xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp (revision 656d68a711952ac2b92ed258502978c5ba1dbc73)
1 //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// \brief Analyzes if a function potentially memory bound and if a kernel
11 /// kernel may benefit from limiting number of waves to reduce cache thrashing.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUPerfHintAnalysis.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "amdgpu-perf-hint"
33 
34 static cl::opt<unsigned>
35     MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
36                    cl::desc("Function mem bound threshold in %"));
37 
38 static cl::opt<unsigned>
39     LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
40                     cl::desc("Kernel limit wave threshold in %"));
41 
42 static cl::opt<unsigned>
43     IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
44              cl::desc("Indirect access memory instruction weight"));
45 
46 static cl::opt<unsigned>
47     LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
48              cl::desc("Large stride memory access weight"));
49 
50 static cl::opt<unsigned>
51     LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
52                       cl::desc("Large stride memory access threshold"));
53 
54 STATISTIC(NumMemBound, "Number of functions marked as memory bound");
55 STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");
56 
57 char llvm::AMDGPUPerfHintAnalysis::ID = 0;
58 char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID;
59 
60 INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE,
61                 "Analysis if a function is memory bound", true, true)
62 
63 namespace {
64 
65 struct AMDGPUPerfHint {
66   friend AMDGPUPerfHintAnalysis;
67 
68 public:
69   AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
70                  const TargetLowering *TLI_)
71       : FIM(FIM_), DL(nullptr), TLI(TLI_) {}
72 
73   bool runOnFunction(Function &F);
74 
75 private:
76   struct MemAccessInfo {
77     const Value *V;
78     const Value *Base;
79     int64_t Offset;
80     MemAccessInfo() : V(nullptr), Base(nullptr), Offset(0) {}
81     bool isLargeStride(MemAccessInfo &Reference) const;
82 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
83     Printable print() const {
84       return Printable([this](raw_ostream &OS) {
85         OS << "Value: " << *V << '\n'
86            << "Base: " << *Base << " Offset: " << Offset << '\n';
87       });
88     }
89 #endif
90   };
91 
92   MemAccessInfo makeMemAccessInfo(Instruction *) const;
93 
94   MemAccessInfo LastAccess; // Last memory access info
95 
96   AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;
97 
98   const DataLayout *DL;
99 
100   const TargetLowering *TLI;
101 
102   AMDGPUPerfHintAnalysis::FuncInfo *visit(const Function &F);
103   static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
104   static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);
105 
106   bool isIndirectAccess(const Instruction *Inst) const;
107 
108   /// Check if the instruction is large stride.
109   /// The purpose is to identify memory access pattern like:
110   /// x = a[i];
111   /// y = a[i+1000];
112   /// z = a[i+2000];
113   /// In the above example, the second and third memory access will be marked
114   /// large stride memory access.
115   bool isLargeStride(const Instruction *Inst);
116 
117   bool isGlobalAddr(const Value *V) const;
118   bool isLocalAddr(const Value *V) const;
119   bool isConstantAddr(const Value *V) const;
120 };
121 
122 static const Value *getMemoryInstrPtr(const Instruction *Inst) {
123   if (auto LI = dyn_cast<LoadInst>(Inst)) {
124     return LI->getPointerOperand();
125   }
126   if (auto SI = dyn_cast<StoreInst>(Inst)) {
127     return SI->getPointerOperand();
128   }
129   if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst)) {
130     return AI->getPointerOperand();
131   }
132   if (auto AI = dyn_cast<AtomicRMWInst>(Inst)) {
133     return AI->getPointerOperand();
134   }
135   if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
136     return MI->getRawDest();
137   }
138 
139   return nullptr;
140 }
141 
142 bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
143   LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
144   SmallSet<const Value *, 32> WorkSet;
145   SmallSet<const Value *, 32> Visited;
146   if (const Value *MO = getMemoryInstrPtr(Inst)) {
147     if (isGlobalAddr(MO))
148       WorkSet.insert(MO);
149   }
150 
151   while (!WorkSet.empty()) {
152     const Value *V = *WorkSet.begin();
153     WorkSet.erase(*WorkSet.begin());
154     if (!Visited.insert(V).second)
155       continue;
156     LLVM_DEBUG(dbgs() << "  check: " << *V << '\n');
157 
158     if (auto LD = dyn_cast<LoadInst>(V)) {
159       auto M = LD->getPointerOperand();
160       if (isGlobalAddr(M) || isLocalAddr(M) || isConstantAddr(M)) {
161         LLVM_DEBUG(dbgs() << "    is IA\n");
162         return true;
163       }
164       continue;
165     }
166 
167     if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
168       auto P = GEP->getPointerOperand();
169       WorkSet.insert(P);
170       for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
171         WorkSet.insert(GEP->getOperand(I));
172       continue;
173     }
174 
175     if (auto U = dyn_cast<UnaryInstruction>(V)) {
176       WorkSet.insert(U->getOperand(0));
177       continue;
178     }
179 
180     if (auto BO = dyn_cast<BinaryOperator>(V)) {
181       WorkSet.insert(BO->getOperand(0));
182       WorkSet.insert(BO->getOperand(1));
183       continue;
184     }
185 
186     if (auto S = dyn_cast<SelectInst>(V)) {
187       WorkSet.insert(S->getFalseValue());
188       WorkSet.insert(S->getTrueValue());
189       continue;
190     }
191 
192     if (auto E = dyn_cast<ExtractElementInst>(V)) {
193       WorkSet.insert(E->getVectorOperand());
194       continue;
195     }
196 
197     LLVM_DEBUG(dbgs() << "    dropped\n");
198   }
199 
200   LLVM_DEBUG(dbgs() << "  is not IA\n");
201   return false;
202 }
203 
204 AMDGPUPerfHintAnalysis::FuncInfo *AMDGPUPerfHint::visit(const Function &F) {
205   AMDGPUPerfHintAnalysis::FuncInfo &FI = FIM[&F];
206 
207   LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');
208 
209   for (auto &B : F) {
210     LastAccess = MemAccessInfo();
211     for (auto &I : B) {
212       if (const Value *Ptr = getMemoryInstrPtr(&I)) {
213         unsigned Size = divideCeil(
214             Ptr->getType()->getPointerElementType()->getPrimitiveSizeInBits(),
215             32);
216         if (isIndirectAccess(&I))
217           FI.IAMInstCost += Size;
218         if (isLargeStride(&I))
219           FI.LSMInstCost += Size;
220         FI.MemInstCost += Size;
221         FI.InstCost += Size;
222         continue;
223       }
224       if (auto *CB = dyn_cast<CallBase>(&I)) {
225         Function *Callee = CB->getCalledFunction();
226         if (!Callee || Callee->isDeclaration()) {
227           ++FI.InstCost;
228           continue;
229         }
230         if (&F == Callee) // Handle immediate recursion
231           continue;
232 
233         auto Loc = FIM.find(Callee);
234         if (Loc == FIM.end())
235           continue;
236 
237         FI.MemInstCost += Loc->second.MemInstCost;
238         FI.InstCost += Loc->second.InstCost;
239         FI.IAMInstCost += Loc->second.IAMInstCost;
240         FI.LSMInstCost += Loc->second.LSMInstCost;
241       } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
242         TargetLoweringBase::AddrMode AM;
243         auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
244         AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
245         AM.HasBaseReg = !AM.BaseGV;
246         if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
247                                        GEP->getPointerAddressSpace()))
248           // Offset will likely be folded into load or store
249           continue;
250         ++FI.InstCost;
251       } else {
252         ++FI.InstCost;
253       }
254     }
255   }
256 
257   return &FI;
258 }
259 
260 bool AMDGPUPerfHint::runOnFunction(Function &F) {
261   const Module &M = *F.getParent();
262   DL = &M.getDataLayout();
263 
264   if (F.hasFnAttribute("amdgpu-wave-limiter") &&
265       F.hasFnAttribute("amdgpu-memory-bound"))
266     return false;
267 
268   const AMDGPUPerfHintAnalysis::FuncInfo *Info = visit(F);
269 
270   LLVM_DEBUG(dbgs() << F.getName() << " MemInst cost: " << Info->MemInstCost
271                     << '\n'
272                     << " IAMInst cost: " << Info->IAMInstCost << '\n'
273                     << " LSMInst cost: " << Info->LSMInstCost << '\n'
274                     << " TotalInst cost: " << Info->InstCost << '\n');
275 
276   if (isMemBound(*Info)) {
277     LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
278     NumMemBound++;
279     F.addFnAttr("amdgpu-memory-bound", "true");
280   }
281 
282   if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(*Info)) {
283     LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
284     NumLimitWave++;
285     F.addFnAttr("amdgpu-wave-limiter", "true");
286   }
287 
288   return true;
289 }
290 
291 bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
292   return FI.MemInstCost * 100 / FI.InstCost > MemBoundThresh;
293 }
294 
295 bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
296   return ((FI.MemInstCost + FI.IAMInstCost * IAWeight +
297            FI.LSMInstCost * LSWeight) * 100 / FI.InstCost) > LimitWaveThresh;
298 }
299 
300 bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
301   if (auto PT = dyn_cast<PointerType>(V->getType())) {
302     unsigned As = PT->getAddressSpace();
303     // Flat likely points to global too.
304     return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS;
305   }
306   return false;
307 }
308 
309 bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
310   if (auto PT = dyn_cast<PointerType>(V->getType()))
311     return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
312   return false;
313 }
314 
315 bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
316   LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');
317 
318   MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
319   bool IsLargeStride = MAI.isLargeStride(LastAccess);
320   if (MAI.Base)
321     LastAccess = std::move(MAI);
322 
323   return IsLargeStride;
324 }
325 
326 AMDGPUPerfHint::MemAccessInfo
327 AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
328   MemAccessInfo MAI;
329   const Value *MO = getMemoryInstrPtr(Inst);
330 
331   LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
332   // Do not treat local-addr memory access as large stride.
333   if (isLocalAddr(MO))
334     return MAI;
335 
336   MAI.V = MO;
337   MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
338   return MAI;
339 }
340 
341 bool AMDGPUPerfHint::isConstantAddr(const Value *V) const {
342   if (auto PT = dyn_cast<PointerType>(V->getType())) {
343     unsigned As = PT->getAddressSpace();
344     return As == AMDGPUAS::CONSTANT_ADDRESS ||
345            As == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
346   }
347   return false;
348 }
349 
350 bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
351     MemAccessInfo &Reference) const {
352 
353   if (!Base || !Reference.Base || Base != Reference.Base)
354     return false;
355 
356   uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
357                                             : Reference.Offset - Offset;
358   bool Result = Diff > LargeStrideThresh;
359   LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
360                << print() << "<=>\n"
361                << Reference.print() << "Result:" << Result << '\n');
362   return Result;
363 }
364 } // namespace
365 
366 bool AMDGPUPerfHintAnalysis::runOnSCC(CallGraphSCC &SCC) {
367   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
368   if (!TPC)
369     return false;
370 
371   const TargetMachine &TM = TPC->getTM<TargetMachine>();
372 
373   bool Changed = false;
374   for (CallGraphNode *I : SCC) {
375     Function *F = I->getFunction();
376     if (!F || F->isDeclaration())
377       continue;
378 
379     const TargetSubtargetInfo *ST = TM.getSubtargetImpl(*F);
380     AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());
381 
382     if (Analyzer.runOnFunction(*F))
383       Changed = true;
384   }
385 
386   return Changed;
387 }
388 
389 bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
390   auto FI = FIM.find(F);
391   if (FI == FIM.end())
392     return false;
393 
394   return AMDGPUPerfHint::isMemBound(FI->second);
395 }
396 
397 bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
398   auto FI = FIM.find(F);
399   if (FI == FIM.end())
400     return false;
401 
402   return AMDGPUPerfHint::needLimitWave(FI->second);
403 }
404