xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates LDS uses from non-kernel functions.
10 //
11 // The strategy is to create a new struct with a field for each LDS variable
12 // and allocate that struct at the same address for every kernel. Uses of the
13 // original LDS variables are then replaced with compile time offsets from that
14 // known address. AMDGPUMachineFunction allocates the LDS global.
15 //
16 // Local variables with constant annotation or non-undef initializer are passed
17 // through unchanged for simplication or error diagnostics in later passes.
18 //
19 // To reduce the memory overhead variables that are only used by kernels are
20 // excluded from this transform. The analysis to determine whether a variable
21 // is only used by a kernel is cheap and conservative so this may allocate
22 // a variable in every kernel when it was not strictly necessary to do so.
23 //
24 // A possible future refinement is to specialise the structure per-kernel, so
25 // that fields can be elided based on more expensive analysis.
26 //
27 // NOTE: Since this pass will directly pack LDS (assume large LDS) into a struct
28 // type which would cause allocating huge memory for struct instance within
29 // every kernel. Hence, before running this pass, it is advisable to run the
30 // pass "amdgpu-replace-lds-use-with-pointer" which will replace LDS uses within
31 // non-kernel functions by pointers and thereby minimizes the unnecessary per
32 // kernel allocation of LDS memory.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "AMDGPU.h"
37 #include "Utils/AMDGPUBaseInfo.h"
38 #include "Utils/AMDGPULDSUtils.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/OptimizedStructLayout.h"
50 #include "llvm/Transforms/Utils/ModuleUtils.h"
51 #include <vector>
52 
53 #define DEBUG_TYPE "amdgpu-lower-module-lds"
54 
55 using namespace llvm;
56 
57 static cl::opt<bool> SuperAlignLDSGlobals(
58     "amdgpu-super-align-lds-globals",
59     cl::desc("Increase alignment of LDS if it is not on align boundary"),
60     cl::init(true), cl::Hidden);
61 
62 namespace {
63 
64 class AMDGPULowerModuleLDS : public ModulePass {
65 
66   static void removeFromUsedList(Module &M, StringRef Name,
67                                  SmallPtrSetImpl<Constant *> &ToRemove) {
68     GlobalVariable *GV = M.getNamedGlobal(Name);
69     if (!GV || ToRemove.empty()) {
70       return;
71     }
72 
73     SmallVector<Constant *, 16> Init;
74     auto *CA = cast<ConstantArray>(GV->getInitializer());
75     for (auto &Op : CA->operands()) {
76       // ModuleUtils::appendToUsed only inserts Constants
77       Constant *C = cast<Constant>(Op);
78       if (!ToRemove.contains(C->stripPointerCasts())) {
79         Init.push_back(C);
80       }
81     }
82 
83     if (Init.size() == CA->getNumOperands()) {
84       return; // none to remove
85     }
86 
87     GV->eraseFromParent();
88 
89     for (Constant *C : ToRemove) {
90       C->removeDeadConstantUsers();
91     }
92 
93     if (!Init.empty()) {
94       ArrayType *ATy =
95           ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size());
96       GV =
97           new llvm::GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage,
98                                    ConstantArray::get(ATy, Init), Name);
99       GV->setSection("llvm.metadata");
100     }
101   }
102 
103   static void
104   removeFromUsedLists(Module &M,
105                       const std::vector<GlobalVariable *> &LocalVars) {
106     SmallPtrSet<Constant *, 32> LocalVarsSet;
107     for (size_t I = 0; I < LocalVars.size(); I++) {
108       if (Constant *C = dyn_cast<Constant>(LocalVars[I]->stripPointerCasts())) {
109         LocalVarsSet.insert(C);
110       }
111     }
112     removeFromUsedList(M, "llvm.used", LocalVarsSet);
113     removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet);
114   }
115 
116   static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
117                                GlobalVariable *SGV) {
118     // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
119     // that might call a function which accesses a field within it. This is
120     // presently approximated to 'all kernels' if there are any such functions
121     // in the module. This implicit use is reified as an explicit use here so
122     // that later passes, specifically PromoteAlloca, account for the required
123     // memory without any knowledge of this transform.
124 
125     // An operand bundle on llvm.donothing works because the call instruction
126     // survives until after the last pass that needs to account for LDS. It is
127     // better than inline asm as the latter survives until the end of codegen. A
128     // totally robust solution would be a function with the same semantics as
129     // llvm.donothing that takes a pointer to the instance and is lowered to a
130     // no-op after LDS is allocated, but that is not presently necessary.
131 
132     LLVMContext &Ctx = Func->getContext();
133 
134     Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
135 
136     FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
137 
138     Function *Decl =
139         Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
140 
141     Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
142         SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
143 
144     Builder.CreateCall(FTy, Decl, {},
145                        {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
146                        "");
147   }
148 
149 private:
150   SmallPtrSet<GlobalValue *, 32> UsedList;
151 
152 public:
153   static char ID;
154 
155   AMDGPULowerModuleLDS() : ModulePass(ID) {
156     initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
157   }
158 
159   bool runOnModule(Module &M) override {
160     UsedList = AMDGPU::getUsedList(M);
161 
162     bool Changed = processUsedLDS(M);
163 
164     for (Function &F : M.functions()) {
165       // Only lower compute kernels' LDS.
166       if (!AMDGPU::isKernel(F.getCallingConv()))
167         continue;
168       Changed |= processUsedLDS(M, &F);
169     }
170 
171     UsedList.clear();
172     return Changed;
173   }
174 
175 private:
176   bool processUsedLDS(Module &M, Function *F = nullptr) {
177     LLVMContext &Ctx = M.getContext();
178     const DataLayout &DL = M.getDataLayout();
179 
180     // Find variables to move into new struct instance
181     std::vector<GlobalVariable *> FoundLocalVars =
182         AMDGPU::findVariablesToLower(M, F);
183 
184     if (FoundLocalVars.empty()) {
185       // No variables to rewrite, no changes made.
186       return false;
187     }
188 
189     // Increase the alignment of LDS globals if necessary to maximise the chance
190     // that we can use aligned LDS instructions to access them.
191     if (SuperAlignLDSGlobals) {
192       for (auto *GV : FoundLocalVars) {
193         Align Alignment = AMDGPU::getAlign(DL, GV);
194         TypeSize GVSize = DL.getTypeAllocSize(GV->getValueType());
195 
196         if (GVSize > 8) {
197           // We might want to use a b96 or b128 load/store
198           Alignment = std::max(Alignment, Align(16));
199         } else if (GVSize > 4) {
200           // We might want to use a b64 load/store
201           Alignment = std::max(Alignment, Align(8));
202         } else if (GVSize > 2) {
203           // We might want to use a b32 load/store
204           Alignment = std::max(Alignment, Align(4));
205         } else if (GVSize > 1) {
206           // We might want to use a b16 load/store
207           Alignment = std::max(Alignment, Align(2));
208         }
209 
210         GV->setAlignment(Alignment);
211       }
212     }
213 
214     SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
215     LayoutFields.reserve(FoundLocalVars.size());
216     for (GlobalVariable *GV : FoundLocalVars) {
217       OptimizedStructLayoutField F(GV, DL.getTypeAllocSize(GV->getValueType()),
218                                    AMDGPU::getAlign(DL, GV));
219       LayoutFields.emplace_back(F);
220     }
221 
222     performOptimizedStructLayout(LayoutFields);
223 
224     std::vector<GlobalVariable *> LocalVars;
225     LocalVars.reserve(FoundLocalVars.size()); // will be at least this large
226     {
227       // This usually won't need to insert any padding, perhaps avoid the alloc
228       uint64_t CurrentOffset = 0;
229       for (size_t I = 0; I < LayoutFields.size(); I++) {
230         GlobalVariable *FGV = static_cast<GlobalVariable *>(
231             const_cast<void *>(LayoutFields[I].Id));
232         Align DataAlign = LayoutFields[I].Alignment;
233 
234         uint64_t DataAlignV = DataAlign.value();
235         if (uint64_t Rem = CurrentOffset % DataAlignV) {
236           uint64_t Padding = DataAlignV - Rem;
237 
238           // Append an array of padding bytes to meet alignment requested
239           // Note (o +      (a - (o % a)) ) % a == 0
240           //      (offset + Padding       ) % align == 0
241 
242           Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
243           LocalVars.push_back(new GlobalVariable(
244               M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
245               "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
246               false));
247           CurrentOffset += Padding;
248         }
249 
250         LocalVars.push_back(FGV);
251         CurrentOffset += LayoutFields[I].Size;
252       }
253     }
254 
255     std::vector<Type *> LocalVarTypes;
256     LocalVarTypes.reserve(LocalVars.size());
257     std::transform(
258         LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
259         [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
260 
261     std::string VarName(
262         F ? (Twine("llvm.amdgcn.kernel.") + F->getName() + ".lds").str()
263           : "llvm.amdgcn.module.lds");
264     StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
265 
266     Align StructAlign =
267         AMDGPU::getAlign(DL, LocalVars[0]);
268 
269     GlobalVariable *SGV = new GlobalVariable(
270         M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
271         VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
272         false);
273     SGV->setAlignment(StructAlign);
274     if (!F) {
275       appendToCompilerUsed(
276           M, {static_cast<GlobalValue *>(
277                  ConstantExpr::getPointerBitCastOrAddrSpaceCast(
278                      cast<Constant>(SGV), Type::getInt8PtrTy(Ctx)))});
279     }
280 
281     // The verifier rejects used lists containing an inttoptr of a constant
282     // so remove the variables from these lists before replaceAllUsesWith
283     removeFromUsedLists(M, LocalVars);
284 
285     // Replace uses of ith variable with a constantexpr to the ith field of the
286     // instance that will be allocated by AMDGPUMachineFunction
287     Type *I32 = Type::getInt32Ty(Ctx);
288     for (size_t I = 0; I < LocalVars.size(); I++) {
289       GlobalVariable *GV = LocalVars[I];
290       Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
291       Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx);
292       if (F) {
293         // Replace all constant uses with instructions if they belong to the
294         // current kernel.
295         for (User *U : make_early_inc_range(GV->users())) {
296           if (ConstantExpr *C = dyn_cast<ConstantExpr>(U))
297             AMDGPU::replaceConstantUsesInFunction(C, F);
298         }
299 
300         GV->removeDeadConstantUsers();
301 
302         GV->replaceUsesWithIf(GEP, [F](Use &U) {
303           Instruction *I = dyn_cast<Instruction>(U.getUser());
304           return I && I->getFunction() == F;
305         });
306       } else {
307         GV->replaceAllUsesWith(GEP);
308       }
309       if (GV->use_empty()) {
310         UsedList.erase(GV);
311         GV->eraseFromParent();
312       }
313 
314       uint64_t Off = DL.getStructLayout(LDSTy)->getElementOffset(I);
315       Align A = commonAlignment(StructAlign, Off);
316       refineUsesAlignment(GEP, A, DL);
317     }
318 
319     // Mark kernels with asm that reads the address of the allocated structure
320     // This is not necessary for lowering. This lets other passes, specifically
321     // PromoteAlloca, accurately calculate how much LDS will be used by the
322     // kernel after lowering.
323     if (!F) {
324       IRBuilder<> Builder(Ctx);
325       SmallPtrSet<Function *, 32> Kernels;
326       for (auto &I : M.functions()) {
327         Function *Func = &I;
328         if (AMDGPU::isKernelCC(Func) && !Kernels.contains(Func)) {
329           markUsedByKernel(Builder, Func, SGV);
330           Kernels.insert(Func);
331         }
332       }
333     }
334     return true;
335   }
336 
337   void refineUsesAlignment(Value *Ptr, Align A, const DataLayout &DL,
338                            unsigned MaxDepth = 5) {
339     if (!MaxDepth || A == 1)
340       return;
341 
342     for (User *U : Ptr->users()) {
343       if (auto *LI = dyn_cast<LoadInst>(U)) {
344         LI->setAlignment(std::max(A, LI->getAlign()));
345         continue;
346       }
347       if (auto *SI = dyn_cast<StoreInst>(U)) {
348         if (SI->getPointerOperand() == Ptr)
349           SI->setAlignment(std::max(A, SI->getAlign()));
350         continue;
351       }
352       if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
353         // None of atomicrmw operations can work on pointers, but let's
354         // check it anyway in case it will or we will process ConstantExpr.
355         if (AI->getPointerOperand() == Ptr)
356           AI->setAlignment(std::max(A, AI->getAlign()));
357         continue;
358       }
359       if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
360         if (AI->getPointerOperand() == Ptr)
361           AI->setAlignment(std::max(A, AI->getAlign()));
362         continue;
363       }
364       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
365         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
366         APInt Off(BitWidth, 0);
367         if (GEP->getPointerOperand() == Ptr &&
368             GEP->accumulateConstantOffset(DL, Off)) {
369           Align GA = commonAlignment(A, Off.getLimitedValue());
370           refineUsesAlignment(GEP, GA, DL, MaxDepth - 1);
371         }
372         continue;
373       }
374       if (auto *I = dyn_cast<Instruction>(U)) {
375         if (I->getOpcode() == Instruction::BitCast ||
376             I->getOpcode() == Instruction::AddrSpaceCast)
377           refineUsesAlignment(I, A, DL, MaxDepth - 1);
378       }
379     }
380   }
381 };
382 
383 } // namespace
384 char AMDGPULowerModuleLDS::ID = 0;
385 
386 char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
387 
388 INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
389                 "Lower uses of LDS variables from non-kernel functions", false,
390                 false)
391 
392 ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
393   return new AMDGPULowerModuleLDS();
394 }
395 
396 PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
397                                                 ModuleAnalysisManager &) {
398   return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
399                                                : PreservedAnalyses::all();
400 }
401