1 //=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // \file 9 // 10 // The pass bind printfs to a kernel arg pointer that will be bound to a buffer 11 // later by the runtime. 12 // 13 // This pass traverses the functions in the module and converts 14 // each call to printf to a sequence of operations that 15 // store the following into the printf buffer: 16 // - format string (passed as a module's metadata unique ID) 17 // - bitwise copies of printf arguments 18 // The backend passes will need to store metadata in the kernel 19 //===----------------------------------------------------------------------===// 20 21 #include "AMDGPU.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "printfToRuntime" 33 #define DWORD_ALIGN 4 34 35 namespace { 36 class AMDGPUPrintfRuntimeBinding final : public ModulePass { 37 38 public: 39 static char ID; 40 41 explicit AMDGPUPrintfRuntimeBinding(); 42 43 private: 44 bool runOnModule(Module &M) override; 45 46 void getAnalysisUsage(AnalysisUsage &AU) const override { 47 AU.addRequired<TargetLibraryInfoWrapperPass>(); 48 AU.addRequired<DominatorTreeWrapperPass>(); 49 } 50 }; 51 52 class AMDGPUPrintfRuntimeBindingImpl { 53 public: 54 AMDGPUPrintfRuntimeBindingImpl( 55 function_ref<const DominatorTree &(Function &)> GetDT, 56 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) 57 : GetDT(GetDT), GetTLI(GetTLI) {} 58 bool run(Module &M); 59 60 private: 61 void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers, 62 StringRef fmt, size_t num_ops) const; 63 64 bool shouldPrintAsStr(char Specifier, Type *OpType) const; 65 bool lowerPrintfForGpu(Module &M); 66 67 Value *simplify(Instruction *I, const TargetLibraryInfo *TLI, 68 const DominatorTree *DT) { 69 return SimplifyInstruction(I, {*TD, TLI, DT}); 70 } 71 72 const DataLayout *TD; 73 function_ref<const DominatorTree &(Function &)> GetDT; 74 function_ref<const TargetLibraryInfo &(Function &)> GetTLI; 75 SmallVector<CallInst *, 32> Printfs; 76 }; 77 } // namespace 78 79 char AMDGPUPrintfRuntimeBinding::ID = 0; 80 81 INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding, 82 "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering", 83 false, false) 84 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 85 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 86 INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding", 87 "AMDGPU Printf lowering", false, false) 88 89 char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID; 90 91 namespace llvm { 92 ModulePass *createAMDGPUPrintfRuntimeBinding() { 93 return new AMDGPUPrintfRuntimeBinding(); 94 } 95 } // namespace llvm 96 97 AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding() : ModulePass(ID) { 98 initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry()); 99 } 100 101 void AMDGPUPrintfRuntimeBindingImpl::getConversionSpecifiers( 102 SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt, 103 size_t NumOps) const { 104 // not all format characters are collected. 105 // At this time the format characters of interest 106 // are %p and %s, which use to know if we 107 // are either storing a literal string or a 108 // pointer to the printf buffer. 109 static const char ConvSpecifiers[] = "cdieEfgGaosuxXp"; 110 size_t CurFmtSpecifierIdx = 0; 111 size_t PrevFmtSpecifierIdx = 0; 112 113 while ((CurFmtSpecifierIdx = Fmt.find_first_of( 114 ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) { 115 bool ArgDump = false; 116 StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx, 117 CurFmtSpecifierIdx - PrevFmtSpecifierIdx); 118 size_t pTag = CurFmt.find_last_of("%"); 119 if (pTag != StringRef::npos) { 120 ArgDump = true; 121 while (pTag && CurFmt[--pTag] == '%') { 122 ArgDump = !ArgDump; 123 } 124 } 125 126 if (ArgDump) 127 OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]); 128 129 PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx; 130 } 131 } 132 133 bool AMDGPUPrintfRuntimeBindingImpl::shouldPrintAsStr(char Specifier, 134 Type *OpType) const { 135 if (Specifier != 's') 136 return false; 137 const PointerType *PT = dyn_cast<PointerType>(OpType); 138 if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 139 return false; 140 Type *ElemType = PT->getContainedType(0); 141 if (ElemType->getTypeID() != Type::IntegerTyID) 142 return false; 143 IntegerType *ElemIType = cast<IntegerType>(ElemType); 144 return ElemIType->getBitWidth() == 8; 145 } 146 147 bool AMDGPUPrintfRuntimeBindingImpl::lowerPrintfForGpu(Module &M) { 148 LLVMContext &Ctx = M.getContext(); 149 IRBuilder<> Builder(Ctx); 150 Type *I32Ty = Type::getInt32Ty(Ctx); 151 unsigned UniqID = 0; 152 // NB: This is important for this string size to be divizable by 4 153 const char NonLiteralStr[4] = "???"; 154 155 for (auto CI : Printfs) { 156 unsigned NumOps = CI->getNumArgOperands(); 157 158 SmallString<16> OpConvSpecifiers; 159 Value *Op = CI->getArgOperand(0); 160 161 if (auto LI = dyn_cast<LoadInst>(Op)) { 162 Op = LI->getPointerOperand(); 163 for (auto Use : Op->users()) { 164 if (auto SI = dyn_cast<StoreInst>(Use)) { 165 Op = SI->getValueOperand(); 166 break; 167 } 168 } 169 } 170 171 if (auto I = dyn_cast<Instruction>(Op)) { 172 Value *Op_simplified = 173 simplify(I, &GetTLI(*I->getFunction()), &GetDT(*I->getFunction())); 174 if (Op_simplified) 175 Op = Op_simplified; 176 } 177 178 ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op); 179 180 if (ConstExpr) { 181 GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 182 183 StringRef Str("unknown"); 184 if (GVar && GVar->hasInitializer()) { 185 auto *Init = GVar->getInitializer(); 186 if (auto *CA = dyn_cast<ConstantDataArray>(Init)) { 187 if (CA->isString()) 188 Str = CA->getAsCString(); 189 } else if (isa<ConstantAggregateZero>(Init)) { 190 Str = ""; 191 } 192 // 193 // we need this call to ascertain 194 // that we are printing a string 195 // or a pointer. It takes out the 196 // specifiers and fills up the first 197 // arg 198 getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1); 199 } 200 // Add metadata for the string 201 std::string AStreamHolder; 202 raw_string_ostream Sizes(AStreamHolder); 203 int Sum = DWORD_ALIGN; 204 Sizes << CI->getNumArgOperands() - 1; 205 Sizes << ':'; 206 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() && 207 ArgCount <= OpConvSpecifiers.size(); 208 ArgCount++) { 209 Value *Arg = CI->getArgOperand(ArgCount); 210 Type *ArgType = Arg->getType(); 211 unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType); 212 ArgSize = ArgSize / 8; 213 // 214 // ArgSize by design should be a multiple of DWORD_ALIGN, 215 // expand the arguments that do not follow this rule. 216 // 217 if (ArgSize % DWORD_ALIGN != 0) { 218 llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx); 219 auto *LLVMVecType = llvm::dyn_cast<llvm::FixedVectorType>(ArgType); 220 int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1; 221 if (LLVMVecType && NumElem > 1) 222 ResType = llvm::FixedVectorType::get(ResType, NumElem); 223 Builder.SetInsertPoint(CI); 224 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 225 if (OpConvSpecifiers[ArgCount - 1] == 'x' || 226 OpConvSpecifiers[ArgCount - 1] == 'X' || 227 OpConvSpecifiers[ArgCount - 1] == 'u' || 228 OpConvSpecifiers[ArgCount - 1] == 'o') 229 Arg = Builder.CreateZExt(Arg, ResType); 230 else 231 Arg = Builder.CreateSExt(Arg, ResType); 232 ArgType = Arg->getType(); 233 ArgSize = TD->getTypeAllocSizeInBits(ArgType); 234 ArgSize = ArgSize / 8; 235 CI->setOperand(ArgCount, Arg); 236 } 237 if (OpConvSpecifiers[ArgCount - 1] == 'f') { 238 ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg); 239 if (FpCons) 240 ArgSize = 4; 241 else { 242 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg); 243 if (FpExt && FpExt->getType()->isDoubleTy() && 244 FpExt->getOperand(0)->getType()->isFloatTy()) 245 ArgSize = 4; 246 } 247 } 248 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) { 249 if (auto *ConstExpr = dyn_cast<ConstantExpr>(Arg)) { 250 auto *GV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 251 if (GV && GV->hasInitializer()) { 252 Constant *Init = GV->getInitializer(); 253 bool IsZeroValue = Init->isZeroValue(); 254 auto *CA = dyn_cast<ConstantDataArray>(Init); 255 if (IsZeroValue || (CA && CA->isString())) { 256 size_t SizeStr = 257 IsZeroValue ? 1 : (strlen(CA->getAsCString().data()) + 1); 258 size_t Rem = SizeStr % DWORD_ALIGN; 259 size_t NSizeStr = 0; 260 LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr 261 << '\n'); 262 if (Rem) { 263 NSizeStr = SizeStr + (DWORD_ALIGN - Rem); 264 } else { 265 NSizeStr = SizeStr; 266 } 267 ArgSize = NSizeStr; 268 } 269 } else { 270 ArgSize = sizeof(NonLiteralStr); 271 } 272 } else { 273 ArgSize = sizeof(NonLiteralStr); 274 } 275 } 276 LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize 277 << " for type: " << *ArgType << '\n'); 278 Sizes << ArgSize << ':'; 279 Sum += ArgSize; 280 } 281 LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str() 282 << '\n'); 283 for (size_t I = 0; I < Str.size(); ++I) { 284 // Rest of the C escape sequences (e.g. \') are handled correctly 285 // by the MDParser 286 switch (Str[I]) { 287 case '\a': 288 Sizes << "\\a"; 289 break; 290 case '\b': 291 Sizes << "\\b"; 292 break; 293 case '\f': 294 Sizes << "\\f"; 295 break; 296 case '\n': 297 Sizes << "\\n"; 298 break; 299 case '\r': 300 Sizes << "\\r"; 301 break; 302 case '\v': 303 Sizes << "\\v"; 304 break; 305 case ':': 306 // ':' cannot be scanned by Flex, as it is defined as a delimiter 307 // Replace it with it's octal representation \72 308 Sizes << "\\72"; 309 break; 310 default: 311 Sizes << Str[I]; 312 break; 313 } 314 } 315 316 // Insert the printf_alloc call 317 Builder.SetInsertPoint(CI); 318 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 319 320 AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex, 321 Attribute::NoUnwind); 322 323 Type *SizetTy = Type::getInt32Ty(Ctx); 324 325 Type *Tys_alloc[1] = {SizetTy}; 326 Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1); 327 FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false); 328 FunctionCallee PrintfAllocFn = 329 M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr); 330 331 LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n'); 332 std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str(); 333 MDString *fmtStrArray = MDString::get(Ctx, fmtstr); 334 335 // Instead of creating global variables, the 336 // printf format strings are extracted 337 // and passed as metadata. This avoids 338 // polluting llvm's symbol tables in this module. 339 // Metadata is going to be extracted 340 // by the backend passes and inserted 341 // into the OpenCL binary as appropriate. 342 StringRef amd("llvm.printf.fmts"); 343 NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd); 344 MDNode *myMD = MDNode::get(Ctx, fmtStrArray); 345 metaD->addOperand(myMD); 346 Value *sumC = ConstantInt::get(SizetTy, Sum, false); 347 SmallVector<Value *, 1> alloc_args; 348 alloc_args.push_back(sumC); 349 CallInst *pcall = 350 CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI); 351 352 // 353 // Insert code to split basicblock with a 354 // piece of hammock code. 355 // basicblock splits after buffer overflow check 356 // 357 ConstantPointerNull *zeroIntPtr = 358 ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1)); 359 ICmpInst *cmp = 360 dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, "")); 361 if (!CI->use_empty()) { 362 Value *result = 363 Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res"); 364 CI->replaceAllUsesWith(result); 365 } 366 SplitBlock(CI->getParent(), cmp); 367 Instruction *Brnch = 368 SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false); 369 370 Builder.SetInsertPoint(Brnch); 371 372 // store unique printf id in the buffer 373 // 374 SmallVector<Value *, 1> ZeroIdxList; 375 ConstantInt *zeroInt = 376 ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10)); 377 ZeroIdxList.push_back(zeroInt); 378 379 GetElementPtrInst *BufferIdx = GetElementPtrInst::Create( 380 nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch); 381 382 Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS); 383 Value *id_gep_cast = 384 new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch); 385 386 new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast, Brnch); 387 388 SmallVector<Value *, 2> FourthIdxList; 389 ConstantInt *fourInt = 390 ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10)); 391 392 FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id 393 // the following GEP is the buffer pointer 394 BufferIdx = GetElementPtrInst::Create(nullptr, pcall, FourthIdxList, 395 "PrintBuffGep", Brnch); 396 397 Type *Int32Ty = Type::getInt32Ty(Ctx); 398 Type *Int64Ty = Type::getInt64Ty(Ctx); 399 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() && 400 ArgCount <= OpConvSpecifiers.size(); 401 ArgCount++) { 402 Value *Arg = CI->getArgOperand(ArgCount); 403 Type *ArgType = Arg->getType(); 404 SmallVector<Value *, 32> WhatToStore; 405 if (ArgType->isFPOrFPVectorTy() && !isa<VectorType>(ArgType)) { 406 Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty; 407 if (OpConvSpecifiers[ArgCount - 1] == 'f') { 408 if (auto *FpCons = dyn_cast<ConstantFP>(Arg)) { 409 APFloat Val(FpCons->getValueAPF()); 410 bool Lost = false; 411 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 412 &Lost); 413 Arg = ConstantFP::get(Ctx, Val); 414 IType = Int32Ty; 415 } else if (auto *FpExt = dyn_cast<FPExtInst>(Arg)) { 416 if (FpExt->getType()->isDoubleTy() && 417 FpExt->getOperand(0)->getType()->isFloatTy()) { 418 Arg = FpExt->getOperand(0); 419 IType = Int32Ty; 420 } 421 } 422 } 423 Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch); 424 WhatToStore.push_back(Arg); 425 } else if (ArgType->getTypeID() == Type::PointerTyID) { 426 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) { 427 const char *S = NonLiteralStr; 428 if (auto *ConstExpr = dyn_cast<ConstantExpr>(Arg)) { 429 auto *GV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 430 if (GV && GV->hasInitializer()) { 431 Constant *Init = GV->getInitializer(); 432 bool IsZeroValue = Init->isZeroValue(); 433 auto *CA = dyn_cast<ConstantDataArray>(Init); 434 if (IsZeroValue || (CA && CA->isString())) { 435 S = IsZeroValue ? "" : CA->getAsCString().data(); 436 } 437 } 438 } 439 size_t SizeStr = strlen(S) + 1; 440 size_t Rem = SizeStr % DWORD_ALIGN; 441 size_t NSizeStr = 0; 442 if (Rem) { 443 NSizeStr = SizeStr + (DWORD_ALIGN - Rem); 444 } else { 445 NSizeStr = SizeStr; 446 } 447 if (S[0]) { 448 char *MyNewStr = new char[NSizeStr](); 449 strcpy(MyNewStr, S); 450 int NumInts = NSizeStr / 4; 451 int CharC = 0; 452 while (NumInts) { 453 int ANum = *(int *)(MyNewStr + CharC); 454 CharC += 4; 455 NumInts--; 456 Value *ANumV = ConstantInt::get(Int32Ty, ANum, false); 457 WhatToStore.push_back(ANumV); 458 } 459 delete[] MyNewStr; 460 } else { 461 // Empty string, give a hint to RT it is no NULL 462 Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false); 463 WhatToStore.push_back(ANumV); 464 } 465 } else { 466 uint64_t Size = TD->getTypeAllocSizeInBits(ArgType); 467 assert((Size == 32 || Size == 64) && "unsupported size"); 468 Type *DstType = (Size == 32) ? Int32Ty : Int64Ty; 469 Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch); 470 WhatToStore.push_back(Arg); 471 } 472 } else if (isa<FixedVectorType>(ArgType)) { 473 Type *IType = NULL; 474 uint32_t EleCount = cast<FixedVectorType>(ArgType)->getNumElements(); 475 uint32_t EleSize = ArgType->getScalarSizeInBits(); 476 uint32_t TotalSize = EleCount * EleSize; 477 if (EleCount == 3) { 478 ShuffleVectorInst *Shuffle = 479 new ShuffleVectorInst(Arg, Arg, ArrayRef<int>{0, 1, 2, 2}); 480 Shuffle->insertBefore(Brnch); 481 Arg = Shuffle; 482 ArgType = Arg->getType(); 483 TotalSize += EleSize; 484 } 485 switch (EleSize) { 486 default: 487 EleCount = TotalSize / 64; 488 IType = Type::getInt64Ty(ArgType->getContext()); 489 break; 490 case 8: 491 if (EleCount >= 8) { 492 EleCount = TotalSize / 64; 493 IType = Type::getInt64Ty(ArgType->getContext()); 494 } else if (EleCount >= 3) { 495 EleCount = 1; 496 IType = Type::getInt32Ty(ArgType->getContext()); 497 } else { 498 EleCount = 1; 499 IType = Type::getInt16Ty(ArgType->getContext()); 500 } 501 break; 502 case 16: 503 if (EleCount >= 3) { 504 EleCount = TotalSize / 64; 505 IType = Type::getInt64Ty(ArgType->getContext()); 506 } else { 507 EleCount = 1; 508 IType = Type::getInt32Ty(ArgType->getContext()); 509 } 510 break; 511 } 512 if (EleCount > 1) { 513 IType = FixedVectorType::get(IType, EleCount); 514 } 515 Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch); 516 WhatToStore.push_back(Arg); 517 } else { 518 WhatToStore.push_back(Arg); 519 } 520 for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) { 521 Value *TheBtCast = WhatToStore[I]; 522 unsigned ArgSize = 523 TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8; 524 SmallVector<Value *, 1> BuffOffset; 525 BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize)); 526 527 Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1); 528 Value *CastedGEP = 529 new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch); 530 StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch); 531 LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n" 532 << *StBuff << '\n'); 533 (void)StBuff; 534 if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands()) 535 break; 536 BufferIdx = GetElementPtrInst::Create(nullptr, BufferIdx, BuffOffset, 537 "PrintBuffNextPtr", Brnch); 538 LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n" 539 << *BufferIdx << '\n'); 540 } 541 } 542 } 543 } 544 545 // erase the printf calls 546 for (auto CI : Printfs) 547 CI->eraseFromParent(); 548 549 Printfs.clear(); 550 return true; 551 } 552 553 bool AMDGPUPrintfRuntimeBindingImpl::run(Module &M) { 554 Triple TT(M.getTargetTriple()); 555 if (TT.getArch() == Triple::r600) 556 return false; 557 558 auto PrintfFunction = M.getFunction("printf"); 559 if (!PrintfFunction) 560 return false; 561 562 for (auto &U : PrintfFunction->uses()) { 563 if (auto *CI = dyn_cast<CallInst>(U.getUser())) { 564 if (CI->isCallee(&U)) 565 Printfs.push_back(CI); 566 } 567 } 568 569 if (Printfs.empty()) 570 return false; 571 572 if (auto HostcallFunction = M.getFunction("__ockl_hostcall_internal")) { 573 for (auto &U : HostcallFunction->uses()) { 574 if (auto *CI = dyn_cast<CallInst>(U.getUser())) { 575 M.getContext().emitError( 576 CI, "Cannot use both printf and hostcall in the same module"); 577 } 578 } 579 } 580 581 TD = &M.getDataLayout(); 582 583 return lowerPrintfForGpu(M); 584 } 585 586 bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) { 587 auto GetDT = [this](Function &F) -> DominatorTree & { 588 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 589 }; 590 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 591 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 592 }; 593 594 return AMDGPUPrintfRuntimeBindingImpl(GetDT, GetTLI).run(M); 595 } 596 597 PreservedAnalyses 598 AMDGPUPrintfRuntimeBindingPass::run(Module &M, ModuleAnalysisManager &AM) { 599 FunctionAnalysisManager &FAM = 600 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 601 auto GetDT = [&FAM](Function &F) -> DominatorTree & { 602 return FAM.getResult<DominatorTreeAnalysis>(F); 603 }; 604 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 605 return FAM.getResult<TargetLibraryAnalysis>(F); 606 }; 607 bool Changed = AMDGPUPrintfRuntimeBindingImpl(GetDT, GetTLI).run(M); 608 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 609 } 610