xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates local data store, LDS, uses from non-kernel functions.
10 // LDS is contiguous memory allocated per kernel execution.
11 //
12 // Background.
13 //
14 // The programming model is global variables, or equivalently function local
15 // static variables, accessible from kernels or other functions. For uses from
16 // kernels this is straightforward - assign an integer to the kernel for the
17 // memory required by all the variables combined, allocate them within that.
18 // For uses from functions there are performance tradeoffs to choose between.
19 //
20 // This model means the GPU runtime can specify the amount of memory allocated.
21 // If this is more than the kernel assumed, the excess can be made available
22 // using a language specific feature, which IR represents as a variable with
23 // no initializer. This feature is not yet implemented for non-kernel functions.
24 // This lowering could be extended to handle that use case, but would probably
25 // require closer integration with promoteAllocaToLDS.
26 //
27 // Consequences of this GPU feature:
28 // - memory is limited and exceeding it halts compilation
29 // - a global accessed by one kernel exists independent of other kernels
30 // - a global exists independent of simultaneous execution of the same kernel
31 // - the address of the global may be different from different kernels as they
32 //   do not alias, which permits only allocating variables they use
33 // - if the address is allowed to differ, functions need help to find it
34 //
35 // Uses from kernels are implemented here by grouping them in a per-kernel
36 // struct instance. This duplicates the variables, accurately modelling their
37 // aliasing properties relative to a single global representation. It also
38 // permits control over alignment via padding.
39 //
40 // Uses from functions are more complicated and the primary purpose of this
41 // IR pass. Several different lowering are chosen between to meet requirements
42 // to avoid allocating any LDS where it is not necessary, as that impacts
43 // occupancy and may fail the compilation, while not imposing overhead on a
44 // feature whose primary advantage over global memory is performance. The basic
45 // design goal is to avoid one kernel imposing overhead on another.
46 //
47 // Implementation.
48 //
49 // LDS variables with constant annotation or non-undef initializer are passed
50 // through unchanged for simplification or error diagnostics in later passes.
51 // Non-undef initializers are not yet implemented for LDS.
52 //
53 // LDS variables that are always allocated at the same address can be found
54 // by lookup at that address. Otherwise runtime information/cost is required.
55 //
56 // The simplest strategy possible is to group all LDS variables in a single
57 // struct and allocate that struct in every kernel such that the original
58 // variables are always at the same address. LDS is however a limited resource
59 // so this strategy is unusable in practice. It is not implemented here.
60 //
61 // Strategy | Precise allocation | Zero runtime cost | General purpose |
62 //  --------+--------------------+-------------------+-----------------+
63 //   Module |                 No |               Yes |             Yes |
64 //    Table |                Yes |                No |             Yes |
65 //   Kernel |                Yes |               Yes |              No |
66 //   Hybrid |                Yes |           Partial |             Yes |
67 //
68 // Module spends LDS memory to save cycles. Table spends cycles and global
69 // memory to save LDS. Kernel is as fast as kernel allocation but only works
70 // for variables that are known reachable from a single kernel. Hybrid picks
71 // between all three. When forced to choose between LDS and cycles it minimises
72 // LDS use.
73 
74 // The "module" lowering implemented here finds LDS variables which are used by
75 // non-kernel functions and creates a new struct with a field for each of those
76 // LDS variables. Variables that are only used from kernels are excluded.
77 // Kernels that do not use this struct are annoteated with the attribute
78 // amdgpu-elide-module-lds which allows the back end to elide the allocation.
79 //
80 // The "table" lowering implemented here has three components.
81 // First kernels are assigned a unique integer identifier which is available in
82 // functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
83 // is passed through a specific SGPR, thus works with indirect calls.
84 // Second, each kernel allocates LDS variables independent of other kernels and
85 // writes the addresses it chose for each variable into an array in consistent
86 // order. If the kernel does not allocate a given variable, it writes undef to
87 // the corresponding array location. These arrays are written to a constant
88 // table in the order matching the kernel unique integer identifier.
89 // Third, uses from non-kernel functions are replaced with a table lookup using
90 // the intrinsic function to find the address of the variable.
91 //
92 // "Kernel" lowering is only applicable for variables that are unambiguously
93 // reachable from exactly one kernel. For those cases, accesses to the variable
94 // can be lowered to ConstantExpr address of a struct instance specific to that
95 // one kernel. This is zero cost in space and in compute. It will raise a fatal
96 // error on any variable that might be reachable from multiple kernels and is
97 // thus most easily used as part of the hybrid lowering strategy.
98 //
99 // Hybrid lowering is a mixture of the above. It uses the zero cost kernel
100 // lowering where it can. It lowers the variable accessed by the greatest
101 // number of kernels using the module strategy as that is free for the first
102 // variable. Any futher variables that can be lowered with the module strategy
103 // without incurring LDS memory overhead are. The remaining ones are lowered
104 // via table.
105 //
106 // Consequences
107 // - No heuristics or user controlled magic numbers, hybrid is the right choice
108 // - Kernels that don't use functions (or have had them all inlined) are not
109 //   affected by any lowering for kernels that do.
110 // - Kernels that don't make indirect function calls are not affected by those
111 //   that do.
112 // - Variables which are used by lots of kernels, e.g. those injected by a
113 //   language runtime in most kernels, are expected to have no overhead
114 // - Implementations that instantiate templates per-kernel where those templates
115 //   use LDS are expected to hit the "Kernel" lowering strategy
116 // - The runtime properties impose a cost in compiler implementation complexity
117 //
118 //===----------------------------------------------------------------------===//
119 
120 #include "AMDGPU.h"
121 #include "Utils/AMDGPUBaseInfo.h"
122 #include "Utils/AMDGPUMemoryUtils.h"
123 #include "llvm/ADT/BitVector.h"
124 #include "llvm/ADT/DenseMap.h"
125 #include "llvm/ADT/DenseSet.h"
126 #include "llvm/ADT/STLExtras.h"
127 #include "llvm/ADT/SetOperations.h"
128 #include "llvm/ADT/SetVector.h"
129 #include "llvm/Analysis/CallGraph.h"
130 #include "llvm/IR/Constants.h"
131 #include "llvm/IR/DerivedTypes.h"
132 #include "llvm/IR/IRBuilder.h"
133 #include "llvm/IR/InlineAsm.h"
134 #include "llvm/IR/Instructions.h"
135 #include "llvm/IR/IntrinsicsAMDGPU.h"
136 #include "llvm/IR/MDBuilder.h"
137 #include "llvm/InitializePasses.h"
138 #include "llvm/Pass.h"
139 #include "llvm/Support/CommandLine.h"
140 #include "llvm/Support/Debug.h"
141 #include "llvm/Support/OptimizedStructLayout.h"
142 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
143 #include "llvm/Transforms/Utils/ModuleUtils.h"
144 
145 #include <tuple>
146 #include <vector>
147 
148 #include <cstdio>
149 
150 #define DEBUG_TYPE "amdgpu-lower-module-lds"
151 
152 using namespace llvm;
153 
154 namespace {
155 
156 cl::opt<bool> SuperAlignLDSGlobals(
157     "amdgpu-super-align-lds-globals",
158     cl::desc("Increase alignment of LDS if it is not on align boundary"),
159     cl::init(true), cl::Hidden);
160 
161 enum class LoweringKind { module, table, kernel, hybrid };
162 cl::opt<LoweringKind> LoweringKindLoc(
163     "amdgpu-lower-module-lds-strategy",
164     cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
165     cl::init(LoweringKind::module),
166     cl::values(
167         clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
168         clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
169         clEnumValN(
170             LoweringKind::kernel, "kernel",
171             "Lower variables reachable from one kernel, otherwise abort"),
172         clEnumValN(LoweringKind::hybrid, "hybrid",
173                    "Lower via mixture of above strategies")));
174 
175 bool isKernelLDS(const Function *F) {
176   // Some weirdness here. AMDGPU::isKernelCC does not call into
177   // AMDGPU::isKernel with the calling conv, it instead calls into
178   // isModuleEntryFunction which returns true for more calling conventions
179   // than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
180   // There's also a test that checks that the LDS lowering does not hit on
181   // a graphics shader, denoted amdgpu_ps, so stay with the limited case.
182   // Putting LDS in the name of the function to draw attention to this.
183   return AMDGPU::isKernel(F->getCallingConv());
184 }
185 
186 class AMDGPULowerModuleLDS : public ModulePass {
187 
188   static void
189   removeLocalVarsFromUsedLists(Module &M,
190                                const DenseSet<GlobalVariable *> &LocalVars) {
191     // The verifier rejects used lists containing an inttoptr of a constant
192     // so remove the variables from these lists before replaceAllUsesWith
193     SmallPtrSet<Constant *, 8> LocalVarsSet;
194     for (GlobalVariable *LocalVar : LocalVars)
195       LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
196 
197     removeFromUsedLists(
198         M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
199 
200     for (GlobalVariable *LocalVar : LocalVars)
201       LocalVar->removeDeadConstantUsers();
202   }
203 
204   static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
205                                GlobalVariable *SGV) {
206     // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
207     // that might call a function which accesses a field within it. This is
208     // presently approximated to 'all kernels' if there are any such functions
209     // in the module. This implicit use is redefined as an explicit use here so
210     // that later passes, specifically PromoteAlloca, account for the required
211     // memory without any knowledge of this transform.
212 
213     // An operand bundle on llvm.donothing works because the call instruction
214     // survives until after the last pass that needs to account for LDS. It is
215     // better than inline asm as the latter survives until the end of codegen. A
216     // totally robust solution would be a function with the same semantics as
217     // llvm.donothing that takes a pointer to the instance and is lowered to a
218     // no-op after LDS is allocated, but that is not presently necessary.
219 
220     LLVMContext &Ctx = Func->getContext();
221 
222     Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
223 
224     FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
225 
226     Function *Decl =
227         Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
228 
229     Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
230         SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
231 
232     Builder.CreateCall(FTy, Decl, {},
233                        {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
234                        "");
235   }
236 
237   static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
238     // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
239     // global may have uses from multiple different functions as a result.
240     // This pass specialises LDS variables with respect to the kernel that
241     // allocates them.
242 
243     // This is semantically equivalent to:
244     // for (auto &F : M.functions())
245     //   for (auto &BB : F)
246     //     for (auto &I : BB)
247     //       for (Use &Op : I.operands())
248     //         if (constantExprUsesLDS(Op))
249     //           replaceConstantExprInFunction(I, Op);
250 
251     bool Changed = false;
252 
253     // Find all ConstantExpr that are direct users of an LDS global
254     SmallVector<ConstantExpr *> Stack;
255     for (auto &GV : M.globals())
256       if (AMDGPU::isLDSVariableToLower(GV))
257         for (User *U : GV.users())
258           if (ConstantExpr *C = dyn_cast<ConstantExpr>(U))
259             Stack.push_back(C);
260 
261     // Expand to include constexpr users of direct users
262     SetVector<ConstantExpr *> ConstExprUsersOfLDS;
263     while (!Stack.empty()) {
264       ConstantExpr *V = Stack.pop_back_val();
265       if (ConstExprUsersOfLDS.contains(V))
266         continue;
267 
268       ConstExprUsersOfLDS.insert(V);
269 
270       for (auto *Nested : V->users())
271         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Nested))
272           Stack.push_back(CE);
273     }
274 
275     // Find all instructions that use any of the ConstExpr users of LDS
276     SetVector<Instruction *> InstructionWorklist;
277     for (ConstantExpr *CE : ConstExprUsersOfLDS)
278       for (User *U : CE->users())
279         if (auto *I = dyn_cast<Instruction>(U))
280           InstructionWorklist.insert(I);
281 
282     // Replace those ConstExpr operands with instructions
283     while (!InstructionWorklist.empty()) {
284       Instruction *I = InstructionWorklist.pop_back_val();
285       for (Use &U : I->operands()) {
286 
287         auto *BI = I;
288         if (auto *Phi = dyn_cast<PHINode>(I)) {
289           BasicBlock *BB = Phi->getIncomingBlock(U);
290           BasicBlock::iterator It = BB->getFirstInsertionPt();
291           assert(It != BB->end() && "Unexpected empty basic block");
292           BI = &(*(It));
293         }
294 
295         if (ConstantExpr *C = dyn_cast<ConstantExpr>(U.get())) {
296           if (ConstExprUsersOfLDS.contains(C)) {
297             Changed = true;
298             Instruction *NI = C->getAsInstruction(BI);
299             InstructionWorklist.insert(NI);
300             U.set(NI);
301             C->removeDeadConstantUsers();
302           }
303         }
304       }
305     }
306 
307     return Changed;
308   }
309 
310 public:
311   static char ID;
312 
313   AMDGPULowerModuleLDS() : ModulePass(ID) {
314     initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
315   }
316 
317   using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
318 
319   using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
320 
321   static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
322                                      FunctionVariableMap &kernels,
323                                      FunctionVariableMap &functions) {
324 
325     // Get uses from the current function, excluding uses by called functions
326     // Two output variables to avoid walking the globals list twice
327     for (auto &GV : M.globals()) {
328       if (!AMDGPU::isLDSVariableToLower(GV)) {
329         continue;
330       }
331 
332       SmallVector<User *, 16> Stack(GV.users());
333       for (User *V : GV.users()) {
334         if (auto *I = dyn_cast<Instruction>(V)) {
335           Function *F = I->getFunction();
336           if (isKernelLDS(F)) {
337             kernels[F].insert(&GV);
338           } else {
339             functions[F].insert(&GV);
340           }
341         }
342       }
343     }
344   }
345 
346   struct LDSUsesInfoTy {
347     FunctionVariableMap direct_access;
348     FunctionVariableMap indirect_access;
349   };
350 
351   static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
352 
353     FunctionVariableMap direct_map_kernel;
354     FunctionVariableMap direct_map_function;
355     getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
356 
357     // Collect variables that are used by functions whose address has escaped
358     DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
359     for (Function &F : M.functions()) {
360       if (!isKernelLDS(&F))
361           if (F.hasAddressTaken(nullptr,
362                                 /* IgnoreCallbackUses */ false,
363                                 /* IgnoreAssumeLikeCalls */ false,
364                                 /* IgnoreLLVMUsed */ true,
365                                 /* IgnoreArcAttachedCall */ false)) {
366           set_union(VariablesReachableThroughFunctionPointer,
367                     direct_map_function[&F]);
368         }
369     }
370 
371     auto functionMakesUnknownCall = [&](const Function *F) -> bool {
372       assert(!F->isDeclaration());
373       for (CallGraphNode::CallRecord R : *CG[F]) {
374         if (!R.second->getFunction()) {
375           return true;
376         }
377       }
378       return false;
379     };
380 
381     // Work out which variables are reachable through function calls
382     FunctionVariableMap transitive_map_function = direct_map_function;
383 
384     // If the function makes any unknown call, assume the worst case that it can
385     // access all variables accessed by functions whose address escaped
386     for (Function &F : M.functions()) {
387       if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
388         if (!isKernelLDS(&F)) {
389           set_union(transitive_map_function[&F],
390                     VariablesReachableThroughFunctionPointer);
391         }
392       }
393     }
394 
395     // Direct implementation of collecting all variables reachable from each
396     // function
397     for (Function &Func : M.functions()) {
398       if (Func.isDeclaration() || isKernelLDS(&Func))
399         continue;
400 
401       DenseSet<Function *> seen; // catches cycles
402       SmallVector<Function *, 4> wip{&Func};
403 
404       while (!wip.empty()) {
405         Function *F = wip.pop_back_val();
406 
407         // Can accelerate this by referring to transitive map for functions that
408         // have already been computed, with more care than this
409         set_union(transitive_map_function[&Func], direct_map_function[F]);
410 
411         for (CallGraphNode::CallRecord R : *CG[F]) {
412           Function *ith = R.second->getFunction();
413           if (ith) {
414             if (!seen.contains(ith)) {
415               seen.insert(ith);
416               wip.push_back(ith);
417             }
418           }
419         }
420       }
421     }
422 
423     // direct_map_kernel lists which variables are used by the kernel
424     // find the variables which are used through a function call
425     FunctionVariableMap indirect_map_kernel;
426 
427     for (Function &Func : M.functions()) {
428       if (Func.isDeclaration() || !isKernelLDS(&Func))
429         continue;
430 
431       for (CallGraphNode::CallRecord R : *CG[&Func]) {
432         Function *ith = R.second->getFunction();
433         if (ith) {
434           set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
435         } else {
436           set_union(indirect_map_kernel[&Func],
437                     VariablesReachableThroughFunctionPointer);
438         }
439       }
440     }
441 
442     return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
443   }
444 
445   struct LDSVariableReplacement {
446     GlobalVariable *SGV = nullptr;
447     DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
448   };
449 
450   // remap from lds global to a constantexpr gep to where it has been moved to
451   // for each kernel
452   // an array with an element for each kernel containing where the corresponding
453   // variable was remapped to
454 
455   static Constant *getAddressesOfVariablesInKernel(
456       LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
457       DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
458     // Create a ConstantArray containing the address of each Variable within the
459     // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
460     // does not allocate it
461     // TODO: Drop the ptrtoint conversion
462 
463     Type *I32 = Type::getInt32Ty(Ctx);
464 
465     ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
466 
467     SmallVector<Constant *> Elements;
468     for (size_t i = 0; i < Variables.size(); i++) {
469       GlobalVariable *GV = Variables[i];
470       if (LDSVarsToConstantGEP.count(GV) != 0) {
471         auto elt = ConstantExpr::getPtrToInt(LDSVarsToConstantGEP[GV], I32);
472         Elements.push_back(elt);
473       } else {
474         Elements.push_back(PoisonValue::get(I32));
475       }
476     }
477     return ConstantArray::get(KernelOffsetsType, Elements);
478   }
479 
480   static GlobalVariable *buildLookupTable(
481       Module &M, ArrayRef<GlobalVariable *> Variables,
482       ArrayRef<Function *> kernels,
483       DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
484     if (Variables.empty()) {
485       return nullptr;
486     }
487     LLVMContext &Ctx = M.getContext();
488 
489     const size_t NumberVariables = Variables.size();
490     const size_t NumberKernels = kernels.size();
491 
492     ArrayType *KernelOffsetsType =
493         ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
494 
495     ArrayType *AllKernelsOffsetsType =
496         ArrayType::get(KernelOffsetsType, NumberKernels);
497 
498     std::vector<Constant *> overallConstantExprElts(NumberKernels);
499     for (size_t i = 0; i < NumberKernels; i++) {
500       LDSVariableReplacement Replacement = KernelToReplacement[kernels[i]];
501       overallConstantExprElts[i] = getAddressesOfVariablesInKernel(
502           Ctx, Variables, Replacement.LDSVarsToConstantGEP);
503     }
504 
505     Constant *init =
506         ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
507 
508     return new GlobalVariable(
509         M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
510         "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
511         AMDGPUAS::CONSTANT_ADDRESS);
512   }
513 
514   void replaceUsesInInstructionsWithTableLookup(
515       Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
516       GlobalVariable *LookupTable) {
517 
518     LLVMContext &Ctx = M.getContext();
519     IRBuilder<> Builder(Ctx);
520     Type *I32 = Type::getInt32Ty(Ctx);
521 
522     // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
523     // lowers to a read from a live in register. Emit it once in the entry
524     // block to spare deduplicating it later.
525 
526     DenseMap<Function *, Value *> tableKernelIndexCache;
527     auto getTableKernelIndex = [&](Function *F) -> Value * {
528       if (tableKernelIndexCache.count(F) == 0) {
529         LLVMContext &Ctx = M.getContext();
530         FunctionType *FTy = FunctionType::get(Type::getInt32Ty(Ctx), {});
531         Function *Decl =
532             Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
533 
534         BasicBlock::iterator it =
535             F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
536         Instruction &i = *it;
537         Builder.SetInsertPoint(&i);
538 
539         tableKernelIndexCache[F] = Builder.CreateCall(FTy, Decl, {});
540       }
541 
542       return tableKernelIndexCache[F];
543     };
544 
545     for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
546       auto *GV = ModuleScopeVariables[Index];
547 
548       for (Use &U : make_early_inc_range(GV->uses())) {
549         auto *I = dyn_cast<Instruction>(U.getUser());
550         if (!I)
551           continue;
552 
553         Value *tableKernelIndex = getTableKernelIndex(I->getFunction());
554 
555         // So if the phi uses this value multiple times, what does this look
556         // like?
557         if (auto *Phi = dyn_cast<PHINode>(I)) {
558           BasicBlock *BB = Phi->getIncomingBlock(U);
559           Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
560         } else {
561           Builder.SetInsertPoint(I);
562         }
563 
564         Value *GEPIdx[3] = {
565             ConstantInt::get(I32, 0),
566             tableKernelIndex,
567             ConstantInt::get(I32, Index),
568         };
569 
570         Value *Address = Builder.CreateInBoundsGEP(
571             LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
572 
573         Value *loaded = Builder.CreateLoad(I32, Address);
574 
575         Value *replacement =
576             Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
577 
578         U.set(replacement);
579       }
580     }
581   }
582 
583   static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
584       Module &M, LDSUsesInfoTy &LDSUsesInfo,
585       DenseSet<GlobalVariable *> const &VariableSet) {
586 
587     DenseSet<Function *> KernelSet;
588 
589     if (VariableSet.empty()) return KernelSet;
590 
591     for (Function &Func : M.functions()) {
592       if (Func.isDeclaration() || !isKernelLDS(&Func))
593         continue;
594       for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
595         if (VariableSet.contains(GV)) {
596           KernelSet.insert(&Func);
597           break;
598         }
599       }
600     }
601 
602     return KernelSet;
603   }
604 
605   static GlobalVariable *
606   chooseBestVariableForModuleStrategy(const DataLayout &DL,
607                                       VariableFunctionMap &LDSVars) {
608     // Find the global variable with the most indirect uses from kernels
609 
610     struct CandidateTy {
611       GlobalVariable *GV = nullptr;
612       size_t UserCount = 0;
613       size_t Size = 0;
614 
615       CandidateTy() = default;
616 
617       CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
618           : GV(GV), UserCount(UserCount), Size(AllocSize) {}
619 
620       bool operator<(const CandidateTy &Other) const {
621         // Fewer users makes module scope variable less attractive
622         if (UserCount < Other.UserCount) {
623           return true;
624         }
625         if (UserCount > Other.UserCount) {
626           return false;
627         }
628 
629         // Bigger makes module scope variable less attractive
630         if (Size < Other.Size) {
631           return false;
632         }
633 
634         if (Size > Other.Size) {
635           return true;
636         }
637 
638         // Arbitrary but consistent
639         return GV->getName() < Other.GV->getName();
640       }
641     };
642 
643     CandidateTy MostUsed;
644 
645     for (auto &K : LDSVars) {
646       GlobalVariable *GV = K.first;
647       if (K.second.size() <= 1) {
648         // A variable reachable by only one kernel is best lowered with kernel
649         // strategy
650         continue;
651       }
652       CandidateTy Candidate(GV, K.second.size(),
653                       DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
654       if (MostUsed < Candidate)
655         MostUsed = Candidate;
656     }
657 
658     return MostUsed.GV;
659   }
660 
661   bool runOnModule(Module &M) override {
662     LLVMContext &Ctx = M.getContext();
663     CallGraph CG = CallGraph(M);
664     bool Changed = superAlignLDSGlobals(M);
665 
666     Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
667 
668     Changed = true; // todo: narrow this down
669 
670     // For each kernel, what variables does it access directly or through
671     // callees
672     LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
673 
674     // For each variable accessed through callees, which kernels access it
675     VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
676     for (auto &K : LDSUsesInfo.indirect_access) {
677       Function *F = K.first;
678       assert(isKernelLDS(F));
679       for (GlobalVariable *GV : K.second) {
680         LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
681       }
682     }
683 
684     // Partition variables into the different strategies
685     DenseSet<GlobalVariable *> ModuleScopeVariables;
686     DenseSet<GlobalVariable *> TableLookupVariables;
687     DenseSet<GlobalVariable *> KernelAccessVariables;
688 
689     {
690       GlobalVariable *HybridModuleRoot =
691           LoweringKindLoc != LoweringKind::hybrid
692               ? nullptr
693               : chooseBestVariableForModuleStrategy(
694                     M.getDataLayout(),
695                     LDSToKernelsThatNeedToAccessItIndirectly);
696 
697       DenseSet<Function *> const EmptySet;
698       DenseSet<Function *> const &HybridModuleRootKernels =
699           HybridModuleRoot
700               ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
701               : EmptySet;
702 
703       for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
704         // Each iteration of this loop assigns exactly one global variable to
705         // exactly one of the implementation strategies.
706 
707         GlobalVariable *GV = K.first;
708         assert(AMDGPU::isLDSVariableToLower(*GV));
709         assert(K.second.size() != 0);
710 
711         switch (LoweringKindLoc) {
712         case LoweringKind::module:
713           ModuleScopeVariables.insert(GV);
714           break;
715 
716         case LoweringKind::table:
717           TableLookupVariables.insert(GV);
718           break;
719 
720         case LoweringKind::kernel:
721           if (K.second.size() == 1) {
722             KernelAccessVariables.insert(GV);
723           } else {
724             report_fatal_error(
725                 "cannot lower LDS '" + GV->getName() +
726                 "' to kernel access as it is reachable from multiple kernels");
727           }
728           break;
729 
730         case LoweringKind::hybrid: {
731           if (GV == HybridModuleRoot) {
732             assert(K.second.size() != 1);
733             ModuleScopeVariables.insert(GV);
734           } else if (K.second.size() == 1) {
735             KernelAccessVariables.insert(GV);
736           } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
737             ModuleScopeVariables.insert(GV);
738           } else {
739             TableLookupVariables.insert(GV);
740           }
741           break;
742         }
743         }
744       }
745 
746       assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
747                  KernelAccessVariables.size() ==
748              LDSToKernelsThatNeedToAccessItIndirectly.size());
749     } // Variables have now been partitioned into the three lowering strategies.
750 
751     // If the kernel accesses a variable that is going to be stored in the
752     // module instance through a call then that kernel needs to allocate the
753     // module instance
754     DenseSet<Function *> KernelsThatAllocateModuleLDS =
755         kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
756                                                         ModuleScopeVariables);
757     DenseSet<Function *> KernelsThatAllocateTableLDS =
758         kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
759                                                         TableLookupVariables);
760 
761     if (!ModuleScopeVariables.empty()) {
762       LDSVariableReplacement ModuleScopeReplacement =
763           createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
764                                        ModuleScopeVariables);
765 
766       appendToCompilerUsed(M,
767                            {static_cast<GlobalValue *>(
768                                ConstantExpr::getPointerBitCastOrAddrSpaceCast(
769                                    cast<Constant>(ModuleScopeReplacement.SGV),
770                                    Type::getInt8PtrTy(Ctx)))});
771 
772       // historic
773       removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
774 
775       // Replace all uses of module scope variable from non-kernel functions
776       replaceLDSVariablesWithStruct(
777           M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
778             Instruction *I = dyn_cast<Instruction>(U.getUser());
779             if (!I) {
780               return false;
781             }
782             Function *F = I->getFunction();
783             return !isKernelLDS(F);
784           });
785 
786       // Replace uses of module scope variable from kernel functions that
787       // allocate the module scope variable, otherwise leave them unchanged
788       // Record on each kernel whether the module scope global is used by it
789 
790       LLVMContext &Ctx = M.getContext();
791       IRBuilder<> Builder(Ctx);
792 
793       for (Function &Func : M.functions()) {
794         if (Func.isDeclaration() || !isKernelLDS(&Func))
795           continue;
796 
797         if (KernelsThatAllocateModuleLDS.contains(&Func)) {
798           replaceLDSVariablesWithStruct(
799               M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
800                 Instruction *I = dyn_cast<Instruction>(U.getUser());
801                 if (!I) {
802                   return false;
803                 }
804                 Function *F = I->getFunction();
805                 return F == &Func;
806               });
807 
808           markUsedByKernel(Builder, &Func, ModuleScopeReplacement.SGV);
809 
810         } else {
811           Func.addFnAttr("amdgpu-elide-module-lds");
812         }
813       }
814     }
815 
816     // Create a struct for each kernel for the non-module-scope variables
817     DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
818     for (Function &Func : M.functions()) {
819       if (Func.isDeclaration() || !isKernelLDS(&Func))
820         continue;
821 
822       DenseSet<GlobalVariable *> KernelUsedVariables;
823       for (auto &v : LDSUsesInfo.direct_access[&Func]) {
824         KernelUsedVariables.insert(v);
825       }
826       for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
827         KernelUsedVariables.insert(v);
828       }
829 
830       // Variables allocated in module lds must all resolve to that struct,
831       // not to the per-kernel instance.
832       if (KernelsThatAllocateModuleLDS.contains(&Func)) {
833         for (GlobalVariable *v : ModuleScopeVariables) {
834           KernelUsedVariables.erase(v);
835         }
836       }
837 
838       if (KernelUsedVariables.empty()) {
839         // Either used no LDS, or all the LDS it used was also in module
840         continue;
841       }
842 
843       // The association between kernel function and LDS struct is done by
844       // symbol name, which only works if the function in question has a
845       // name This is not expected to be a problem in practice as kernels
846       // are called by name making anonymous ones (which are named by the
847       // backend) difficult to use. This does mean that llvm test cases need
848       // to name the kernels.
849       if (!Func.hasName()) {
850         report_fatal_error("Anonymous kernels cannot use LDS variables");
851       }
852 
853       std::string VarName =
854           (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
855 
856       auto Replacement =
857           createLDSVariableReplacement(M, VarName, KernelUsedVariables);
858 
859       // remove preserves existing codegen
860       removeLocalVarsFromUsedLists(M, KernelUsedVariables);
861       KernelToReplacement[&Func] = Replacement;
862 
863       // Rewrite uses within kernel to the new struct
864       replaceLDSVariablesWithStruct(
865           M, KernelUsedVariables, Replacement, [&Func](Use &U) {
866             Instruction *I = dyn_cast<Instruction>(U.getUser());
867             return I && I->getFunction() == &Func;
868           });
869     }
870 
871     // Lower zero cost accesses to the kernel instances just created
872     for (auto &GV : KernelAccessVariables) {
873       auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
874       assert(funcs.size() == 1); // Only one kernel can access it
875       LDSVariableReplacement Replacement =
876           KernelToReplacement[*(funcs.begin())];
877 
878       DenseSet<GlobalVariable *> Vec;
879       Vec.insert(GV);
880 
881       replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
882                                                            return isa<Instruction>(U.getUser());
883       });
884     }
885 
886     if (!KernelsThatAllocateTableLDS.empty()) {
887       // Collect the kernels that allocate table lookup LDS
888       std::vector<Function *> OrderedKernels;
889       {
890         for (Function &Func : M.functions()) {
891           if (Func.isDeclaration())
892             continue;
893           if (!isKernelLDS(&Func))
894             continue;
895 
896           if (KernelsThatAllocateTableLDS.contains(&Func)) {
897             assert(Func.hasName()); // else fatal error earlier
898             OrderedKernels.push_back(&Func);
899           }
900         }
901 
902         // Put them in an arbitrary but reproducible order
903         llvm::sort(OrderedKernels.begin(), OrderedKernels.end(),
904                    [](const Function *lhs, const Function *rhs) -> bool {
905                      return lhs->getName() < rhs->getName();
906                    });
907 
908         // Annotate the kernels with their order in this vector
909         LLVMContext &Ctx = M.getContext();
910         IRBuilder<> Builder(Ctx);
911 
912         if (OrderedKernels.size() > UINT32_MAX) {
913           // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
914           report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
915         }
916 
917         for (size_t i = 0; i < OrderedKernels.size(); i++) {
918           Metadata *AttrMDArgs[1] = {
919               ConstantAsMetadata::get(Builder.getInt32(i)),
920           };
921           OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
922                                          MDNode::get(Ctx, AttrMDArgs));
923 
924           markUsedByKernel(Builder, OrderedKernels[i],
925                            KernelToReplacement[OrderedKernels[i]].SGV);
926         }
927       }
928 
929       // The order must be consistent between lookup table and accesses to
930       // lookup table
931       std::vector<GlobalVariable *> TableLookupVariablesOrdered(
932           TableLookupVariables.begin(), TableLookupVariables.end());
933       llvm::sort(TableLookupVariablesOrdered.begin(),
934                  TableLookupVariablesOrdered.end(),
935                  [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
936                    return lhs->getName() < rhs->getName();
937                  });
938 
939       GlobalVariable *LookupTable = buildLookupTable(
940           M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
941       replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
942                                                LookupTable);
943     }
944 
945     for (auto &GV : make_early_inc_range(M.globals()))
946       if (AMDGPU::isLDSVariableToLower(GV)) {
947 
948         // probably want to remove from used lists
949         GV.removeDeadConstantUsers();
950         if (GV.use_empty())
951           GV.eraseFromParent();
952       }
953 
954     return Changed;
955   }
956 
957 private:
958   // Increase the alignment of LDS globals if necessary to maximise the chance
959   // that we can use aligned LDS instructions to access them.
960   static bool superAlignLDSGlobals(Module &M) {
961     const DataLayout &DL = M.getDataLayout();
962     bool Changed = false;
963     if (!SuperAlignLDSGlobals) {
964       return Changed;
965     }
966 
967     for (auto &GV : M.globals()) {
968       if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
969         // Only changing alignment of LDS variables
970         continue;
971       }
972       if (!GV.hasInitializer()) {
973         // cuda/hip extern __shared__ variable, leave alignment alone
974         continue;
975       }
976 
977       Align Alignment = AMDGPU::getAlign(DL, &GV);
978       TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
979 
980       if (GVSize > 8) {
981         // We might want to use a b96 or b128 load/store
982         Alignment = std::max(Alignment, Align(16));
983       } else if (GVSize > 4) {
984         // We might want to use a b64 load/store
985         Alignment = std::max(Alignment, Align(8));
986       } else if (GVSize > 2) {
987         // We might want to use a b32 load/store
988         Alignment = std::max(Alignment, Align(4));
989       } else if (GVSize > 1) {
990         // We might want to use a b16 load/store
991         Alignment = std::max(Alignment, Align(2));
992       }
993 
994       if (Alignment != AMDGPU::getAlign(DL, &GV)) {
995         Changed = true;
996         GV.setAlignment(Alignment);
997       }
998     }
999     return Changed;
1000   }
1001 
1002   static LDSVariableReplacement createLDSVariableReplacement(
1003       Module &M, std::string VarName,
1004       DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1005     // Create a struct instance containing LDSVarsToTransform and map from those
1006     // variables to ConstantExprGEP
1007     // Variables may be introduced to meet alignment requirements. No aliasing
1008     // metadata is useful for these as they have no uses. Erased before return.
1009 
1010     LLVMContext &Ctx = M.getContext();
1011     const DataLayout &DL = M.getDataLayout();
1012     assert(!LDSVarsToTransform.empty());
1013 
1014     SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
1015     LayoutFields.reserve(LDSVarsToTransform.size());
1016     {
1017       // The order of fields in this struct depends on the order of
1018       // varables in the argument which varies when changing how they
1019       // are identified, leading to spurious test breakage.
1020       std::vector<GlobalVariable *> Sorted(LDSVarsToTransform.begin(),
1021                                            LDSVarsToTransform.end());
1022       llvm::sort(Sorted.begin(), Sorted.end(),
1023                  [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
1024                    return lhs->getName() < rhs->getName();
1025                  });
1026       for (GlobalVariable *GV : Sorted) {
1027         OptimizedStructLayoutField F(GV,
1028                                      DL.getTypeAllocSize(GV->getValueType()),
1029                                      AMDGPU::getAlign(DL, GV));
1030         LayoutFields.emplace_back(F);
1031       }
1032     }
1033 
1034     performOptimizedStructLayout(LayoutFields);
1035 
1036     std::vector<GlobalVariable *> LocalVars;
1037     BitVector IsPaddingField;
1038     LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1039     IsPaddingField.reserve(LDSVarsToTransform.size());
1040     {
1041       uint64_t CurrentOffset = 0;
1042       for (size_t I = 0; I < LayoutFields.size(); I++) {
1043         GlobalVariable *FGV = static_cast<GlobalVariable *>(
1044             const_cast<void *>(LayoutFields[I].Id));
1045         Align DataAlign = LayoutFields[I].Alignment;
1046 
1047         uint64_t DataAlignV = DataAlign.value();
1048         if (uint64_t Rem = CurrentOffset % DataAlignV) {
1049           uint64_t Padding = DataAlignV - Rem;
1050 
1051           // Append an array of padding bytes to meet alignment requested
1052           // Note (o +      (a - (o % a)) ) % a == 0
1053           //      (offset + Padding       ) % align == 0
1054 
1055           Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1056           LocalVars.push_back(new GlobalVariable(
1057               M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
1058               "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1059               false));
1060           IsPaddingField.push_back(true);
1061           CurrentOffset += Padding;
1062         }
1063 
1064         LocalVars.push_back(FGV);
1065         IsPaddingField.push_back(false);
1066         CurrentOffset += LayoutFields[I].Size;
1067       }
1068     }
1069 
1070     std::vector<Type *> LocalVarTypes;
1071     LocalVarTypes.reserve(LocalVars.size());
1072     std::transform(
1073         LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1074         [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1075 
1076     StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1077 
1078     Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1079 
1080     GlobalVariable *SGV = new GlobalVariable(
1081         M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
1082         VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1083         false);
1084     SGV->setAlignment(StructAlign);
1085 
1086     DenseMap<GlobalVariable *, Constant *> Map;
1087     Type *I32 = Type::getInt32Ty(Ctx);
1088     for (size_t I = 0; I < LocalVars.size(); I++) {
1089       GlobalVariable *GV = LocalVars[I];
1090       Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1091       Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1092       if (IsPaddingField[I]) {
1093         assert(GV->use_empty());
1094         GV->eraseFromParent();
1095       } else {
1096         Map[GV] = GEP;
1097       }
1098     }
1099     assert(Map.size() == LDSVarsToTransform.size());
1100     return {SGV, std::move(Map)};
1101   }
1102 
1103   template <typename PredicateTy>
1104   void replaceLDSVariablesWithStruct(
1105       Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1106       LDSVariableReplacement Replacement, PredicateTy Predicate) {
1107     LLVMContext &Ctx = M.getContext();
1108     const DataLayout &DL = M.getDataLayout();
1109 
1110     // A hack... we need to insert the aliasing info in a predictable order for
1111     // lit tests. Would like to have them in a stable order already, ideally the
1112     // same order they get allocated, which might mean an ordered set container
1113     std::vector<GlobalVariable *> LDSVarsToTransform(
1114         LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end());
1115     llvm::sort(LDSVarsToTransform.begin(), LDSVarsToTransform.end(),
1116                [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
1117                  return lhs->getName() < rhs->getName();
1118                });
1119 
1120     // Create alias.scope and their lists. Each field in the new structure
1121     // does not alias with all other fields.
1122     SmallVector<MDNode *> AliasScopes;
1123     SmallVector<Metadata *> NoAliasList;
1124     const size_t NumberVars = LDSVarsToTransform.size();
1125     if (NumberVars > 1) {
1126       MDBuilder MDB(Ctx);
1127       AliasScopes.reserve(NumberVars);
1128       MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
1129       for (size_t I = 0; I < NumberVars; I++) {
1130         MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
1131         AliasScopes.push_back(Scope);
1132       }
1133       NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1134     }
1135 
1136     // Replace uses of ith variable with a constantexpr to the corresponding
1137     // field of the instance that will be allocated by AMDGPUMachineFunction
1138     for (size_t I = 0; I < NumberVars; I++) {
1139       GlobalVariable *GV = LDSVarsToTransform[I];
1140       Constant *GEP = Replacement.LDSVarsToConstantGEP[GV];
1141 
1142       GV->replaceUsesWithIf(GEP, Predicate);
1143 
1144       APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1145       GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1146       uint64_t Offset = APOff.getZExtValue();
1147 
1148       Align A =
1149           commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1150 
1151       if (I)
1152         NoAliasList[I - 1] = AliasScopes[I - 1];
1153       MDNode *NoAlias =
1154           NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1155       MDNode *AliasScope =
1156           AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1157 
1158       refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1159     }
1160   }
1161 
1162   void refineUsesAlignmentAndAA(Value *Ptr, Align A, const DataLayout &DL,
1163                                 MDNode *AliasScope, MDNode *NoAlias,
1164                                 unsigned MaxDepth = 5) {
1165     if (!MaxDepth || (A == 1 && !AliasScope))
1166       return;
1167 
1168     for (User *U : Ptr->users()) {
1169       if (auto *I = dyn_cast<Instruction>(U)) {
1170         if (AliasScope && I->mayReadOrWriteMemory()) {
1171           MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1172           AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1173                    : AliasScope);
1174           I->setMetadata(LLVMContext::MD_alias_scope, AS);
1175 
1176           MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1177           NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
1178           I->setMetadata(LLVMContext::MD_noalias, NA);
1179         }
1180       }
1181 
1182       if (auto *LI = dyn_cast<LoadInst>(U)) {
1183         LI->setAlignment(std::max(A, LI->getAlign()));
1184         continue;
1185       }
1186       if (auto *SI = dyn_cast<StoreInst>(U)) {
1187         if (SI->getPointerOperand() == Ptr)
1188           SI->setAlignment(std::max(A, SI->getAlign()));
1189         continue;
1190       }
1191       if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1192         // None of atomicrmw operations can work on pointers, but let's
1193         // check it anyway in case it will or we will process ConstantExpr.
1194         if (AI->getPointerOperand() == Ptr)
1195           AI->setAlignment(std::max(A, AI->getAlign()));
1196         continue;
1197       }
1198       if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1199         if (AI->getPointerOperand() == Ptr)
1200           AI->setAlignment(std::max(A, AI->getAlign()));
1201         continue;
1202       }
1203       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1204         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1205         APInt Off(BitWidth, 0);
1206         if (GEP->getPointerOperand() == Ptr) {
1207           Align GA;
1208           if (GEP->accumulateConstantOffset(DL, Off))
1209             GA = commonAlignment(A, Off.getLimitedValue());
1210           refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1211                                    MaxDepth - 1);
1212         }
1213         continue;
1214       }
1215       if (auto *I = dyn_cast<Instruction>(U)) {
1216         if (I->getOpcode() == Instruction::BitCast ||
1217             I->getOpcode() == Instruction::AddrSpaceCast)
1218           refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1219       }
1220     }
1221   }
1222 };
1223 
1224 } // namespace
1225 char AMDGPULowerModuleLDS::ID = 0;
1226 
1227 char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
1228 
1229 INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
1230                 "Lower uses of LDS variables from non-kernel functions", false,
1231                 false)
1232 
1233 ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
1234   return new AMDGPULowerModuleLDS();
1235 }
1236 
1237 PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
1238                                                 ModuleAnalysisManager &) {
1239   return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
1240                                                : PreservedAnalyses::all();
1241 }
1242