1fe6060f1SDimitry Andric //===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2fe6060f1SDimitry Andric //
3fe6060f1SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4fe6060f1SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5fe6060f1SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6fe6060f1SDimitry Andric //
7fe6060f1SDimitry Andric //===----------------------------------------------------------------------===//
8fe6060f1SDimitry Andric //
9bdd1243dSDimitry Andric // This pass eliminates local data store, LDS, uses from non-kernel functions.
10bdd1243dSDimitry Andric // LDS is contiguous memory allocated per kernel execution.
11fe6060f1SDimitry Andric //
12bdd1243dSDimitry Andric // Background.
13fe6060f1SDimitry Andric //
14bdd1243dSDimitry Andric // The programming model is global variables, or equivalently function local
15bdd1243dSDimitry Andric // static variables, accessible from kernels or other functions. For uses from
16bdd1243dSDimitry Andric // kernels this is straightforward - assign an integer to the kernel for the
17bdd1243dSDimitry Andric // memory required by all the variables combined, allocate them within that.
18bdd1243dSDimitry Andric // For uses from functions there are performance tradeoffs to choose between.
19bdd1243dSDimitry Andric //
20bdd1243dSDimitry Andric // This model means the GPU runtime can specify the amount of memory allocated.
21bdd1243dSDimitry Andric // If this is more than the kernel assumed, the excess can be made available
22bdd1243dSDimitry Andric // using a language specific feature, which IR represents as a variable with
2306c3fb27SDimitry Andric // no initializer. This feature is referred to here as "Dynamic LDS" and is
2406c3fb27SDimitry Andric // lowered slightly differently to the normal case.
25bdd1243dSDimitry Andric //
26bdd1243dSDimitry Andric // Consequences of this GPU feature:
27bdd1243dSDimitry Andric // - memory is limited and exceeding it halts compilation
28bdd1243dSDimitry Andric // - a global accessed by one kernel exists independent of other kernels
29bdd1243dSDimitry Andric // - a global exists independent of simultaneous execution of the same kernel
30bdd1243dSDimitry Andric // - the address of the global may be different from different kernels as they
31bdd1243dSDimitry Andric // do not alias, which permits only allocating variables they use
32bdd1243dSDimitry Andric // - if the address is allowed to differ, functions need help to find it
33bdd1243dSDimitry Andric //
34bdd1243dSDimitry Andric // Uses from kernels are implemented here by grouping them in a per-kernel
35bdd1243dSDimitry Andric // struct instance. This duplicates the variables, accurately modelling their
36bdd1243dSDimitry Andric // aliasing properties relative to a single global representation. It also
37bdd1243dSDimitry Andric // permits control over alignment via padding.
38bdd1243dSDimitry Andric //
39bdd1243dSDimitry Andric // Uses from functions are more complicated and the primary purpose of this
40bdd1243dSDimitry Andric // IR pass. Several different lowering are chosen between to meet requirements
41bdd1243dSDimitry Andric // to avoid allocating any LDS where it is not necessary, as that impacts
42bdd1243dSDimitry Andric // occupancy and may fail the compilation, while not imposing overhead on a
43bdd1243dSDimitry Andric // feature whose primary advantage over global memory is performance. The basic
44bdd1243dSDimitry Andric // design goal is to avoid one kernel imposing overhead on another.
45bdd1243dSDimitry Andric //
46bdd1243dSDimitry Andric // Implementation.
47bdd1243dSDimitry Andric //
48bdd1243dSDimitry Andric // LDS variables with constant annotation or non-undef initializer are passed
4981ad6265SDimitry Andric // through unchanged for simplification or error diagnostics in later passes.
50bdd1243dSDimitry Andric // Non-undef initializers are not yet implemented for LDS.
51fe6060f1SDimitry Andric //
52bdd1243dSDimitry Andric // LDS variables that are always allocated at the same address can be found
53bdd1243dSDimitry Andric // by lookup at that address. Otherwise runtime information/cost is required.
54fe6060f1SDimitry Andric //
55bdd1243dSDimitry Andric // The simplest strategy possible is to group all LDS variables in a single
56bdd1243dSDimitry Andric // struct and allocate that struct in every kernel such that the original
57bdd1243dSDimitry Andric // variables are always at the same address. LDS is however a limited resource
58bdd1243dSDimitry Andric // so this strategy is unusable in practice. It is not implemented here.
59bdd1243dSDimitry Andric //
60bdd1243dSDimitry Andric // Strategy | Precise allocation | Zero runtime cost | General purpose |
61bdd1243dSDimitry Andric // --------+--------------------+-------------------+-----------------+
62bdd1243dSDimitry Andric // Module | No | Yes | Yes |
63bdd1243dSDimitry Andric // Table | Yes | No | Yes |
64bdd1243dSDimitry Andric // Kernel | Yes | Yes | No |
65bdd1243dSDimitry Andric // Hybrid | Yes | Partial | Yes |
66bdd1243dSDimitry Andric //
6706c3fb27SDimitry Andric // "Module" spends LDS memory to save cycles. "Table" spends cycles and global
6806c3fb27SDimitry Andric // memory to save LDS. "Kernel" is as fast as kernel allocation but only works
6906c3fb27SDimitry Andric // for variables that are known reachable from a single kernel. "Hybrid" picks
7006c3fb27SDimitry Andric // between all three. When forced to choose between LDS and cycles we minimise
71bdd1243dSDimitry Andric // LDS use.
72bdd1243dSDimitry Andric
73bdd1243dSDimitry Andric // The "module" lowering implemented here finds LDS variables which are used by
74bdd1243dSDimitry Andric // non-kernel functions and creates a new struct with a field for each of those
75bdd1243dSDimitry Andric // LDS variables. Variables that are only used from kernels are excluded.
76bdd1243dSDimitry Andric //
77bdd1243dSDimitry Andric // The "table" lowering implemented here has three components.
78bdd1243dSDimitry Andric // First kernels are assigned a unique integer identifier which is available in
79bdd1243dSDimitry Andric // functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
80bdd1243dSDimitry Andric // is passed through a specific SGPR, thus works with indirect calls.
81bdd1243dSDimitry Andric // Second, each kernel allocates LDS variables independent of other kernels and
82bdd1243dSDimitry Andric // writes the addresses it chose for each variable into an array in consistent
83bdd1243dSDimitry Andric // order. If the kernel does not allocate a given variable, it writes undef to
84bdd1243dSDimitry Andric // the corresponding array location. These arrays are written to a constant
85bdd1243dSDimitry Andric // table in the order matching the kernel unique integer identifier.
86bdd1243dSDimitry Andric // Third, uses from non-kernel functions are replaced with a table lookup using
87bdd1243dSDimitry Andric // the intrinsic function to find the address of the variable.
88bdd1243dSDimitry Andric //
89bdd1243dSDimitry Andric // "Kernel" lowering is only applicable for variables that are unambiguously
90bdd1243dSDimitry Andric // reachable from exactly one kernel. For those cases, accesses to the variable
91bdd1243dSDimitry Andric // can be lowered to ConstantExpr address of a struct instance specific to that
92bdd1243dSDimitry Andric // one kernel. This is zero cost in space and in compute. It will raise a fatal
93bdd1243dSDimitry Andric // error on any variable that might be reachable from multiple kernels and is
94bdd1243dSDimitry Andric // thus most easily used as part of the hybrid lowering strategy.
95bdd1243dSDimitry Andric //
96bdd1243dSDimitry Andric // Hybrid lowering is a mixture of the above. It uses the zero cost kernel
97bdd1243dSDimitry Andric // lowering where it can. It lowers the variable accessed by the greatest
98bdd1243dSDimitry Andric // number of kernels using the module strategy as that is free for the first
99bdd1243dSDimitry Andric // variable. Any futher variables that can be lowered with the module strategy
100bdd1243dSDimitry Andric // without incurring LDS memory overhead are. The remaining ones are lowered
101bdd1243dSDimitry Andric // via table.
102bdd1243dSDimitry Andric //
103bdd1243dSDimitry Andric // Consequences
104bdd1243dSDimitry Andric // - No heuristics or user controlled magic numbers, hybrid is the right choice
105bdd1243dSDimitry Andric // - Kernels that don't use functions (or have had them all inlined) are not
106bdd1243dSDimitry Andric // affected by any lowering for kernels that do.
107bdd1243dSDimitry Andric // - Kernels that don't make indirect function calls are not affected by those
108bdd1243dSDimitry Andric // that do.
109bdd1243dSDimitry Andric // - Variables which are used by lots of kernels, e.g. those injected by a
110bdd1243dSDimitry Andric // language runtime in most kernels, are expected to have no overhead
111bdd1243dSDimitry Andric // - Implementations that instantiate templates per-kernel where those templates
112bdd1243dSDimitry Andric // use LDS are expected to hit the "Kernel" lowering strategy
113bdd1243dSDimitry Andric // - The runtime properties impose a cost in compiler implementation complexity
114fe6060f1SDimitry Andric //
11506c3fb27SDimitry Andric // Dynamic LDS implementation
11606c3fb27SDimitry Andric // Dynamic LDS is lowered similarly to the "table" strategy above and uses the
11706c3fb27SDimitry Andric // same intrinsic to identify which kernel is at the root of the dynamic call
11806c3fb27SDimitry Andric // graph. This relies on the specified behaviour that all dynamic LDS variables
11906c3fb27SDimitry Andric // alias one another, i.e. are at the same address, with respect to a given
12006c3fb27SDimitry Andric // kernel. Therefore this pass creates new dynamic LDS variables for each kernel
12106c3fb27SDimitry Andric // that allocates any dynamic LDS and builds a table of addresses out of those.
12206c3fb27SDimitry Andric // The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
12306c3fb27SDimitry Andric // The corresponding optimisation for "kernel" lowering where the table lookup
12406c3fb27SDimitry Andric // is elided is not implemented.
12506c3fb27SDimitry Andric //
12606c3fb27SDimitry Andric //
12706c3fb27SDimitry Andric // Implementation notes / limitations
12806c3fb27SDimitry Andric // A single LDS global variable represents an instance per kernel that can reach
12906c3fb27SDimitry Andric // said variables. This pass essentially specialises said variables per kernel.
13006c3fb27SDimitry Andric // Handling ConstantExpr during the pass complicated this significantly so now
13106c3fb27SDimitry Andric // all ConstantExpr uses of LDS variables are expanded to instructions. This
13206c3fb27SDimitry Andric // may need amending when implementing non-undef initialisers.
13306c3fb27SDimitry Andric //
13406c3fb27SDimitry Andric // Lowering is split between this IR pass and the back end. This pass chooses
13506c3fb27SDimitry Andric // where given variables should be allocated and marks them with metadata,
13606c3fb27SDimitry Andric // MD_absolute_symbol. The backend places the variables in coincidentally the
13706c3fb27SDimitry Andric // same location and raises a fatal error if something has gone awry. This works
13806c3fb27SDimitry Andric // in practice because the only pass between this one and the backend that
13906c3fb27SDimitry Andric // changes LDS is PromoteAlloca and the changes it makes do not conflict.
14006c3fb27SDimitry Andric //
14106c3fb27SDimitry Andric // Addresses are written to constant global arrays based on the same metadata.
14206c3fb27SDimitry Andric //
14306c3fb27SDimitry Andric // The backend lowers LDS variables in the order of traversal of the function.
14406c3fb27SDimitry Andric // This is at odds with the deterministic layout required. The workaround is to
14506c3fb27SDimitry Andric // allocate the fixed-address variables immediately upon starting the function
14606c3fb27SDimitry Andric // where they can be placed as intended. This requires a means of mapping from
14706c3fb27SDimitry Andric // the function to the variables that it allocates. For the module scope lds,
14806c3fb27SDimitry Andric // this is via metadata indicating whether the variable is not required. If a
14906c3fb27SDimitry Andric // pass deletes that metadata, a fatal error on disagreement with the absolute
15006c3fb27SDimitry Andric // symbol metadata will occur. For kernel scope and dynamic, this is by _name_
15106c3fb27SDimitry Andric // correspondence between the function and the variable. It requires the
15206c3fb27SDimitry Andric // kernel to have a name (which is only a limitation for tests in practice) and
15306c3fb27SDimitry Andric // for nothing to rename the corresponding symbols. This is a hazard if the pass
15406c3fb27SDimitry Andric // is run multiple times during debugging. Alternative schemes considered all
15506c3fb27SDimitry Andric // involve bespoke metadata.
15606c3fb27SDimitry Andric //
15706c3fb27SDimitry Andric // If the name correspondence can be replaced, multiple distinct kernels that
15806c3fb27SDimitry Andric // have the same memory layout can map to the same kernel id (as the address
15906c3fb27SDimitry Andric // itself is handled by the absolute symbol metadata) and that will allow more
16006c3fb27SDimitry Andric // uses of the "kernel" style faster lowering and reduce the size of the lookup
16106c3fb27SDimitry Andric // tables.
16206c3fb27SDimitry Andric //
16306c3fb27SDimitry Andric // There is a test that checks this does not fire for a graphics shader. This
16406c3fb27SDimitry Andric // lowering is expected to work for graphics if the isKernel test is changed.
16506c3fb27SDimitry Andric //
16606c3fb27SDimitry Andric // The current markUsedByKernel is sufficient for PromoteAlloca but is elided
16706c3fb27SDimitry Andric // before codegen. Replacing this with an equivalent intrinsic which lasts until
16806c3fb27SDimitry Andric // shortly after the machine function lowering of LDS would help break the name
16906c3fb27SDimitry Andric // mapping. The other part needed is probably to amend PromoteAlloca to embed
17006c3fb27SDimitry Andric // the LDS variables it creates in the same struct created here. That avoids the
17106c3fb27SDimitry Andric // current hazard where a PromoteAlloca LDS variable might be allocated before
17206c3fb27SDimitry Andric // the kernel scope (and thus error on the address check). Given a new invariant
17306c3fb27SDimitry Andric // that no LDS variables exist outside of the structs managed here, and an
17406c3fb27SDimitry Andric // intrinsic that lasts until after the LDS frame lowering, it should be
17506c3fb27SDimitry Andric // possible to drop the name mapping and fold equivalent memory layouts.
17606c3fb27SDimitry Andric //
177fe6060f1SDimitry Andric //===----------------------------------------------------------------------===//
178fe6060f1SDimitry Andric
179fe6060f1SDimitry Andric #include "AMDGPU.h"
1805f757f3fSDimitry Andric #include "AMDGPUTargetMachine.h"
181fe6060f1SDimitry Andric #include "Utils/AMDGPUBaseInfo.h"
18281ad6265SDimitry Andric #include "Utils/AMDGPUMemoryUtils.h"
183972a253aSDimitry Andric #include "llvm/ADT/BitVector.h"
184972a253aSDimitry Andric #include "llvm/ADT/DenseMap.h"
185bdd1243dSDimitry Andric #include "llvm/ADT/DenseSet.h"
186fe6060f1SDimitry Andric #include "llvm/ADT/STLExtras.h"
187bdd1243dSDimitry Andric #include "llvm/ADT/SetOperations.h"
18881ad6265SDimitry Andric #include "llvm/Analysis/CallGraph.h"
1895f757f3fSDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
190fe6060f1SDimitry Andric #include "llvm/IR/Constants.h"
191fe6060f1SDimitry Andric #include "llvm/IR/DerivedTypes.h"
192fe6060f1SDimitry Andric #include "llvm/IR/IRBuilder.h"
193fe6060f1SDimitry Andric #include "llvm/IR/InlineAsm.h"
194fe6060f1SDimitry Andric #include "llvm/IR/Instructions.h"
195bdd1243dSDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
196349cc55cSDimitry Andric #include "llvm/IR/MDBuilder.h"
19706c3fb27SDimitry Andric #include "llvm/IR/ReplaceConstant.h"
198fe6060f1SDimitry Andric #include "llvm/InitializePasses.h"
199fe6060f1SDimitry Andric #include "llvm/Pass.h"
200fe6060f1SDimitry Andric #include "llvm/Support/CommandLine.h"
201fe6060f1SDimitry Andric #include "llvm/Support/Debug.h"
20206c3fb27SDimitry Andric #include "llvm/Support/Format.h"
203fe6060f1SDimitry Andric #include "llvm/Support/OptimizedStructLayout.h"
20406c3fb27SDimitry Andric #include "llvm/Support/raw_ostream.h"
205bdd1243dSDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h"
206fe6060f1SDimitry Andric #include "llvm/Transforms/Utils/ModuleUtils.h"
207bdd1243dSDimitry Andric
208fe6060f1SDimitry Andric #include <vector>
209fe6060f1SDimitry Andric
210bdd1243dSDimitry Andric #include <cstdio>
211bdd1243dSDimitry Andric
212fe6060f1SDimitry Andric #define DEBUG_TYPE "amdgpu-lower-module-lds"
213fe6060f1SDimitry Andric
214fe6060f1SDimitry Andric using namespace llvm;
215*0fca6ea1SDimitry Andric using namespace AMDGPU;
216fe6060f1SDimitry Andric
217bdd1243dSDimitry Andric namespace {
218bdd1243dSDimitry Andric
219bdd1243dSDimitry Andric cl::opt<bool> SuperAlignLDSGlobals(
220fe6060f1SDimitry Andric "amdgpu-super-align-lds-globals",
221fe6060f1SDimitry Andric cl::desc("Increase alignment of LDS if it is not on align boundary"),
222fe6060f1SDimitry Andric cl::init(true), cl::Hidden);
223fe6060f1SDimitry Andric
224bdd1243dSDimitry Andric enum class LoweringKind { module, table, kernel, hybrid };
225bdd1243dSDimitry Andric cl::opt<LoweringKind> LoweringKindLoc(
226bdd1243dSDimitry Andric "amdgpu-lower-module-lds-strategy",
227bdd1243dSDimitry Andric cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
22806c3fb27SDimitry Andric cl::init(LoweringKind::hybrid),
229bdd1243dSDimitry Andric cl::values(
230bdd1243dSDimitry Andric clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
231bdd1243dSDimitry Andric clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
232bdd1243dSDimitry Andric clEnumValN(
233bdd1243dSDimitry Andric LoweringKind::kernel, "kernel",
234bdd1243dSDimitry Andric "Lower variables reachable from one kernel, otherwise abort"),
235bdd1243dSDimitry Andric clEnumValN(LoweringKind::hybrid, "hybrid",
236bdd1243dSDimitry Andric "Lower via mixture of above strategies")));
237bdd1243dSDimitry Andric
sortByName(std::vector<T> && V)23806c3fb27SDimitry Andric template <typename T> std::vector<T> sortByName(std::vector<T> &&V) {
23906c3fb27SDimitry Andric llvm::sort(V.begin(), V.end(), [](const auto *L, const auto *R) {
24006c3fb27SDimitry Andric return L->getName() < R->getName();
24106c3fb27SDimitry Andric });
24206c3fb27SDimitry Andric return {std::move(V)};
24306c3fb27SDimitry Andric }
24406c3fb27SDimitry Andric
2455f757f3fSDimitry Andric class AMDGPULowerModuleLDS {
2465f757f3fSDimitry Andric const AMDGPUTargetMachine &TM;
247fe6060f1SDimitry Andric
248fe6060f1SDimitry Andric static void
removeLocalVarsFromUsedLists(Module & M,const DenseSet<GlobalVariable * > & LocalVars)249bdd1243dSDimitry Andric removeLocalVarsFromUsedLists(Module &M,
250bdd1243dSDimitry Andric const DenseSet<GlobalVariable *> &LocalVars) {
251972a253aSDimitry Andric // The verifier rejects used lists containing an inttoptr of a constant
252972a253aSDimitry Andric // so remove the variables from these lists before replaceAllUsesWith
253bdd1243dSDimitry Andric SmallPtrSet<Constant *, 8> LocalVarsSet;
2540eae32dcSDimitry Andric for (GlobalVariable *LocalVar : LocalVars)
255bdd1243dSDimitry Andric LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
256bdd1243dSDimitry Andric
257bdd1243dSDimitry Andric removeFromUsedLists(
258bdd1243dSDimitry Andric M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
259bdd1243dSDimitry Andric
260bdd1243dSDimitry Andric for (GlobalVariable *LocalVar : LocalVars)
261bdd1243dSDimitry Andric LocalVar->removeDeadConstantUsers();
262fe6060f1SDimitry Andric }
263fe6060f1SDimitry Andric
markUsedByKernel(Function * Func,GlobalVariable * SGV)26406c3fb27SDimitry Andric static void markUsedByKernel(Function *Func, GlobalVariable *SGV) {
265fe6060f1SDimitry Andric // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
266fe6060f1SDimitry Andric // that might call a function which accesses a field within it. This is
267fe6060f1SDimitry Andric // presently approximated to 'all kernels' if there are any such functions
268349cc55cSDimitry Andric // in the module. This implicit use is redefined as an explicit use here so
269fe6060f1SDimitry Andric // that later passes, specifically PromoteAlloca, account for the required
270fe6060f1SDimitry Andric // memory without any knowledge of this transform.
271fe6060f1SDimitry Andric
272fe6060f1SDimitry Andric // An operand bundle on llvm.donothing works because the call instruction
273fe6060f1SDimitry Andric // survives until after the last pass that needs to account for LDS. It is
274fe6060f1SDimitry Andric // better than inline asm as the latter survives until the end of codegen. A
275fe6060f1SDimitry Andric // totally robust solution would be a function with the same semantics as
276fe6060f1SDimitry Andric // llvm.donothing that takes a pointer to the instance and is lowered to a
277fe6060f1SDimitry Andric // no-op after LDS is allocated, but that is not presently necessary.
278fe6060f1SDimitry Andric
27906c3fb27SDimitry Andric // This intrinsic is eliminated shortly before instruction selection. It
28006c3fb27SDimitry Andric // does not suffice to indicate to ISel that a given global which is not
28106c3fb27SDimitry Andric // immediately used by the kernel must still be allocated by it. An
28206c3fb27SDimitry Andric // equivalent target specific intrinsic which lasts until immediately after
28306c3fb27SDimitry Andric // codegen would suffice for that, but one would still need to ensure that
284*0fca6ea1SDimitry Andric // the variables are allocated in the anticipated order.
2855f757f3fSDimitry Andric BasicBlock *Entry = &Func->getEntryBlock();
2865f757f3fSDimitry Andric IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt());
287fe6060f1SDimitry Andric
288fe6060f1SDimitry Andric Function *Decl =
289fe6060f1SDimitry Andric Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
290fe6060f1SDimitry Andric
29106c3fb27SDimitry Andric Value *UseInstance[1] = {
29206c3fb27SDimitry Andric Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)};
293fe6060f1SDimitry Andric
29406c3fb27SDimitry Andric Builder.CreateCall(
29506c3fb27SDimitry Andric Decl, {}, {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)});
296fe6060f1SDimitry Andric }
297fe6060f1SDimitry Andric
298fe6060f1SDimitry Andric public:
AMDGPULowerModuleLDS(const AMDGPUTargetMachine & TM_)2995f757f3fSDimitry Andric AMDGPULowerModuleLDS(const AMDGPUTargetMachine &TM_) : TM(TM_) {}
300fe6060f1SDimitry Andric
301bdd1243dSDimitry Andric struct LDSVariableReplacement {
302bdd1243dSDimitry Andric GlobalVariable *SGV = nullptr;
303bdd1243dSDimitry Andric DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
304bdd1243dSDimitry Andric };
305bdd1243dSDimitry Andric
306bdd1243dSDimitry Andric // remap from lds global to a constantexpr gep to where it has been moved to
307bdd1243dSDimitry Andric // for each kernel
308bdd1243dSDimitry Andric // an array with an element for each kernel containing where the corresponding
309bdd1243dSDimitry Andric // variable was remapped to
310bdd1243dSDimitry Andric
getAddressesOfVariablesInKernel(LLVMContext & Ctx,ArrayRef<GlobalVariable * > Variables,const DenseMap<GlobalVariable *,Constant * > & LDSVarsToConstantGEP)311bdd1243dSDimitry Andric static Constant *getAddressesOfVariablesInKernel(
312bdd1243dSDimitry Andric LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
31306c3fb27SDimitry Andric const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
314bdd1243dSDimitry Andric // Create a ConstantArray containing the address of each Variable within the
315bdd1243dSDimitry Andric // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
316bdd1243dSDimitry Andric // does not allocate it
317bdd1243dSDimitry Andric // TODO: Drop the ptrtoint conversion
318bdd1243dSDimitry Andric
319bdd1243dSDimitry Andric Type *I32 = Type::getInt32Ty(Ctx);
320bdd1243dSDimitry Andric
321bdd1243dSDimitry Andric ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
322bdd1243dSDimitry Andric
323bdd1243dSDimitry Andric SmallVector<Constant *> Elements;
324*0fca6ea1SDimitry Andric for (GlobalVariable *GV : Variables) {
32506c3fb27SDimitry Andric auto ConstantGepIt = LDSVarsToConstantGEP.find(GV);
32606c3fb27SDimitry Andric if (ConstantGepIt != LDSVarsToConstantGEP.end()) {
32706c3fb27SDimitry Andric auto elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32);
328bdd1243dSDimitry Andric Elements.push_back(elt);
329bdd1243dSDimitry Andric } else {
330bdd1243dSDimitry Andric Elements.push_back(PoisonValue::get(I32));
331bdd1243dSDimitry Andric }
332bdd1243dSDimitry Andric }
333bdd1243dSDimitry Andric return ConstantArray::get(KernelOffsetsType, Elements);
334bdd1243dSDimitry Andric }
335bdd1243dSDimitry Andric
buildLookupTable(Module & M,ArrayRef<GlobalVariable * > Variables,ArrayRef<Function * > kernels,DenseMap<Function *,LDSVariableReplacement> & KernelToReplacement)336bdd1243dSDimitry Andric static GlobalVariable *buildLookupTable(
337bdd1243dSDimitry Andric Module &M, ArrayRef<GlobalVariable *> Variables,
338bdd1243dSDimitry Andric ArrayRef<Function *> kernels,
339bdd1243dSDimitry Andric DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
340bdd1243dSDimitry Andric if (Variables.empty()) {
341bdd1243dSDimitry Andric return nullptr;
342bdd1243dSDimitry Andric }
343bdd1243dSDimitry Andric LLVMContext &Ctx = M.getContext();
344bdd1243dSDimitry Andric
345bdd1243dSDimitry Andric const size_t NumberVariables = Variables.size();
346bdd1243dSDimitry Andric const size_t NumberKernels = kernels.size();
347bdd1243dSDimitry Andric
348bdd1243dSDimitry Andric ArrayType *KernelOffsetsType =
349bdd1243dSDimitry Andric ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
350bdd1243dSDimitry Andric
351bdd1243dSDimitry Andric ArrayType *AllKernelsOffsetsType =
352bdd1243dSDimitry Andric ArrayType::get(KernelOffsetsType, NumberKernels);
353bdd1243dSDimitry Andric
35406c3fb27SDimitry Andric Constant *Missing = PoisonValue::get(KernelOffsetsType);
355bdd1243dSDimitry Andric std::vector<Constant *> overallConstantExprElts(NumberKernels);
356bdd1243dSDimitry Andric for (size_t i = 0; i < NumberKernels; i++) {
35706c3fb27SDimitry Andric auto Replacement = KernelToReplacement.find(kernels[i]);
35806c3fb27SDimitry Andric overallConstantExprElts[i] =
35906c3fb27SDimitry Andric (Replacement == KernelToReplacement.end())
36006c3fb27SDimitry Andric ? Missing
36106c3fb27SDimitry Andric : getAddressesOfVariablesInKernel(
36206c3fb27SDimitry Andric Ctx, Variables, Replacement->second.LDSVarsToConstantGEP);
363bdd1243dSDimitry Andric }
364bdd1243dSDimitry Andric
365bdd1243dSDimitry Andric Constant *init =
366bdd1243dSDimitry Andric ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
367bdd1243dSDimitry Andric
368bdd1243dSDimitry Andric return new GlobalVariable(
369bdd1243dSDimitry Andric M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
370bdd1243dSDimitry Andric "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
371bdd1243dSDimitry Andric AMDGPUAS::CONSTANT_ADDRESS);
372bdd1243dSDimitry Andric }
373bdd1243dSDimitry Andric
replaceUseWithTableLookup(Module & M,IRBuilder<> & Builder,GlobalVariable * LookupTable,GlobalVariable * GV,Use & U,Value * OptionalIndex)37406c3fb27SDimitry Andric void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder,
37506c3fb27SDimitry Andric GlobalVariable *LookupTable,
37606c3fb27SDimitry Andric GlobalVariable *GV, Use &U,
37706c3fb27SDimitry Andric Value *OptionalIndex) {
37806c3fb27SDimitry Andric // Table is a constant array of the same length as OrderedKernels
379bdd1243dSDimitry Andric LLVMContext &Ctx = M.getContext();
380bdd1243dSDimitry Andric Type *I32 = Type::getInt32Ty(Ctx);
38106c3fb27SDimitry Andric auto *I = cast<Instruction>(U.getUser());
382bdd1243dSDimitry Andric
38306c3fb27SDimitry Andric Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction());
384bdd1243dSDimitry Andric
385bdd1243dSDimitry Andric if (auto *Phi = dyn_cast<PHINode>(I)) {
386bdd1243dSDimitry Andric BasicBlock *BB = Phi->getIncomingBlock(U);
387bdd1243dSDimitry Andric Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
388bdd1243dSDimitry Andric } else {
389bdd1243dSDimitry Andric Builder.SetInsertPoint(I);
390bdd1243dSDimitry Andric }
391bdd1243dSDimitry Andric
39206c3fb27SDimitry Andric SmallVector<Value *, 3> GEPIdx = {
393bdd1243dSDimitry Andric ConstantInt::get(I32, 0),
394bdd1243dSDimitry Andric tableKernelIndex,
395bdd1243dSDimitry Andric };
39606c3fb27SDimitry Andric if (OptionalIndex)
39706c3fb27SDimitry Andric GEPIdx.push_back(OptionalIndex);
398bdd1243dSDimitry Andric
399bdd1243dSDimitry Andric Value *Address = Builder.CreateInBoundsGEP(
400bdd1243dSDimitry Andric LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
401bdd1243dSDimitry Andric
402bdd1243dSDimitry Andric Value *loaded = Builder.CreateLoad(I32, Address);
403bdd1243dSDimitry Andric
404bdd1243dSDimitry Andric Value *replacement =
405bdd1243dSDimitry Andric Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
406bdd1243dSDimitry Andric
407bdd1243dSDimitry Andric U.set(replacement);
408bdd1243dSDimitry Andric }
40906c3fb27SDimitry Andric
replaceUsesInInstructionsWithTableLookup(Module & M,ArrayRef<GlobalVariable * > ModuleScopeVariables,GlobalVariable * LookupTable)41006c3fb27SDimitry Andric void replaceUsesInInstructionsWithTableLookup(
41106c3fb27SDimitry Andric Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
41206c3fb27SDimitry Andric GlobalVariable *LookupTable) {
41306c3fb27SDimitry Andric
41406c3fb27SDimitry Andric LLVMContext &Ctx = M.getContext();
41506c3fb27SDimitry Andric IRBuilder<> Builder(Ctx);
41606c3fb27SDimitry Andric Type *I32 = Type::getInt32Ty(Ctx);
41706c3fb27SDimitry Andric
41806c3fb27SDimitry Andric for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
41906c3fb27SDimitry Andric auto *GV = ModuleScopeVariables[Index];
42006c3fb27SDimitry Andric
42106c3fb27SDimitry Andric for (Use &U : make_early_inc_range(GV->uses())) {
42206c3fb27SDimitry Andric auto *I = dyn_cast<Instruction>(U.getUser());
42306c3fb27SDimitry Andric if (!I)
42406c3fb27SDimitry Andric continue;
42506c3fb27SDimitry Andric
42606c3fb27SDimitry Andric replaceUseWithTableLookup(M, Builder, LookupTable, GV, U,
42706c3fb27SDimitry Andric ConstantInt::get(I32, Index));
42806c3fb27SDimitry Andric }
429bdd1243dSDimitry Andric }
430bdd1243dSDimitry Andric }
431bdd1243dSDimitry Andric
kernelsThatIndirectlyAccessAnyOfPassedVariables(Module & M,LDSUsesInfoTy & LDSUsesInfo,DenseSet<GlobalVariable * > const & VariableSet)432bdd1243dSDimitry Andric static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
433bdd1243dSDimitry Andric Module &M, LDSUsesInfoTy &LDSUsesInfo,
434bdd1243dSDimitry Andric DenseSet<GlobalVariable *> const &VariableSet) {
435bdd1243dSDimitry Andric
436bdd1243dSDimitry Andric DenseSet<Function *> KernelSet;
437bdd1243dSDimitry Andric
43806c3fb27SDimitry Andric if (VariableSet.empty())
43906c3fb27SDimitry Andric return KernelSet;
440bdd1243dSDimitry Andric
441bdd1243dSDimitry Andric for (Function &Func : M.functions()) {
442bdd1243dSDimitry Andric if (Func.isDeclaration() || !isKernelLDS(&Func))
443bdd1243dSDimitry Andric continue;
444bdd1243dSDimitry Andric for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
445bdd1243dSDimitry Andric if (VariableSet.contains(GV)) {
446bdd1243dSDimitry Andric KernelSet.insert(&Func);
447bdd1243dSDimitry Andric break;
448bdd1243dSDimitry Andric }
449bdd1243dSDimitry Andric }
450bdd1243dSDimitry Andric }
451bdd1243dSDimitry Andric
452bdd1243dSDimitry Andric return KernelSet;
453bdd1243dSDimitry Andric }
454bdd1243dSDimitry Andric
455bdd1243dSDimitry Andric static GlobalVariable *
chooseBestVariableForModuleStrategy(const DataLayout & DL,VariableFunctionMap & LDSVars)456bdd1243dSDimitry Andric chooseBestVariableForModuleStrategy(const DataLayout &DL,
457bdd1243dSDimitry Andric VariableFunctionMap &LDSVars) {
458bdd1243dSDimitry Andric // Find the global variable with the most indirect uses from kernels
459bdd1243dSDimitry Andric
460bdd1243dSDimitry Andric struct CandidateTy {
461bdd1243dSDimitry Andric GlobalVariable *GV = nullptr;
462bdd1243dSDimitry Andric size_t UserCount = 0;
463bdd1243dSDimitry Andric size_t Size = 0;
464bdd1243dSDimitry Andric
465bdd1243dSDimitry Andric CandidateTy() = default;
466bdd1243dSDimitry Andric
467bdd1243dSDimitry Andric CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
468bdd1243dSDimitry Andric : GV(GV), UserCount(UserCount), Size(AllocSize) {}
469bdd1243dSDimitry Andric
470bdd1243dSDimitry Andric bool operator<(const CandidateTy &Other) const {
471bdd1243dSDimitry Andric // Fewer users makes module scope variable less attractive
472bdd1243dSDimitry Andric if (UserCount < Other.UserCount) {
473bdd1243dSDimitry Andric return true;
474bdd1243dSDimitry Andric }
475bdd1243dSDimitry Andric if (UserCount > Other.UserCount) {
476bdd1243dSDimitry Andric return false;
477bdd1243dSDimitry Andric }
478bdd1243dSDimitry Andric
479bdd1243dSDimitry Andric // Bigger makes module scope variable less attractive
480bdd1243dSDimitry Andric if (Size < Other.Size) {
481bdd1243dSDimitry Andric return false;
482bdd1243dSDimitry Andric }
483bdd1243dSDimitry Andric
484bdd1243dSDimitry Andric if (Size > Other.Size) {
485bdd1243dSDimitry Andric return true;
486bdd1243dSDimitry Andric }
487bdd1243dSDimitry Andric
488bdd1243dSDimitry Andric // Arbitrary but consistent
489bdd1243dSDimitry Andric return GV->getName() < Other.GV->getName();
490bdd1243dSDimitry Andric }
491bdd1243dSDimitry Andric };
492bdd1243dSDimitry Andric
493bdd1243dSDimitry Andric CandidateTy MostUsed;
494bdd1243dSDimitry Andric
495bdd1243dSDimitry Andric for (auto &K : LDSVars) {
496bdd1243dSDimitry Andric GlobalVariable *GV = K.first;
497bdd1243dSDimitry Andric if (K.second.size() <= 1) {
498bdd1243dSDimitry Andric // A variable reachable by only one kernel is best lowered with kernel
499bdd1243dSDimitry Andric // strategy
500bdd1243dSDimitry Andric continue;
501bdd1243dSDimitry Andric }
50206c3fb27SDimitry Andric CandidateTy Candidate(
50306c3fb27SDimitry Andric GV, K.second.size(),
504bdd1243dSDimitry Andric DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
505bdd1243dSDimitry Andric if (MostUsed < Candidate)
506bdd1243dSDimitry Andric MostUsed = Candidate;
507bdd1243dSDimitry Andric }
508bdd1243dSDimitry Andric
509bdd1243dSDimitry Andric return MostUsed.GV;
510bdd1243dSDimitry Andric }
511bdd1243dSDimitry Andric
recordLDSAbsoluteAddress(Module * M,GlobalVariable * GV,uint32_t Address)51206c3fb27SDimitry Andric static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
51306c3fb27SDimitry Andric uint32_t Address) {
51406c3fb27SDimitry Andric // Write the specified address into metadata where it can be retrieved by
51506c3fb27SDimitry Andric // the assembler. Format is a half open range, [Address Address+1)
51606c3fb27SDimitry Andric LLVMContext &Ctx = M->getContext();
51706c3fb27SDimitry Andric auto *IntTy =
51806c3fb27SDimitry Andric M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
51906c3fb27SDimitry Andric auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
52006c3fb27SDimitry Andric auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
52106c3fb27SDimitry Andric GV->setMetadata(LLVMContext::MD_absolute_symbol,
52206c3fb27SDimitry Andric MDNode::get(Ctx, {MinC, MaxC}));
52306c3fb27SDimitry Andric }
524972a253aSDimitry Andric
52506c3fb27SDimitry Andric DenseMap<Function *, Value *> tableKernelIndexCache;
getTableLookupKernelIndex(Module & M,Function * F)52606c3fb27SDimitry Andric Value *getTableLookupKernelIndex(Module &M, Function *F) {
52706c3fb27SDimitry Andric // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
52806c3fb27SDimitry Andric // lowers to a read from a live in register. Emit it once in the entry
52906c3fb27SDimitry Andric // block to spare deduplicating it later.
53006c3fb27SDimitry Andric auto [It, Inserted] = tableKernelIndexCache.try_emplace(F);
53106c3fb27SDimitry Andric if (Inserted) {
53206c3fb27SDimitry Andric Function *Decl =
53306c3fb27SDimitry Andric Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
534fe6060f1SDimitry Andric
53506c3fb27SDimitry Andric auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
53606c3fb27SDimitry Andric IRBuilder<> Builder(&*InsertAt);
537972a253aSDimitry Andric
53806c3fb27SDimitry Andric It->second = Builder.CreateCall(Decl, {});
53906c3fb27SDimitry Andric }
540972a253aSDimitry Andric
54106c3fb27SDimitry Andric return It->second;
54206c3fb27SDimitry Andric }
54306c3fb27SDimitry Andric
assignLDSKernelIDToEachKernel(Module * M,DenseSet<Function * > const & KernelsThatAllocateTableLDS,DenseSet<Function * > const & KernelsThatIndirectlyAllocateDynamicLDS)54406c3fb27SDimitry Andric static std::vector<Function *> assignLDSKernelIDToEachKernel(
54506c3fb27SDimitry Andric Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS,
54606c3fb27SDimitry Andric DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) {
547*0fca6ea1SDimitry Andric // Associate kernels in the set with an arbitrary but reproducible order and
54806c3fb27SDimitry Andric // annotate them with that order in metadata. This metadata is recognised by
54906c3fb27SDimitry Andric // the backend and lowered to a SGPR which can be read from using
55006c3fb27SDimitry Andric // amdgcn_lds_kernel_id.
55106c3fb27SDimitry Andric
55206c3fb27SDimitry Andric std::vector<Function *> OrderedKernels;
55306c3fb27SDimitry Andric if (!KernelsThatAllocateTableLDS.empty() ||
55406c3fb27SDimitry Andric !KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
55506c3fb27SDimitry Andric
55606c3fb27SDimitry Andric for (Function &Func : M->functions()) {
55706c3fb27SDimitry Andric if (Func.isDeclaration())
55806c3fb27SDimitry Andric continue;
55906c3fb27SDimitry Andric if (!isKernelLDS(&Func))
56006c3fb27SDimitry Andric continue;
56106c3fb27SDimitry Andric
56206c3fb27SDimitry Andric if (KernelsThatAllocateTableLDS.contains(&Func) ||
56306c3fb27SDimitry Andric KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) {
56406c3fb27SDimitry Andric assert(Func.hasName()); // else fatal error earlier
56506c3fb27SDimitry Andric OrderedKernels.push_back(&Func);
566bdd1243dSDimitry Andric }
567bdd1243dSDimitry Andric }
568972a253aSDimitry Andric
56906c3fb27SDimitry Andric // Put them in an arbitrary but reproducible order
57006c3fb27SDimitry Andric OrderedKernels = sortByName(std::move(OrderedKernels));
571972a253aSDimitry Andric
57206c3fb27SDimitry Andric // Annotate the kernels with their order in this vector
57306c3fb27SDimitry Andric LLVMContext &Ctx = M->getContext();
57406c3fb27SDimitry Andric IRBuilder<> Builder(Ctx);
57506c3fb27SDimitry Andric
57606c3fb27SDimitry Andric if (OrderedKernels.size() > UINT32_MAX) {
57706c3fb27SDimitry Andric // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
57806c3fb27SDimitry Andric report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
57906c3fb27SDimitry Andric }
58006c3fb27SDimitry Andric
58106c3fb27SDimitry Andric for (size_t i = 0; i < OrderedKernels.size(); i++) {
58206c3fb27SDimitry Andric Metadata *AttrMDArgs[1] = {
58306c3fb27SDimitry Andric ConstantAsMetadata::get(Builder.getInt32(i)),
58406c3fb27SDimitry Andric };
58506c3fb27SDimitry Andric OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
58606c3fb27SDimitry Andric MDNode::get(Ctx, AttrMDArgs));
58706c3fb27SDimitry Andric }
58806c3fb27SDimitry Andric }
58906c3fb27SDimitry Andric return OrderedKernels;
59006c3fb27SDimitry Andric }
59106c3fb27SDimitry Andric
partitionVariablesIntoIndirectStrategies(Module & M,LDSUsesInfoTy const & LDSUsesInfo,VariableFunctionMap & LDSToKernelsThatNeedToAccessItIndirectly,DenseSet<GlobalVariable * > & ModuleScopeVariables,DenseSet<GlobalVariable * > & TableLookupVariables,DenseSet<GlobalVariable * > & KernelAccessVariables,DenseSet<GlobalVariable * > & DynamicVariables)59206c3fb27SDimitry Andric static void partitionVariablesIntoIndirectStrategies(
59306c3fb27SDimitry Andric Module &M, LDSUsesInfoTy const &LDSUsesInfo,
59406c3fb27SDimitry Andric VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly,
59506c3fb27SDimitry Andric DenseSet<GlobalVariable *> &ModuleScopeVariables,
59606c3fb27SDimitry Andric DenseSet<GlobalVariable *> &TableLookupVariables,
59706c3fb27SDimitry Andric DenseSet<GlobalVariable *> &KernelAccessVariables,
59806c3fb27SDimitry Andric DenseSet<GlobalVariable *> &DynamicVariables) {
59906c3fb27SDimitry Andric
600bdd1243dSDimitry Andric GlobalVariable *HybridModuleRoot =
601bdd1243dSDimitry Andric LoweringKindLoc != LoweringKind::hybrid
602bdd1243dSDimitry Andric ? nullptr
603bdd1243dSDimitry Andric : chooseBestVariableForModuleStrategy(
60406c3fb27SDimitry Andric M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly);
605972a253aSDimitry Andric
606bdd1243dSDimitry Andric DenseSet<Function *> const EmptySet;
607bdd1243dSDimitry Andric DenseSet<Function *> const &HybridModuleRootKernels =
608bdd1243dSDimitry Andric HybridModuleRoot
609bdd1243dSDimitry Andric ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
610bdd1243dSDimitry Andric : EmptySet;
611bdd1243dSDimitry Andric
612bdd1243dSDimitry Andric for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
613bdd1243dSDimitry Andric // Each iteration of this loop assigns exactly one global variable to
614bdd1243dSDimitry Andric // exactly one of the implementation strategies.
615bdd1243dSDimitry Andric
616bdd1243dSDimitry Andric GlobalVariable *GV = K.first;
617bdd1243dSDimitry Andric assert(AMDGPU::isLDSVariableToLower(*GV));
618bdd1243dSDimitry Andric assert(K.second.size() != 0);
619bdd1243dSDimitry Andric
62006c3fb27SDimitry Andric if (AMDGPU::isDynamicLDS(*GV)) {
62106c3fb27SDimitry Andric DynamicVariables.insert(GV);
62206c3fb27SDimitry Andric continue;
62306c3fb27SDimitry Andric }
62406c3fb27SDimitry Andric
625bdd1243dSDimitry Andric switch (LoweringKindLoc) {
626bdd1243dSDimitry Andric case LoweringKind::module:
627bdd1243dSDimitry Andric ModuleScopeVariables.insert(GV);
628bdd1243dSDimitry Andric break;
629bdd1243dSDimitry Andric
630bdd1243dSDimitry Andric case LoweringKind::table:
631bdd1243dSDimitry Andric TableLookupVariables.insert(GV);
632bdd1243dSDimitry Andric break;
633bdd1243dSDimitry Andric
634bdd1243dSDimitry Andric case LoweringKind::kernel:
635bdd1243dSDimitry Andric if (K.second.size() == 1) {
636bdd1243dSDimitry Andric KernelAccessVariables.insert(GV);
637972a253aSDimitry Andric } else {
638bdd1243dSDimitry Andric report_fatal_error(
639bdd1243dSDimitry Andric "cannot lower LDS '" + GV->getName() +
640bdd1243dSDimitry Andric "' to kernel access as it is reachable from multiple kernels");
641bdd1243dSDimitry Andric }
642bdd1243dSDimitry Andric break;
643bdd1243dSDimitry Andric
644bdd1243dSDimitry Andric case LoweringKind::hybrid: {
645bdd1243dSDimitry Andric if (GV == HybridModuleRoot) {
646bdd1243dSDimitry Andric assert(K.second.size() != 1);
647bdd1243dSDimitry Andric ModuleScopeVariables.insert(GV);
648bdd1243dSDimitry Andric } else if (K.second.size() == 1) {
649bdd1243dSDimitry Andric KernelAccessVariables.insert(GV);
650bdd1243dSDimitry Andric } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
651bdd1243dSDimitry Andric ModuleScopeVariables.insert(GV);
652bdd1243dSDimitry Andric } else {
653bdd1243dSDimitry Andric TableLookupVariables.insert(GV);
654bdd1243dSDimitry Andric }
655bdd1243dSDimitry Andric break;
656bdd1243dSDimitry Andric }
657bdd1243dSDimitry Andric }
658bdd1243dSDimitry Andric }
659bdd1243dSDimitry Andric
66006c3fb27SDimitry Andric // All LDS variables accessed indirectly have now been partitioned into
66106c3fb27SDimitry Andric // the distinct lowering strategies.
662bdd1243dSDimitry Andric assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
66306c3fb27SDimitry Andric KernelAccessVariables.size() + DynamicVariables.size() ==
664bdd1243dSDimitry Andric LDSToKernelsThatNeedToAccessItIndirectly.size());
66506c3fb27SDimitry Andric }
666bdd1243dSDimitry Andric
lowerModuleScopeStructVariables(Module & M,DenseSet<GlobalVariable * > const & ModuleScopeVariables,DenseSet<Function * > const & KernelsThatAllocateModuleLDS)66706c3fb27SDimitry Andric static GlobalVariable *lowerModuleScopeStructVariables(
66806c3fb27SDimitry Andric Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables,
66906c3fb27SDimitry Andric DenseSet<Function *> const &KernelsThatAllocateModuleLDS) {
67006c3fb27SDimitry Andric // Create a struct to hold the ModuleScopeVariables
67106c3fb27SDimitry Andric // Replace all uses of those variables from non-kernel functions with the
67206c3fb27SDimitry Andric // new struct instance Replace only the uses from kernel functions that will
67306c3fb27SDimitry Andric // allocate this instance. That is a space optimisation - kernels that use a
67406c3fb27SDimitry Andric // subset of the module scope struct and do not need to allocate it for
67506c3fb27SDimitry Andric // indirect calls will only allocate the subset they use (they do so as part
67606c3fb27SDimitry Andric // of the per-kernel lowering).
67706c3fb27SDimitry Andric if (ModuleScopeVariables.empty()) {
67806c3fb27SDimitry Andric return nullptr;
67906c3fb27SDimitry Andric }
680bdd1243dSDimitry Andric
68106c3fb27SDimitry Andric LLVMContext &Ctx = M.getContext();
68206c3fb27SDimitry Andric
683bdd1243dSDimitry Andric LDSVariableReplacement ModuleScopeReplacement =
684bdd1243dSDimitry Andric createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
685bdd1243dSDimitry Andric ModuleScopeVariables);
686bdd1243dSDimitry Andric
68706c3fb27SDimitry Andric appendToCompilerUsed(M, {static_cast<GlobalValue *>(
688bdd1243dSDimitry Andric ConstantExpr::getPointerBitCastOrAddrSpaceCast(
689bdd1243dSDimitry Andric cast<Constant>(ModuleScopeReplacement.SGV),
6905f757f3fSDimitry Andric PointerType::getUnqual(Ctx)))});
691bdd1243dSDimitry Andric
69206c3fb27SDimitry Andric // module.lds will be allocated at zero in any kernel that allocates it
69306c3fb27SDimitry Andric recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
69406c3fb27SDimitry Andric
695bdd1243dSDimitry Andric // historic
696bdd1243dSDimitry Andric removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
697bdd1243dSDimitry Andric
698bdd1243dSDimitry Andric // Replace all uses of module scope variable from non-kernel functions
699bdd1243dSDimitry Andric replaceLDSVariablesWithStruct(
700bdd1243dSDimitry Andric M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
701bdd1243dSDimitry Andric Instruction *I = dyn_cast<Instruction>(U.getUser());
702bdd1243dSDimitry Andric if (!I) {
703bdd1243dSDimitry Andric return false;
704bdd1243dSDimitry Andric }
705bdd1243dSDimitry Andric Function *F = I->getFunction();
706bdd1243dSDimitry Andric return !isKernelLDS(F);
707bdd1243dSDimitry Andric });
708bdd1243dSDimitry Andric
709bdd1243dSDimitry Andric // Replace uses of module scope variable from kernel functions that
710bdd1243dSDimitry Andric // allocate the module scope variable, otherwise leave them unchanged
711bdd1243dSDimitry Andric // Record on each kernel whether the module scope global is used by it
712bdd1243dSDimitry Andric
713bdd1243dSDimitry Andric for (Function &Func : M.functions()) {
714bdd1243dSDimitry Andric if (Func.isDeclaration() || !isKernelLDS(&Func))
715bdd1243dSDimitry Andric continue;
716bdd1243dSDimitry Andric
717bdd1243dSDimitry Andric if (KernelsThatAllocateModuleLDS.contains(&Func)) {
718bdd1243dSDimitry Andric replaceLDSVariablesWithStruct(
719bdd1243dSDimitry Andric M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
720bdd1243dSDimitry Andric Instruction *I = dyn_cast<Instruction>(U.getUser());
721bdd1243dSDimitry Andric if (!I) {
722bdd1243dSDimitry Andric return false;
723bdd1243dSDimitry Andric }
724bdd1243dSDimitry Andric Function *F = I->getFunction();
725bdd1243dSDimitry Andric return F == &Func;
726bdd1243dSDimitry Andric });
727bdd1243dSDimitry Andric
72806c3fb27SDimitry Andric markUsedByKernel(&Func, ModuleScopeReplacement.SGV);
729972a253aSDimitry Andric }
730972a253aSDimitry Andric }
731972a253aSDimitry Andric
73206c3fb27SDimitry Andric return ModuleScopeReplacement.SGV;
73306c3fb27SDimitry Andric }
73406c3fb27SDimitry Andric
73506c3fb27SDimitry Andric static DenseMap<Function *, LDSVariableReplacement>
lowerKernelScopeStructVariables(Module & M,LDSUsesInfoTy & LDSUsesInfo,DenseSet<GlobalVariable * > const & ModuleScopeVariables,DenseSet<Function * > const & KernelsThatAllocateModuleLDS,GlobalVariable * MaybeModuleScopeStruct)73606c3fb27SDimitry Andric lowerKernelScopeStructVariables(
73706c3fb27SDimitry Andric Module &M, LDSUsesInfoTy &LDSUsesInfo,
73806c3fb27SDimitry Andric DenseSet<GlobalVariable *> const &ModuleScopeVariables,
73906c3fb27SDimitry Andric DenseSet<Function *> const &KernelsThatAllocateModuleLDS,
74006c3fb27SDimitry Andric GlobalVariable *MaybeModuleScopeStruct) {
74106c3fb27SDimitry Andric
74206c3fb27SDimitry Andric // Create a struct for each kernel for the non-module-scope variables.
74306c3fb27SDimitry Andric
744bdd1243dSDimitry Andric DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
745bdd1243dSDimitry Andric for (Function &Func : M.functions()) {
746bdd1243dSDimitry Andric if (Func.isDeclaration() || !isKernelLDS(&Func))
747349cc55cSDimitry Andric continue;
748349cc55cSDimitry Andric
749bdd1243dSDimitry Andric DenseSet<GlobalVariable *> KernelUsedVariables;
75006c3fb27SDimitry Andric // Allocating variables that are used directly in this struct to get
75106c3fb27SDimitry Andric // alignment aware allocation and predictable frame size.
752bdd1243dSDimitry Andric for (auto &v : LDSUsesInfo.direct_access[&Func]) {
75306c3fb27SDimitry Andric if (!AMDGPU::isDynamicLDS(*v)) {
754bdd1243dSDimitry Andric KernelUsedVariables.insert(v);
755bdd1243dSDimitry Andric }
75606c3fb27SDimitry Andric }
75706c3fb27SDimitry Andric
75806c3fb27SDimitry Andric // Allocating variables that are accessed indirectly so that a lookup of
75906c3fb27SDimitry Andric // this struct instance can find them from nested functions.
760bdd1243dSDimitry Andric for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
76106c3fb27SDimitry Andric if (!AMDGPU::isDynamicLDS(*v)) {
762bdd1243dSDimitry Andric KernelUsedVariables.insert(v);
763bdd1243dSDimitry Andric }
76406c3fb27SDimitry Andric }
765bdd1243dSDimitry Andric
766bdd1243dSDimitry Andric // Variables allocated in module lds must all resolve to that struct,
767bdd1243dSDimitry Andric // not to the per-kernel instance.
768bdd1243dSDimitry Andric if (KernelsThatAllocateModuleLDS.contains(&Func)) {
769bdd1243dSDimitry Andric for (GlobalVariable *v : ModuleScopeVariables) {
770bdd1243dSDimitry Andric KernelUsedVariables.erase(v);
771bdd1243dSDimitry Andric }
772bdd1243dSDimitry Andric }
773bdd1243dSDimitry Andric
774bdd1243dSDimitry Andric if (KernelUsedVariables.empty()) {
77506c3fb27SDimitry Andric // Either used no LDS, or the LDS it used was all in the module struct
77606c3fb27SDimitry Andric // or dynamically sized
777fe6060f1SDimitry Andric continue;
778972a253aSDimitry Andric }
779972a253aSDimitry Andric
780bdd1243dSDimitry Andric // The association between kernel function and LDS struct is done by
781bdd1243dSDimitry Andric // symbol name, which only works if the function in question has a
782bdd1243dSDimitry Andric // name This is not expected to be a problem in practice as kernels
783bdd1243dSDimitry Andric // are called by name making anonymous ones (which are named by the
784bdd1243dSDimitry Andric // backend) difficult to use. This does mean that llvm test cases need
785bdd1243dSDimitry Andric // to name the kernels.
786bdd1243dSDimitry Andric if (!Func.hasName()) {
787bdd1243dSDimitry Andric report_fatal_error("Anonymous kernels cannot use LDS variables");
788bdd1243dSDimitry Andric }
789bdd1243dSDimitry Andric
790972a253aSDimitry Andric std::string VarName =
791bdd1243dSDimitry Andric (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
792bdd1243dSDimitry Andric
793bdd1243dSDimitry Andric auto Replacement =
794972a253aSDimitry Andric createLDSVariableReplacement(M, VarName, KernelUsedVariables);
795972a253aSDimitry Andric
79606c3fb27SDimitry Andric // If any indirect uses, create a direct use to ensure allocation
79706c3fb27SDimitry Andric // TODO: Simpler to unconditionally mark used but that regresses
79806c3fb27SDimitry Andric // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
79906c3fb27SDimitry Andric auto Accesses = LDSUsesInfo.indirect_access.find(&Func);
80006c3fb27SDimitry Andric if ((Accesses != LDSUsesInfo.indirect_access.end()) &&
80106c3fb27SDimitry Andric !Accesses->second.empty())
80206c3fb27SDimitry Andric markUsedByKernel(&Func, Replacement.SGV);
80306c3fb27SDimitry Andric
804bdd1243dSDimitry Andric // remove preserves existing codegen
805bdd1243dSDimitry Andric removeLocalVarsFromUsedLists(M, KernelUsedVariables);
806bdd1243dSDimitry Andric KernelToReplacement[&Func] = Replacement;
807bdd1243dSDimitry Andric
808bdd1243dSDimitry Andric // Rewrite uses within kernel to the new struct
809972a253aSDimitry Andric replaceLDSVariablesWithStruct(
810bdd1243dSDimitry Andric M, KernelUsedVariables, Replacement, [&Func](Use &U) {
811972a253aSDimitry Andric Instruction *I = dyn_cast<Instruction>(U.getUser());
812bdd1243dSDimitry Andric return I && I->getFunction() == &Func;
813972a253aSDimitry Andric });
814972a253aSDimitry Andric }
81506c3fb27SDimitry Andric return KernelToReplacement;
81606c3fb27SDimitry Andric }
81706c3fb27SDimitry Andric
81806c3fb27SDimitry Andric static GlobalVariable *
buildRepresentativeDynamicLDSInstance(Module & M,LDSUsesInfoTy & LDSUsesInfo,Function * func)81906c3fb27SDimitry Andric buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo,
82006c3fb27SDimitry Andric Function *func) {
82106c3fb27SDimitry Andric // Create a dynamic lds variable with a name associated with the passed
82206c3fb27SDimitry Andric // function that has the maximum alignment of any dynamic lds variable
82306c3fb27SDimitry Andric // reachable from this kernel. Dynamic LDS is allocated after the static LDS
82406c3fb27SDimitry Andric // allocation, possibly after alignment padding. The representative variable
82506c3fb27SDimitry Andric // created here has the maximum alignment of any other dynamic variable
82606c3fb27SDimitry Andric // reachable by that kernel. All dynamic LDS variables are allocated at the
82706c3fb27SDimitry Andric // same address in each kernel in order to provide the documented aliasing
82806c3fb27SDimitry Andric // semantics. Setting the alignment here allows this IR pass to accurately
82906c3fb27SDimitry Andric // predict the exact constant at which it will be allocated.
83006c3fb27SDimitry Andric
83106c3fb27SDimitry Andric assert(isKernelLDS(func));
83206c3fb27SDimitry Andric
83306c3fb27SDimitry Andric LLVMContext &Ctx = M.getContext();
83406c3fb27SDimitry Andric const DataLayout &DL = M.getDataLayout();
83506c3fb27SDimitry Andric Align MaxDynamicAlignment(1);
83606c3fb27SDimitry Andric
83706c3fb27SDimitry Andric auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) {
83806c3fb27SDimitry Andric if (AMDGPU::isDynamicLDS(*GV)) {
83906c3fb27SDimitry Andric MaxDynamicAlignment =
84006c3fb27SDimitry Andric std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV));
84106c3fb27SDimitry Andric }
84206c3fb27SDimitry Andric };
84306c3fb27SDimitry Andric
84406c3fb27SDimitry Andric for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) {
84506c3fb27SDimitry Andric UpdateMaxAlignment(GV);
84606c3fb27SDimitry Andric }
84706c3fb27SDimitry Andric
84806c3fb27SDimitry Andric for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) {
84906c3fb27SDimitry Andric UpdateMaxAlignment(GV);
85006c3fb27SDimitry Andric }
85106c3fb27SDimitry Andric
85206c3fb27SDimitry Andric assert(func->hasName()); // Checked by caller
85306c3fb27SDimitry Andric auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
85406c3fb27SDimitry Andric GlobalVariable *N = new GlobalVariable(
85506c3fb27SDimitry Andric M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
85606c3fb27SDimitry Andric Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
85706c3fb27SDimitry Andric false);
85806c3fb27SDimitry Andric N->setAlignment(MaxDynamicAlignment);
85906c3fb27SDimitry Andric
86006c3fb27SDimitry Andric assert(AMDGPU::isDynamicLDS(*N));
86106c3fb27SDimitry Andric return N;
86206c3fb27SDimitry Andric }
86306c3fb27SDimitry Andric
lowerDynamicLDSVariables(Module & M,LDSUsesInfoTy & LDSUsesInfo,DenseSet<Function * > const & KernelsThatIndirectlyAllocateDynamicLDS,DenseSet<GlobalVariable * > const & DynamicVariables,std::vector<Function * > const & OrderedKernels)86406c3fb27SDimitry Andric DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables(
86506c3fb27SDimitry Andric Module &M, LDSUsesInfoTy &LDSUsesInfo,
86606c3fb27SDimitry Andric DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS,
86706c3fb27SDimitry Andric DenseSet<GlobalVariable *> const &DynamicVariables,
86806c3fb27SDimitry Andric std::vector<Function *> const &OrderedKernels) {
86906c3fb27SDimitry Andric DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS;
87006c3fb27SDimitry Andric if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
87106c3fb27SDimitry Andric LLVMContext &Ctx = M.getContext();
87206c3fb27SDimitry Andric IRBuilder<> Builder(Ctx);
87306c3fb27SDimitry Andric Type *I32 = Type::getInt32Ty(Ctx);
87406c3fb27SDimitry Andric
87506c3fb27SDimitry Andric std::vector<Constant *> newDynamicLDS;
87606c3fb27SDimitry Andric
87706c3fb27SDimitry Andric // Table is built in the same order as OrderedKernels
87806c3fb27SDimitry Andric for (auto &func : OrderedKernels) {
87906c3fb27SDimitry Andric
88006c3fb27SDimitry Andric if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) {
88106c3fb27SDimitry Andric assert(isKernelLDS(func));
88206c3fb27SDimitry Andric if (!func->hasName()) {
88306c3fb27SDimitry Andric report_fatal_error("Anonymous kernels cannot use LDS variables");
88406c3fb27SDimitry Andric }
88506c3fb27SDimitry Andric
88606c3fb27SDimitry Andric GlobalVariable *N =
88706c3fb27SDimitry Andric buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func);
88806c3fb27SDimitry Andric
88906c3fb27SDimitry Andric KernelToCreatedDynamicLDS[func] = N;
89006c3fb27SDimitry Andric
89106c3fb27SDimitry Andric markUsedByKernel(func, N);
89206c3fb27SDimitry Andric
89306c3fb27SDimitry Andric auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
89406c3fb27SDimitry Andric auto GEP = ConstantExpr::getGetElementPtr(
89506c3fb27SDimitry Andric emptyCharArray, N, ConstantInt::get(I32, 0), true);
89606c3fb27SDimitry Andric newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32));
89706c3fb27SDimitry Andric } else {
89806c3fb27SDimitry Andric newDynamicLDS.push_back(PoisonValue::get(I32));
89906c3fb27SDimitry Andric }
90006c3fb27SDimitry Andric }
90106c3fb27SDimitry Andric assert(OrderedKernels.size() == newDynamicLDS.size());
90206c3fb27SDimitry Andric
90306c3fb27SDimitry Andric ArrayType *t = ArrayType::get(I32, newDynamicLDS.size());
90406c3fb27SDimitry Andric Constant *init = ConstantArray::get(t, newDynamicLDS);
90506c3fb27SDimitry Andric GlobalVariable *table = new GlobalVariable(
90606c3fb27SDimitry Andric M, t, true, GlobalValue::InternalLinkage, init,
90706c3fb27SDimitry Andric "llvm.amdgcn.dynlds.offset.table", nullptr,
90806c3fb27SDimitry Andric GlobalValue::NotThreadLocal, AMDGPUAS::CONSTANT_ADDRESS);
90906c3fb27SDimitry Andric
91006c3fb27SDimitry Andric for (GlobalVariable *GV : DynamicVariables) {
91106c3fb27SDimitry Andric for (Use &U : make_early_inc_range(GV->uses())) {
91206c3fb27SDimitry Andric auto *I = dyn_cast<Instruction>(U.getUser());
91306c3fb27SDimitry Andric if (!I)
91406c3fb27SDimitry Andric continue;
91506c3fb27SDimitry Andric if (isKernelLDS(I->getFunction()))
91606c3fb27SDimitry Andric continue;
91706c3fb27SDimitry Andric
91806c3fb27SDimitry Andric replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr);
91906c3fb27SDimitry Andric }
92006c3fb27SDimitry Andric }
92106c3fb27SDimitry Andric }
92206c3fb27SDimitry Andric return KernelToCreatedDynamicLDS;
92306c3fb27SDimitry Andric }
92406c3fb27SDimitry Andric
runOnModule(Module & M)9255f757f3fSDimitry Andric bool runOnModule(Module &M) {
92606c3fb27SDimitry Andric CallGraph CG = CallGraph(M);
92706c3fb27SDimitry Andric bool Changed = superAlignLDSGlobals(M);
92806c3fb27SDimitry Andric
92906c3fb27SDimitry Andric Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
93006c3fb27SDimitry Andric
93106c3fb27SDimitry Andric Changed = true; // todo: narrow this down
93206c3fb27SDimitry Andric
93306c3fb27SDimitry Andric // For each kernel, what variables does it access directly or through
93406c3fb27SDimitry Andric // callees
93506c3fb27SDimitry Andric LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
93606c3fb27SDimitry Andric
93706c3fb27SDimitry Andric // For each variable accessed through callees, which kernels access it
93806c3fb27SDimitry Andric VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
93906c3fb27SDimitry Andric for (auto &K : LDSUsesInfo.indirect_access) {
94006c3fb27SDimitry Andric Function *F = K.first;
94106c3fb27SDimitry Andric assert(isKernelLDS(F));
94206c3fb27SDimitry Andric for (GlobalVariable *GV : K.second) {
94306c3fb27SDimitry Andric LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
94406c3fb27SDimitry Andric }
94506c3fb27SDimitry Andric }
94606c3fb27SDimitry Andric
94706c3fb27SDimitry Andric // Partition variables accessed indirectly into the different strategies
94806c3fb27SDimitry Andric DenseSet<GlobalVariable *> ModuleScopeVariables;
94906c3fb27SDimitry Andric DenseSet<GlobalVariable *> TableLookupVariables;
95006c3fb27SDimitry Andric DenseSet<GlobalVariable *> KernelAccessVariables;
95106c3fb27SDimitry Andric DenseSet<GlobalVariable *> DynamicVariables;
95206c3fb27SDimitry Andric partitionVariablesIntoIndirectStrategies(
95306c3fb27SDimitry Andric M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly,
95406c3fb27SDimitry Andric ModuleScopeVariables, TableLookupVariables, KernelAccessVariables,
95506c3fb27SDimitry Andric DynamicVariables);
95606c3fb27SDimitry Andric
95706c3fb27SDimitry Andric // If the kernel accesses a variable that is going to be stored in the
95806c3fb27SDimitry Andric // module instance through a call then that kernel needs to allocate the
95906c3fb27SDimitry Andric // module instance
96006c3fb27SDimitry Andric const DenseSet<Function *> KernelsThatAllocateModuleLDS =
96106c3fb27SDimitry Andric kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
96206c3fb27SDimitry Andric ModuleScopeVariables);
96306c3fb27SDimitry Andric const DenseSet<Function *> KernelsThatAllocateTableLDS =
96406c3fb27SDimitry Andric kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
96506c3fb27SDimitry Andric TableLookupVariables);
96606c3fb27SDimitry Andric
96706c3fb27SDimitry Andric const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS =
96806c3fb27SDimitry Andric kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
96906c3fb27SDimitry Andric DynamicVariables);
97006c3fb27SDimitry Andric
97106c3fb27SDimitry Andric GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables(
97206c3fb27SDimitry Andric M, ModuleScopeVariables, KernelsThatAllocateModuleLDS);
97306c3fb27SDimitry Andric
97406c3fb27SDimitry Andric DenseMap<Function *, LDSVariableReplacement> KernelToReplacement =
97506c3fb27SDimitry Andric lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables,
97606c3fb27SDimitry Andric KernelsThatAllocateModuleLDS,
97706c3fb27SDimitry Andric MaybeModuleScopeStruct);
978bdd1243dSDimitry Andric
979bdd1243dSDimitry Andric // Lower zero cost accesses to the kernel instances just created
980bdd1243dSDimitry Andric for (auto &GV : KernelAccessVariables) {
981bdd1243dSDimitry Andric auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
982bdd1243dSDimitry Andric assert(funcs.size() == 1); // Only one kernel can access it
983bdd1243dSDimitry Andric LDSVariableReplacement Replacement =
984bdd1243dSDimitry Andric KernelToReplacement[*(funcs.begin())];
985bdd1243dSDimitry Andric
986bdd1243dSDimitry Andric DenseSet<GlobalVariable *> Vec;
987bdd1243dSDimitry Andric Vec.insert(GV);
988bdd1243dSDimitry Andric
989bdd1243dSDimitry Andric replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
990bdd1243dSDimitry Andric return isa<Instruction>(U.getUser());
991bdd1243dSDimitry Andric });
992bdd1243dSDimitry Andric }
993bdd1243dSDimitry Andric
99406c3fb27SDimitry Andric // The ith element of this vector is kernel id i
99506c3fb27SDimitry Andric std::vector<Function *> OrderedKernels =
99606c3fb27SDimitry Andric assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS,
99706c3fb27SDimitry Andric KernelsThatIndirectlyAllocateDynamicLDS);
99806c3fb27SDimitry Andric
999bdd1243dSDimitry Andric if (!KernelsThatAllocateTableLDS.empty()) {
1000bdd1243dSDimitry Andric LLVMContext &Ctx = M.getContext();
1001bdd1243dSDimitry Andric IRBuilder<> Builder(Ctx);
1002bdd1243dSDimitry Andric
1003bdd1243dSDimitry Andric // The order must be consistent between lookup table and accesses to
1004bdd1243dSDimitry Andric // lookup table
100506c3fb27SDimitry Andric auto TableLookupVariablesOrdered =
100606c3fb27SDimitry Andric sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(),
100706c3fb27SDimitry Andric TableLookupVariables.end()));
1008bdd1243dSDimitry Andric
1009bdd1243dSDimitry Andric GlobalVariable *LookupTable = buildLookupTable(
1010bdd1243dSDimitry Andric M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
1011bdd1243dSDimitry Andric replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
1012bdd1243dSDimitry Andric LookupTable);
1013297eecfbSDimitry Andric
1014297eecfbSDimitry Andric // Strip amdgpu-no-lds-kernel-id from all functions reachable from the
1015297eecfbSDimitry Andric // kernel. We may have inferred this wasn't used prior to the pass.
1016297eecfbSDimitry Andric //
1017297eecfbSDimitry Andric // TODO: We could filter out subgraphs that do not access LDS globals.
1018297eecfbSDimitry Andric for (Function *F : KernelsThatAllocateTableLDS)
1019*0fca6ea1SDimitry Andric removeFnAttrFromReachable(CG, F, {"amdgpu-no-lds-kernel-id"});
1020bdd1243dSDimitry Andric }
1021bdd1243dSDimitry Andric
102206c3fb27SDimitry Andric DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS =
102306c3fb27SDimitry Andric lowerDynamicLDSVariables(M, LDSUsesInfo,
102406c3fb27SDimitry Andric KernelsThatIndirectlyAllocateDynamicLDS,
102506c3fb27SDimitry Andric DynamicVariables, OrderedKernels);
102606c3fb27SDimitry Andric
102706c3fb27SDimitry Andric // All kernel frames have been allocated. Calculate and record the
102806c3fb27SDimitry Andric // addresses.
102906c3fb27SDimitry Andric {
103006c3fb27SDimitry Andric const DataLayout &DL = M.getDataLayout();
103106c3fb27SDimitry Andric
103206c3fb27SDimitry Andric for (Function &Func : M.functions()) {
103306c3fb27SDimitry Andric if (Func.isDeclaration() || !isKernelLDS(&Func))
103406c3fb27SDimitry Andric continue;
103506c3fb27SDimitry Andric
103606c3fb27SDimitry Andric // All three of these are optional. The first variable is allocated at
103706c3fb27SDimitry Andric // zero. They are allocated by AMDGPUMachineFunction as one block.
103806c3fb27SDimitry Andric // Layout:
103906c3fb27SDimitry Andric //{
104006c3fb27SDimitry Andric // module.lds
104106c3fb27SDimitry Andric // alignment padding
104206c3fb27SDimitry Andric // kernel instance
104306c3fb27SDimitry Andric // alignment padding
104406c3fb27SDimitry Andric // dynamic lds variables
104506c3fb27SDimitry Andric //}
104606c3fb27SDimitry Andric
104706c3fb27SDimitry Andric const bool AllocateModuleScopeStruct =
104806c3fb27SDimitry Andric MaybeModuleScopeStruct &&
104906c3fb27SDimitry Andric KernelsThatAllocateModuleLDS.contains(&Func);
105006c3fb27SDimitry Andric
105106c3fb27SDimitry Andric auto Replacement = KernelToReplacement.find(&Func);
105206c3fb27SDimitry Andric const bool AllocateKernelScopeStruct =
105306c3fb27SDimitry Andric Replacement != KernelToReplacement.end();
105406c3fb27SDimitry Andric
105506c3fb27SDimitry Andric const bool AllocateDynamicVariable =
105606c3fb27SDimitry Andric KernelToCreatedDynamicLDS.contains(&Func);
105706c3fb27SDimitry Andric
105806c3fb27SDimitry Andric uint32_t Offset = 0;
105906c3fb27SDimitry Andric
106006c3fb27SDimitry Andric if (AllocateModuleScopeStruct) {
106106c3fb27SDimitry Andric // Allocated at zero, recorded once on construction, not once per
106206c3fb27SDimitry Andric // kernel
106306c3fb27SDimitry Andric Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType());
106406c3fb27SDimitry Andric }
106506c3fb27SDimitry Andric
106606c3fb27SDimitry Andric if (AllocateKernelScopeStruct) {
106706c3fb27SDimitry Andric GlobalVariable *KernelStruct = Replacement->second.SGV;
106806c3fb27SDimitry Andric Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct));
106906c3fb27SDimitry Andric recordLDSAbsoluteAddress(&M, KernelStruct, Offset);
107006c3fb27SDimitry Andric Offset += DL.getTypeAllocSize(KernelStruct->getValueType());
107106c3fb27SDimitry Andric }
107206c3fb27SDimitry Andric
107306c3fb27SDimitry Andric // If there is dynamic allocation, the alignment needed is included in
107406c3fb27SDimitry Andric // the static frame size. There may be no reference to the dynamic
107506c3fb27SDimitry Andric // variable in the kernel itself, so without including it here, that
107606c3fb27SDimitry Andric // alignment padding could be missed.
107706c3fb27SDimitry Andric if (AllocateDynamicVariable) {
107806c3fb27SDimitry Andric GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func];
107906c3fb27SDimitry Andric Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable));
108006c3fb27SDimitry Andric recordLDSAbsoluteAddress(&M, DynamicVariable, Offset);
108106c3fb27SDimitry Andric }
108206c3fb27SDimitry Andric
108306c3fb27SDimitry Andric if (Offset != 0) {
10845f757f3fSDimitry Andric (void)TM; // TODO: Account for target maximum LDS
108506c3fb27SDimitry Andric std::string Buffer;
108606c3fb27SDimitry Andric raw_string_ostream SS{Buffer};
108706c3fb27SDimitry Andric SS << format("%u", Offset);
108806c3fb27SDimitry Andric
1089*0fca6ea1SDimitry Andric // Instead of explicitly marking kernels that access dynamic variables
109006c3fb27SDimitry Andric // using special case metadata, annotate with min-lds == max-lds, i.e.
109106c3fb27SDimitry Andric // that there is no more space available for allocating more static
109206c3fb27SDimitry Andric // LDS variables. That is the right condition to prevent allocating
109306c3fb27SDimitry Andric // more variables which would collide with the addresses assigned to
109406c3fb27SDimitry Andric // dynamic variables.
109506c3fb27SDimitry Andric if (AllocateDynamicVariable)
109606c3fb27SDimitry Andric SS << format(",%u", Offset);
109706c3fb27SDimitry Andric
109806c3fb27SDimitry Andric Func.addFnAttr("amdgpu-lds-size", Buffer);
109906c3fb27SDimitry Andric }
110006c3fb27SDimitry Andric }
110106c3fb27SDimitry Andric }
110206c3fb27SDimitry Andric
1103bdd1243dSDimitry Andric for (auto &GV : make_early_inc_range(M.globals()))
1104bdd1243dSDimitry Andric if (AMDGPU::isLDSVariableToLower(GV)) {
1105bdd1243dSDimitry Andric // probably want to remove from used lists
1106bdd1243dSDimitry Andric GV.removeDeadConstantUsers();
1107bdd1243dSDimitry Andric if (GV.use_empty())
1108bdd1243dSDimitry Andric GV.eraseFromParent();
1109fe6060f1SDimitry Andric }
1110fe6060f1SDimitry Andric
1111fe6060f1SDimitry Andric return Changed;
1112fe6060f1SDimitry Andric }
1113fe6060f1SDimitry Andric
1114fe6060f1SDimitry Andric private:
1115fe6060f1SDimitry Andric // Increase the alignment of LDS globals if necessary to maximise the chance
1116fe6060f1SDimitry Andric // that we can use aligned LDS instructions to access them.
superAlignLDSGlobals(Module & M)11170eae32dcSDimitry Andric static bool superAlignLDSGlobals(Module &M) {
11180eae32dcSDimitry Andric const DataLayout &DL = M.getDataLayout();
11190eae32dcSDimitry Andric bool Changed = false;
11200eae32dcSDimitry Andric if (!SuperAlignLDSGlobals) {
11210eae32dcSDimitry Andric return Changed;
11220eae32dcSDimitry Andric }
11230eae32dcSDimitry Andric
11240eae32dcSDimitry Andric for (auto &GV : M.globals()) {
11250eae32dcSDimitry Andric if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
11260eae32dcSDimitry Andric // Only changing alignment of LDS variables
11270eae32dcSDimitry Andric continue;
11280eae32dcSDimitry Andric }
11290eae32dcSDimitry Andric if (!GV.hasInitializer()) {
11300eae32dcSDimitry Andric // cuda/hip extern __shared__ variable, leave alignment alone
11310eae32dcSDimitry Andric continue;
11320eae32dcSDimitry Andric }
11330eae32dcSDimitry Andric
11340eae32dcSDimitry Andric Align Alignment = AMDGPU::getAlign(DL, &GV);
11350eae32dcSDimitry Andric TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
1136fe6060f1SDimitry Andric
1137fe6060f1SDimitry Andric if (GVSize > 8) {
1138fe6060f1SDimitry Andric // We might want to use a b96 or b128 load/store
1139fe6060f1SDimitry Andric Alignment = std::max(Alignment, Align(16));
1140fe6060f1SDimitry Andric } else if (GVSize > 4) {
1141fe6060f1SDimitry Andric // We might want to use a b64 load/store
1142fe6060f1SDimitry Andric Alignment = std::max(Alignment, Align(8));
1143fe6060f1SDimitry Andric } else if (GVSize > 2) {
1144fe6060f1SDimitry Andric // We might want to use a b32 load/store
1145fe6060f1SDimitry Andric Alignment = std::max(Alignment, Align(4));
1146fe6060f1SDimitry Andric } else if (GVSize > 1) {
1147fe6060f1SDimitry Andric // We might want to use a b16 load/store
1148fe6060f1SDimitry Andric Alignment = std::max(Alignment, Align(2));
1149fe6060f1SDimitry Andric }
1150fe6060f1SDimitry Andric
11510eae32dcSDimitry Andric if (Alignment != AMDGPU::getAlign(DL, &GV)) {
11520eae32dcSDimitry Andric Changed = true;
11530eae32dcSDimitry Andric GV.setAlignment(Alignment);
1154fe6060f1SDimitry Andric }
1155fe6060f1SDimitry Andric }
11560eae32dcSDimitry Andric return Changed;
11570eae32dcSDimitry Andric }
11580eae32dcSDimitry Andric
createLDSVariableReplacement(Module & M,std::string VarName,DenseSet<GlobalVariable * > const & LDSVarsToTransform)1159bdd1243dSDimitry Andric static LDSVariableReplacement createLDSVariableReplacement(
1160972a253aSDimitry Andric Module &M, std::string VarName,
1161bdd1243dSDimitry Andric DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1162972a253aSDimitry Andric // Create a struct instance containing LDSVarsToTransform and map from those
1163972a253aSDimitry Andric // variables to ConstantExprGEP
1164972a253aSDimitry Andric // Variables may be introduced to meet alignment requirements. No aliasing
1165972a253aSDimitry Andric // metadata is useful for these as they have no uses. Erased before return.
1166972a253aSDimitry Andric
11670eae32dcSDimitry Andric LLVMContext &Ctx = M.getContext();
11680eae32dcSDimitry Andric const DataLayout &DL = M.getDataLayout();
1169972a253aSDimitry Andric assert(!LDSVarsToTransform.empty());
1170fe6060f1SDimitry Andric
1171fe6060f1SDimitry Andric SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
1172fcaf7f86SDimitry Andric LayoutFields.reserve(LDSVarsToTransform.size());
1173bdd1243dSDimitry Andric {
1174bdd1243dSDimitry Andric // The order of fields in this struct depends on the order of
1175*0fca6ea1SDimitry Andric // variables in the argument which varies when changing how they
1176bdd1243dSDimitry Andric // are identified, leading to spurious test breakage.
117706c3fb27SDimitry Andric auto Sorted = sortByName(std::vector<GlobalVariable *>(
117806c3fb27SDimitry Andric LDSVarsToTransform.begin(), LDSVarsToTransform.end()));
117906c3fb27SDimitry Andric
1180bdd1243dSDimitry Andric for (GlobalVariable *GV : Sorted) {
1181bdd1243dSDimitry Andric OptimizedStructLayoutField F(GV,
1182bdd1243dSDimitry Andric DL.getTypeAllocSize(GV->getValueType()),
1183fe6060f1SDimitry Andric AMDGPU::getAlign(DL, GV));
1184fe6060f1SDimitry Andric LayoutFields.emplace_back(F);
1185fe6060f1SDimitry Andric }
1186bdd1243dSDimitry Andric }
1187fe6060f1SDimitry Andric
1188fe6060f1SDimitry Andric performOptimizedStructLayout(LayoutFields);
1189fe6060f1SDimitry Andric
1190fe6060f1SDimitry Andric std::vector<GlobalVariable *> LocalVars;
1191972a253aSDimitry Andric BitVector IsPaddingField;
1192fcaf7f86SDimitry Andric LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1193972a253aSDimitry Andric IsPaddingField.reserve(LDSVarsToTransform.size());
1194fe6060f1SDimitry Andric {
1195fe6060f1SDimitry Andric uint64_t CurrentOffset = 0;
1196*0fca6ea1SDimitry Andric for (auto &F : LayoutFields) {
1197*0fca6ea1SDimitry Andric GlobalVariable *FGV =
1198*0fca6ea1SDimitry Andric static_cast<GlobalVariable *>(const_cast<void *>(F.Id));
1199*0fca6ea1SDimitry Andric Align DataAlign = F.Alignment;
1200fe6060f1SDimitry Andric
1201fe6060f1SDimitry Andric uint64_t DataAlignV = DataAlign.value();
1202fe6060f1SDimitry Andric if (uint64_t Rem = CurrentOffset % DataAlignV) {
1203fe6060f1SDimitry Andric uint64_t Padding = DataAlignV - Rem;
1204fe6060f1SDimitry Andric
1205fe6060f1SDimitry Andric // Append an array of padding bytes to meet alignment requested
1206fe6060f1SDimitry Andric // Note (o + (a - (o % a)) ) % a == 0
1207fe6060f1SDimitry Andric // (offset + Padding ) % align == 0
1208fe6060f1SDimitry Andric
1209fe6060f1SDimitry Andric Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1210fe6060f1SDimitry Andric LocalVars.push_back(new GlobalVariable(
12115f757f3fSDimitry Andric M, ATy, false, GlobalValue::InternalLinkage,
12125f757f3fSDimitry Andric PoisonValue::get(ATy), "", nullptr, GlobalValue::NotThreadLocal,
12135f757f3fSDimitry Andric AMDGPUAS::LOCAL_ADDRESS, false));
1214972a253aSDimitry Andric IsPaddingField.push_back(true);
1215fe6060f1SDimitry Andric CurrentOffset += Padding;
1216fe6060f1SDimitry Andric }
1217fe6060f1SDimitry Andric
1218fe6060f1SDimitry Andric LocalVars.push_back(FGV);
1219972a253aSDimitry Andric IsPaddingField.push_back(false);
1220*0fca6ea1SDimitry Andric CurrentOffset += F.Size;
1221fe6060f1SDimitry Andric }
1222fe6060f1SDimitry Andric }
1223fe6060f1SDimitry Andric
1224fe6060f1SDimitry Andric std::vector<Type *> LocalVarTypes;
1225fe6060f1SDimitry Andric LocalVarTypes.reserve(LocalVars.size());
1226fe6060f1SDimitry Andric std::transform(
1227fe6060f1SDimitry Andric LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1228fe6060f1SDimitry Andric [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1229fe6060f1SDimitry Andric
1230fe6060f1SDimitry Andric StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1231fe6060f1SDimitry Andric
1232bdd1243dSDimitry Andric Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1233fe6060f1SDimitry Andric
1234fe6060f1SDimitry Andric GlobalVariable *SGV = new GlobalVariable(
12355f757f3fSDimitry Andric M, LDSTy, false, GlobalValue::InternalLinkage, PoisonValue::get(LDSTy),
1236fe6060f1SDimitry Andric VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1237fe6060f1SDimitry Andric false);
1238fe6060f1SDimitry Andric SGV->setAlignment(StructAlign);
1239972a253aSDimitry Andric
1240972a253aSDimitry Andric DenseMap<GlobalVariable *, Constant *> Map;
1241972a253aSDimitry Andric Type *I32 = Type::getInt32Ty(Ctx);
1242972a253aSDimitry Andric for (size_t I = 0; I < LocalVars.size(); I++) {
1243972a253aSDimitry Andric GlobalVariable *GV = LocalVars[I];
1244972a253aSDimitry Andric Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1245972a253aSDimitry Andric Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1246972a253aSDimitry Andric if (IsPaddingField[I]) {
1247972a253aSDimitry Andric assert(GV->use_empty());
1248972a253aSDimitry Andric GV->eraseFromParent();
1249972a253aSDimitry Andric } else {
1250972a253aSDimitry Andric Map[GV] = GEP;
1251972a253aSDimitry Andric }
1252972a253aSDimitry Andric }
1253972a253aSDimitry Andric assert(Map.size() == LDSVarsToTransform.size());
1254972a253aSDimitry Andric return {SGV, std::move(Map)};
1255fe6060f1SDimitry Andric }
1256fe6060f1SDimitry Andric
1257972a253aSDimitry Andric template <typename PredicateTy>
replaceLDSVariablesWithStruct(Module & M,DenseSet<GlobalVariable * > const & LDSVarsToTransformArg,const LDSVariableReplacement & Replacement,PredicateTy Predicate)125806c3fb27SDimitry Andric static void replaceLDSVariablesWithStruct(
1259bdd1243dSDimitry Andric Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
126006c3fb27SDimitry Andric const LDSVariableReplacement &Replacement, PredicateTy Predicate) {
1261972a253aSDimitry Andric LLVMContext &Ctx = M.getContext();
1262972a253aSDimitry Andric const DataLayout &DL = M.getDataLayout();
1263fe6060f1SDimitry Andric
1264bdd1243dSDimitry Andric // A hack... we need to insert the aliasing info in a predictable order for
1265bdd1243dSDimitry Andric // lit tests. Would like to have them in a stable order already, ideally the
1266bdd1243dSDimitry Andric // same order they get allocated, which might mean an ordered set container
126706c3fb27SDimitry Andric auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>(
126806c3fb27SDimitry Andric LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()));
1269bdd1243dSDimitry Andric
1270349cc55cSDimitry Andric // Create alias.scope and their lists. Each field in the new structure
1271349cc55cSDimitry Andric // does not alias with all other fields.
1272349cc55cSDimitry Andric SmallVector<MDNode *> AliasScopes;
1273349cc55cSDimitry Andric SmallVector<Metadata *> NoAliasList;
1274972a253aSDimitry Andric const size_t NumberVars = LDSVarsToTransform.size();
1275972a253aSDimitry Andric if (NumberVars > 1) {
1276349cc55cSDimitry Andric MDBuilder MDB(Ctx);
1277972a253aSDimitry Andric AliasScopes.reserve(NumberVars);
1278349cc55cSDimitry Andric MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
1279972a253aSDimitry Andric for (size_t I = 0; I < NumberVars; I++) {
1280349cc55cSDimitry Andric MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
1281349cc55cSDimitry Andric AliasScopes.push_back(Scope);
1282349cc55cSDimitry Andric }
1283349cc55cSDimitry Andric NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1284349cc55cSDimitry Andric }
1285349cc55cSDimitry Andric
1286972a253aSDimitry Andric // Replace uses of ith variable with a constantexpr to the corresponding
1287972a253aSDimitry Andric // field of the instance that will be allocated by AMDGPUMachineFunction
1288972a253aSDimitry Andric for (size_t I = 0; I < NumberVars; I++) {
1289972a253aSDimitry Andric GlobalVariable *GV = LDSVarsToTransform[I];
129006c3fb27SDimitry Andric Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV);
1291fe6060f1SDimitry Andric
1292972a253aSDimitry Andric GV->replaceUsesWithIf(GEP, Predicate);
1293fe6060f1SDimitry Andric
1294972a253aSDimitry Andric APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1295972a253aSDimitry Andric GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1296972a253aSDimitry Andric uint64_t Offset = APOff.getZExtValue();
1297972a253aSDimitry Andric
1298bdd1243dSDimitry Andric Align A =
1299bdd1243dSDimitry Andric commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1300349cc55cSDimitry Andric
1301349cc55cSDimitry Andric if (I)
1302349cc55cSDimitry Andric NoAliasList[I - 1] = AliasScopes[I - 1];
1303349cc55cSDimitry Andric MDNode *NoAlias =
1304349cc55cSDimitry Andric NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1305349cc55cSDimitry Andric MDNode *AliasScope =
1306349cc55cSDimitry Andric AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1307349cc55cSDimitry Andric
1308349cc55cSDimitry Andric refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1309fe6060f1SDimitry Andric }
1310fe6060f1SDimitry Andric }
1311fe6060f1SDimitry Andric
refineUsesAlignmentAndAA(Value * Ptr,Align A,const DataLayout & DL,MDNode * AliasScope,MDNode * NoAlias,unsigned MaxDepth=5)131206c3fb27SDimitry Andric static void refineUsesAlignmentAndAA(Value *Ptr, Align A,
131306c3fb27SDimitry Andric const DataLayout &DL, MDNode *AliasScope,
131406c3fb27SDimitry Andric MDNode *NoAlias, unsigned MaxDepth = 5) {
1315349cc55cSDimitry Andric if (!MaxDepth || (A == 1 && !AliasScope))
1316fe6060f1SDimitry Andric return;
1317fe6060f1SDimitry Andric
1318fe6060f1SDimitry Andric for (User *U : Ptr->users()) {
1319349cc55cSDimitry Andric if (auto *I = dyn_cast<Instruction>(U)) {
1320349cc55cSDimitry Andric if (AliasScope && I->mayReadOrWriteMemory()) {
1321349cc55cSDimitry Andric MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1322349cc55cSDimitry Andric AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1323349cc55cSDimitry Andric : AliasScope);
1324349cc55cSDimitry Andric I->setMetadata(LLVMContext::MD_alias_scope, AS);
1325349cc55cSDimitry Andric
1326349cc55cSDimitry Andric MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1327349cc55cSDimitry Andric NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
1328349cc55cSDimitry Andric I->setMetadata(LLVMContext::MD_noalias, NA);
1329349cc55cSDimitry Andric }
1330349cc55cSDimitry Andric }
1331349cc55cSDimitry Andric
1332fe6060f1SDimitry Andric if (auto *LI = dyn_cast<LoadInst>(U)) {
1333fe6060f1SDimitry Andric LI->setAlignment(std::max(A, LI->getAlign()));
1334fe6060f1SDimitry Andric continue;
1335fe6060f1SDimitry Andric }
1336fe6060f1SDimitry Andric if (auto *SI = dyn_cast<StoreInst>(U)) {
1337fe6060f1SDimitry Andric if (SI->getPointerOperand() == Ptr)
1338fe6060f1SDimitry Andric SI->setAlignment(std::max(A, SI->getAlign()));
1339fe6060f1SDimitry Andric continue;
1340fe6060f1SDimitry Andric }
1341fe6060f1SDimitry Andric if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1342fe6060f1SDimitry Andric // None of atomicrmw operations can work on pointers, but let's
1343fe6060f1SDimitry Andric // check it anyway in case it will or we will process ConstantExpr.
1344fe6060f1SDimitry Andric if (AI->getPointerOperand() == Ptr)
1345fe6060f1SDimitry Andric AI->setAlignment(std::max(A, AI->getAlign()));
1346fe6060f1SDimitry Andric continue;
1347fe6060f1SDimitry Andric }
1348fe6060f1SDimitry Andric if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1349fe6060f1SDimitry Andric if (AI->getPointerOperand() == Ptr)
1350fe6060f1SDimitry Andric AI->setAlignment(std::max(A, AI->getAlign()));
1351fe6060f1SDimitry Andric continue;
1352fe6060f1SDimitry Andric }
1353fe6060f1SDimitry Andric if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1354fe6060f1SDimitry Andric unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1355fe6060f1SDimitry Andric APInt Off(BitWidth, 0);
1356349cc55cSDimitry Andric if (GEP->getPointerOperand() == Ptr) {
1357349cc55cSDimitry Andric Align GA;
1358349cc55cSDimitry Andric if (GEP->accumulateConstantOffset(DL, Off))
1359349cc55cSDimitry Andric GA = commonAlignment(A, Off.getLimitedValue());
1360349cc55cSDimitry Andric refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1361349cc55cSDimitry Andric MaxDepth - 1);
1362fe6060f1SDimitry Andric }
1363fe6060f1SDimitry Andric continue;
1364fe6060f1SDimitry Andric }
1365fe6060f1SDimitry Andric if (auto *I = dyn_cast<Instruction>(U)) {
1366fe6060f1SDimitry Andric if (I->getOpcode() == Instruction::BitCast ||
1367fe6060f1SDimitry Andric I->getOpcode() == Instruction::AddrSpaceCast)
1368349cc55cSDimitry Andric refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1369fe6060f1SDimitry Andric }
1370fe6060f1SDimitry Andric }
1371fe6060f1SDimitry Andric }
1372fe6060f1SDimitry Andric };
1373fe6060f1SDimitry Andric
13745f757f3fSDimitry Andric class AMDGPULowerModuleLDSLegacy : public ModulePass {
13755f757f3fSDimitry Andric public:
13765f757f3fSDimitry Andric const AMDGPUTargetMachine *TM;
13775f757f3fSDimitry Andric static char ID;
13785f757f3fSDimitry Andric
AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine * TM_=nullptr)13795f757f3fSDimitry Andric AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine *TM_ = nullptr)
13805f757f3fSDimitry Andric : ModulePass(ID), TM(TM_) {
13815f757f3fSDimitry Andric initializeAMDGPULowerModuleLDSLegacyPass(*PassRegistry::getPassRegistry());
13825f757f3fSDimitry Andric }
13835f757f3fSDimitry Andric
getAnalysisUsage(AnalysisUsage & AU) const13845f757f3fSDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override {
13855f757f3fSDimitry Andric if (!TM)
13865f757f3fSDimitry Andric AU.addRequired<TargetPassConfig>();
13875f757f3fSDimitry Andric }
13885f757f3fSDimitry Andric
runOnModule(Module & M)13895f757f3fSDimitry Andric bool runOnModule(Module &M) override {
13905f757f3fSDimitry Andric if (!TM) {
13915f757f3fSDimitry Andric auto &TPC = getAnalysis<TargetPassConfig>();
13925f757f3fSDimitry Andric TM = &TPC.getTM<AMDGPUTargetMachine>();
13935f757f3fSDimitry Andric }
13945f757f3fSDimitry Andric
13955f757f3fSDimitry Andric return AMDGPULowerModuleLDS(*TM).runOnModule(M);
13965f757f3fSDimitry Andric }
13975f757f3fSDimitry Andric };
13985f757f3fSDimitry Andric
1399fe6060f1SDimitry Andric } // namespace
14005f757f3fSDimitry Andric char AMDGPULowerModuleLDSLegacy::ID = 0;
1401fe6060f1SDimitry Andric
14025f757f3fSDimitry Andric char &llvm::AMDGPULowerModuleLDSLegacyPassID = AMDGPULowerModuleLDSLegacy::ID;
1403fe6060f1SDimitry Andric
14045f757f3fSDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
14055f757f3fSDimitry Andric "Lower uses of LDS variables from non-kernel functions",
14065f757f3fSDimitry Andric false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)14075f757f3fSDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
14085f757f3fSDimitry Andric INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
14095f757f3fSDimitry Andric "Lower uses of LDS variables from non-kernel functions",
14105f757f3fSDimitry Andric false, false)
1411fe6060f1SDimitry Andric
14125f757f3fSDimitry Andric ModulePass *
14135f757f3fSDimitry Andric llvm::createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine *TM) {
14145f757f3fSDimitry Andric return new AMDGPULowerModuleLDSLegacy(TM);
1415fe6060f1SDimitry Andric }
1416fe6060f1SDimitry Andric
run(Module & M,ModuleAnalysisManager &)1417fe6060f1SDimitry Andric PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
1418fe6060f1SDimitry Andric ModuleAnalysisManager &) {
14195f757f3fSDimitry Andric return AMDGPULowerModuleLDS(TM).runOnModule(M) ? PreservedAnalyses::none()
1420fe6060f1SDimitry Andric : PreservedAnalyses::all();
1421fe6060f1SDimitry Andric }
1422