xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPrintfRuntimeBinding.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // \file
9 //
10 // The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11 // later by the runtime.
12 //
13 // This pass traverses the functions in the module and converts
14 // each call to printf to a sequence of operations that
15 // store the following into the printf buffer:
16 // - format string (passed as a module's metadata unique ID)
17 // - bitwise copies of printf arguments
18 // The backend passes will need to store metadata in the kernel
19 //===----------------------------------------------------------------------===//
20 
21 #include "AMDGPU.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "printfToRuntime"
44 #define DWORD_ALIGN 4
45 
46 namespace {
47 class LLVM_LIBRARY_VISIBILITY AMDGPUPrintfRuntimeBinding final
48     : public ModulePass {
49 
50 public:
51   static char ID;
52 
53   explicit AMDGPUPrintfRuntimeBinding();
54 
55 private:
56   bool runOnModule(Module &M) override;
57   void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
58                                StringRef fmt, size_t num_ops) const;
59 
60   bool shouldPrintAsStr(char Specifier, Type *OpType) const;
61   bool
62   lowerPrintfForGpu(Module &M,
63                     function_ref<const TargetLibraryInfo &(Function &)> GetTLI);
64 
65   void getAnalysisUsage(AnalysisUsage &AU) const override {
66     AU.addRequired<TargetLibraryInfoWrapperPass>();
67     AU.addRequired<DominatorTreeWrapperPass>();
68   }
69 
70   Value *simplify(Instruction *I, const TargetLibraryInfo *TLI) {
71     return SimplifyInstruction(I, {*TD, TLI, DT});
72   }
73 
74   const DataLayout *TD;
75   const DominatorTree *DT;
76   SmallVector<CallInst *, 32> Printfs;
77 };
78 } // namespace
79 
80 char AMDGPUPrintfRuntimeBinding::ID = 0;
81 
82 INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
83                       "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
84                       false, false)
85 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
86 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
87 INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
88                     "AMDGPU Printf lowering", false, false)
89 
90 char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
91 
92 namespace llvm {
93 ModulePass *createAMDGPUPrintfRuntimeBinding() {
94   return new AMDGPUPrintfRuntimeBinding();
95 }
96 } // namespace llvm
97 
98 AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding()
99     : ModulePass(ID), TD(nullptr), DT(nullptr) {
100   initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
101 }
102 
103 void AMDGPUPrintfRuntimeBinding::getConversionSpecifiers(
104     SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
105     size_t NumOps) const {
106   // not all format characters are collected.
107   // At this time the format characters of interest
108   // are %p and %s, which use to know if we
109   // are either storing a literal string or a
110   // pointer to the printf buffer.
111   static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
112   size_t CurFmtSpecifierIdx = 0;
113   size_t PrevFmtSpecifierIdx = 0;
114 
115   while ((CurFmtSpecifierIdx = Fmt.find_first_of(
116               ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
117     bool ArgDump = false;
118     StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
119                                   CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
120     size_t pTag = CurFmt.find_last_of("%");
121     if (pTag != StringRef::npos) {
122       ArgDump = true;
123       while (pTag && CurFmt[--pTag] == '%') {
124         ArgDump = !ArgDump;
125       }
126     }
127 
128     if (ArgDump)
129       OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
130 
131     PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
132   }
133 }
134 
135 bool AMDGPUPrintfRuntimeBinding::shouldPrintAsStr(char Specifier,
136                                                   Type *OpType) const {
137   if (Specifier != 's')
138     return false;
139   const PointerType *PT = dyn_cast<PointerType>(OpType);
140   if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
141     return false;
142   Type *ElemType = PT->getContainedType(0);
143   if (ElemType->getTypeID() != Type::IntegerTyID)
144     return false;
145   IntegerType *ElemIType = cast<IntegerType>(ElemType);
146   return ElemIType->getBitWidth() == 8;
147 }
148 
149 bool AMDGPUPrintfRuntimeBinding::lowerPrintfForGpu(
150     Module &M, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
151   LLVMContext &Ctx = M.getContext();
152   IRBuilder<> Builder(Ctx);
153   Type *I32Ty = Type::getInt32Ty(Ctx);
154   unsigned UniqID = 0;
155   // NB: This is important for this string size to be divizable by 4
156   const char NonLiteralStr[4] = "???";
157 
158   for (auto CI : Printfs) {
159     unsigned NumOps = CI->getNumArgOperands();
160 
161     SmallString<16> OpConvSpecifiers;
162     Value *Op = CI->getArgOperand(0);
163 
164     if (auto LI = dyn_cast<LoadInst>(Op)) {
165       Op = LI->getPointerOperand();
166       for (auto Use : Op->users()) {
167         if (auto SI = dyn_cast<StoreInst>(Use)) {
168           Op = SI->getValueOperand();
169           break;
170         }
171       }
172     }
173 
174     if (auto I = dyn_cast<Instruction>(Op)) {
175       Value *Op_simplified = simplify(I, &GetTLI(*I->getFunction()));
176       if (Op_simplified)
177         Op = Op_simplified;
178     }
179 
180     ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);
181 
182     if (ConstExpr) {
183       GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
184 
185       StringRef Str("unknown");
186       if (GVar && GVar->hasInitializer()) {
187         auto Init = GVar->getInitializer();
188         if (auto CA = dyn_cast<ConstantDataArray>(Init)) {
189           if (CA->isString())
190             Str = CA->getAsCString();
191         } else if (isa<ConstantAggregateZero>(Init)) {
192           Str = "";
193         }
194         //
195         // we need this call to ascertain
196         // that we are printing a string
197         // or a pointer. It takes out the
198         // specifiers and fills up the first
199         // arg
200         getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
201       }
202       // Add metadata for the string
203       std::string AStreamHolder;
204       raw_string_ostream Sizes(AStreamHolder);
205       int Sum = DWORD_ALIGN;
206       Sizes << CI->getNumArgOperands() - 1;
207       Sizes << ':';
208       for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
209                                   ArgCount <= OpConvSpecifiers.size();
210            ArgCount++) {
211         Value *Arg = CI->getArgOperand(ArgCount);
212         Type *ArgType = Arg->getType();
213         unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
214         ArgSize = ArgSize / 8;
215         //
216         // ArgSize by design should be a multiple of DWORD_ALIGN,
217         // expand the arguments that do not follow this rule.
218         //
219         if (ArgSize % DWORD_ALIGN != 0) {
220           llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
221           VectorType *LLVMVecType = llvm::dyn_cast<llvm::VectorType>(ArgType);
222           int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
223           if (LLVMVecType && NumElem > 1)
224             ResType = llvm::VectorType::get(ResType, NumElem);
225           Builder.SetInsertPoint(CI);
226           Builder.SetCurrentDebugLocation(CI->getDebugLoc());
227           if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
228               OpConvSpecifiers[ArgCount - 1] == 'X' ||
229               OpConvSpecifiers[ArgCount - 1] == 'u' ||
230               OpConvSpecifiers[ArgCount - 1] == 'o')
231             Arg = Builder.CreateZExt(Arg, ResType);
232           else
233             Arg = Builder.CreateSExt(Arg, ResType);
234           ArgType = Arg->getType();
235           ArgSize = TD->getTypeAllocSizeInBits(ArgType);
236           ArgSize = ArgSize / 8;
237           CI->setOperand(ArgCount, Arg);
238         }
239         if (OpConvSpecifiers[ArgCount - 1] == 'f') {
240           ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
241           if (FpCons)
242             ArgSize = 4;
243           else {
244             FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
245             if (FpExt && FpExt->getType()->isDoubleTy() &&
246                 FpExt->getOperand(0)->getType()->isFloatTy())
247               ArgSize = 4;
248           }
249         }
250         if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
251           if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
252             GlobalVariable *GV =
253                 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
254             if (GV && GV->hasInitializer()) {
255               Constant *Init = GV->getInitializer();
256               ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
257               if (Init->isZeroValue() || CA->isString()) {
258                 size_t SizeStr = Init->isZeroValue()
259                                      ? 1
260                                      : (strlen(CA->getAsCString().data()) + 1);
261                 size_t Rem = SizeStr % DWORD_ALIGN;
262                 size_t NSizeStr = 0;
263                 LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr
264                                   << '\n');
265                 if (Rem) {
266                   NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
267                 } else {
268                   NSizeStr = SizeStr;
269                 }
270                 ArgSize = NSizeStr;
271               }
272             } else {
273               ArgSize = sizeof(NonLiteralStr);
274             }
275           } else {
276             ArgSize = sizeof(NonLiteralStr);
277           }
278         }
279         LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
280                           << " for type: " << *ArgType << '\n');
281         Sizes << ArgSize << ':';
282         Sum += ArgSize;
283       }
284       LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()
285                         << '\n');
286       for (size_t I = 0; I < Str.size(); ++I) {
287         // Rest of the C escape sequences (e.g. \') are handled correctly
288         // by the MDParser
289         switch (Str[I]) {
290         case '\a':
291           Sizes << "\\a";
292           break;
293         case '\b':
294           Sizes << "\\b";
295           break;
296         case '\f':
297           Sizes << "\\f";
298           break;
299         case '\n':
300           Sizes << "\\n";
301           break;
302         case '\r':
303           Sizes << "\\r";
304           break;
305         case '\v':
306           Sizes << "\\v";
307           break;
308         case ':':
309           // ':' cannot be scanned by Flex, as it is defined as a delimiter
310           // Replace it with it's octal representation \72
311           Sizes << "\\72";
312           break;
313         default:
314           Sizes << Str[I];
315           break;
316         }
317       }
318 
319       // Insert the printf_alloc call
320       Builder.SetInsertPoint(CI);
321       Builder.SetCurrentDebugLocation(CI->getDebugLoc());
322 
323       AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
324                                               Attribute::NoUnwind);
325 
326       Type *SizetTy = Type::getInt32Ty(Ctx);
327 
328       Type *Tys_alloc[1] = {SizetTy};
329       Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
330       FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
331       FunctionCallee PrintfAllocFn =
332           M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
333 
334       LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
335       std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
336       MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
337 
338       // Instead of creating global variables, the
339       // printf format strings are extracted
340       // and passed as metadata. This avoids
341       // polluting llvm's symbol tables in this module.
342       // Metadata is going to be extracted
343       // by the backend passes and inserted
344       // into the OpenCL binary as appropriate.
345       StringRef amd("llvm.printf.fmts");
346       NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
347       MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
348       metaD->addOperand(myMD);
349       Value *sumC = ConstantInt::get(SizetTy, Sum, false);
350       SmallVector<Value *, 1> alloc_args;
351       alloc_args.push_back(sumC);
352       CallInst *pcall =
353           CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);
354 
355       //
356       // Insert code to split basicblock with a
357       // piece of hammock code.
358       // basicblock splits after buffer overflow check
359       //
360       ConstantPointerNull *zeroIntPtr =
361           ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
362       ICmpInst *cmp =
363           dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
364       if (!CI->use_empty()) {
365         Value *result =
366             Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
367         CI->replaceAllUsesWith(result);
368       }
369       SplitBlock(CI->getParent(), cmp);
370       Instruction *Brnch =
371           SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
372 
373       Builder.SetInsertPoint(Brnch);
374 
375       // store unique printf id in the buffer
376       //
377       SmallVector<Value *, 1> ZeroIdxList;
378       ConstantInt *zeroInt =
379           ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
380       ZeroIdxList.push_back(zeroInt);
381 
382       GetElementPtrInst *BufferIdx =
383           dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
384               nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch));
385 
386       Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
387       Value *id_gep_cast =
388           new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);
389 
390       StoreInst *stbuff =
391           new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast);
392       stbuff->insertBefore(Brnch); // to Remove unused variable warning
393 
394       SmallVector<Value *, 2> FourthIdxList;
395       ConstantInt *fourInt =
396           ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));
397 
398       FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
399       // the following GEP is the buffer pointer
400       BufferIdx = cast<GetElementPtrInst>(GetElementPtrInst::Create(
401           nullptr, pcall, FourthIdxList, "PrintBuffGep", Brnch));
402 
403       Type *Int32Ty = Type::getInt32Ty(Ctx);
404       Type *Int64Ty = Type::getInt64Ty(Ctx);
405       for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
406                                   ArgCount <= OpConvSpecifiers.size();
407            ArgCount++) {
408         Value *Arg = CI->getArgOperand(ArgCount);
409         Type *ArgType = Arg->getType();
410         SmallVector<Value *, 32> WhatToStore;
411         if (ArgType->isFPOrFPVectorTy() &&
412             (ArgType->getTypeID() != Type::VectorTyID)) {
413           Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
414           if (OpConvSpecifiers[ArgCount - 1] == 'f') {
415             ConstantFP *fpCons = dyn_cast<ConstantFP>(Arg);
416             if (fpCons) {
417               APFloat Val(fpCons->getValueAPF());
418               bool Lost = false;
419               Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
420                           &Lost);
421               Arg = ConstantFP::get(Ctx, Val);
422               IType = Int32Ty;
423             } else {
424               FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
425               if (FpExt && FpExt->getType()->isDoubleTy() &&
426                   FpExt->getOperand(0)->getType()->isFloatTy()) {
427                 Arg = FpExt->getOperand(0);
428                 IType = Int32Ty;
429               }
430             }
431           }
432           Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
433           WhatToStore.push_back(Arg);
434         } else if (ArgType->getTypeID() == Type::PointerTyID) {
435           if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
436             const char *S = NonLiteralStr;
437             if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
438               GlobalVariable *GV =
439                   dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
440               if (GV && GV->hasInitializer()) {
441                 Constant *Init = GV->getInitializer();
442                 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
443                 if (Init->isZeroValue() || CA->isString()) {
444                   S = Init->isZeroValue() ? "" : CA->getAsCString().data();
445                 }
446               }
447             }
448             size_t SizeStr = strlen(S) + 1;
449             size_t Rem = SizeStr % DWORD_ALIGN;
450             size_t NSizeStr = 0;
451             if (Rem) {
452               NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
453             } else {
454               NSizeStr = SizeStr;
455             }
456             if (S[0]) {
457               char *MyNewStr = new char[NSizeStr]();
458               strcpy(MyNewStr, S);
459               int NumInts = NSizeStr / 4;
460               int CharC = 0;
461               while (NumInts) {
462                 int ANum = *(int *)(MyNewStr + CharC);
463                 CharC += 4;
464                 NumInts--;
465                 Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
466                 WhatToStore.push_back(ANumV);
467               }
468               delete[] MyNewStr;
469             } else {
470               // Empty string, give a hint to RT it is no NULL
471               Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
472               WhatToStore.push_back(ANumV);
473             }
474           } else {
475             uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
476             assert((Size == 32 || Size == 64) && "unsupported size");
477             Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
478             Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
479             WhatToStore.push_back(Arg);
480           }
481         } else if (ArgType->getTypeID() == Type::VectorTyID) {
482           Type *IType = NULL;
483           uint32_t EleCount = cast<VectorType>(ArgType)->getNumElements();
484           uint32_t EleSize = ArgType->getScalarSizeInBits();
485           uint32_t TotalSize = EleCount * EleSize;
486           if (EleCount == 3) {
487             IntegerType *Int32Ty = Type::getInt32Ty(ArgType->getContext());
488             Constant *Indices[4] = {
489                 ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1),
490                 ConstantInt::get(Int32Ty, 2), ConstantInt::get(Int32Ty, 2)};
491             Constant *Mask = ConstantVector::get(Indices);
492             ShuffleVectorInst *Shuffle = new ShuffleVectorInst(Arg, Arg, Mask);
493             Shuffle->insertBefore(Brnch);
494             Arg = Shuffle;
495             ArgType = Arg->getType();
496             TotalSize += EleSize;
497           }
498           switch (EleSize) {
499           default:
500             EleCount = TotalSize / 64;
501             IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
502             break;
503           case 8:
504             if (EleCount >= 8) {
505               EleCount = TotalSize / 64;
506               IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
507             } else if (EleCount >= 3) {
508               EleCount = 1;
509               IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
510             } else {
511               EleCount = 1;
512               IType = dyn_cast<Type>(Type::getInt16Ty(ArgType->getContext()));
513             }
514             break;
515           case 16:
516             if (EleCount >= 3) {
517               EleCount = TotalSize / 64;
518               IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
519             } else {
520               EleCount = 1;
521               IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
522             }
523             break;
524           }
525           if (EleCount > 1) {
526             IType = dyn_cast<Type>(VectorType::get(IType, EleCount));
527           }
528           Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
529           WhatToStore.push_back(Arg);
530         } else {
531           WhatToStore.push_back(Arg);
532         }
533         for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
534           Value *TheBtCast = WhatToStore[I];
535           unsigned ArgSize =
536               TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
537           SmallVector<Value *, 1> BuffOffset;
538           BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));
539 
540           Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
541           Value *CastedGEP =
542               new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
543           StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
544           LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
545                             << *StBuff << '\n');
546           (void)StBuff;
547           if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
548             break;
549           BufferIdx = dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
550               nullptr, BufferIdx, BuffOffset, "PrintBuffNextPtr", Brnch));
551           LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
552                             << *BufferIdx << '\n');
553         }
554       }
555     }
556   }
557 
558   // erase the printf calls
559   for (auto CI : Printfs)
560     CI->eraseFromParent();
561 
562   Printfs.clear();
563   return true;
564 }
565 
566 bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
567   Triple TT(M.getTargetTriple());
568   if (TT.getArch() == Triple::r600)
569     return false;
570 
571   auto PrintfFunction = M.getFunction("printf");
572   if (!PrintfFunction)
573     return false;
574 
575   for (auto &U : PrintfFunction->uses()) {
576     if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
577       if (CI->isCallee(&U))
578         Printfs.push_back(CI);
579     }
580   }
581 
582   if (Printfs.empty())
583     return false;
584 
585   if (auto HostcallFunction = M.getFunction("__ockl_hostcall_internal")) {
586     for (auto &U : HostcallFunction->uses()) {
587       if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
588         M.getContext().emitError(
589             CI, "Cannot use both printf and hostcall in the same module");
590       }
591     }
592   }
593 
594   TD = &M.getDataLayout();
595   auto DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
596   DT = DTWP ? &DTWP->getDomTree() : nullptr;
597   auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
598     return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
599   };
600 
601   return lowerPrintfForGpu(M, GetTLI);
602 }
603