xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPrintfRuntimeBinding.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // \file
9 //
10 // The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11 // later by the runtime.
12 //
13 // This pass traverses the functions in the module and converts
14 // each call to printf to a sequence of operations that
15 // store the following into the printf buffer:
16 // - format string (passed as a module's metadata unique ID)
17 // - bitwise copies of printf arguments
18 // The backend passes will need to store metadata in the kernel
19 //===----------------------------------------------------------------------===//
20 
21 #include "AMDGPU.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/DataExtractor.h"
31 #include "llvm/TargetParser/Triple.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "printfToRuntime"
37 enum { DWORD_ALIGN = 4 };
38 
39 namespace {
40 class AMDGPUPrintfRuntimeBinding final : public ModulePass {
41 
42 public:
43   static char ID;
44 
45   explicit AMDGPUPrintfRuntimeBinding();
46 
47 private:
48   bool runOnModule(Module &M) override;
49 };
50 
51 class AMDGPUPrintfRuntimeBindingImpl {
52 public:
53   AMDGPUPrintfRuntimeBindingImpl() = default;
54   bool run(Module &M);
55 
56 private:
57   void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
58                                StringRef fmt, size_t num_ops) const;
59 
60   bool lowerPrintfForGpu(Module &M);
61 
62   const DataLayout *TD;
63   SmallVector<CallInst *, 32> Printfs;
64 };
65 } // namespace
66 
67 char AMDGPUPrintfRuntimeBinding::ID = 0;
68 
69 INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
70                       "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
71                       false, false)
72 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
74 INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
75                     "AMDGPU Printf lowering", false, false)
76 
77 char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
78 
79 namespace llvm {
80 ModulePass *createAMDGPUPrintfRuntimeBinding() {
81   return new AMDGPUPrintfRuntimeBinding();
82 }
83 } // namespace llvm
84 
85 AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding() : ModulePass(ID) {
86   initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
87 }
88 
89 void AMDGPUPrintfRuntimeBindingImpl::getConversionSpecifiers(
90     SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
91     size_t NumOps) const {
92   // not all format characters are collected.
93   // At this time the format characters of interest
94   // are %p and %s, which use to know if we
95   // are either storing a literal string or a
96   // pointer to the printf buffer.
97   static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
98   size_t CurFmtSpecifierIdx = 0;
99   size_t PrevFmtSpecifierIdx = 0;
100 
101   while ((CurFmtSpecifierIdx = Fmt.find_first_of(
102               ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
103     bool ArgDump = false;
104     StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
105                                   CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
106     size_t pTag = CurFmt.find_last_of('%');
107     if (pTag != StringRef::npos) {
108       ArgDump = true;
109       while (pTag && CurFmt[--pTag] == '%') {
110         ArgDump = !ArgDump;
111       }
112     }
113 
114     if (ArgDump)
115       OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
116 
117     PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
118   }
119 }
120 
121 static bool shouldPrintAsStr(char Specifier, Type *OpType) {
122   return Specifier == 's' && isa<PointerType>(OpType);
123 }
124 
125 constexpr StringLiteral NonLiteralStr("???");
126 static_assert(NonLiteralStr.size() == 3);
127 
128 static StringRef getAsConstantStr(Value *V) {
129   StringRef S;
130   if (!getConstantStringInfo(V, S))
131     S = NonLiteralStr;
132 
133   return S;
134 }
135 
136 static void diagnoseInvalidFormatString(const CallBase *CI) {
137   DiagnosticInfoUnsupported UnsupportedFormatStr(
138       *CI->getParent()->getParent(),
139       "printf format string must be a trivially resolved constant string "
140       "global variable",
141       CI->getDebugLoc());
142   CI->getContext().diagnose(UnsupportedFormatStr);
143 }
144 
145 bool AMDGPUPrintfRuntimeBindingImpl::lowerPrintfForGpu(Module &M) {
146   LLVMContext &Ctx = M.getContext();
147   IRBuilder<> Builder(Ctx);
148   Type *I32Ty = Type::getInt32Ty(Ctx);
149 
150   // Instead of creating global variables, the printf format strings are
151   // extracted and passed as metadata. This avoids polluting llvm's symbol
152   // tables in this module. Metadata is going to be extracted by the backend
153   // passes and inserted into the OpenCL binary as appropriate.
154   NamedMDNode *metaD = M.getOrInsertNamedMetadata("llvm.printf.fmts");
155   unsigned UniqID = metaD->getNumOperands();
156 
157   for (auto *CI : Printfs) {
158     unsigned NumOps = CI->arg_size();
159 
160     SmallString<16> OpConvSpecifiers;
161     Value *Op = CI->getArgOperand(0);
162 
163     StringRef FormatStr;
164     if (!getConstantStringInfo(Op, FormatStr)) {
165       Value *Stripped = Op->stripPointerCasts();
166       if (!isa<UndefValue>(Stripped) && !isa<ConstantPointerNull>(Stripped))
167         diagnoseInvalidFormatString(CI);
168       continue;
169     }
170 
171     // We need this call to ascertain that we are printing a string or a
172     // pointer. It takes out the specifiers and fills up the first arg.
173     getConversionSpecifiers(OpConvSpecifiers, FormatStr, NumOps - 1);
174 
175     // Add metadata for the string
176     std::string AStreamHolder;
177     raw_string_ostream Sizes(AStreamHolder);
178     int Sum = DWORD_ALIGN;
179     Sizes << CI->arg_size() - 1;
180     Sizes << ':';
181     for (unsigned ArgCount = 1;
182          ArgCount < CI->arg_size() && ArgCount <= OpConvSpecifiers.size();
183          ArgCount++) {
184       Value *Arg = CI->getArgOperand(ArgCount);
185       Type *ArgType = Arg->getType();
186       unsigned ArgSize = TD->getTypeAllocSize(ArgType);
187       //
188       // ArgSize by design should be a multiple of DWORD_ALIGN,
189       // expand the arguments that do not follow this rule.
190       //
191       if (ArgSize % DWORD_ALIGN != 0) {
192         Type *ResType = Type::getInt32Ty(Ctx);
193         if (auto *VecType = dyn_cast<VectorType>(ArgType))
194           ResType = VectorType::get(ResType, VecType->getElementCount());
195         Builder.SetInsertPoint(CI);
196         Builder.SetCurrentDebugLocation(CI->getDebugLoc());
197 
198         if (ArgType->isFloatingPointTy()) {
199           Arg = Builder.CreateBitCast(
200               Arg,
201               IntegerType::getIntNTy(Ctx, ArgType->getPrimitiveSizeInBits()));
202         }
203 
204         if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
205             OpConvSpecifiers[ArgCount - 1] == 'X' ||
206             OpConvSpecifiers[ArgCount - 1] == 'u' ||
207             OpConvSpecifiers[ArgCount - 1] == 'o')
208           Arg = Builder.CreateZExt(Arg, ResType);
209         else
210           Arg = Builder.CreateSExt(Arg, ResType);
211         ArgType = Arg->getType();
212         ArgSize = TD->getTypeAllocSize(ArgType);
213         CI->setOperand(ArgCount, Arg);
214       }
215       if (OpConvSpecifiers[ArgCount - 1] == 'f') {
216         ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
217         if (FpCons)
218           ArgSize = 4;
219         else {
220           FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
221           if (FpExt && FpExt->getType()->isDoubleTy() &&
222               FpExt->getOperand(0)->getType()->isFloatTy())
223             ArgSize = 4;
224         }
225       }
226       if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType))
227         ArgSize = alignTo(getAsConstantStr(Arg).size() + 1, 4);
228 
229       LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
230                         << " for type: " << *ArgType << '\n');
231       Sizes << ArgSize << ':';
232       Sum += ArgSize;
233     }
234     LLVM_DEBUG(dbgs() << "Printf format string in source = " << FormatStr
235                       << '\n');
236     for (char C : FormatStr) {
237       // Rest of the C escape sequences (e.g. \') are handled correctly
238       // by the MDParser
239       switch (C) {
240       case '\a':
241         Sizes << "\\a";
242         break;
243       case '\b':
244         Sizes << "\\b";
245         break;
246       case '\f':
247         Sizes << "\\f";
248         break;
249       case '\n':
250         Sizes << "\\n";
251         break;
252       case '\r':
253         Sizes << "\\r";
254         break;
255       case '\v':
256         Sizes << "\\v";
257         break;
258       case ':':
259         // ':' cannot be scanned by Flex, as it is defined as a delimiter
260         // Replace it with it's octal representation \72
261         Sizes << "\\72";
262         break;
263       default:
264         Sizes << C;
265         break;
266       }
267     }
268 
269     // Insert the printf_alloc call
270     Builder.SetInsertPoint(CI);
271     Builder.SetCurrentDebugLocation(CI->getDebugLoc());
272 
273     AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
274                                             Attribute::NoUnwind);
275 
276     Type *SizetTy = Type::getInt32Ty(Ctx);
277 
278     Type *Tys_alloc[1] = {SizetTy};
279     Type *I8Ty = Type::getInt8Ty(Ctx);
280     Type *I8Ptr = PointerType::get(I8Ty, 1);
281     FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
282     FunctionCallee PrintfAllocFn =
283         M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
284 
285     LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
286     std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str();
287     MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
288 
289     MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
290     metaD->addOperand(myMD);
291     Value *sumC = ConstantInt::get(SizetTy, Sum, false);
292     SmallVector<Value *, 1> alloc_args;
293     alloc_args.push_back(sumC);
294     CallInst *pcall = CallInst::Create(PrintfAllocFn, alloc_args,
295                                        "printf_alloc_fn", CI->getIterator());
296 
297     //
298     // Insert code to split basicblock with a
299     // piece of hammock code.
300     // basicblock splits after buffer overflow check
301     //
302     ConstantPointerNull *zeroIntPtr =
303         ConstantPointerNull::get(PointerType::get(I8Ty, 1));
304     auto *cmp = cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
305     if (!CI->use_empty()) {
306       Value *result =
307           Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
308       CI->replaceAllUsesWith(result);
309     }
310     SplitBlock(CI->getParent(), cmp);
311     Instruction *Brnch =
312         SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
313     BasicBlock::iterator BrnchPoint = Brnch->getIterator();
314 
315     Builder.SetInsertPoint(Brnch);
316 
317     // store unique printf id in the buffer
318     //
319     GetElementPtrInst *BufferIdx = GetElementPtrInst::Create(
320         I8Ty, pcall, ConstantInt::get(Ctx, APInt(32, 0)), "PrintBuffID",
321         BrnchPoint);
322 
323     Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
324     Value *id_gep_cast =
325         new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", BrnchPoint);
326 
327     new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast, BrnchPoint);
328 
329     // 1st 4 bytes hold the printf_id
330     // the following GEP is the buffer pointer
331     BufferIdx = GetElementPtrInst::Create(I8Ty, pcall,
332                                           ConstantInt::get(Ctx, APInt(32, 4)),
333                                           "PrintBuffGep", BrnchPoint);
334 
335     Type *Int32Ty = Type::getInt32Ty(Ctx);
336     for (unsigned ArgCount = 1;
337          ArgCount < CI->arg_size() && ArgCount <= OpConvSpecifiers.size();
338          ArgCount++) {
339       Value *Arg = CI->getArgOperand(ArgCount);
340       Type *ArgType = Arg->getType();
341       SmallVector<Value *, 32> WhatToStore;
342       if (ArgType->isFPOrFPVectorTy() && !isa<VectorType>(ArgType)) {
343         if (OpConvSpecifiers[ArgCount - 1] == 'f') {
344           if (auto *FpCons = dyn_cast<ConstantFP>(Arg)) {
345             APFloat Val(FpCons->getValueAPF());
346             bool Lost = false;
347             Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
348                         &Lost);
349             Arg = ConstantFP::get(Ctx, Val);
350           } else if (auto *FpExt = dyn_cast<FPExtInst>(Arg)) {
351             if (FpExt->getType()->isDoubleTy() &&
352                 FpExt->getOperand(0)->getType()->isFloatTy()) {
353               Arg = FpExt->getOperand(0);
354             }
355           }
356         }
357         WhatToStore.push_back(Arg);
358       } else if (isa<PointerType>(ArgType)) {
359         if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
360           StringRef S = getAsConstantStr(Arg);
361           if (!S.empty()) {
362             const uint64_t ReadSize = 4;
363 
364             DataExtractor Extractor(S, /*IsLittleEndian=*/true, 8);
365             DataExtractor::Cursor Offset(0);
366             while (Offset && Offset.tell() < S.size()) {
367               uint64_t ReadNow = std::min(ReadSize, S.size() - Offset.tell());
368               uint64_t ReadBytes = 0;
369               switch (ReadNow) {
370               default: llvm_unreachable("min(4, X) > 4?");
371               case 1:
372                 ReadBytes = Extractor.getU8(Offset);
373                 break;
374               case 2:
375                 ReadBytes = Extractor.getU16(Offset);
376                 break;
377               case 3:
378                 ReadBytes = Extractor.getU24(Offset);
379                 break;
380               case 4:
381                 ReadBytes = Extractor.getU32(Offset);
382                 break;
383               }
384 
385               cantFail(Offset.takeError(),
386                        "failed to read bytes from constant array");
387 
388               APInt IntVal(8 * ReadSize, ReadBytes);
389 
390               // TODO: Should not bothering aligning up.
391               if (ReadNow < ReadSize)
392                 IntVal = IntVal.zext(8 * ReadSize);
393 
394               Type *IntTy = Type::getIntNTy(Ctx, IntVal.getBitWidth());
395               WhatToStore.push_back(ConstantInt::get(IntTy, IntVal));
396             }
397           } else {
398             // Empty string, give a hint to RT it is no NULL
399             Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
400             WhatToStore.push_back(ANumV);
401           }
402         } else {
403           WhatToStore.push_back(Arg);
404         }
405       } else {
406         WhatToStore.push_back(Arg);
407       }
408       for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
409         Value *TheBtCast = WhatToStore[I];
410         unsigned ArgSize = TD->getTypeAllocSize(TheBtCast->getType());
411         StoreInst *StBuff = new StoreInst(TheBtCast, BufferIdx, BrnchPoint);
412         LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
413                           << *StBuff << '\n');
414         (void)StBuff;
415         if (I + 1 == E && ArgCount + 1 == CI->arg_size())
416           break;
417         BufferIdx = GetElementPtrInst::Create(
418             I8Ty, BufferIdx, {ConstantInt::get(I32Ty, ArgSize)},
419             "PrintBuffNextPtr", BrnchPoint);
420         LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
421                           << *BufferIdx << '\n');
422       }
423     }
424   }
425 
426   // erase the printf calls
427   for (auto *CI : Printfs)
428     CI->eraseFromParent();
429 
430   Printfs.clear();
431   return true;
432 }
433 
434 bool AMDGPUPrintfRuntimeBindingImpl::run(Module &M) {
435   Triple TT(M.getTargetTriple());
436   if (TT.getArch() == Triple::r600)
437     return false;
438 
439   auto PrintfFunction = M.getFunction("printf");
440   if (!PrintfFunction || !PrintfFunction->isDeclaration())
441     return false;
442 
443   for (auto &U : PrintfFunction->uses()) {
444     if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
445       if (CI->isCallee(&U) && !CI->isNoBuiltin())
446         Printfs.push_back(CI);
447     }
448   }
449 
450   if (Printfs.empty())
451     return false;
452 
453   TD = &M.getDataLayout();
454 
455   return lowerPrintfForGpu(M);
456 }
457 
458 bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
459   return AMDGPUPrintfRuntimeBindingImpl().run(M);
460 }
461 
462 PreservedAnalyses
463 AMDGPUPrintfRuntimeBindingPass::run(Module &M, ModuleAnalysisManager &AM) {
464   bool Changed = AMDGPUPrintfRuntimeBindingImpl().run(M);
465   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
466 }
467