57cec5SDimitry Andric FunctionType *FTy = F.getFunctionType(); 725e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 7260b57cec5SDimitry Andric 7270b57cec5SDimitry Andric // If the function has any arguments in the local address space, then it's 7280b57cec5SDimitry Andric // possible these arguments require the entire local memory space, so 7290b57cec5SDimitry Andric // we cannot use local memory in the pass. 7300b57cec5SDimitry Andric for (Type *ParamTy : FTy->params()) { 7310b57cec5SDimitry Andric PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 7320b57cec5SDimitry Andric if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 7330b57cec5SDimitry Andric LocalMemLimit = 0; 7340b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 7350b57cec5SDimitry Andric "local memory disabled.\n"); 7360b57cec5SDimitry Andric return false; 7370b57cec5SDimitry Andric } 7380b57cec5SDimitry Andric } 7390b57cec5SDimitry Andric 7400b57cec5SDimitry Andric LocalMemLimit = ST.getLocalMemorySize(); 7410b57cec5SDimitry Andric if (LocalMemLimit == 0) 7420b57cec5SDimitry Andric return false; 7430b57cec5SDimitry Andric 744e8d8bef9SDimitry Andric SmallVector<const Constant *, 16> Stack; 745e8d8bef9SDimitry Andric SmallPtrSet<const Constant *, 8> VisitedConstants; 746e8d8bef9SDimitry Andric SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 7470b57cec5SDimitry Andric 748e8d8bef9SDimitry Andric auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 749e8d8bef9SDimitry Andric for (const User *U : Val->users()) { 750e8d8bef9SDimitry Andric if (const Instruction *Use = dyn_cast<Instruction>(U)) { 751e8d8bef9SDimitry Andric if (Use->getParent()->getParent() == &F) 752e8d8bef9SDimitry Andric return true; 753e8d8bef9SDimitry Andric } else { 754e8d8bef9SDimitry Andric const Constant *C = cast<Constant>(U); 755e8d8bef9SDimitry Andric if (VisitedConstants.insert(C).second) 756e8d8bef9SDimitry Andric Stack.push_back(C); 757e8d8bef9SDimitry Andric } 758e8d8bef9SDimitry Andric } 759e8d8bef9SDimitry Andric 760e8d8bef9SDimitry Andric return false; 761e8d8bef9SDimitry Andric }; 762e8d8bef9SDimitry Andric 7630b57cec5SDimitry Andric for (GlobalVariable &GV : Mod->globals()) { 764480093f4SDimitry Andric if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 7650b57cec5SDimitry Andric continue; 7660b57cec5SDimitry Andric 767e8d8bef9SDimitry Andric if (visitUsers(&GV, &GV)) { 768e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 769e8d8bef9SDimitry Andric Stack.clear(); 7700b57cec5SDimitry Andric continue; 771e8d8bef9SDimitry Andric } 7720b57cec5SDimitry Andric 773e8d8bef9SDimitry Andric // For any ConstantExpr uses, we need to recursively search the users until 774e8d8bef9SDimitry Andric // we see a function. 775e8d8bef9SDimitry Andric while (!Stack.empty()) { 776e8d8bef9SDimitry Andric const Constant *C = Stack.pop_back_val(); 777e8d8bef9SDimitry Andric if (visitUsers(&GV, C)) { 778e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 779e8d8bef9SDimitry Andric Stack.clear(); 7800b57cec5SDimitry Andric break; 7810b57cec5SDimitry Andric } 7820b57cec5SDimitry Andric } 7830b57cec5SDimitry Andric } 7840b57cec5SDimitry Andric 785e8d8bef9SDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 786e8d8bef9SDimitry Andric SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 787e8d8bef9SDimitry Andric AllocatedSizes.reserve(UsedLDS.size()); 788e8d8bef9SDimitry Andric 789e8d8bef9SDimitry Andric for (const GlobalVariable *GV : UsedLDS) { 790e8d8bef9SDimitry Andric Align Alignment = 791e8d8bef9SDimitry Andric DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 792e8d8bef9SDimitry Andric uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 79304eeddc0SDimitry Andric 79404eeddc0SDimitry Andric // HIP uses an extern unsized array in local address space for dynamically 79504eeddc0SDimitry Andric // allocated shared memory. In that case, we have to disable the promotion. 79604eeddc0SDimitry Andric if (GV->hasExternalLinkage() && AllocSize == 0) { 79704eeddc0SDimitry Andric LocalMemLimit = 0; 79804eeddc0SDimitry Andric LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated " 79904eeddc0SDimitry Andric "local memory. Promoting to local memory " 80004eeddc0SDimitry Andric "disabled.\n"); 80104eeddc0SDimitry Andric return false; 80204eeddc0SDimitry Andric } 80304eeddc0SDimitry Andric 804e8d8bef9SDimitry Andric AllocatedSizes.emplace_back(AllocSize, Alignment); 805e8d8bef9SDimitry Andric } 806e8d8bef9SDimitry Andric 807e8d8bef9SDimitry Andric // Sort to try to estimate the worst case alignment padding 808e8d8bef9SDimitry Andric // 809e8d8bef9SDimitry Andric // FIXME: We should really do something to fix the addresses to a more optimal 810e8d8bef9SDimitry Andric // value instead 811e8d8bef9SDimitry Andric llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS, 812e8d8bef9SDimitry Andric std::pair<uint64_t, Align> RHS) { 813e8d8bef9SDimitry Andric return LHS.second < RHS.second; 814e8d8bef9SDimitry Andric }); 815e8d8bef9SDimitry Andric 816e8d8bef9SDimitry Andric // Check how much local memory is being used by global objects 817e8d8bef9SDimitry Andric CurrentLocalMemUsage = 0; 818e8d8bef9SDimitry Andric 819e8d8bef9SDimitry Andric // FIXME: Try to account for padding here. The real padding and address is 820e8d8bef9SDimitry Andric // currently determined from the inverse order of uses in the function when 821e8d8bef9SDimitry Andric // legalizing, which could also potentially change. We try to estimate the 822e8d8bef9SDimitry Andric // worst case here, but we probably should fix the addresses earlier. 823e8d8bef9SDimitry Andric for (auto Alloc : AllocatedSizes) { 824e8d8bef9SDimitry Andric CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 825e8d8bef9SDimitry Andric CurrentLocalMemUsage += Alloc.first; 826e8d8bef9SDimitry Andric } 827e8d8bef9SDimitry Andric 8280b57cec5SDimitry Andric unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 8290b57cec5SDimitry Andric F); 8300b57cec5SDimitry Andric 8310b57cec5SDimitry Andric // Restrict local memory usage so that we don't drastically reduce occupancy, 8320b57cec5SDimitry Andric // unless it is already significantly reduced. 8330b57cec5SDimitry Andric 8340b57cec5SDimitry Andric // TODO: Have some sort of hint or other heuristics to guess occupancy based 8350b57cec5SDimitry Andric // on other factors.. 8360b57cec5SDimitry Andric unsigned OccupancyHint = ST.getWavesPerEU(F).second; 8370b57cec5SDimitry Andric if (OccupancyHint == 0) 8380b57cec5SDimitry Andric OccupancyHint = 7; 8390b57cec5SDimitry Andric 8400b57cec5SDimitry Andric // Clamp to max value. 8410b57cec5SDimitry Andric OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 8420b57cec5SDimitry Andric 8430b57cec5SDimitry Andric // Check the hint but ignore it if it's obviously wrong from the existing LDS 8440b57cec5SDimitry Andric // usage. 8450b57cec5SDimitry Andric MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 8460b57cec5SDimitry Andric 8470b57cec5SDimitry Andric 8480b57cec5SDimitry Andric // Round up to the next tier of usage. 8490b57cec5SDimitry Andric unsigned MaxSizeWithWaveCount 8500b57cec5SDimitry Andric = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 8510b57cec5SDimitry Andric 8520b57cec5SDimitry Andric // Program is possibly broken by using more local mem than available. 8530b57cec5SDimitry Andric if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 8540b57cec5SDimitry Andric return false; 8550b57cec5SDimitry Andric 8560b57cec5SDimitry Andric LocalMemLimit = MaxSizeWithWaveCount; 8570b57cec5SDimitry Andric 8580b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 8590b57cec5SDimitry Andric << " bytes of LDS\n" 8600b57cec5SDimitry Andric << " Rounding size to " << MaxSizeWithWaveCount 8610b57cec5SDimitry Andric << " with a maximum occupancy of " << MaxOccupancy << '\n' 8620b57cec5SDimitry Andric << " and " << (LocalMemLimit - CurrentLocalMemUsage) 8630b57cec5SDimitry Andric << " available for promotion\n"); 8640b57cec5SDimitry Andric 8650b57cec5SDimitry Andric return true; 8660b57cec5SDimitry Andric } 8670b57cec5SDimitry Andric 8680b57cec5SDimitry Andric // FIXME: Should try to pick the most likely to be profitable allocas first. 869e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { 8700b57cec5SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 8710b57cec5SDimitry Andric // the array type is the canonical form. 8720b57cec5SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 8730b57cec5SDimitry Andric return false; 8740b57cec5SDimitry Andric 8755ffd83dbSDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 8760b57cec5SDimitry Andric IRBuilder<> Builder(&I); 8770b57cec5SDimitry Andric 8780b57cec5SDimitry Andric // First try to replace the alloca with a vector 8790b57cec5SDimitry Andric Type *AllocaTy = I.getAllocatedType(); 8800b57cec5SDimitry Andric 8810b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 8820b57cec5SDimitry Andric 8835ffd83dbSDimitry Andric if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) 8840b57cec5SDimitry Andric return true; // Promoted to vector. 8850b57cec5SDimitry Andric 8860b57cec5SDimitry Andric if (DisablePromoteAllocaToLDS) 8870b57cec5SDimitry Andric return false; 8880b57cec5SDimitry Andric 8890b57cec5SDimitry Andric const Function &ContainingFunction = *I.getParent()->getParent(); 8900b57cec5SDimitry Andric CallingConv::ID CC = ContainingFunction.getCallingConv(); 8910b57cec5SDimitry Andric 8920b57cec5SDimitry Andric // Don't promote the alloca to LDS for shader calling conventions as the work 8930b57cec5SDimitry Andric // item ID intrinsics are not supported for these calling conventions. 8940b57cec5SDimitry Andric // Furthermore not all LDS is available for some of the stages. 8950b57cec5SDimitry Andric switch (CC) { 8960b57cec5SDimitry Andric case CallingConv::AMDGPU_KERNEL: 8970b57cec5SDimitry Andric case CallingConv::SPIR_KERNEL: 8980b57cec5SDimitry Andric break; 8990b57cec5SDimitry Andric default: 9000b57cec5SDimitry Andric LLVM_DEBUG( 9010b57cec5SDimitry Andric dbgs() 9020b57cec5SDimitry Andric << " promote alloca to LDS not supported with calling convention.\n"); 9030b57cec5SDimitry Andric return false; 9040b57cec5SDimitry Andric } 9050b57cec5SDimitry Andric 9060b57cec5SDimitry Andric // Not likely to have sufficient local memory for promotion. 9070b57cec5SDimitry Andric if (!SufficientLDS) 9080b57cec5SDimitry Andric return false; 9090b57cec5SDimitry Andric 910e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 9110b57cec5SDimitry Andric unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 9120b57cec5SDimitry Andric 9135ffd83dbSDimitry Andric Align Alignment = 9145ffd83dbSDimitry Andric DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 9150b57cec5SDimitry Andric 9160b57cec5SDimitry Andric // FIXME: This computed padding is likely wrong since it depends on inverse 9170b57cec5SDimitry Andric // usage order. 9180b57cec5SDimitry Andric // 9190b57cec5SDimitry Andric // FIXME: It is also possible that if we're allowed to use all of the memory 9200b57cec5SDimitry Andric // could could end up using more than the maximum due to alignment padding. 9210b57cec5SDimitry Andric 9225ffd83dbSDimitry Andric uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 9230b57cec5SDimitry Andric uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 9240b57cec5SDimitry Andric NewSize += AllocSize; 9250b57cec5SDimitry Andric 9260b57cec5SDimitry Andric if (NewSize > LocalMemLimit) { 9270b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << AllocSize 9280b57cec5SDimitry Andric << " bytes of local memory not available to promote\n"); 9290b57cec5SDimitry Andric return false; 9300b57cec5SDimitry Andric } 9310b57cec5SDimitry Andric 9320b57cec5SDimitry Andric CurrentLocalMemUsage = NewSize; 9330b57cec5SDimitry Andric 9340b57cec5SDimitry Andric std::vector<Value*> WorkList; 9350b57cec5SDimitry Andric 9360b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 9370b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 9380b57cec5SDimitry Andric return false; 9390b57cec5SDimitry Andric } 9400b57cec5SDimitry Andric 9410b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 9420b57cec5SDimitry Andric 9430b57cec5SDimitry Andric Function *F = I.getParent()->getParent(); 9440b57cec5SDimitry Andric 9450b57cec5SDimitry Andric Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 9460b57cec5SDimitry Andric GlobalVariable *GV = new GlobalVariable( 9470b57cec5SDimitry Andric *Mod, GVTy, false, GlobalValue::InternalLinkage, 9480b57cec5SDimitry Andric UndefValue::get(GVTy), 9490b57cec5SDimitry Andric Twine(F->getName()) + Twine('.') + I.getName(), 9500b57cec5SDimitry Andric nullptr, 9510b57cec5SDimitry Andric GlobalVariable::NotThreadLocal, 9520b57cec5SDimitry Andric AMDGPUAS::LOCAL_ADDRESS); 9530b57cec5SDimitry Andric GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 9540eae32dcSDimitry Andric GV->setAlignment(I.getAlign()); 9550b57cec5SDimitry Andric 9560b57cec5SDimitry Andric Value *TCntY, *TCntZ; 9570b57cec5SDimitry Andric 9580b57cec5SDimitry Andric std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 9590b57cec5SDimitry Andric Value *TIdX = getWorkitemID(Builder, 0); 9600b57cec5SDimitry Andric Value *TIdY = getWorkitemID(Builder, 1); 9610b57cec5SDimitry Andric Value *TIdZ = getWorkitemID(Builder, 2); 9620b57cec5SDimitry Andric 9630b57cec5SDimitry Andric Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 9640b57cec5SDimitry Andric Tmp0 = Builder.CreateMul(Tmp0, TIdX); 9650b57cec5SDimitry Andric Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 9660b57cec5SDimitry Andric Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 9670b57cec5SDimitry Andric TID = Builder.CreateAdd(TID, TIdZ); 9680b57cec5SDimitry Andric 9690b57cec5SDimitry Andric Value *Indices[] = { 9700b57cec5SDimitry Andric Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 9710b57cec5SDimitry Andric TID 9720b57cec5SDimitry Andric }; 9730b57cec5SDimitry Andric 9740b57cec5SDimitry Andric Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 9750b57cec5SDimitry Andric I.mutateType(Offset->getType()); 9760b57cec5SDimitry Andric I.replaceAllUsesWith(Offset); 9770b57cec5SDimitry Andric I.eraseFromParent(); 9780b57cec5SDimitry Andric 979fe6060f1SDimitry Andric SmallVector<IntrinsicInst *> DeferredIntrs; 980fe6060f1SDimitry Andric 9810b57cec5SDimitry Andric for (Value *V : WorkList) { 9820b57cec5SDimitry Andric CallInst *Call = dyn_cast<CallInst>(V); 9830b57cec5SDimitry Andric if (!Call) { 9840b57cec5SDimitry Andric if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 9850b57cec5SDimitry Andric Value *Src0 = CI->getOperand(0); 986fe6060f1SDimitry Andric PointerType *NewTy = PointerType::getWithSamePointeeType( 987fe6060f1SDimitry Andric cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); 9880b57cec5SDimitry Andric 9890b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(0))) 9900b57cec5SDimitry Andric CI->setOperand(0, ConstantPointerNull::get(NewTy)); 9910b57cec5SDimitry Andric 9920b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(1))) 9930b57cec5SDimitry Andric CI->setOperand(1, ConstantPointerNull::get(NewTy)); 9940b57cec5SDimitry Andric 9950b57cec5SDimitry Andric continue; 9960b57cec5SDimitry Andric } 9970b57cec5SDimitry Andric 9980b57cec5SDimitry Andric // The operand's value should be corrected on its own and we don't want to 9990b57cec5SDimitry Andric // touch the users. 10000b57cec5SDimitry Andric if (isa<AddrSpaceCastInst>(V)) 10010b57cec5SDimitry Andric continue; 10020b57cec5SDimitry Andric 1003fe6060f1SDimitry Andric PointerType *NewTy = PointerType::getWithSamePointeeType( 1004fe6060f1SDimitry Andric cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS); 10050b57cec5SDimitry Andric 10060b57cec5SDimitry Andric // FIXME: It doesn't really make sense to try to do this for all 10070b57cec5SDimitry Andric // instructions. 10080b57cec5SDimitry Andric V->mutateType(NewTy); 10090b57cec5SDimitry Andric 10100b57cec5SDimitry Andric // Adjust the types of any constant operands. 10110b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 10120b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(1))) 10130b57cec5SDimitry Andric SI->setOperand(1, ConstantPointerNull::get(NewTy)); 10140b57cec5SDimitry Andric 10150b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(2))) 10160b57cec5SDimitry Andric SI->setOperand(2, ConstantPointerNull::get(NewTy)); 10170b57cec5SDimitry Andric } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 10180b57cec5SDimitry Andric for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 10190b57cec5SDimitry Andric if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 10200b57cec5SDimitry Andric Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 10210b57cec5SDimitry Andric } 10220b57cec5SDimitry Andric } 10230b57cec5SDimitry Andric 10240b57cec5SDimitry Andric continue; 10250b57cec5SDimitry Andric } 10260b57cec5SDimitry Andric 10270b57cec5SDimitry Andric IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 10280b57cec5SDimitry Andric Builder.SetInsertPoint(Intr); 10290b57cec5SDimitry Andric switch (Intr->getIntrinsicID()) { 10300b57cec5SDimitry Andric case Intrinsic::lifetime_start: 10310b57cec5SDimitry Andric case Intrinsic::lifetime_end: 10320b57cec5SDimitry Andric // These intrinsics are for address space 0 only 10330b57cec5SDimitry Andric Intr->eraseFromParent(); 10340b57cec5SDimitry Andric continue; 1035fe6060f1SDimitry Andric case Intrinsic::memcpy: 1036fe6060f1SDimitry Andric case Intrinsic::memmove: 1037fe6060f1SDimitry Andric // These have 2 pointer operands. In case if second pointer also needs 1038fe6060f1SDimitry Andric // to be replaced we defer processing of these intrinsics until all 1039fe6060f1SDimitry Andric // other values are processed. 1040fe6060f1SDimitry Andric DeferredIntrs.push_back(Intr); 10410b57cec5SDimitry Andric continue; 10420b57cec5SDimitry Andric case Intrinsic::memset: { 10430b57cec5SDimitry Andric MemSetInst *MemSet = cast<MemSetInst>(Intr); 1044480093f4SDimitry Andric Builder.CreateMemSet( 1045480093f4SDimitry Andric MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 1046480093f4SDimitry Andric MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 10470b57cec5SDimitry Andric Intr->eraseFromParent(); 10480b57cec5SDimitry Andric continue; 10490b57cec5SDimitry Andric } 10500b57cec5SDimitry Andric case Intrinsic::invariant_start: 10510b57cec5SDimitry Andric case Intrinsic::invariant_end: 10520b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 10530b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 10540b57cec5SDimitry Andric Intr->eraseFromParent(); 10550b57cec5SDimitry Andric // FIXME: I think the invariant marker should still theoretically apply, 10560b57cec5SDimitry Andric // but the intrinsics need to be changed to accept pointers with any 10570b57cec5SDimitry Andric // address space. 10580b57cec5SDimitry Andric continue; 10590b57cec5SDimitry Andric case Intrinsic::objectsize: { 10600b57cec5SDimitry Andric Value *Src = Intr->getOperand(0); 1061fe6060f1SDimitry Andric Function *ObjectSize = Intrinsic::getDeclaration( 1062fe6060f1SDimitry Andric Mod, Intrinsic::objectsize, 1063fe6060f1SDimitry Andric {Intr->getType(), 1064fe6060f1SDimitry Andric PointerType::getWithSamePointeeType( 1065fe6060f1SDimitry Andric cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); 10660b57cec5SDimitry Andric 10670b57cec5SDimitry Andric CallInst *NewCall = Builder.CreateCall( 10680b57cec5SDimitry Andric ObjectSize, 10690b57cec5SDimitry Andric {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 10700b57cec5SDimitry Andric Intr->replaceAllUsesWith(NewCall); 10710b57cec5SDimitry Andric Intr->eraseFromParent(); 10720b57cec5SDimitry Andric continue; 10730b57cec5SDimitry Andric } 10740b57cec5SDimitry Andric default: 10750b57cec5SDimitry Andric Intr->print(errs()); 10760b57cec5SDimitry Andric llvm_unreachable("Don't know how to promote alloca intrinsic use."); 10770b57cec5SDimitry Andric } 10780b57cec5SDimitry Andric } 1079fe6060f1SDimitry Andric 1080fe6060f1SDimitry Andric for (IntrinsicInst *Intr : DeferredIntrs) { 1081fe6060f1SDimitry Andric Builder.SetInsertPoint(Intr); 1082fe6060f1SDimitry Andric Intrinsic::ID ID = Intr->getIntrinsicID(); 1083fe6060f1SDimitry Andric assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1084fe6060f1SDimitry Andric 1085fe6060f1SDimitry Andric MemTransferInst *MI = cast<MemTransferInst>(Intr); 1086fe6060f1SDimitry Andric auto *B = 1087fe6060f1SDimitry Andric Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), 1088fe6060f1SDimitry Andric MI->getRawSource(), MI->getSourceAlign(), 1089fe6060f1SDimitry Andric MI->getLength(), MI->isVolatile()); 1090fe6060f1SDimitry Andric 1091349cc55cSDimitry Andric for (unsigned I = 0; I != 2; ++I) { 1092349cc55cSDimitry Andric if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1093349cc55cSDimitry Andric B->addDereferenceableParamAttr(I, Bytes); 1094fe6060f1SDimitry Andric } 1095fe6060f1SDimitry Andric } 1096fe6060f1SDimitry Andric 1097fe6060f1SDimitry Andric Intr->eraseFromParent(); 1098fe6060f1SDimitry Andric } 1099fe6060f1SDimitry Andric 11000b57cec5SDimitry Andric return true; 11010b57cec5SDimitry Andric } 11020b57cec5SDimitry Andric 1103e8d8bef9SDimitry Andric bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { 1104e8d8bef9SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 1105e8d8bef9SDimitry Andric // the array type is the canonical form. 1106e8d8bef9SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 11075ffd83dbSDimitry Andric return false; 11085ffd83dbSDimitry Andric 1109e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1110e8d8bef9SDimitry Andric 1111e8d8bef9SDimitry Andric Module *Mod = I.getParent()->getParent()->getParent(); 1112e8d8bef9SDimitry Andric return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); 1113e8d8bef9SDimitry Andric } 1114e8d8bef9SDimitry Andric 1115e8d8bef9SDimitry Andric bool promoteAllocasToVector(Function &F, TargetMachine &TM) { 1116e8d8bef9SDimitry Andric if (DisablePromoteAllocaToVector) 11175ffd83dbSDimitry Andric return false; 11185ffd83dbSDimitry Andric 1119e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 11205ffd83dbSDimitry Andric if (!ST.isPromoteAllocaEnabled()) 11215ffd83dbSDimitry Andric return false; 11225ffd83dbSDimitry Andric 1123e8d8bef9SDimitry Andric unsigned MaxVGPRs; 1124e8d8bef9SDimitry Andric if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1125e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 11265ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 1127349cc55cSDimitry Andric // A non-entry function has only 32 caller preserved registers. 1128349cc55cSDimitry Andric // Do not promote alloca which will force spilling. 1129349cc55cSDimitry Andric if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) 1130349cc55cSDimitry Andric MaxVGPRs = std::min(MaxVGPRs, 32u); 11315ffd83dbSDimitry Andric } else { 11325ffd83dbSDimitry Andric MaxVGPRs = 128; 11335ffd83dbSDimitry Andric } 11345ffd83dbSDimitry Andric 11355ffd83dbSDimitry Andric bool Changed = false; 11365ffd83dbSDimitry Andric BasicBlock &EntryBB = *F.begin(); 11375ffd83dbSDimitry Andric 11385ffd83dbSDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 11395ffd83dbSDimitry Andric for (Instruction &I : EntryBB) { 11405ffd83dbSDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 11415ffd83dbSDimitry Andric Allocas.push_back(AI); 11425ffd83dbSDimitry Andric } 11435ffd83dbSDimitry Andric 11445ffd83dbSDimitry Andric for (AllocaInst *AI : Allocas) { 1145e8d8bef9SDimitry Andric if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) 11465ffd83dbSDimitry Andric Changed = true; 11475ffd83dbSDimitry Andric } 11485ffd83dbSDimitry Andric 11495ffd83dbSDimitry Andric return Changed; 11505ffd83dbSDimitry Andric } 11515ffd83dbSDimitry Andric 1152e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1153e8d8bef9SDimitry Andric if (skipFunction(F)) 11545ffd83dbSDimitry Andric return false; 1155e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1156e8d8bef9SDimitry Andric return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); 1157e8d8bef9SDimitry Andric } 1158e8d8bef9SDimitry Andric return false; 1159e8d8bef9SDimitry Andric } 11605ffd83dbSDimitry Andric 1161e8d8bef9SDimitry Andric PreservedAnalyses 1162e8d8bef9SDimitry Andric AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 1163e8d8bef9SDimitry Andric bool Changed = promoteAllocasToVector(F, TM); 1164e8d8bef9SDimitry Andric if (Changed) { 1165e8d8bef9SDimitry Andric PreservedAnalyses PA; 1166e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 1167e8d8bef9SDimitry Andric return PA; 1168e8d8bef9SDimitry Andric } 1169e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 11705ffd83dbSDimitry Andric } 11715ffd83dbSDimitry Andric 11720b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAlloca() { 11730b57cec5SDimitry Andric return new AMDGPUPromoteAlloca(); 11740b57cec5SDimitry Andric } 11755ffd83dbSDimitry Andric 11765ffd83dbSDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 11775ffd83dbSDimitry Andric return new AMDGPUPromoteAllocaToVector(); 11785ffd83dbSDimitry Andric } 1179