10b57cec5SDimitry Andric //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This pass eliminates allocas by either converting them into vectors or 100b57cec5SDimitry Andric // by migrating them to local address space. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #include "AMDGPU.h" 15e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 160b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h" 170b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 180b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 190b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 20480093f4SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 21480093f4SDimitry Andric #include "llvm/IR/IntrinsicsR600.h" 220b57cec5SDimitry Andric #include "llvm/Pass.h" 230b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 24349cc55cSDimitry Andric #include "Utils/AMDGPUBaseInfo.h" 250b57cec5SDimitry Andric 260b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-promote-alloca" 270b57cec5SDimitry Andric 280b57cec5SDimitry Andric using namespace llvm; 290b57cec5SDimitry Andric 300b57cec5SDimitry Andric namespace { 310b57cec5SDimitry Andric 320b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToVector( 330b57cec5SDimitry Andric "disable-promote-alloca-to-vector", 340b57cec5SDimitry Andric cl::desc("Disable promote alloca to vector"), 350b57cec5SDimitry Andric cl::init(false)); 360b57cec5SDimitry Andric 370b57cec5SDimitry Andric static cl::opt<bool> DisablePromoteAllocaToLDS( 380b57cec5SDimitry Andric "disable-promote-alloca-to-lds", 390b57cec5SDimitry Andric cl::desc("Disable promote alloca to LDS"), 400b57cec5SDimitry Andric cl::init(false)); 410b57cec5SDimitry Andric 425ffd83dbSDimitry Andric static cl::opt<unsigned> PromoteAllocaToVectorLimit( 435ffd83dbSDimitry Andric "amdgpu-promote-alloca-to-vector-limit", 445ffd83dbSDimitry Andric cl::desc("Maximum byte size to consider promote alloca to vector"), 455ffd83dbSDimitry Andric cl::init(0)); 465ffd83dbSDimitry Andric 470b57cec5SDimitry Andric // FIXME: This can create globals so should be a module pass. 480b57cec5SDimitry Andric class AMDGPUPromoteAlloca : public FunctionPass { 49e8d8bef9SDimitry Andric public: 50e8d8bef9SDimitry Andric static char ID; 51e8d8bef9SDimitry Andric 52e8d8bef9SDimitry Andric AMDGPUPromoteAlloca() : FunctionPass(ID) {} 53e8d8bef9SDimitry Andric 54e8d8bef9SDimitry Andric bool runOnFunction(Function &F) override; 55e8d8bef9SDimitry Andric 56e8d8bef9SDimitry Andric StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 57e8d8bef9SDimitry Andric 58e8d8bef9SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 59e8d8bef9SDimitry Andric 60e8d8bef9SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 61e8d8bef9SDimitry Andric AU.setPreservesCFG(); 62e8d8bef9SDimitry Andric FunctionPass::getAnalysisUsage(AU); 63e8d8bef9SDimitry Andric } 64e8d8bef9SDimitry Andric }; 65e8d8bef9SDimitry Andric 66e8d8bef9SDimitry Andric class AMDGPUPromoteAllocaImpl { 670b57cec5SDimitry Andric private: 68e8d8bef9SDimitry Andric const TargetMachine &TM; 690b57cec5SDimitry Andric Module *Mod = nullptr; 700b57cec5SDimitry Andric const DataLayout *DL = nullptr; 710b57cec5SDimitry Andric 720b57cec5SDimitry Andric // FIXME: This should be per-kernel. 730b57cec5SDimitry Andric uint32_t LocalMemLimit = 0; 740b57cec5SDimitry Andric uint32_t CurrentLocalMemUsage = 0; 755ffd83dbSDimitry Andric unsigned MaxVGPRs; 760b57cec5SDimitry Andric 770b57cec5SDimitry Andric bool IsAMDGCN = false; 780b57cec5SDimitry Andric bool IsAMDHSA = false; 790b57cec5SDimitry Andric 800b57cec5SDimitry Andric std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 810b57cec5SDimitry Andric Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 820b57cec5SDimitry Andric 830b57cec5SDimitry Andric /// BaseAlloca is the alloca root the search started from. 840b57cec5SDimitry Andric /// Val may be that alloca or a recursive user of it. 850b57cec5SDimitry Andric bool collectUsesWithPtrTypes(Value *BaseAlloca, 860b57cec5SDimitry Andric Value *Val, 870b57cec5SDimitry Andric std::vector<Value*> &WorkList) const; 880b57cec5SDimitry Andric 890b57cec5SDimitry Andric /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 900b57cec5SDimitry Andric /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 910b57cec5SDimitry Andric /// Returns true if both operands are derived from the same alloca. Val should 920b57cec5SDimitry Andric /// be the same value as one of the input operands of UseInst. 930b57cec5SDimitry Andric bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 940b57cec5SDimitry Andric Instruction *UseInst, 950b57cec5SDimitry Andric int OpIdx0, int OpIdx1) const; 960b57cec5SDimitry Andric 970b57cec5SDimitry Andric /// Check whether we have enough local memory for promotion. 980b57cec5SDimitry Andric bool hasSufficientLocalMem(const Function &F); 990b57cec5SDimitry Andric 1000b57cec5SDimitry Andric bool handleAlloca(AllocaInst &I, bool SufficientLDS); 1010b57cec5SDimitry Andric 102e8d8bef9SDimitry Andric public: 103e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} 104e8d8bef9SDimitry Andric bool run(Function &F); 1050b57cec5SDimitry Andric }; 1060b57cec5SDimitry Andric 1075ffd83dbSDimitry Andric class AMDGPUPromoteAllocaToVector : public FunctionPass { 1085ffd83dbSDimitry Andric public: 1095ffd83dbSDimitry Andric static char ID; 1105ffd83dbSDimitry Andric 1115ffd83dbSDimitry Andric AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 1125ffd83dbSDimitry Andric 1135ffd83dbSDimitry Andric bool runOnFunction(Function &F) override; 1145ffd83dbSDimitry Andric 1155ffd83dbSDimitry Andric StringRef getPassName() const override { 1165ffd83dbSDimitry Andric return "AMDGPU Promote Alloca to vector"; 1175ffd83dbSDimitry Andric } 1185ffd83dbSDimitry Andric 1195ffd83dbSDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 1205ffd83dbSDimitry Andric AU.setPreservesCFG(); 1215ffd83dbSDimitry Andric FunctionPass::getAnalysisUsage(AU); 1225ffd83dbSDimitry Andric } 1235ffd83dbSDimitry Andric }; 1245ffd83dbSDimitry Andric 1250b57cec5SDimitry Andric } // end anonymous namespace 1260b57cec5SDimitry Andric 1270b57cec5SDimitry Andric char AMDGPUPromoteAlloca::ID = 0; 1285ffd83dbSDimitry Andric char AMDGPUPromoteAllocaToVector::ID = 0; 1290b57cec5SDimitry Andric 130fe6060f1SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 131fe6060f1SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 132fe6060f1SDimitry Andric // Move LDS uses from functions to kernels before promote alloca for accurate 133fe6060f1SDimitry Andric // estimation of LDS available 134fe6060f1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS) 135fe6060f1SDimitry Andric INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 1360b57cec5SDimitry Andric "AMDGPU promote alloca to vector or LDS", false, false) 1370b57cec5SDimitry Andric 1385ffd83dbSDimitry Andric INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 1395ffd83dbSDimitry Andric "AMDGPU promote alloca to vector", false, false) 1405ffd83dbSDimitry Andric 1410b57cec5SDimitry Andric char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 1425ffd83dbSDimitry Andric char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 1430b57cec5SDimitry Andric 1440b57cec5SDimitry Andric bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 1450b57cec5SDimitry Andric if (skipFunction(F)) 1460b57cec5SDimitry Andric return false; 1470b57cec5SDimitry Andric 148e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 149e8d8bef9SDimitry Andric return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); 150e8d8bef9SDimitry Andric } 1510b57cec5SDimitry Andric return false; 152e8d8bef9SDimitry Andric } 1530b57cec5SDimitry Andric 154e8d8bef9SDimitry Andric PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 155e8d8bef9SDimitry Andric FunctionAnalysisManager &AM) { 156e8d8bef9SDimitry Andric bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); 157e8d8bef9SDimitry Andric if (Changed) { 158e8d8bef9SDimitry Andric PreservedAnalyses PA; 159e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 160e8d8bef9SDimitry Andric return PA; 161e8d8bef9SDimitry Andric } 162e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 163e8d8bef9SDimitry Andric } 164e8d8bef9SDimitry Andric 165e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::run(Function &F) { 166e8d8bef9SDimitry Andric Mod = F.getParent(); 167e8d8bef9SDimitry Andric DL = &Mod->getDataLayout(); 168e8d8bef9SDimitry Andric 169e8d8bef9SDimitry Andric const Triple &TT = TM.getTargetTriple(); 1700b57cec5SDimitry Andric IsAMDGCN = TT.getArch() == Triple::amdgcn; 1710b57cec5SDimitry Andric IsAMDHSA = TT.getOS() == Triple::AMDHSA; 1720b57cec5SDimitry Andric 173e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1740b57cec5SDimitry Andric if (!ST.isPromoteAllocaEnabled()) 1750b57cec5SDimitry Andric return false; 1760b57cec5SDimitry Andric 1775ffd83dbSDimitry Andric if (IsAMDGCN) { 178e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 1795ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 180349cc55cSDimitry Andric // A non-entry function has only 32 caller preserved registers. 181349cc55cSDimitry Andric // Do not promote alloca which will force spilling. 182349cc55cSDimitry Andric if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) 183349cc55cSDimitry Andric MaxVGPRs = std::min(MaxVGPRs, 32u); 1845ffd83dbSDimitry Andric } else { 1855ffd83dbSDimitry Andric MaxVGPRs = 128; 1865ffd83dbSDimitry Andric } 1875ffd83dbSDimitry Andric 1880b57cec5SDimitry Andric bool SufficientLDS = hasSufficientLocalMem(F); 1890b57cec5SDimitry Andric bool Changed = false; 1900b57cec5SDimitry Andric BasicBlock &EntryBB = *F.begin(); 1910b57cec5SDimitry Andric 1920b57cec5SDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 1930b57cec5SDimitry Andric for (Instruction &I : EntryBB) { 1940b57cec5SDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1950b57cec5SDimitry Andric Allocas.push_back(AI); 1960b57cec5SDimitry Andric } 1970b57cec5SDimitry Andric 1980b57cec5SDimitry Andric for (AllocaInst *AI : Allocas) { 1990b57cec5SDimitry Andric if (handleAlloca(*AI, SufficientLDS)) 2000b57cec5SDimitry Andric Changed = true; 2010b57cec5SDimitry Andric } 2020b57cec5SDimitry Andric 2030b57cec5SDimitry Andric return Changed; 2040b57cec5SDimitry Andric } 2050b57cec5SDimitry Andric 2060b57cec5SDimitry Andric std::pair<Value *, Value *> 207e8d8bef9SDimitry Andric AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 208349cc55cSDimitry Andric Function &F = *Builder.GetInsertBlock()->getParent(); 209e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 2100b57cec5SDimitry Andric 2110b57cec5SDimitry Andric if (!IsAMDHSA) { 2120b57cec5SDimitry Andric Function *LocalSizeYFn 2130b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 2140b57cec5SDimitry Andric Function *LocalSizeZFn 2150b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 2160b57cec5SDimitry Andric 2170b57cec5SDimitry Andric CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 2180b57cec5SDimitry Andric CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 2190b57cec5SDimitry Andric 2200b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeY); 2210b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LocalSizeZ); 2220b57cec5SDimitry Andric 2230b57cec5SDimitry Andric return std::make_pair(LocalSizeY, LocalSizeZ); 2240b57cec5SDimitry Andric } 2250b57cec5SDimitry Andric 2260b57cec5SDimitry Andric // We must read the size out of the dispatch pointer. 2270b57cec5SDimitry Andric assert(IsAMDGCN); 2280b57cec5SDimitry Andric 2290b57cec5SDimitry Andric // We are indexing into this struct, and want to extract the workgroup_size_* 2300b57cec5SDimitry Andric // fields. 2310b57cec5SDimitry Andric // 2320b57cec5SDimitry Andric // typedef struct hsa_kernel_dispatch_packet_s { 2330b57cec5SDimitry Andric // uint16_t header; 2340b57cec5SDimitry Andric // uint16_t setup; 2350b57cec5SDimitry Andric // uint16_t workgroup_size_x ; 2360b57cec5SDimitry Andric // uint16_t workgroup_size_y; 2370b57cec5SDimitry Andric // uint16_t workgroup_size_z; 2380b57cec5SDimitry Andric // uint16_t reserved0; 2390b57cec5SDimitry Andric // uint32_t grid_size_x ; 2400b57cec5SDimitry Andric // uint32_t grid_size_y ; 2410b57cec5SDimitry Andric // uint32_t grid_size_z; 2420b57cec5SDimitry Andric // 2430b57cec5SDimitry Andric // uint32_t private_segment_size; 2440b57cec5SDimitry Andric // uint32_t group_segment_size; 2450b57cec5SDimitry Andric // uint64_t kernel_object; 2460b57cec5SDimitry Andric // 2470b57cec5SDimitry Andric // #ifdef HSA_LARGE_MODEL 2480b57cec5SDimitry Andric // void *kernarg_address; 2490b57cec5SDimitry Andric // #elif defined HSA_LITTLE_ENDIAN 2500b57cec5SDimitry Andric // void *kernarg_address; 2510b57cec5SDimitry Andric // uint32_t reserved1; 2520b57cec5SDimitry Andric // #else 2530b57cec5SDimitry Andric // uint32_t reserved1; 2540b57cec5SDimitry Andric // void *kernarg_address; 2550b57cec5SDimitry Andric // #endif 2560b57cec5SDimitry Andric // uint64_t reserved2; 2570b57cec5SDimitry Andric // hsa_signal_t completion_signal; // uint64_t wrapper 2580b57cec5SDimitry Andric // } hsa_kernel_dispatch_packet_t 2590b57cec5SDimitry Andric // 2600b57cec5SDimitry Andric Function *DispatchPtrFn 2610b57cec5SDimitry Andric = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 2620b57cec5SDimitry Andric 2630b57cec5SDimitry Andric CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 264349cc55cSDimitry Andric DispatchPtr->addRetAttr(Attribute::NoAlias); 265349cc55cSDimitry Andric DispatchPtr->addRetAttr(Attribute::NonNull); 266349cc55cSDimitry Andric F.removeFnAttr("amdgpu-no-dispatch-ptr"); 2670b57cec5SDimitry Andric 2680b57cec5SDimitry Andric // Size of the dispatch packet struct. 269349cc55cSDimitry Andric DispatchPtr->addDereferenceableRetAttr(64); 2700b57cec5SDimitry Andric 2710b57cec5SDimitry Andric Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 2720b57cec5SDimitry Andric Value *CastDispatchPtr = Builder.CreateBitCast( 2730b57cec5SDimitry Andric DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 2740b57cec5SDimitry Andric 2750b57cec5SDimitry Andric // We could do a single 64-bit load here, but it's likely that the basic 2760b57cec5SDimitry Andric // 32-bit and extract sequence is already present, and it is probably easier 277349cc55cSDimitry Andric // to CSE this. The loads should be mergeable later anyway. 2780b57cec5SDimitry Andric Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 2795ffd83dbSDimitry Andric LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 2800b57cec5SDimitry Andric 2810b57cec5SDimitry Andric Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 2825ffd83dbSDimitry Andric LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 2830b57cec5SDimitry Andric 2840b57cec5SDimitry Andric MDNode *MD = MDNode::get(Mod->getContext(), None); 2850b57cec5SDimitry Andric LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 2860b57cec5SDimitry Andric LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 2870b57cec5SDimitry Andric ST.makeLIDRangeMetadata(LoadZU); 2880b57cec5SDimitry Andric 2890b57cec5SDimitry Andric // Extract y component. Upper half of LoadZU should be zero already. 2900b57cec5SDimitry Andric Value *Y = Builder.CreateLShr(LoadXY, 16); 2910b57cec5SDimitry Andric 2920b57cec5SDimitry Andric return std::make_pair(Y, LoadZU); 2930b57cec5SDimitry Andric } 2940b57cec5SDimitry Andric 295e8d8bef9SDimitry Andric Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 296e8d8bef9SDimitry Andric unsigned N) { 297349cc55cSDimitry Andric Function *F = Builder.GetInsertBlock()->getParent(); 298349cc55cSDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 299480093f4SDimitry Andric Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 300349cc55cSDimitry Andric StringRef AttrName; 3010b57cec5SDimitry Andric 3020b57cec5SDimitry Andric switch (N) { 3030b57cec5SDimitry Andric case 0: 304480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 305480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 306349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-x"; 3070b57cec5SDimitry Andric break; 3080b57cec5SDimitry Andric case 1: 309480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 310480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 311349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-y"; 3120b57cec5SDimitry Andric break; 3130b57cec5SDimitry Andric 3140b57cec5SDimitry Andric case 2: 315480093f4SDimitry Andric IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 316480093f4SDimitry Andric : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 317349cc55cSDimitry Andric AttrName = "amdgpu-no-workitem-id-z"; 3180b57cec5SDimitry Andric break; 3190b57cec5SDimitry Andric default: 3200b57cec5SDimitry Andric llvm_unreachable("invalid dimension"); 3210b57cec5SDimitry Andric } 3220b57cec5SDimitry Andric 3230b57cec5SDimitry Andric Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 3240b57cec5SDimitry Andric CallInst *CI = Builder.CreateCall(WorkitemIdFn); 3250b57cec5SDimitry Andric ST.makeLIDRangeMetadata(CI); 326349cc55cSDimitry Andric F->removeFnAttr(AttrName); 3270b57cec5SDimitry Andric 3280b57cec5SDimitry Andric return CI; 3290b57cec5SDimitry Andric } 3300b57cec5SDimitry Andric 3315ffd83dbSDimitry Andric static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 3325ffd83dbSDimitry Andric return FixedVectorType::get(ArrayTy->getElementType(), 3330b57cec5SDimitry Andric ArrayTy->getNumElements()); 3340b57cec5SDimitry Andric } 3350b57cec5SDimitry Andric 3365ffd83dbSDimitry Andric static Value *stripBitcasts(Value *V) { 3375ffd83dbSDimitry Andric while (Instruction *I = dyn_cast<Instruction>(V)) { 3385ffd83dbSDimitry Andric if (I->getOpcode() != Instruction::BitCast) 3395ffd83dbSDimitry Andric break; 3405ffd83dbSDimitry Andric V = I->getOperand(0); 3415ffd83dbSDimitry Andric } 3425ffd83dbSDimitry Andric return V; 3435ffd83dbSDimitry Andric } 3445ffd83dbSDimitry Andric 3450b57cec5SDimitry Andric static Value * 3460b57cec5SDimitry Andric calculateVectorIndex(Value *Ptr, 3470b57cec5SDimitry Andric const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 3485ffd83dbSDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); 3495ffd83dbSDimitry Andric if (!GEP) 3505ffd83dbSDimitry Andric return nullptr; 3510b57cec5SDimitry Andric 3520b57cec5SDimitry Andric auto I = GEPIdx.find(GEP); 3530b57cec5SDimitry Andric return I == GEPIdx.end() ? nullptr : I->second; 3540b57cec5SDimitry Andric } 3550b57cec5SDimitry Andric 3560b57cec5SDimitry Andric static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 3570b57cec5SDimitry Andric // FIXME we only support simple cases 3580b57cec5SDimitry Andric if (GEP->getNumOperands() != 3) 3590b57cec5SDimitry Andric return nullptr; 3600b57cec5SDimitry Andric 3610b57cec5SDimitry Andric ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3620b57cec5SDimitry Andric if (!I0 || !I0->isZero()) 3630b57cec5SDimitry Andric return nullptr; 3640b57cec5SDimitry Andric 3650b57cec5SDimitry Andric return GEP->getOperand(2); 3660b57cec5SDimitry Andric } 3670b57cec5SDimitry Andric 3680b57cec5SDimitry Andric // Not an instruction handled below to turn into a vector. 3690b57cec5SDimitry Andric // 3700b57cec5SDimitry Andric // TODO: Check isTriviallyVectorizable for calls and handle other 3710b57cec5SDimitry Andric // instructions. 3725ffd83dbSDimitry Andric static bool canVectorizeInst(Instruction *Inst, User *User, 3735ffd83dbSDimitry Andric const DataLayout &DL) { 3740b57cec5SDimitry Andric switch (Inst->getOpcode()) { 3750b57cec5SDimitry Andric case Instruction::Load: { 3760b57cec5SDimitry Andric // Currently only handle the case where the Pointer Operand is a GEP. 3770b57cec5SDimitry Andric // Also we could not vectorize volatile or atomic loads. 3780b57cec5SDimitry Andric LoadInst *LI = cast<LoadInst>(Inst); 3790b57cec5SDimitry Andric if (isa<AllocaInst>(User) && 3800b57cec5SDimitry Andric LI->getPointerOperandType() == User->getType() && 3810b57cec5SDimitry Andric isa<VectorType>(LI->getType())) 3820b57cec5SDimitry Andric return true; 3835ffd83dbSDimitry Andric 3845ffd83dbSDimitry Andric Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 3855ffd83dbSDimitry Andric if (!PtrInst) 3865ffd83dbSDimitry Andric return false; 3875ffd83dbSDimitry Andric 3885ffd83dbSDimitry Andric return (PtrInst->getOpcode() == Instruction::GetElementPtr || 3895ffd83dbSDimitry Andric PtrInst->getOpcode() == Instruction::BitCast) && 3905ffd83dbSDimitry Andric LI->isSimple(); 3910b57cec5SDimitry Andric } 3920b57cec5SDimitry Andric case Instruction::BitCast: 3930b57cec5SDimitry Andric return true; 3940b57cec5SDimitry Andric case Instruction::Store: { 3950b57cec5SDimitry Andric // Must be the stored pointer operand, not a stored value, plus 3960b57cec5SDimitry Andric // since it should be canonical form, the User should be a GEP. 3970b57cec5SDimitry Andric // Also we could not vectorize volatile or atomic stores. 3980b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 3990b57cec5SDimitry Andric if (isa<AllocaInst>(User) && 4000b57cec5SDimitry Andric SI->getPointerOperandType() == User->getType() && 4010b57cec5SDimitry Andric isa<VectorType>(SI->getValueOperand()->getType())) 4020b57cec5SDimitry Andric return true; 4035ffd83dbSDimitry Andric 4045ffd83dbSDimitry Andric Instruction *UserInst = dyn_cast<Instruction>(User); 4055ffd83dbSDimitry Andric if (!UserInst) 4065ffd83dbSDimitry Andric return false; 4075ffd83dbSDimitry Andric 4085ffd83dbSDimitry Andric return (SI->getPointerOperand() == User) && 4095ffd83dbSDimitry Andric (UserInst->getOpcode() == Instruction::GetElementPtr || 4105ffd83dbSDimitry Andric UserInst->getOpcode() == Instruction::BitCast) && 4115ffd83dbSDimitry Andric SI->isSimple(); 4120b57cec5SDimitry Andric } 4130b57cec5SDimitry Andric default: 4140b57cec5SDimitry Andric return false; 4150b57cec5SDimitry Andric } 4160b57cec5SDimitry Andric } 4170b57cec5SDimitry Andric 4185ffd83dbSDimitry Andric static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, 4195ffd83dbSDimitry Andric unsigned MaxVGPRs) { 4200b57cec5SDimitry Andric 4210b57cec5SDimitry Andric if (DisablePromoteAllocaToVector) { 4220b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 4230b57cec5SDimitry Andric return false; 4240b57cec5SDimitry Andric } 4250b57cec5SDimitry Andric 4265ffd83dbSDimitry Andric Type *AllocaTy = Alloca->getAllocatedType(); 4275ffd83dbSDimitry Andric auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 4285ffd83dbSDimitry Andric if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 4295ffd83dbSDimitry Andric if (VectorType::isValidElementType(ArrayTy->getElementType()) && 4305ffd83dbSDimitry Andric ArrayTy->getNumElements() > 0) 4315ffd83dbSDimitry Andric VectorTy = arrayTypeToVecType(ArrayTy); 4325ffd83dbSDimitry Andric } 4335ffd83dbSDimitry Andric 4345ffd83dbSDimitry Andric // Use up to 1/4 of available register budget for vectorization. 4355ffd83dbSDimitry Andric unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 4365ffd83dbSDimitry Andric : (MaxVGPRs * 32); 4375ffd83dbSDimitry Andric 4385ffd83dbSDimitry Andric if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { 4395ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " 4405ffd83dbSDimitry Andric << MaxVGPRs << " registers available\n"); 4415ffd83dbSDimitry Andric return false; 4425ffd83dbSDimitry Andric } 4430b57cec5SDimitry Andric 4440b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 4450b57cec5SDimitry Andric 4460b57cec5SDimitry Andric // FIXME: There is no reason why we can't support larger arrays, we 4470b57cec5SDimitry Andric // are just being conservative for now. 4480b57cec5SDimitry Andric // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 4490b57cec5SDimitry Andric // could also be promoted but we don't currently handle this case 4505ffd83dbSDimitry Andric if (!VectorTy || VectorTy->getNumElements() > 16 || 4515ffd83dbSDimitry Andric VectorTy->getNumElements() < 2) { 4520b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 4530b57cec5SDimitry Andric return false; 4540b57cec5SDimitry Andric } 4550b57cec5SDimitry Andric 4560b57cec5SDimitry Andric std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 4570b57cec5SDimitry Andric std::vector<Value *> WorkList; 4585ffd83dbSDimitry Andric SmallVector<User *, 8> Users(Alloca->users()); 4595ffd83dbSDimitry Andric SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 4605ffd83dbSDimitry Andric Type *VecEltTy = VectorTy->getElementType(); 4615ffd83dbSDimitry Andric while (!Users.empty()) { 4625ffd83dbSDimitry Andric User *AllocaUser = Users.pop_back_val(); 4635ffd83dbSDimitry Andric User *UseUser = UseUsers.pop_back_val(); 4645ffd83dbSDimitry Andric Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 4655ffd83dbSDimitry Andric 4660b57cec5SDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 4670b57cec5SDimitry Andric if (!GEP) { 4685ffd83dbSDimitry Andric if (!canVectorizeInst(Inst, UseUser, DL)) 4690b57cec5SDimitry Andric return false; 4700b57cec5SDimitry Andric 4715ffd83dbSDimitry Andric if (Inst->getOpcode() == Instruction::BitCast) { 4725ffd83dbSDimitry Andric Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 4735ffd83dbSDimitry Andric Type *ToTy = Inst->getType()->getPointerElementType(); 4745ffd83dbSDimitry Andric if (FromTy->isAggregateType() || ToTy->isAggregateType() || 4755ffd83dbSDimitry Andric DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 4765ffd83dbSDimitry Andric continue; 4775ffd83dbSDimitry Andric 4785ffd83dbSDimitry Andric for (User *CastUser : Inst->users()) { 4795ffd83dbSDimitry Andric if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 4805ffd83dbSDimitry Andric continue; 4815ffd83dbSDimitry Andric Users.push_back(CastUser); 4825ffd83dbSDimitry Andric UseUsers.push_back(Inst); 4835ffd83dbSDimitry Andric } 4845ffd83dbSDimitry Andric 4855ffd83dbSDimitry Andric continue; 4865ffd83dbSDimitry Andric } 4875ffd83dbSDimitry Andric 4880b57cec5SDimitry Andric WorkList.push_back(AllocaUser); 4890b57cec5SDimitry Andric continue; 4900b57cec5SDimitry Andric } 4910b57cec5SDimitry Andric 4920b57cec5SDimitry Andric Value *Index = GEPToVectorIndex(GEP); 4930b57cec5SDimitry Andric 4940b57cec5SDimitry Andric // If we can't compute a vector index from this GEP, then we can't 4950b57cec5SDimitry Andric // promote this alloca to vector. 4960b57cec5SDimitry Andric if (!Index) { 4970b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 4980b57cec5SDimitry Andric << '\n'); 4990b57cec5SDimitry Andric return false; 5000b57cec5SDimitry Andric } 5010b57cec5SDimitry Andric 5020b57cec5SDimitry Andric GEPVectorIdx[GEP] = Index; 5035ffd83dbSDimitry Andric Users.append(GEP->user_begin(), GEP->user_end()); 5045ffd83dbSDimitry Andric UseUsers.append(GEP->getNumUses(), GEP); 5050b57cec5SDimitry Andric } 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 5080b57cec5SDimitry Andric << *VectorTy << '\n'); 5090b57cec5SDimitry Andric 5100b57cec5SDimitry Andric for (Value *V : WorkList) { 5110b57cec5SDimitry Andric Instruction *Inst = cast<Instruction>(V); 5120b57cec5SDimitry Andric IRBuilder<> Builder(Inst); 5130b57cec5SDimitry Andric switch (Inst->getOpcode()) { 5140b57cec5SDimitry Andric case Instruction::Load: { 5155ffd83dbSDimitry Andric if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 5165ffd83dbSDimitry Andric break; 5175ffd83dbSDimitry Andric 5185ffd83dbSDimitry Andric Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 5195ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 5205ffd83dbSDimitry Andric if (!Index) 5210b57cec5SDimitry Andric break; 5220b57cec5SDimitry Andric 5230b57cec5SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 5240b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 5250b57cec5SDimitry Andric Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 5260b57cec5SDimitry Andric Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 5275ffd83dbSDimitry Andric if (Inst->getType() != VecEltTy) 5285ffd83dbSDimitry Andric ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); 5290b57cec5SDimitry Andric Inst->replaceAllUsesWith(ExtractElement); 5300b57cec5SDimitry Andric Inst->eraseFromParent(); 5310b57cec5SDimitry Andric break; 5320b57cec5SDimitry Andric } 5330b57cec5SDimitry Andric case Instruction::Store: { 5340b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(Inst); 5355ffd83dbSDimitry Andric if (SI->getValueOperand()->getType() == AllocaTy || 5365ffd83dbSDimitry Andric SI->getValueOperand()->getType()->isVectorTy()) 5375ffd83dbSDimitry Andric break; 5385ffd83dbSDimitry Andric 5395ffd83dbSDimitry Andric Value *Ptr = SI->getPointerOperand(); 5405ffd83dbSDimitry Andric Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 5415ffd83dbSDimitry Andric if (!Index) 5420b57cec5SDimitry Andric break; 5430b57cec5SDimitry Andric 5440b57cec5SDimitry Andric Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 5450b57cec5SDimitry Andric Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 5460b57cec5SDimitry Andric Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 5475ffd83dbSDimitry Andric Value *Elt = SI->getValueOperand(); 5485ffd83dbSDimitry Andric if (Elt->getType() != VecEltTy) 5495ffd83dbSDimitry Andric Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); 5505ffd83dbSDimitry Andric Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 5510b57cec5SDimitry Andric Builder.CreateStore(NewVecValue, BitCast); 5520b57cec5SDimitry Andric Inst->eraseFromParent(); 5530b57cec5SDimitry Andric break; 5540b57cec5SDimitry Andric } 5550b57cec5SDimitry Andric 5560b57cec5SDimitry Andric default: 5570b57cec5SDimitry Andric llvm_unreachable("Inconsistency in instructions promotable to vector"); 5580b57cec5SDimitry Andric } 5590b57cec5SDimitry Andric } 5600b57cec5SDimitry Andric return true; 5610b57cec5SDimitry Andric } 5620b57cec5SDimitry Andric 5630b57cec5SDimitry Andric static bool isCallPromotable(CallInst *CI) { 5640b57cec5SDimitry Andric IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 5650b57cec5SDimitry Andric if (!II) 5660b57cec5SDimitry Andric return false; 5670b57cec5SDimitry Andric 5680b57cec5SDimitry Andric switch (II->getIntrinsicID()) { 5690b57cec5SDimitry Andric case Intrinsic::memcpy: 5700b57cec5SDimitry Andric case Intrinsic::memmove: 5710b57cec5SDimitry Andric case Intrinsic::memset: 5720b57cec5SDimitry Andric case Intrinsic::lifetime_start: 5730b57cec5SDimitry Andric case Intrinsic::lifetime_end: 5740b57cec5SDimitry Andric case Intrinsic::invariant_start: 5750b57cec5SDimitry Andric case Intrinsic::invariant_end: 5760b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 5770b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 5780b57cec5SDimitry Andric case Intrinsic::objectsize: 5790b57cec5SDimitry Andric return true; 5800b57cec5SDimitry Andric default: 5810b57cec5SDimitry Andric return false; 5820b57cec5SDimitry Andric } 5830b57cec5SDimitry Andric } 5840b57cec5SDimitry Andric 585e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 586e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 5870b57cec5SDimitry Andric int OpIdx1) const { 5880b57cec5SDimitry Andric // Figure out which operand is the one we might not be promoting. 5890b57cec5SDimitry Andric Value *OtherOp = Inst->getOperand(OpIdx0); 5900b57cec5SDimitry Andric if (Val == OtherOp) 5910b57cec5SDimitry Andric OtherOp = Inst->getOperand(OpIdx1); 5920b57cec5SDimitry Andric 5930b57cec5SDimitry Andric if (isa<ConstantPointerNull>(OtherOp)) 5940b57cec5SDimitry Andric return true; 5950b57cec5SDimitry Andric 596e8d8bef9SDimitry Andric Value *OtherObj = getUnderlyingObject(OtherOp); 5970b57cec5SDimitry Andric if (!isa<AllocaInst>(OtherObj)) 5980b57cec5SDimitry Andric return false; 5990b57cec5SDimitry Andric 6000b57cec5SDimitry Andric // TODO: We should be able to replace undefs with the right pointer type. 6010b57cec5SDimitry Andric 6020b57cec5SDimitry Andric // TODO: If we know the other base object is another promotable 6030b57cec5SDimitry Andric // alloca, not necessarily this alloca, we can do this. The 6040b57cec5SDimitry Andric // important part is both must have the same address space at 6050b57cec5SDimitry Andric // the end. 6060b57cec5SDimitry Andric if (OtherObj != BaseAlloca) { 6070b57cec5SDimitry Andric LLVM_DEBUG( 6080b57cec5SDimitry Andric dbgs() << "Found a binary instruction with another alloca object\n"); 6090b57cec5SDimitry Andric return false; 6100b57cec5SDimitry Andric } 6110b57cec5SDimitry Andric 6120b57cec5SDimitry Andric return true; 6130b57cec5SDimitry Andric } 6140b57cec5SDimitry Andric 615e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 616e8d8bef9SDimitry Andric Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 6170b57cec5SDimitry Andric 6180b57cec5SDimitry Andric for (User *User : Val->users()) { 6190b57cec5SDimitry Andric if (is_contained(WorkList, User)) 6200b57cec5SDimitry Andric continue; 6210b57cec5SDimitry Andric 6220b57cec5SDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(User)) { 6230b57cec5SDimitry Andric if (!isCallPromotable(CI)) 6240b57cec5SDimitry Andric return false; 6250b57cec5SDimitry Andric 6260b57cec5SDimitry Andric WorkList.push_back(User); 6270b57cec5SDimitry Andric continue; 6280b57cec5SDimitry Andric } 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric Instruction *UseInst = cast<Instruction>(User); 6310b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::PtrToInt) 6320b57cec5SDimitry Andric return false; 6330b57cec5SDimitry Andric 6340b57cec5SDimitry Andric if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 6350b57cec5SDimitry Andric if (LI->isVolatile()) 6360b57cec5SDimitry Andric return false; 6370b57cec5SDimitry Andric 6380b57cec5SDimitry Andric continue; 6390b57cec5SDimitry Andric } 6400b57cec5SDimitry Andric 6410b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 6420b57cec5SDimitry Andric if (SI->isVolatile()) 6430b57cec5SDimitry Andric return false; 6440b57cec5SDimitry Andric 6450b57cec5SDimitry Andric // Reject if the stored value is not the pointer operand. 6460b57cec5SDimitry Andric if (SI->getPointerOperand() != Val) 6470b57cec5SDimitry Andric return false; 6480b57cec5SDimitry Andric } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 6490b57cec5SDimitry Andric if (RMW->isVolatile()) 6500b57cec5SDimitry Andric return false; 6510b57cec5SDimitry Andric } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 6520b57cec5SDimitry Andric if (CAS->isVolatile()) 6530b57cec5SDimitry Andric return false; 6540b57cec5SDimitry Andric } 6550b57cec5SDimitry Andric 6560b57cec5SDimitry Andric // Only promote a select if we know that the other select operand 6570b57cec5SDimitry Andric // is from another pointer that will also be promoted. 6580b57cec5SDimitry Andric if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 6590b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 6600b57cec5SDimitry Andric return false; 6610b57cec5SDimitry Andric 6620b57cec5SDimitry Andric // May need to rewrite constant operands. 6630b57cec5SDimitry Andric WorkList.push_back(ICmp); 6640b57cec5SDimitry Andric } 6650b57cec5SDimitry Andric 6660b57cec5SDimitry Andric if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 6670b57cec5SDimitry Andric // Give up if the pointer may be captured. 6680b57cec5SDimitry Andric if (PointerMayBeCaptured(UseInst, true, true)) 6690b57cec5SDimitry Andric return false; 6700b57cec5SDimitry Andric // Don't collect the users of this. 6710b57cec5SDimitry Andric WorkList.push_back(User); 6720b57cec5SDimitry Andric continue; 6730b57cec5SDimitry Andric } 6740b57cec5SDimitry Andric 675fe6060f1SDimitry Andric // Do not promote vector/aggregate type instructions. It is hard to track 676fe6060f1SDimitry Andric // their users. 677fe6060f1SDimitry Andric if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 678fe6060f1SDimitry Andric return false; 679fe6060f1SDimitry Andric 6800b57cec5SDimitry Andric if (!User->getType()->isPointerTy()) 6810b57cec5SDimitry Andric continue; 6820b57cec5SDimitry Andric 6830b57cec5SDimitry Andric if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 6840b57cec5SDimitry Andric // Be conservative if an address could be computed outside the bounds of 6850b57cec5SDimitry Andric // the alloca. 6860b57cec5SDimitry Andric if (!GEP->isInBounds()) 6870b57cec5SDimitry Andric return false; 6880b57cec5SDimitry Andric } 6890b57cec5SDimitry Andric 6900b57cec5SDimitry Andric // Only promote a select if we know that the other select operand is from 6910b57cec5SDimitry Andric // another pointer that will also be promoted. 6920b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 6930b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 6940b57cec5SDimitry Andric return false; 6950b57cec5SDimitry Andric } 6960b57cec5SDimitry Andric 6970b57cec5SDimitry Andric // Repeat for phis. 6980b57cec5SDimitry Andric if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 6990b57cec5SDimitry Andric // TODO: Handle more complex cases. We should be able to replace loops 7000b57cec5SDimitry Andric // over arrays. 7010b57cec5SDimitry Andric switch (Phi->getNumIncomingValues()) { 7020b57cec5SDimitry Andric case 1: 7030b57cec5SDimitry Andric break; 7040b57cec5SDimitry Andric case 2: 7050b57cec5SDimitry Andric if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 7060b57cec5SDimitry Andric return false; 7070b57cec5SDimitry Andric break; 7080b57cec5SDimitry Andric default: 7090b57cec5SDimitry Andric return false; 7100b57cec5SDimitry Andric } 7110b57cec5SDimitry Andric } 7120b57cec5SDimitry Andric 7130b57cec5SDimitry Andric WorkList.push_back(User); 7140b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 7150b57cec5SDimitry Andric return false; 7160b57cec5SDimitry Andric } 7170b57cec5SDimitry Andric 7180b57cec5SDimitry Andric return true; 7190b57cec5SDimitry Andric } 7200b57cec5SDimitry Andric 721e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 7220b57cec5SDimitry Andric 7230b57cec5SDimitry Andric FunctionType *FTy = F.getFunctionType(); 724e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 7250b57cec5SDimitry Andric 7260b57cec5SDimitry Andric // If the function has any arguments in the local address space, then it's 7270b57cec5SDimitry Andric // possible these arguments require the entire local memory space, so 7280b57cec5SDimitry Andric // we cannot use local memory in the pass. 7290b57cec5SDimitry Andric for (Type *ParamTy : FTy->params()) { 7300b57cec5SDimitry Andric PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 7310b57cec5SDimitry Andric if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 7320b57cec5SDimitry Andric LocalMemLimit = 0; 7330b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 7340b57cec5SDimitry Andric "local memory disabled.\n"); 7350b57cec5SDimitry Andric return false; 7360b57cec5SDimitry Andric } 7370b57cec5SDimitry Andric } 7380b57cec5SDimitry Andric 7390b57cec5SDimitry Andric LocalMemLimit = ST.getLocalMemorySize(); 7400b57cec5SDimitry Andric if (LocalMemLimit == 0) 7410b57cec5SDimitry Andric return false; 7420b57cec5SDimitry Andric 743e8d8bef9SDimitry Andric SmallVector<const Constant *, 16> Stack; 744e8d8bef9SDimitry Andric SmallPtrSet<const Constant *, 8> VisitedConstants; 745e8d8bef9SDimitry Andric SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 7460b57cec5SDimitry Andric 747e8d8bef9SDimitry Andric auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 748e8d8bef9SDimitry Andric for (const User *U : Val->users()) { 749e8d8bef9SDimitry Andric if (const Instruction *Use = dyn_cast<Instruction>(U)) { 750e8d8bef9SDimitry Andric if (Use->getParent()->getParent() == &F) 751e8d8bef9SDimitry Andric return true; 752e8d8bef9SDimitry Andric } else { 753e8d8bef9SDimitry Andric const Constant *C = cast<Constant>(U); 754e8d8bef9SDimitry Andric if (VisitedConstants.insert(C).second) 755e8d8bef9SDimitry Andric Stack.push_back(C); 756e8d8bef9SDimitry Andric } 757e8d8bef9SDimitry Andric } 758e8d8bef9SDimitry Andric 759e8d8bef9SDimitry Andric return false; 760e8d8bef9SDimitry Andric }; 761e8d8bef9SDimitry Andric 7620b57cec5SDimitry Andric for (GlobalVariable &GV : Mod->globals()) { 763480093f4SDimitry Andric if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 7640b57cec5SDimitry Andric continue; 7650b57cec5SDimitry Andric 766e8d8bef9SDimitry Andric if (visitUsers(&GV, &GV)) { 767e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 768e8d8bef9SDimitry Andric Stack.clear(); 7690b57cec5SDimitry Andric continue; 770e8d8bef9SDimitry Andric } 7710b57cec5SDimitry Andric 772e8d8bef9SDimitry Andric // For any ConstantExpr uses, we need to recursively search the users until 773e8d8bef9SDimitry Andric // we see a function. 774e8d8bef9SDimitry Andric while (!Stack.empty()) { 775e8d8bef9SDimitry Andric const Constant *C = Stack.pop_back_val(); 776e8d8bef9SDimitry Andric if (visitUsers(&GV, C)) { 777e8d8bef9SDimitry Andric UsedLDS.insert(&GV); 778e8d8bef9SDimitry Andric Stack.clear(); 7790b57cec5SDimitry Andric break; 7800b57cec5SDimitry Andric } 7810b57cec5SDimitry Andric } 7820b57cec5SDimitry Andric } 7830b57cec5SDimitry Andric 784e8d8bef9SDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 785e8d8bef9SDimitry Andric SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 786e8d8bef9SDimitry Andric AllocatedSizes.reserve(UsedLDS.size()); 787e8d8bef9SDimitry Andric 788e8d8bef9SDimitry Andric for (const GlobalVariable *GV : UsedLDS) { 789e8d8bef9SDimitry Andric Align Alignment = 790e8d8bef9SDimitry Andric DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 791e8d8bef9SDimitry Andric uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 792e8d8bef9SDimitry Andric AllocatedSizes.emplace_back(AllocSize, Alignment); 793e8d8bef9SDimitry Andric } 794e8d8bef9SDimitry Andric 795e8d8bef9SDimitry Andric // Sort to try to estimate the worst case alignment padding 796e8d8bef9SDimitry Andric // 797e8d8bef9SDimitry Andric // FIXME: We should really do something to fix the addresses to a more optimal 798e8d8bef9SDimitry Andric // value instead 799e8d8bef9SDimitry Andric llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS, 800e8d8bef9SDimitry Andric std::pair<uint64_t, Align> RHS) { 801e8d8bef9SDimitry Andric return LHS.second < RHS.second; 802e8d8bef9SDimitry Andric }); 803e8d8bef9SDimitry Andric 804e8d8bef9SDimitry Andric // Check how much local memory is being used by global objects 805e8d8bef9SDimitry Andric CurrentLocalMemUsage = 0; 806e8d8bef9SDimitry Andric 807e8d8bef9SDimitry Andric // FIXME: Try to account for padding here. The real padding and address is 808e8d8bef9SDimitry Andric // currently determined from the inverse order of uses in the function when 809e8d8bef9SDimitry Andric // legalizing, which could also potentially change. We try to estimate the 810e8d8bef9SDimitry Andric // worst case here, but we probably should fix the addresses earlier. 811e8d8bef9SDimitry Andric for (auto Alloc : AllocatedSizes) { 812e8d8bef9SDimitry Andric CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 813e8d8bef9SDimitry Andric CurrentLocalMemUsage += Alloc.first; 814e8d8bef9SDimitry Andric } 815e8d8bef9SDimitry Andric 8160b57cec5SDimitry Andric unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 8170b57cec5SDimitry Andric F); 8180b57cec5SDimitry Andric 8190b57cec5SDimitry Andric // Restrict local memory usage so that we don't drastically reduce occupancy, 8200b57cec5SDimitry Andric // unless it is already significantly reduced. 8210b57cec5SDimitry Andric 8220b57cec5SDimitry Andric // TODO: Have some sort of hint or other heuristics to guess occupancy based 8230b57cec5SDimitry Andric // on other factors.. 8240b57cec5SDimitry Andric unsigned OccupancyHint = ST.getWavesPerEU(F).second; 8250b57cec5SDimitry Andric if (OccupancyHint == 0) 8260b57cec5SDimitry Andric OccupancyHint = 7; 8270b57cec5SDimitry Andric 8280b57cec5SDimitry Andric // Clamp to max value. 8290b57cec5SDimitry Andric OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 8300b57cec5SDimitry Andric 8310b57cec5SDimitry Andric // Check the hint but ignore it if it's obviously wrong from the existing LDS 8320b57cec5SDimitry Andric // usage. 8330b57cec5SDimitry Andric MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 8340b57cec5SDimitry Andric 8350b57cec5SDimitry Andric 8360b57cec5SDimitry Andric // Round up to the next tier of usage. 8370b57cec5SDimitry Andric unsigned MaxSizeWithWaveCount 8380b57cec5SDimitry Andric = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 8390b57cec5SDimitry Andric 8400b57cec5SDimitry Andric // Program is possibly broken by using more local mem than available. 8410b57cec5SDimitry Andric if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 8420b57cec5SDimitry Andric return false; 8430b57cec5SDimitry Andric 8440b57cec5SDimitry Andric LocalMemLimit = MaxSizeWithWaveCount; 8450b57cec5SDimitry Andric 8460b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 8470b57cec5SDimitry Andric << " bytes of LDS\n" 8480b57cec5SDimitry Andric << " Rounding size to " << MaxSizeWithWaveCount 8490b57cec5SDimitry Andric << " with a maximum occupancy of " << MaxOccupancy << '\n' 8500b57cec5SDimitry Andric << " and " << (LocalMemLimit - CurrentLocalMemUsage) 8510b57cec5SDimitry Andric << " available for promotion\n"); 8520b57cec5SDimitry Andric 8530b57cec5SDimitry Andric return true; 8540b57cec5SDimitry Andric } 8550b57cec5SDimitry Andric 8560b57cec5SDimitry Andric // FIXME: Should try to pick the most likely to be profitable allocas first. 857e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { 8580b57cec5SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 8590b57cec5SDimitry Andric // the array type is the canonical form. 8600b57cec5SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 8610b57cec5SDimitry Andric return false; 8620b57cec5SDimitry Andric 8635ffd83dbSDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 8640b57cec5SDimitry Andric IRBuilder<> Builder(&I); 8650b57cec5SDimitry Andric 8660b57cec5SDimitry Andric // First try to replace the alloca with a vector 8670b57cec5SDimitry Andric Type *AllocaTy = I.getAllocatedType(); 8680b57cec5SDimitry Andric 8690b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 8700b57cec5SDimitry Andric 8715ffd83dbSDimitry Andric if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) 8720b57cec5SDimitry Andric return true; // Promoted to vector. 8730b57cec5SDimitry Andric 8740b57cec5SDimitry Andric if (DisablePromoteAllocaToLDS) 8750b57cec5SDimitry Andric return false; 8760b57cec5SDimitry Andric 8770b57cec5SDimitry Andric const Function &ContainingFunction = *I.getParent()->getParent(); 8780b57cec5SDimitry Andric CallingConv::ID CC = ContainingFunction.getCallingConv(); 8790b57cec5SDimitry Andric 8800b57cec5SDimitry Andric // Don't promote the alloca to LDS for shader calling conventions as the work 8810b57cec5SDimitry Andric // item ID intrinsics are not supported for these calling conventions. 8820b57cec5SDimitry Andric // Furthermore not all LDS is available for some of the stages. 8830b57cec5SDimitry Andric switch (CC) { 8840b57cec5SDimitry Andric case CallingConv::AMDGPU_KERNEL: 8850b57cec5SDimitry Andric case CallingConv::SPIR_KERNEL: 8860b57cec5SDimitry Andric break; 8870b57cec5SDimitry Andric default: 8880b57cec5SDimitry Andric LLVM_DEBUG( 8890b57cec5SDimitry Andric dbgs() 8900b57cec5SDimitry Andric << " promote alloca to LDS not supported with calling convention.\n"); 8910b57cec5SDimitry Andric return false; 8920b57cec5SDimitry Andric } 8930b57cec5SDimitry Andric 8940b57cec5SDimitry Andric // Not likely to have sufficient local memory for promotion. 8950b57cec5SDimitry Andric if (!SufficientLDS) 8960b57cec5SDimitry Andric return false; 8970b57cec5SDimitry Andric 898e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 8990b57cec5SDimitry Andric unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 9000b57cec5SDimitry Andric 9015ffd83dbSDimitry Andric Align Alignment = 9025ffd83dbSDimitry Andric DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 9030b57cec5SDimitry Andric 9040b57cec5SDimitry Andric // FIXME: This computed padding is likely wrong since it depends on inverse 9050b57cec5SDimitry Andric // usage order. 9060b57cec5SDimitry Andric // 9070b57cec5SDimitry Andric // FIXME: It is also possible that if we're allowed to use all of the memory 9080b57cec5SDimitry Andric // could could end up using more than the maximum due to alignment padding. 9090b57cec5SDimitry Andric 9105ffd83dbSDimitry Andric uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 9110b57cec5SDimitry Andric uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 9120b57cec5SDimitry Andric NewSize += AllocSize; 9130b57cec5SDimitry Andric 9140b57cec5SDimitry Andric if (NewSize > LocalMemLimit) { 9150b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " " << AllocSize 9160b57cec5SDimitry Andric << " bytes of local memory not available to promote\n"); 9170b57cec5SDimitry Andric return false; 9180b57cec5SDimitry Andric } 9190b57cec5SDimitry Andric 9200b57cec5SDimitry Andric CurrentLocalMemUsage = NewSize; 9210b57cec5SDimitry Andric 9220b57cec5SDimitry Andric std::vector<Value*> WorkList; 9230b57cec5SDimitry Andric 9240b57cec5SDimitry Andric if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 9250b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 9260b57cec5SDimitry Andric return false; 9270b57cec5SDimitry Andric } 9280b57cec5SDimitry Andric 9290b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 9300b57cec5SDimitry Andric 9310b57cec5SDimitry Andric Function *F = I.getParent()->getParent(); 9320b57cec5SDimitry Andric 9330b57cec5SDimitry Andric Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 9340b57cec5SDimitry Andric GlobalVariable *GV = new GlobalVariable( 9350b57cec5SDimitry Andric *Mod, GVTy, false, GlobalValue::InternalLinkage, 9360b57cec5SDimitry Andric UndefValue::get(GVTy), 9370b57cec5SDimitry Andric Twine(F->getName()) + Twine('.') + I.getName(), 9380b57cec5SDimitry Andric nullptr, 9390b57cec5SDimitry Andric GlobalVariable::NotThreadLocal, 9400b57cec5SDimitry Andric AMDGPUAS::LOCAL_ADDRESS); 9410b57cec5SDimitry Andric GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 942*0eae32dcSDimitry Andric GV->setAlignment(I.getAlign()); 9430b57cec5SDimitry Andric 9440b57cec5SDimitry Andric Value *TCntY, *TCntZ; 9450b57cec5SDimitry Andric 9460b57cec5SDimitry Andric std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 9470b57cec5SDimitry Andric Value *TIdX = getWorkitemID(Builder, 0); 9480b57cec5SDimitry Andric Value *TIdY = getWorkitemID(Builder, 1); 9490b57cec5SDimitry Andric Value *TIdZ = getWorkitemID(Builder, 2); 9500b57cec5SDimitry Andric 9510b57cec5SDimitry Andric Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 9520b57cec5SDimitry Andric Tmp0 = Builder.CreateMul(Tmp0, TIdX); 9530b57cec5SDimitry Andric Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 9540b57cec5SDimitry Andric Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 9550b57cec5SDimitry Andric TID = Builder.CreateAdd(TID, TIdZ); 9560b57cec5SDimitry Andric 9570b57cec5SDimitry Andric Value *Indices[] = { 9580b57cec5SDimitry Andric Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 9590b57cec5SDimitry Andric TID 9600b57cec5SDimitry Andric }; 9610b57cec5SDimitry Andric 9620b57cec5SDimitry Andric Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 9630b57cec5SDimitry Andric I.mutateType(Offset->getType()); 9640b57cec5SDimitry Andric I.replaceAllUsesWith(Offset); 9650b57cec5SDimitry Andric I.eraseFromParent(); 9660b57cec5SDimitry Andric 967fe6060f1SDimitry Andric SmallVector<IntrinsicInst *> DeferredIntrs; 968fe6060f1SDimitry Andric 9690b57cec5SDimitry Andric for (Value *V : WorkList) { 9700b57cec5SDimitry Andric CallInst *Call = dyn_cast<CallInst>(V); 9710b57cec5SDimitry Andric if (!Call) { 9720b57cec5SDimitry Andric if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 9730b57cec5SDimitry Andric Value *Src0 = CI->getOperand(0); 974fe6060f1SDimitry Andric PointerType *NewTy = PointerType::getWithSamePointeeType( 975fe6060f1SDimitry Andric cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); 9760b57cec5SDimitry Andric 9770b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(0))) 9780b57cec5SDimitry Andric CI->setOperand(0, ConstantPointerNull::get(NewTy)); 9790b57cec5SDimitry Andric 9800b57cec5SDimitry Andric if (isa<ConstantPointerNull>(CI->getOperand(1))) 9810b57cec5SDimitry Andric CI->setOperand(1, ConstantPointerNull::get(NewTy)); 9820b57cec5SDimitry Andric 9830b57cec5SDimitry Andric continue; 9840b57cec5SDimitry Andric } 9850b57cec5SDimitry Andric 9860b57cec5SDimitry Andric // The operand's value should be corrected on its own and we don't want to 9870b57cec5SDimitry Andric // touch the users. 9880b57cec5SDimitry Andric if (isa<AddrSpaceCastInst>(V)) 9890b57cec5SDimitry Andric continue; 9900b57cec5SDimitry Andric 991fe6060f1SDimitry Andric PointerType *NewTy = PointerType::getWithSamePointeeType( 992fe6060f1SDimitry Andric cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS); 9930b57cec5SDimitry Andric 9940b57cec5SDimitry Andric // FIXME: It doesn't really make sense to try to do this for all 9950b57cec5SDimitry Andric // instructions. 9960b57cec5SDimitry Andric V->mutateType(NewTy); 9970b57cec5SDimitry Andric 9980b57cec5SDimitry Andric // Adjust the types of any constant operands. 9990b57cec5SDimitry Andric if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 10000b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(1))) 10010b57cec5SDimitry Andric SI->setOperand(1, ConstantPointerNull::get(NewTy)); 10020b57cec5SDimitry Andric 10030b57cec5SDimitry Andric if (isa<ConstantPointerNull>(SI->getOperand(2))) 10040b57cec5SDimitry Andric SI->setOperand(2, ConstantPointerNull::get(NewTy)); 10050b57cec5SDimitry Andric } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 10060b57cec5SDimitry Andric for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 10070b57cec5SDimitry Andric if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 10080b57cec5SDimitry Andric Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 10090b57cec5SDimitry Andric } 10100b57cec5SDimitry Andric } 10110b57cec5SDimitry Andric 10120b57cec5SDimitry Andric continue; 10130b57cec5SDimitry Andric } 10140b57cec5SDimitry Andric 10150b57cec5SDimitry Andric IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 10160b57cec5SDimitry Andric Builder.SetInsertPoint(Intr); 10170b57cec5SDimitry Andric switch (Intr->getIntrinsicID()) { 10180b57cec5SDimitry Andric case Intrinsic::lifetime_start: 10190b57cec5SDimitry Andric case Intrinsic::lifetime_end: 10200b57cec5SDimitry Andric // These intrinsics are for address space 0 only 10210b57cec5SDimitry Andric Intr->eraseFromParent(); 10220b57cec5SDimitry Andric continue; 1023fe6060f1SDimitry Andric case Intrinsic::memcpy: 1024fe6060f1SDimitry Andric case Intrinsic::memmove: 1025fe6060f1SDimitry Andric // These have 2 pointer operands. In case if second pointer also needs 1026fe6060f1SDimitry Andric // to be replaced we defer processing of these intrinsics until all 1027fe6060f1SDimitry Andric // other values are processed. 1028fe6060f1SDimitry Andric DeferredIntrs.push_back(Intr); 10290b57cec5SDimitry Andric continue; 10300b57cec5SDimitry Andric case Intrinsic::memset: { 10310b57cec5SDimitry Andric MemSetInst *MemSet = cast<MemSetInst>(Intr); 1032480093f4SDimitry Andric Builder.CreateMemSet( 1033480093f4SDimitry Andric MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 1034480093f4SDimitry Andric MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 10350b57cec5SDimitry Andric Intr->eraseFromParent(); 10360b57cec5SDimitry Andric continue; 10370b57cec5SDimitry Andric } 10380b57cec5SDimitry Andric case Intrinsic::invariant_start: 10390b57cec5SDimitry Andric case Intrinsic::invariant_end: 10400b57cec5SDimitry Andric case Intrinsic::launder_invariant_group: 10410b57cec5SDimitry Andric case Intrinsic::strip_invariant_group: 10420b57cec5SDimitry Andric Intr->eraseFromParent(); 10430b57cec5SDimitry Andric // FIXME: I think the invariant marker should still theoretically apply, 10440b57cec5SDimitry Andric // but the intrinsics need to be changed to accept pointers with any 10450b57cec5SDimitry Andric // address space. 10460b57cec5SDimitry Andric continue; 10470b57cec5SDimitry Andric case Intrinsic::objectsize: { 10480b57cec5SDimitry Andric Value *Src = Intr->getOperand(0); 1049fe6060f1SDimitry Andric Function *ObjectSize = Intrinsic::getDeclaration( 1050fe6060f1SDimitry Andric Mod, Intrinsic::objectsize, 1051fe6060f1SDimitry Andric {Intr->getType(), 1052fe6060f1SDimitry Andric PointerType::getWithSamePointeeType( 1053fe6060f1SDimitry Andric cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); 10540b57cec5SDimitry Andric 10550b57cec5SDimitry Andric CallInst *NewCall = Builder.CreateCall( 10560b57cec5SDimitry Andric ObjectSize, 10570b57cec5SDimitry Andric {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 10580b57cec5SDimitry Andric Intr->replaceAllUsesWith(NewCall); 10590b57cec5SDimitry Andric Intr->eraseFromParent(); 10600b57cec5SDimitry Andric continue; 10610b57cec5SDimitry Andric } 10620b57cec5SDimitry Andric default: 10630b57cec5SDimitry Andric Intr->print(errs()); 10640b57cec5SDimitry Andric llvm_unreachable("Don't know how to promote alloca intrinsic use."); 10650b57cec5SDimitry Andric } 10660b57cec5SDimitry Andric } 1067fe6060f1SDimitry Andric 1068fe6060f1SDimitry Andric for (IntrinsicInst *Intr : DeferredIntrs) { 1069fe6060f1SDimitry Andric Builder.SetInsertPoint(Intr); 1070fe6060f1SDimitry Andric Intrinsic::ID ID = Intr->getIntrinsicID(); 1071fe6060f1SDimitry Andric assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1072fe6060f1SDimitry Andric 1073fe6060f1SDimitry Andric MemTransferInst *MI = cast<MemTransferInst>(Intr); 1074fe6060f1SDimitry Andric auto *B = 1075fe6060f1SDimitry Andric Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), 1076fe6060f1SDimitry Andric MI->getRawSource(), MI->getSourceAlign(), 1077fe6060f1SDimitry Andric MI->getLength(), MI->isVolatile()); 1078fe6060f1SDimitry Andric 1079349cc55cSDimitry Andric for (unsigned I = 0; I != 2; ++I) { 1080349cc55cSDimitry Andric if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1081349cc55cSDimitry Andric B->addDereferenceableParamAttr(I, Bytes); 1082fe6060f1SDimitry Andric } 1083fe6060f1SDimitry Andric } 1084fe6060f1SDimitry Andric 1085fe6060f1SDimitry Andric Intr->eraseFromParent(); 1086fe6060f1SDimitry Andric } 1087fe6060f1SDimitry Andric 10880b57cec5SDimitry Andric return true; 10890b57cec5SDimitry Andric } 10900b57cec5SDimitry Andric 1091e8d8bef9SDimitry Andric bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { 1092e8d8bef9SDimitry Andric // Array allocations are probably not worth handling, since an allocation of 1093e8d8bef9SDimitry Andric // the array type is the canonical form. 1094e8d8bef9SDimitry Andric if (!I.isStaticAlloca() || I.isArrayAllocation()) 10955ffd83dbSDimitry Andric return false; 10965ffd83dbSDimitry Andric 1097e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1098e8d8bef9SDimitry Andric 1099e8d8bef9SDimitry Andric Module *Mod = I.getParent()->getParent()->getParent(); 1100e8d8bef9SDimitry Andric return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); 1101e8d8bef9SDimitry Andric } 1102e8d8bef9SDimitry Andric 1103e8d8bef9SDimitry Andric bool promoteAllocasToVector(Function &F, TargetMachine &TM) { 1104e8d8bef9SDimitry Andric if (DisablePromoteAllocaToVector) 11055ffd83dbSDimitry Andric return false; 11065ffd83dbSDimitry Andric 1107e8d8bef9SDimitry Andric const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 11085ffd83dbSDimitry Andric if (!ST.isPromoteAllocaEnabled()) 11095ffd83dbSDimitry Andric return false; 11105ffd83dbSDimitry Andric 1111e8d8bef9SDimitry Andric unsigned MaxVGPRs; 1112e8d8bef9SDimitry Andric if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1113e8d8bef9SDimitry Andric const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 11145ffd83dbSDimitry Andric MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 1115349cc55cSDimitry Andric // A non-entry function has only 32 caller preserved registers. 1116349cc55cSDimitry Andric // Do not promote alloca which will force spilling. 1117349cc55cSDimitry Andric if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) 1118349cc55cSDimitry Andric MaxVGPRs = std::min(MaxVGPRs, 32u); 11195ffd83dbSDimitry Andric } else { 11205ffd83dbSDimitry Andric MaxVGPRs = 128; 11215ffd83dbSDimitry Andric } 11225ffd83dbSDimitry Andric 11235ffd83dbSDimitry Andric bool Changed = false; 11245ffd83dbSDimitry Andric BasicBlock &EntryBB = *F.begin(); 11255ffd83dbSDimitry Andric 11265ffd83dbSDimitry Andric SmallVector<AllocaInst *, 16> Allocas; 11275ffd83dbSDimitry Andric for (Instruction &I : EntryBB) { 11285ffd83dbSDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 11295ffd83dbSDimitry Andric Allocas.push_back(AI); 11305ffd83dbSDimitry Andric } 11315ffd83dbSDimitry Andric 11325ffd83dbSDimitry Andric for (AllocaInst *AI : Allocas) { 1133e8d8bef9SDimitry Andric if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) 11345ffd83dbSDimitry Andric Changed = true; 11355ffd83dbSDimitry Andric } 11365ffd83dbSDimitry Andric 11375ffd83dbSDimitry Andric return Changed; 11385ffd83dbSDimitry Andric } 11395ffd83dbSDimitry Andric 1140e8d8bef9SDimitry Andric bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1141e8d8bef9SDimitry Andric if (skipFunction(F)) 11425ffd83dbSDimitry Andric return false; 1143e8d8bef9SDimitry Andric if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1144e8d8bef9SDimitry Andric return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); 1145e8d8bef9SDimitry Andric } 1146e8d8bef9SDimitry Andric return false; 1147e8d8bef9SDimitry Andric } 11485ffd83dbSDimitry Andric 1149e8d8bef9SDimitry Andric PreservedAnalyses 1150e8d8bef9SDimitry Andric AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 1151e8d8bef9SDimitry Andric bool Changed = promoteAllocasToVector(F, TM); 1152e8d8bef9SDimitry Andric if (Changed) { 1153e8d8bef9SDimitry Andric PreservedAnalyses PA; 1154e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 1155e8d8bef9SDimitry Andric return PA; 1156e8d8bef9SDimitry Andric } 1157e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 11585ffd83dbSDimitry Andric } 11595ffd83dbSDimitry Andric 11600b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAlloca() { 11610b57cec5SDimitry Andric return new AMDGPUPromoteAlloca(); 11620b57cec5SDimitry Andric } 11635ffd83dbSDimitry Andric 11645ffd83dbSDimitry Andric FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 11655ffd83dbSDimitry Andric return new AMDGPUPromoteAllocaToVector(); 11665ffd83dbSDimitry Andric } 1167