xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// \brief Analyzes if a function potentially memory bound and if a kernel
11 /// kernel may benefit from limiting number of waves to reduce cache thrashing.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUPerfHintAnalysis.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "amdgpu-perf-hint"
33 
34 static cl::opt<unsigned>
35     MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
36                    cl::desc("Function mem bound threshold in %"));
37 
38 static cl::opt<unsigned>
39     LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
40                     cl::desc("Kernel limit wave threshold in %"));
41 
42 static cl::opt<unsigned>
43     IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
44              cl::desc("Indirect access memory instruction weight"));
45 
46 static cl::opt<unsigned>
47     LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
48              cl::desc("Large stride memory access weight"));
49 
50 static cl::opt<unsigned>
51     LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
52                       cl::desc("Large stride memory access threshold"));
53 
54 STATISTIC(NumMemBound, "Number of functions marked as memory bound");
55 STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");
56 
57 char llvm::AMDGPUPerfHintAnalysis::ID = 0;
58 char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID;
59 
60 INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE,
61                 "Analysis if a function is memory bound", true, true)
62 
63 namespace {
64 
65 struct AMDGPUPerfHint {
66   friend AMDGPUPerfHintAnalysis;
67 
68 public:
69   AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
70                  const TargetLowering *TLI_)
71       : FIM(FIM_), TLI(TLI_) {}
72 
73   bool runOnFunction(Function &F);
74 
75 private:
76   struct MemAccessInfo {
77     const Value *V = nullptr;
78     const Value *Base = nullptr;
79     int64_t Offset = 0;
80     MemAccessInfo() = default;
81     bool isLargeStride(MemAccessInfo &Reference) const;
82 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
83     Printable print() const {
84       return Printable([this](raw_ostream &OS) {
85         OS << "Value: " << *V << '\n'
86            << "Base: " << *Base << " Offset: " << Offset << '\n';
87       });
88     }
89 #endif
90   };
91 
92   MemAccessInfo makeMemAccessInfo(Instruction *) const;
93 
94   MemAccessInfo LastAccess; // Last memory access info
95 
96   AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;
97 
98   const DataLayout *DL = nullptr;
99 
100   const TargetLowering *TLI;
101 
102   AMDGPUPerfHintAnalysis::FuncInfo *visit(const Function &F);
103   static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
104   static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);
105 
106   bool isIndirectAccess(const Instruction *Inst) const;
107 
108   /// Check if the instruction is large stride.
109   /// The purpose is to identify memory access pattern like:
110   /// x = a[i];
111   /// y = a[i+1000];
112   /// z = a[i+2000];
113   /// In the above example, the second and third memory access will be marked
114   /// large stride memory access.
115   bool isLargeStride(const Instruction *Inst);
116 
117   bool isGlobalAddr(const Value *V) const;
118   bool isLocalAddr(const Value *V) const;
119   bool isGlobalLoadUsedInBB(const Instruction &) const;
120 };
121 
122 static std::pair<const Value *, const Type *> getMemoryInstrPtrAndType(
123     const Instruction *Inst) {
124   if (auto LI = dyn_cast<LoadInst>(Inst))
125     return {LI->getPointerOperand(), LI->getType()};
126   if (auto SI = dyn_cast<StoreInst>(Inst))
127     return {SI->getPointerOperand(), SI->getValueOperand()->getType()};
128   if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst))
129     return {AI->getPointerOperand(), AI->getCompareOperand()->getType()};
130   if (auto AI = dyn_cast<AtomicRMWInst>(Inst))
131     return {AI->getPointerOperand(), AI->getValOperand()->getType()};
132   if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst))
133     return {MI->getRawDest(), Type::getInt8Ty(MI->getContext())};
134 
135   return {nullptr, nullptr};
136 }
137 
138 bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
139   LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
140   SmallSet<const Value *, 32> WorkSet;
141   SmallSet<const Value *, 32> Visited;
142   if (const Value *MO = getMemoryInstrPtrAndType(Inst).first) {
143     if (isGlobalAddr(MO))
144       WorkSet.insert(MO);
145   }
146 
147   while (!WorkSet.empty()) {
148     const Value *V = *WorkSet.begin();
149     WorkSet.erase(*WorkSet.begin());
150     if (!Visited.insert(V).second)
151       continue;
152     LLVM_DEBUG(dbgs() << "  check: " << *V << '\n');
153 
154     if (auto LD = dyn_cast<LoadInst>(V)) {
155       auto M = LD->getPointerOperand();
156       if (isGlobalAddr(M)) {
157         LLVM_DEBUG(dbgs() << "    is IA\n");
158         return true;
159       }
160       continue;
161     }
162 
163     if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
164       auto P = GEP->getPointerOperand();
165       WorkSet.insert(P);
166       for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
167         WorkSet.insert(GEP->getOperand(I));
168       continue;
169     }
170 
171     if (auto U = dyn_cast<UnaryInstruction>(V)) {
172       WorkSet.insert(U->getOperand(0));
173       continue;
174     }
175 
176     if (auto BO = dyn_cast<BinaryOperator>(V)) {
177       WorkSet.insert(BO->getOperand(0));
178       WorkSet.insert(BO->getOperand(1));
179       continue;
180     }
181 
182     if (auto S = dyn_cast<SelectInst>(V)) {
183       WorkSet.insert(S->getFalseValue());
184       WorkSet.insert(S->getTrueValue());
185       continue;
186     }
187 
188     if (auto E = dyn_cast<ExtractElementInst>(V)) {
189       WorkSet.insert(E->getVectorOperand());
190       continue;
191     }
192 
193     LLVM_DEBUG(dbgs() << "    dropped\n");
194   }
195 
196   LLVM_DEBUG(dbgs() << "  is not IA\n");
197   return false;
198 }
199 
200 // Returns true if the global load `I` is used in its own basic block.
201 bool AMDGPUPerfHint::isGlobalLoadUsedInBB(const Instruction &I) const {
202   const auto *Ld = dyn_cast<LoadInst>(&I);
203   if (!Ld)
204     return false;
205   if (!isGlobalAddr(Ld->getPointerOperand()))
206     return false;
207 
208   for (const User *Usr : Ld->users()) {
209     if (const Instruction *UsrInst = dyn_cast<Instruction>(Usr)) {
210       if (UsrInst->getParent() == I.getParent())
211         return true;
212     }
213   }
214 
215   return false;
216 }
217 
218 AMDGPUPerfHintAnalysis::FuncInfo *AMDGPUPerfHint::visit(const Function &F) {
219   AMDGPUPerfHintAnalysis::FuncInfo &FI = FIM[&F];
220 
221   LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');
222 
223   for (auto &B : F) {
224     LastAccess = MemAccessInfo();
225     unsigned UsedGlobalLoadsInBB = 0;
226     for (auto &I : B) {
227       if (const Type *Ty = getMemoryInstrPtrAndType(&I).second) {
228         unsigned Size = divideCeil(Ty->getPrimitiveSizeInBits(), 32);
229         // TODO: Check if the global load and its user are close to each other
230         // instead (Or do this analysis in GCNSchedStrategy?).
231         if (isGlobalLoadUsedInBB(I))
232           UsedGlobalLoadsInBB += Size;
233         if (isIndirectAccess(&I))
234           FI.IAMInstCost += Size;
235         if (isLargeStride(&I))
236           FI.LSMInstCost += Size;
237         FI.MemInstCost += Size;
238         FI.InstCost += Size;
239         continue;
240       }
241       if (auto *CB = dyn_cast<CallBase>(&I)) {
242         Function *Callee = CB->getCalledFunction();
243         if (!Callee || Callee->isDeclaration()) {
244           ++FI.InstCost;
245           continue;
246         }
247         if (&F == Callee) // Handle immediate recursion
248           continue;
249 
250         auto Loc = FIM.find(Callee);
251         if (Loc == FIM.end())
252           continue;
253 
254         FI.MemInstCost += Loc->second.MemInstCost;
255         FI.InstCost += Loc->second.InstCost;
256         FI.IAMInstCost += Loc->second.IAMInstCost;
257         FI.LSMInstCost += Loc->second.LSMInstCost;
258       } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
259         TargetLoweringBase::AddrMode AM;
260         auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
261         AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
262         AM.HasBaseReg = !AM.BaseGV;
263         if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
264                                        GEP->getPointerAddressSpace()))
265           // Offset will likely be folded into load or store
266           continue;
267         ++FI.InstCost;
268       } else {
269         ++FI.InstCost;
270       }
271     }
272 
273     if (!FI.HasDenseGlobalMemAcc) {
274       unsigned GlobalMemAccPercentage = UsedGlobalLoadsInBB * 100 / B.size();
275       if (GlobalMemAccPercentage > 50) {
276         LLVM_DEBUG(dbgs() << "[HasDenseGlobalMemAcc] Set to true since "
277                           << B.getName() << " has " << GlobalMemAccPercentage
278                           << "% global memory access\n");
279         FI.HasDenseGlobalMemAcc = true;
280       }
281     }
282   }
283 
284   return &FI;
285 }
286 
287 bool AMDGPUPerfHint::runOnFunction(Function &F) {
288   const Module &M = *F.getParent();
289   DL = &M.getDataLayout();
290 
291   if (F.hasFnAttribute("amdgpu-wave-limiter") &&
292       F.hasFnAttribute("amdgpu-memory-bound"))
293     return false;
294 
295   const AMDGPUPerfHintAnalysis::FuncInfo *Info = visit(F);
296 
297   LLVM_DEBUG(dbgs() << F.getName() << " MemInst cost: " << Info->MemInstCost
298                     << '\n'
299                     << " IAMInst cost: " << Info->IAMInstCost << '\n'
300                     << " LSMInst cost: " << Info->LSMInstCost << '\n'
301                     << " TotalInst cost: " << Info->InstCost << '\n');
302 
303   bool Changed = false;
304 
305   if (isMemBound(*Info)) {
306     LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
307     NumMemBound++;
308     F.addFnAttr("amdgpu-memory-bound", "true");
309     Changed = true;
310   }
311 
312   if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(*Info)) {
313     LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
314     NumLimitWave++;
315     F.addFnAttr("amdgpu-wave-limiter", "true");
316     Changed = true;
317   }
318 
319   return Changed;
320 }
321 
322 bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
323   // Reverting optimal scheduling in favour of occupancy with basic block(s)
324   // having dense global memory access can potentially hurt performance.
325   if (FI.HasDenseGlobalMemAcc)
326     return true;
327 
328   return FI.MemInstCost * 100 / FI.InstCost > MemBoundThresh;
329 }
330 
331 bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
332   return ((FI.MemInstCost + FI.IAMInstCost * IAWeight +
333            FI.LSMInstCost * LSWeight) * 100 / FI.InstCost) > LimitWaveThresh;
334 }
335 
336 bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
337   if (auto PT = dyn_cast<PointerType>(V->getType())) {
338     unsigned As = PT->getAddressSpace();
339     // Flat likely points to global too.
340     return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS;
341   }
342   return false;
343 }
344 
345 bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
346   if (auto PT = dyn_cast<PointerType>(V->getType()))
347     return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
348   return false;
349 }
350 
351 bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
352   LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');
353 
354   MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
355   bool IsLargeStride = MAI.isLargeStride(LastAccess);
356   if (MAI.Base)
357     LastAccess = std::move(MAI);
358 
359   return IsLargeStride;
360 }
361 
362 AMDGPUPerfHint::MemAccessInfo
363 AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
364   MemAccessInfo MAI;
365   const Value *MO = getMemoryInstrPtrAndType(Inst).first;
366 
367   LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
368   // Do not treat local-addr memory access as large stride.
369   if (isLocalAddr(MO))
370     return MAI;
371 
372   MAI.V = MO;
373   MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
374   return MAI;
375 }
376 
377 bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
378     MemAccessInfo &Reference) const {
379 
380   if (!Base || !Reference.Base || Base != Reference.Base)
381     return false;
382 
383   uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
384                                             : Reference.Offset - Offset;
385   bool Result = Diff > LargeStrideThresh;
386   LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
387                << print() << "<=>\n"
388                << Reference.print() << "Result:" << Result << '\n');
389   return Result;
390 }
391 } // namespace
392 
393 bool AMDGPUPerfHintAnalysis::runOnSCC(CallGraphSCC &SCC) {
394   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
395   if (!TPC)
396     return false;
397 
398   const TargetMachine &TM = TPC->getTM<TargetMachine>();
399 
400   bool Changed = false;
401   for (CallGraphNode *I : SCC) {
402     Function *F = I->getFunction();
403     if (!F || F->isDeclaration())
404       continue;
405 
406     const TargetSubtargetInfo *ST = TM.getSubtargetImpl(*F);
407     AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());
408 
409     if (Analyzer.runOnFunction(*F))
410       Changed = true;
411   }
412 
413   return Changed;
414 }
415 
416 bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
417   auto FI = FIM.find(F);
418   if (FI == FIM.end())
419     return false;
420 
421   return AMDGPUPerfHint::isMemBound(FI->second);
422 }
423 
424 bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
425   auto FI = FIM.find(F);
426   if (FI == FIM.end())
427     return false;
428 
429   return AMDGPUPerfHint::needLimitWave(FI->second);
430 }
431