xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPULibFunc.h"
16 #include "AMDGPUSubtarget.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/StringSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include <cmath>
37 #include <vector>
38 
39 #define DEBUG_TYPE "amdgpu-simplifylib"
40 
41 using namespace llvm;
42 
43 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
44   cl::desc("Enable pre-link mode optimizations"),
45   cl::init(false),
46   cl::Hidden);
47 
48 static cl::list<std::string> UseNative("amdgpu-use-native",
49   cl::desc("Comma separated list of functions to replace with native, or all"),
50   cl::CommaSeparated, cl::ValueOptional,
51   cl::Hidden);
52 
53 #define MATH_PI      numbers::pi
54 #define MATH_E       numbers::e
55 #define MATH_SQRT2   numbers::sqrt2
56 #define MATH_SQRT1_2 numbers::inv_sqrt2
57 
58 namespace llvm {
59 
60 class AMDGPULibCalls {
61 private:
62 
63   typedef llvm::AMDGPULibFunc FuncInfo;
64 
65   const TargetMachine *TM;
66 
67   // -fuse-native.
68   bool AllNative = false;
69 
70   bool useNativeFunc(const StringRef F) const;
71 
72   // Return a pointer (pointer expr) to the function if function defintion with
73   // "FuncName" exists. It may create a new function prototype in pre-link mode.
74   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
75 
76   // Replace a normal function with its native version.
77   bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
78 
79   bool parseFunctionName(const StringRef& FMangledName,
80                          FuncInfo *FInfo=nullptr /*out*/);
81 
82   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
83 
84   /* Specialized optimizations */
85 
86   // recip (half or native)
87   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
88 
89   // divide (half or native)
90   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
91 
92   // pow/powr/pown
93   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
94 
95   // rootn
96   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
97 
98   // fma/mad
99   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
100 
101   // -fuse-native for sincos
102   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
103 
104   // evaluate calls if calls' arguments are constants.
105   bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
106     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
107   bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
108 
109   // exp
110   bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
111 
112   // exp2
113   bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
114 
115   // exp10
116   bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
117 
118   // log
119   bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
120 
121   // log2
122   bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
123 
124   // log10
125   bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
126 
127   // sqrt
128   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
129 
130   // sin/cos
131   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
132 
133   // __read_pipe/__write_pipe
134   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
135 
136   // llvm.amdgcn.wavefrontsize
137   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
138 
139   // Get insertion point at entry.
140   BasicBlock::iterator getEntryIns(CallInst * UI);
141   // Insert an Alloc instruction.
142   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
143   // Get a scalar native builtin signle argument FP function
144   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
145 
146 protected:
147   CallInst *CI;
148 
149   bool isUnsafeMath(const CallInst *CI) const;
150 
151   void replaceCall(Value *With) {
152     CI->replaceAllUsesWith(With);
153     CI->eraseFromParent();
154   }
155 
156 public:
157   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
158 
159   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
160 
161   void initNativeFuncs();
162 
163   // Replace a normal math function call with that native version
164   bool useNative(CallInst *CI);
165 };
166 
167 } // end llvm namespace
168 
169 namespace {
170 
171   class AMDGPUSimplifyLibCalls : public FunctionPass {
172 
173   const TargetOptions Options;
174 
175   AMDGPULibCalls Simplifier;
176 
177   public:
178     static char ID; // Pass identification
179 
180     AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions(),
181                            const TargetMachine *TM = nullptr)
182       : FunctionPass(ID), Options(Opt), Simplifier(TM) {
183       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
184     }
185 
186     void getAnalysisUsage(AnalysisUsage &AU) const override {
187       AU.addRequired<AAResultsWrapperPass>();
188     }
189 
190     bool runOnFunction(Function &M) override;
191   };
192 
193   class AMDGPUUseNativeCalls : public FunctionPass {
194 
195   AMDGPULibCalls Simplifier;
196 
197   public:
198     static char ID; // Pass identification
199 
200     AMDGPUUseNativeCalls() : FunctionPass(ID) {
201       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
202       Simplifier.initNativeFuncs();
203     }
204 
205     bool runOnFunction(Function &F) override;
206   };
207 
208 } // end anonymous namespace.
209 
210 char AMDGPUSimplifyLibCalls::ID = 0;
211 char AMDGPUUseNativeCalls::ID = 0;
212 
213 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
214                       "Simplify well-known AMD library calls", false, false)
215 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
216 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
217                     "Simplify well-known AMD library calls", false, false)
218 
219 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
220                 "Replace builtin math calls with that native versions.",
221                 false, false)
222 
223 template <typename IRB>
224 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
225                               const Twine &Name = "") {
226   CallInst *R = B.CreateCall(Callee, Arg, Name);
227   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
228     R->setCallingConv(F->getCallingConv());
229   return R;
230 }
231 
232 template <typename IRB>
233 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
234                                Value *Arg2, const Twine &Name = "") {
235   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
236   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
237     R->setCallingConv(F->getCallingConv());
238   return R;
239 }
240 
241 //  Data structures for table-driven optimizations.
242 //  FuncTbl works for both f32 and f64 functions with 1 input argument
243 
244 struct TableEntry {
245   double   result;
246   double   input;
247 };
248 
249 /* a list of {result, input} */
250 static const TableEntry tbl_acos[] = {
251   {MATH_PI / 2.0, 0.0},
252   {MATH_PI / 2.0, -0.0},
253   {0.0, 1.0},
254   {MATH_PI, -1.0}
255 };
256 static const TableEntry tbl_acosh[] = {
257   {0.0, 1.0}
258 };
259 static const TableEntry tbl_acospi[] = {
260   {0.5, 0.0},
261   {0.5, -0.0},
262   {0.0, 1.0},
263   {1.0, -1.0}
264 };
265 static const TableEntry tbl_asin[] = {
266   {0.0, 0.0},
267   {-0.0, -0.0},
268   {MATH_PI / 2.0, 1.0},
269   {-MATH_PI / 2.0, -1.0}
270 };
271 static const TableEntry tbl_asinh[] = {
272   {0.0, 0.0},
273   {-0.0, -0.0}
274 };
275 static const TableEntry tbl_asinpi[] = {
276   {0.0, 0.0},
277   {-0.0, -0.0},
278   {0.5, 1.0},
279   {-0.5, -1.0}
280 };
281 static const TableEntry tbl_atan[] = {
282   {0.0, 0.0},
283   {-0.0, -0.0},
284   {MATH_PI / 4.0, 1.0},
285   {-MATH_PI / 4.0, -1.0}
286 };
287 static const TableEntry tbl_atanh[] = {
288   {0.0, 0.0},
289   {-0.0, -0.0}
290 };
291 static const TableEntry tbl_atanpi[] = {
292   {0.0, 0.0},
293   {-0.0, -0.0},
294   {0.25, 1.0},
295   {-0.25, -1.0}
296 };
297 static const TableEntry tbl_cbrt[] = {
298   {0.0, 0.0},
299   {-0.0, -0.0},
300   {1.0, 1.0},
301   {-1.0, -1.0},
302 };
303 static const TableEntry tbl_cos[] = {
304   {1.0, 0.0},
305   {1.0, -0.0}
306 };
307 static const TableEntry tbl_cosh[] = {
308   {1.0, 0.0},
309   {1.0, -0.0}
310 };
311 static const TableEntry tbl_cospi[] = {
312   {1.0, 0.0},
313   {1.0, -0.0}
314 };
315 static const TableEntry tbl_erfc[] = {
316   {1.0, 0.0},
317   {1.0, -0.0}
318 };
319 static const TableEntry tbl_erf[] = {
320   {0.0, 0.0},
321   {-0.0, -0.0}
322 };
323 static const TableEntry tbl_exp[] = {
324   {1.0, 0.0},
325   {1.0, -0.0},
326   {MATH_E, 1.0}
327 };
328 static const TableEntry tbl_exp2[] = {
329   {1.0, 0.0},
330   {1.0, -0.0},
331   {2.0, 1.0}
332 };
333 static const TableEntry tbl_exp10[] = {
334   {1.0, 0.0},
335   {1.0, -0.0},
336   {10.0, 1.0}
337 };
338 static const TableEntry tbl_expm1[] = {
339   {0.0, 0.0},
340   {-0.0, -0.0}
341 };
342 static const TableEntry tbl_log[] = {
343   {0.0, 1.0},
344   {1.0, MATH_E}
345 };
346 static const TableEntry tbl_log2[] = {
347   {0.0, 1.0},
348   {1.0, 2.0}
349 };
350 static const TableEntry tbl_log10[] = {
351   {0.0, 1.0},
352   {1.0, 10.0}
353 };
354 static const TableEntry tbl_rsqrt[] = {
355   {1.0, 1.0},
356   {MATH_SQRT1_2, 2.0}
357 };
358 static const TableEntry tbl_sin[] = {
359   {0.0, 0.0},
360   {-0.0, -0.0}
361 };
362 static const TableEntry tbl_sinh[] = {
363   {0.0, 0.0},
364   {-0.0, -0.0}
365 };
366 static const TableEntry tbl_sinpi[] = {
367   {0.0, 0.0},
368   {-0.0, -0.0}
369 };
370 static const TableEntry tbl_sqrt[] = {
371   {0.0, 0.0},
372   {1.0, 1.0},
373   {MATH_SQRT2, 2.0}
374 };
375 static const TableEntry tbl_tan[] = {
376   {0.0, 0.0},
377   {-0.0, -0.0}
378 };
379 static const TableEntry tbl_tanh[] = {
380   {0.0, 0.0},
381   {-0.0, -0.0}
382 };
383 static const TableEntry tbl_tanpi[] = {
384   {0.0, 0.0},
385   {-0.0, -0.0}
386 };
387 static const TableEntry tbl_tgamma[] = {
388   {1.0, 1.0},
389   {1.0, 2.0},
390   {2.0, 3.0},
391   {6.0, 4.0}
392 };
393 
394 static bool HasNative(AMDGPULibFunc::EFuncId id) {
395   switch(id) {
396   case AMDGPULibFunc::EI_DIVIDE:
397   case AMDGPULibFunc::EI_COS:
398   case AMDGPULibFunc::EI_EXP:
399   case AMDGPULibFunc::EI_EXP2:
400   case AMDGPULibFunc::EI_EXP10:
401   case AMDGPULibFunc::EI_LOG:
402   case AMDGPULibFunc::EI_LOG2:
403   case AMDGPULibFunc::EI_LOG10:
404   case AMDGPULibFunc::EI_POWR:
405   case AMDGPULibFunc::EI_RECIP:
406   case AMDGPULibFunc::EI_RSQRT:
407   case AMDGPULibFunc::EI_SIN:
408   case AMDGPULibFunc::EI_SINCOS:
409   case AMDGPULibFunc::EI_SQRT:
410   case AMDGPULibFunc::EI_TAN:
411     return true;
412   default:;
413   }
414   return false;
415 }
416 
417 struct TableRef {
418   size_t size;
419   const TableEntry *table; // variable size: from 0 to (size - 1)
420 
421   TableRef() : size(0), table(nullptr) {}
422 
423   template <size_t N>
424   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
425 };
426 
427 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
428   switch(id) {
429   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
430   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
431   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
432   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
433   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
434   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
435   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
436   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
437   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
438   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
439   case AMDGPULibFunc::EI_NCOS:
440   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
441   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
442   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
443   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
444   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
445   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
446   case AMDGPULibFunc::EI_NEXP2:
447   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
448   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
449   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
450   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
451   case AMDGPULibFunc::EI_NLOG2:
452   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
453   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
454   case AMDGPULibFunc::EI_NRSQRT:
455   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
456   case AMDGPULibFunc::EI_NSIN:
457   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
458   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
459   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
460   case AMDGPULibFunc::EI_NSQRT:
461   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
462   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
463   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
464   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
465   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
466   default:;
467   }
468   return TableRef();
469 }
470 
471 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
472   return FInfo.getLeads()[0].VectorSize;
473 }
474 
475 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
476   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
477 }
478 
479 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
480   // If we are doing PreLinkOpt, the function is external. So it is safe to
481   // use getOrInsertFunction() at this stage.
482 
483   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
484                        : AMDGPULibFunc::getFunction(M, fInfo);
485 }
486 
487 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
488                                     FuncInfo *FInfo) {
489   return AMDGPULibFunc::parse(FMangledName, *FInfo);
490 }
491 
492 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
493   if (auto Op = dyn_cast<FPMathOperator>(CI))
494     if (Op->isFast())
495       return true;
496   const Function *F = CI->getParent()->getParent();
497   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
498   return Attr.getValueAsString() == "true";
499 }
500 
501 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
502   return AllNative ||
503          std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
504 }
505 
506 void AMDGPULibCalls::initNativeFuncs() {
507   AllNative = useNativeFunc("all") ||
508               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
509                UseNative.begin()->empty());
510 }
511 
512 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
513   bool native_sin = useNativeFunc("sin");
514   bool native_cos = useNativeFunc("cos");
515 
516   if (native_sin && native_cos) {
517     Module *M = aCI->getModule();
518     Value *opr0 = aCI->getArgOperand(0);
519 
520     AMDGPULibFunc nf;
521     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
522     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
523 
524     nf.setPrefix(AMDGPULibFunc::NATIVE);
525     nf.setId(AMDGPULibFunc::EI_SIN);
526     FunctionCallee sinExpr = getFunction(M, nf);
527 
528     nf.setPrefix(AMDGPULibFunc::NATIVE);
529     nf.setId(AMDGPULibFunc::EI_COS);
530     FunctionCallee cosExpr = getFunction(M, nf);
531     if (sinExpr && cosExpr) {
532       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
533       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
534       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
535 
536       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
537                                           << " with native version of sin/cos");
538 
539       replaceCall(sinval);
540       return true;
541     }
542   }
543   return false;
544 }
545 
546 bool AMDGPULibCalls::useNative(CallInst *aCI) {
547   CI = aCI;
548   Function *Callee = aCI->getCalledFunction();
549 
550   FuncInfo FInfo;
551   if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
552       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
553       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
554       !(AllNative || useNativeFunc(FInfo.getName()))) {
555     return false;
556   }
557 
558   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
559     return sincosUseNative(aCI, FInfo);
560 
561   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
562   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
563   if (!F)
564     return false;
565 
566   aCI->setCalledFunction(F);
567   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
568                                       << " with native version");
569   return true;
570 }
571 
572 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
573 // builtin, with appended type size and alignment arguments, where 2 or 4
574 // indicates the original number of arguments. The library has optimized version
575 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
576 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
577 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
578 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
579 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
580                                           FuncInfo &FInfo) {
581   auto *Callee = CI->getCalledFunction();
582   if (!Callee->isDeclaration())
583     return false;
584 
585   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
586   auto *M = Callee->getParent();
587   auto &Ctx = M->getContext();
588   std::string Name = Callee->getName();
589   auto NumArg = CI->getNumArgOperands();
590   if (NumArg != 4 && NumArg != 6)
591     return false;
592   auto *PacketSize = CI->getArgOperand(NumArg - 2);
593   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
594   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
595     return false;
596   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
597   unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue();
598   if (Size != Align || !isPowerOf2_32(Size))
599     return false;
600 
601   Type *PtrElemTy;
602   if (Size <= 8)
603     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
604   else
605     PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8);
606   unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
607   auto PtrArg = CI->getArgOperand(PtrArgLoc);
608   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
609   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
610 
611   SmallVector<llvm::Type *, 6> ArgTys;
612   for (unsigned I = 0; I != PtrArgLoc; ++I)
613     ArgTys.push_back(CI->getArgOperand(I)->getType());
614   ArgTys.push_back(PtrTy);
615 
616   Name = Name + "_" + std::to_string(Size);
617   auto *FTy = FunctionType::get(Callee->getReturnType(),
618                                 ArrayRef<Type *>(ArgTys), false);
619   AMDGPULibFunc NewLibFunc(Name, FTy);
620   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
621   if (!F)
622     return false;
623 
624   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
625   SmallVector<Value *, 6> Args;
626   for (unsigned I = 0; I != PtrArgLoc; ++I)
627     Args.push_back(CI->getArgOperand(I));
628   Args.push_back(BCast);
629 
630   auto *NCI = B.CreateCall(F, Args);
631   NCI->setAttributes(CI->getAttributes());
632   CI->replaceAllUsesWith(NCI);
633   CI->dropAllReferences();
634   CI->eraseFromParent();
635 
636   return true;
637 }
638 
639 // This function returns false if no change; return true otherwise.
640 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
641   this->CI = CI;
642   Function *Callee = CI->getCalledFunction();
643 
644   // Ignore indirect calls.
645   if (Callee == 0) return false;
646 
647   BasicBlock *BB = CI->getParent();
648   LLVMContext &Context = CI->getParent()->getContext();
649   IRBuilder<> B(Context);
650 
651   // Set the builder to the instruction after the call.
652   B.SetInsertPoint(BB, CI->getIterator());
653 
654   // Copy fast flags from the original call.
655   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
656     B.setFastMathFlags(FPOp->getFastMathFlags());
657 
658   switch (Callee->getIntrinsicID()) {
659   default:
660     break;
661   case Intrinsic::amdgcn_wavefrontsize:
662     return !EnablePreLink && fold_wavefrontsize(CI, B);
663   }
664 
665   FuncInfo FInfo;
666   if (!parseFunctionName(Callee->getName(), &FInfo))
667     return false;
668 
669   // Further check the number of arguments to see if they match.
670   if (CI->getNumArgOperands() != FInfo.getNumArgs())
671     return false;
672 
673   if (TDOFold(CI, FInfo))
674     return true;
675 
676   // Under unsafe-math, evaluate calls if possible.
677   // According to Brian Sumner, we can do this for all f32 function calls
678   // using host's double function calls.
679   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
680     return true;
681 
682   // Specilized optimizations for each function call
683   switch (FInfo.getId()) {
684   case AMDGPULibFunc::EI_RECIP:
685     // skip vector function
686     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
687              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
688             "recip must be an either native or half function");
689     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
690 
691   case AMDGPULibFunc::EI_DIVIDE:
692     // skip vector function
693     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
694              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
695             "divide must be an either native or half function");
696     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
697 
698   case AMDGPULibFunc::EI_POW:
699   case AMDGPULibFunc::EI_POWR:
700   case AMDGPULibFunc::EI_POWN:
701     return fold_pow(CI, B, FInfo);
702 
703   case AMDGPULibFunc::EI_ROOTN:
704     // skip vector function
705     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
706 
707   case AMDGPULibFunc::EI_FMA:
708   case AMDGPULibFunc::EI_MAD:
709   case AMDGPULibFunc::EI_NFMA:
710     // skip vector function
711     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
712 
713   case AMDGPULibFunc::EI_SQRT:
714     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
715   case AMDGPULibFunc::EI_COS:
716   case AMDGPULibFunc::EI_SIN:
717     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
718          getArgType(FInfo) == AMDGPULibFunc::F64)
719         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
720       return fold_sincos(CI, B, AA);
721 
722     break;
723   case AMDGPULibFunc::EI_READ_PIPE_2:
724   case AMDGPULibFunc::EI_READ_PIPE_4:
725   case AMDGPULibFunc::EI_WRITE_PIPE_2:
726   case AMDGPULibFunc::EI_WRITE_PIPE_4:
727     return fold_read_write_pipe(CI, B, FInfo);
728 
729   default:
730     break;
731   }
732 
733   return false;
734 }
735 
736 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
737   // Table-Driven optimization
738   const TableRef tr = getOptTable(FInfo.getId());
739   if (tr.size==0)
740     return false;
741 
742   int const sz = (int)tr.size;
743   const TableEntry * const ftbl = tr.table;
744   Value *opr0 = CI->getArgOperand(0);
745 
746   if (getVecSize(FInfo) > 1) {
747     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
748       SmallVector<double, 0> DVal;
749       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
750         ConstantFP *eltval = dyn_cast<ConstantFP>(
751                                CV->getElementAsConstant((unsigned)eltNo));
752         assert(eltval && "Non-FP arguments in math function!");
753         bool found = false;
754         for (int i=0; i < sz; ++i) {
755           if (eltval->isExactlyValue(ftbl[i].input)) {
756             DVal.push_back(ftbl[i].result);
757             found = true;
758             break;
759           }
760         }
761         if (!found) {
762           // This vector constants not handled yet.
763           return false;
764         }
765       }
766       LLVMContext &context = CI->getParent()->getParent()->getContext();
767       Constant *nval;
768       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
769         SmallVector<float, 0> FVal;
770         for (unsigned i = 0; i < DVal.size(); ++i) {
771           FVal.push_back((float)DVal[i]);
772         }
773         ArrayRef<float> tmp(FVal);
774         nval = ConstantDataVector::get(context, tmp);
775       } else { // F64
776         ArrayRef<double> tmp(DVal);
777         nval = ConstantDataVector::get(context, tmp);
778       }
779       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
780       replaceCall(nval);
781       return true;
782     }
783   } else {
784     // Scalar version
785     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
786       for (int i = 0; i < sz; ++i) {
787         if (CF->isExactlyValue(ftbl[i].input)) {
788           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
789           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
790           replaceCall(nval);
791           return true;
792         }
793       }
794     }
795   }
796 
797   return false;
798 }
799 
800 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
801   Module *M = CI->getModule();
802   if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
803       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
804       !HasNative(FInfo.getId()))
805     return false;
806 
807   AMDGPULibFunc nf = FInfo;
808   nf.setPrefix(AMDGPULibFunc::NATIVE);
809   if (FunctionCallee FPExpr = getFunction(M, nf)) {
810     LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
811 
812     CI->setCalledFunction(FPExpr);
813 
814     LLVM_DEBUG(dbgs() << *CI << '\n');
815 
816     return true;
817   }
818   return false;
819 }
820 
821 //  [native_]half_recip(c) ==> 1.0/c
822 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
823                                 const FuncInfo &FInfo) {
824   Value *opr0 = CI->getArgOperand(0);
825   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
826     // Just create a normal div. Later, InstCombine will be able
827     // to compute the divide into a constant (avoid check float infinity
828     // or subnormal at this point).
829     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
830                                opr0,
831                                "recip2div");
832     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
833     replaceCall(nval);
834     return true;
835   }
836   return false;
837 }
838 
839 //  [native_]half_divide(x, c) ==> x/c
840 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
841                                  const FuncInfo &FInfo) {
842   Value *opr0 = CI->getArgOperand(0);
843   Value *opr1 = CI->getArgOperand(1);
844   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
845   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
846 
847   if ((CF0 && CF1) ||  // both are constants
848       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
849       // CF1 is constant && f32 divide
850   {
851     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
852                                 opr1, "__div2recip");
853     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
854     replaceCall(nval);
855     return true;
856   }
857   return false;
858 }
859 
860 namespace llvm {
861 static double log2(double V) {
862 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
863   return ::log2(V);
864 #else
865   return log(V) / numbers::ln2;
866 #endif
867 }
868 }
869 
870 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
871                               const FuncInfo &FInfo) {
872   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
873           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
874           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
875          "fold_pow: encounter a wrong function call");
876 
877   Value *opr0, *opr1;
878   ConstantFP *CF;
879   ConstantInt *CINT;
880   ConstantAggregateZero *CZero;
881   Type *eltType;
882 
883   opr0 = CI->getArgOperand(0);
884   opr1 = CI->getArgOperand(1);
885   CZero = dyn_cast<ConstantAggregateZero>(opr1);
886   if (getVecSize(FInfo) == 1) {
887     eltType = opr0->getType();
888     CF = dyn_cast<ConstantFP>(opr1);
889     CINT = dyn_cast<ConstantInt>(opr1);
890   } else {
891     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
892     assert(VTy && "Oprand of vector function should be of vectortype");
893     eltType = VTy->getElementType();
894     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
895 
896     // Now, only Handle vector const whose elements have the same value.
897     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
898     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
899   }
900 
901   // No unsafe math , no constant argument, do nothing
902   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
903     return false;
904 
905   // 0x1111111 means that we don't do anything for this call.
906   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
907 
908   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
909     //  pow/powr/pown(x, 0) == 1
910     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
911     Constant *cnval = ConstantFP::get(eltType, 1.0);
912     if (getVecSize(FInfo) > 1) {
913       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
914     }
915     replaceCall(cnval);
916     return true;
917   }
918   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
919     // pow/powr/pown(x, 1.0) = x
920     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
921     replaceCall(opr0);
922     return true;
923   }
924   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
925     // pow/powr/pown(x, 2.0) = x*x
926     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
927                       << "\n");
928     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
929     replaceCall(nval);
930     return true;
931   }
932   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
933     // pow/powr/pown(x, -1.0) = 1.0/x
934     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
935     Constant *cnval = ConstantFP::get(eltType, 1.0);
936     if (getVecSize(FInfo) > 1) {
937       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
938     }
939     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
940     replaceCall(nval);
941     return true;
942   }
943 
944   Module *M = CI->getModule();
945   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
946     // pow[r](x, [-]0.5) = sqrt(x)
947     bool issqrt = CF->isExactlyValue(0.5);
948     if (FunctionCallee FPExpr =
949             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
950                                                 : AMDGPULibFunc::EI_RSQRT,
951                                          FInfo))) {
952       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
953                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
954       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
955                                                         : "__pow2rsqrt");
956       replaceCall(nval);
957       return true;
958     }
959   }
960 
961   if (!isUnsafeMath(CI))
962     return false;
963 
964   // Unsafe Math optimization
965 
966   // Remember that ci_opr1 is set if opr1 is integral
967   if (CF) {
968     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
969                     ? (double)CF->getValueAPF().convertToFloat()
970                     : CF->getValueAPF().convertToDouble();
971     int ival = (int)dval;
972     if ((double)ival == dval) {
973       ci_opr1 = ival;
974     } else
975       ci_opr1 = 0x11111111;
976   }
977 
978   // pow/powr/pown(x, c) = [1/](x*x*..x); where
979   //   trunc(c) == c && the number of x == c && |c| <= 12
980   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
981   if (abs_opr1 <= 12) {
982     Constant *cnval;
983     Value *nval;
984     if (abs_opr1 == 0) {
985       cnval = ConstantFP::get(eltType, 1.0);
986       if (getVecSize(FInfo) > 1) {
987         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
988       }
989       nval = cnval;
990     } else {
991       Value *valx2 = nullptr;
992       nval = nullptr;
993       while (abs_opr1 > 0) {
994         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
995         if (abs_opr1 & 1) {
996           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
997         }
998         abs_opr1 >>= 1;
999       }
1000     }
1001 
1002     if (ci_opr1 < 0) {
1003       cnval = ConstantFP::get(eltType, 1.0);
1004       if (getVecSize(FInfo) > 1) {
1005         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1006       }
1007       nval = B.CreateFDiv(cnval, nval, "__1powprod");
1008     }
1009     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1010                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1011                       << ")\n");
1012     replaceCall(nval);
1013     return true;
1014   }
1015 
1016   // powr ---> exp2(y * log2(x))
1017   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1018   FunctionCallee ExpExpr =
1019       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1020   if (!ExpExpr)
1021     return false;
1022 
1023   bool needlog = false;
1024   bool needabs = false;
1025   bool needcopysign = false;
1026   Constant *cnval = nullptr;
1027   if (getVecSize(FInfo) == 1) {
1028     CF = dyn_cast<ConstantFP>(opr0);
1029 
1030     if (CF) {
1031       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1032                    ? (double)CF->getValueAPF().convertToFloat()
1033                    : CF->getValueAPF().convertToDouble();
1034 
1035       V = log2(std::abs(V));
1036       cnval = ConstantFP::get(eltType, V);
1037       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1038                      CF->isNegative();
1039     } else {
1040       needlog = true;
1041       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1042                                (!CF || CF->isNegative());
1043     }
1044   } else {
1045     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1046 
1047     if (!CDV) {
1048       needlog = true;
1049       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1050     } else {
1051       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1052               "Wrong vector size detected");
1053 
1054       SmallVector<double, 0> DVal;
1055       for (int i=0; i < getVecSize(FInfo); ++i) {
1056         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1057                      ? (double)CDV->getElementAsFloat(i)
1058                      : CDV->getElementAsDouble(i);
1059         if (V < 0.0) needcopysign = true;
1060         V = log2(std::abs(V));
1061         DVal.push_back(V);
1062       }
1063       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1064         SmallVector<float, 0> FVal;
1065         for (unsigned i=0; i < DVal.size(); ++i) {
1066           FVal.push_back((float)DVal[i]);
1067         }
1068         ArrayRef<float> tmp(FVal);
1069         cnval = ConstantDataVector::get(M->getContext(), tmp);
1070       } else {
1071         ArrayRef<double> tmp(DVal);
1072         cnval = ConstantDataVector::get(M->getContext(), tmp);
1073       }
1074     }
1075   }
1076 
1077   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1078     // We cannot handle corner cases for a general pow() function, give up
1079     // unless y is a constant integral value. Then proceed as if it were pown.
1080     if (getVecSize(FInfo) == 1) {
1081       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1082         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1083                    ? (double)CF->getValueAPF().convertToFloat()
1084                    : CF->getValueAPF().convertToDouble();
1085         if (y != (double)(int64_t)y)
1086           return false;
1087       } else
1088         return false;
1089     } else {
1090       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1091         for (int i=0; i < getVecSize(FInfo); ++i) {
1092           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1093                      ? (double)CDV->getElementAsFloat(i)
1094                      : CDV->getElementAsDouble(i);
1095           if (y != (double)(int64_t)y)
1096             return false;
1097         }
1098       } else
1099         return false;
1100     }
1101   }
1102 
1103   Value *nval;
1104   if (needabs) {
1105     FunctionCallee AbsExpr =
1106         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1107     if (!AbsExpr)
1108       return false;
1109     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1110   } else {
1111     nval = cnval ? cnval : opr0;
1112   }
1113   if (needlog) {
1114     FunctionCallee LogExpr =
1115         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1116     if (!LogExpr)
1117       return false;
1118     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1119   }
1120 
1121   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1122     // convert int(32) to fp(f32 or f64)
1123     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1124   }
1125   nval = B.CreateFMul(opr1, nval, "__ylogx");
1126   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1127 
1128   if (needcopysign) {
1129     Value *opr_n;
1130     Type* rTy = opr0->getType();
1131     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1132     Type *nTy = nTyS;
1133     if (const VectorType *vTy = dyn_cast<VectorType>(rTy))
1134       nTy = VectorType::get(nTyS, vTy->getNumElements());
1135     unsigned size = nTy->getScalarSizeInBits();
1136     opr_n = CI->getArgOperand(1);
1137     if (opr_n->getType()->isIntegerTy())
1138       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1139     else
1140       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1141 
1142     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1143     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1144     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1145     nval = B.CreateBitCast(nval, opr0->getType());
1146   }
1147 
1148   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1149                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1150   replaceCall(nval);
1151 
1152   return true;
1153 }
1154 
1155 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1156                                 const FuncInfo &FInfo) {
1157   Value *opr0 = CI->getArgOperand(0);
1158   Value *opr1 = CI->getArgOperand(1);
1159 
1160   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1161   if (!CINT) {
1162     return false;
1163   }
1164   int ci_opr1 = (int)CINT->getSExtValue();
1165   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1166     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1167     replaceCall(opr0);
1168     return true;
1169   }
1170   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1171     Module *M = CI->getModule();
1172     if (FunctionCallee FPExpr =
1173             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1174       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1175       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1176       replaceCall(nval);
1177       return true;
1178     }
1179   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1180     Module *M = CI->getModule();
1181     if (FunctionCallee FPExpr =
1182             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1183       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1184       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1185       replaceCall(nval);
1186       return true;
1187     }
1188   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1189     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1190     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1191                                opr0,
1192                                "__rootn2div");
1193     replaceCall(nval);
1194     return true;
1195   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1196     Module *M = CI->getModule();
1197     if (FunctionCallee FPExpr =
1198             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1199       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1200                         << ")\n");
1201       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1202       replaceCall(nval);
1203       return true;
1204     }
1205   }
1206   return false;
1207 }
1208 
1209 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1210                                   const FuncInfo &FInfo) {
1211   Value *opr0 = CI->getArgOperand(0);
1212   Value *opr1 = CI->getArgOperand(1);
1213   Value *opr2 = CI->getArgOperand(2);
1214 
1215   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1216   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1217   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1218     // fma/mad(a, b, c) = c if a=0 || b=0
1219     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1220     replaceCall(opr2);
1221     return true;
1222   }
1223   if (CF0 && CF0->isExactlyValue(1.0f)) {
1224     // fma/mad(a, b, c) = b+c if a=1
1225     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1226                       << "\n");
1227     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1228     replaceCall(nval);
1229     return true;
1230   }
1231   if (CF1 && CF1->isExactlyValue(1.0f)) {
1232     // fma/mad(a, b, c) = a+c if b=1
1233     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1234                       << "\n");
1235     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1236     replaceCall(nval);
1237     return true;
1238   }
1239   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1240     if (CF->isZero()) {
1241       // fma/mad(a, b, c) = a*b if c=0
1242       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1243                         << *opr1 << "\n");
1244       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1245       replaceCall(nval);
1246       return true;
1247     }
1248   }
1249 
1250   return false;
1251 }
1252 
1253 // Get a scalar native builtin signle argument FP function
1254 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1255                                                  const FuncInfo &FInfo) {
1256   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1257     return nullptr;
1258   FuncInfo nf = FInfo;
1259   nf.setPrefix(AMDGPULibFunc::NATIVE);
1260   return getFunction(M, nf);
1261 }
1262 
1263 // fold sqrt -> native_sqrt (x)
1264 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1265                                const FuncInfo &FInfo) {
1266   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1267       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1268     if (FunctionCallee FPExpr = getNativeFunction(
1269             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1270       Value *opr0 = CI->getArgOperand(0);
1271       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1272                         << "sqrt(" << *opr0 << ")\n");
1273       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1274       replaceCall(nval);
1275       return true;
1276     }
1277   }
1278   return false;
1279 }
1280 
1281 // fold sin, cos -> sincos.
1282 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1283                                  AliasAnalysis *AA) {
1284   AMDGPULibFunc fInfo;
1285   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1286     return false;
1287 
1288   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1289          fInfo.getId() == AMDGPULibFunc::EI_COS);
1290   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1291 
1292   Value *CArgVal = CI->getArgOperand(0);
1293   BasicBlock * const CBB = CI->getParent();
1294 
1295   int const MaxScan = 30;
1296 
1297   { // fold in load value.
1298     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1299     if (LI && LI->getParent() == CBB) {
1300       BasicBlock::iterator BBI = LI->getIterator();
1301       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1302       if (AvailableVal) {
1303         CArgVal->replaceAllUsesWith(AvailableVal);
1304         if (CArgVal->getNumUses() == 0)
1305           LI->eraseFromParent();
1306         CArgVal = CI->getArgOperand(0);
1307       }
1308     }
1309   }
1310 
1311   Module *M = CI->getModule();
1312   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1313   std::string const PairName = fInfo.mangle();
1314 
1315   CallInst *UI = nullptr;
1316   for (User* U : CArgVal->users()) {
1317     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1318     if (!XI || XI == CI || XI->getParent() != CBB)
1319       continue;
1320 
1321     Function *UCallee = XI->getCalledFunction();
1322     if (!UCallee || !UCallee->getName().equals(PairName))
1323       continue;
1324 
1325     BasicBlock::iterator BBI = CI->getIterator();
1326     if (BBI == CI->getParent()->begin())
1327       break;
1328     --BBI;
1329     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1330       if (cast<Instruction>(BBI) == XI) {
1331         UI = XI;
1332         break;
1333       }
1334     }
1335     if (UI) break;
1336   }
1337 
1338   if (!UI) return false;
1339 
1340   // Merge the sin and cos.
1341 
1342   // for OpenCL 2.0 we have only generic implementation of sincos
1343   // function.
1344   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1345   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1346   FunctionCallee Fsincos = getFunction(M, nf);
1347   if (!Fsincos) return false;
1348 
1349   BasicBlock::iterator ItOld = B.GetInsertPoint();
1350   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1351   B.SetInsertPoint(UI);
1352 
1353   Value *P = Alloc;
1354   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1355   // The allocaInst allocates the memory in private address space. This need
1356   // to be bitcasted to point to the address space of cos pointer type.
1357   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1358   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1359     P = B.CreateAddrSpaceCast(Alloc, PTy);
1360   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1361 
1362   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1363                     << *Call << "\n");
1364 
1365   if (!isSin) { // CI->cos, UI->sin
1366     B.SetInsertPoint(&*ItOld);
1367     UI->replaceAllUsesWith(&*Call);
1368     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1369     CI->replaceAllUsesWith(Reload);
1370     UI->eraseFromParent();
1371     CI->eraseFromParent();
1372   } else { // CI->sin, UI->cos
1373     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1374     UI->replaceAllUsesWith(Reload);
1375     CI->replaceAllUsesWith(Call);
1376     UI->eraseFromParent();
1377     CI->eraseFromParent();
1378   }
1379   return true;
1380 }
1381 
1382 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1383   if (!TM)
1384     return false;
1385 
1386   StringRef CPU = TM->getTargetCPU();
1387   StringRef Features = TM->getTargetFeatureString();
1388   if ((CPU.empty() || CPU.equals_lower("generic")) &&
1389       (Features.empty() ||
1390        Features.find_lower("wavefrontsize") == StringRef::npos))
1391     return false;
1392 
1393   Function *F = CI->getParent()->getParent();
1394   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1395   unsigned N = ST.getWavefrontSize();
1396 
1397   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1398                << N << "\n");
1399 
1400   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1401   CI->eraseFromParent();
1402   return true;
1403 }
1404 
1405 // Get insertion point at entry.
1406 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1407   Function * Func = UI->getParent()->getParent();
1408   BasicBlock * BB = &Func->getEntryBlock();
1409   assert(BB && "Entry block not found!");
1410   BasicBlock::iterator ItNew = BB->begin();
1411   return ItNew;
1412 }
1413 
1414 // Insert a AllocsInst at the beginning of function entry block.
1415 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1416                                          const char *prefix) {
1417   BasicBlock::iterator ItNew = getEntryIns(UI);
1418   Function *UCallee = UI->getCalledFunction();
1419   Type *RetType = UCallee->getReturnType();
1420   B.SetInsertPoint(&*ItNew);
1421   AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1422     std::string(prefix) + UI->getName());
1423   Alloc->setAlignment(MaybeAlign(
1424       UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
1425   return Alloc;
1426 }
1427 
1428 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1429                                             double& Res0, double& Res1,
1430                                             Constant *copr0, Constant *copr1,
1431                                             Constant *copr2) {
1432   // By default, opr0/opr1/opr3 holds values of float/double type.
1433   // If they are not float/double, each function has to its
1434   // operand separately.
1435   double opr0=0.0, opr1=0.0, opr2=0.0;
1436   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1437   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1438   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1439   if (fpopr0) {
1440     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1441              ? fpopr0->getValueAPF().convertToDouble()
1442              : (double)fpopr0->getValueAPF().convertToFloat();
1443   }
1444 
1445   if (fpopr1) {
1446     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1447              ? fpopr1->getValueAPF().convertToDouble()
1448              : (double)fpopr1->getValueAPF().convertToFloat();
1449   }
1450 
1451   if (fpopr2) {
1452     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1453              ? fpopr2->getValueAPF().convertToDouble()
1454              : (double)fpopr2->getValueAPF().convertToFloat();
1455   }
1456 
1457   switch (FInfo.getId()) {
1458   default : return false;
1459 
1460   case AMDGPULibFunc::EI_ACOS:
1461     Res0 = acos(opr0);
1462     return true;
1463 
1464   case AMDGPULibFunc::EI_ACOSH:
1465     // acosh(x) == log(x + sqrt(x*x - 1))
1466     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1467     return true;
1468 
1469   case AMDGPULibFunc::EI_ACOSPI:
1470     Res0 = acos(opr0) / MATH_PI;
1471     return true;
1472 
1473   case AMDGPULibFunc::EI_ASIN:
1474     Res0 = asin(opr0);
1475     return true;
1476 
1477   case AMDGPULibFunc::EI_ASINH:
1478     // asinh(x) == log(x + sqrt(x*x + 1))
1479     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1480     return true;
1481 
1482   case AMDGPULibFunc::EI_ASINPI:
1483     Res0 = asin(opr0) / MATH_PI;
1484     return true;
1485 
1486   case AMDGPULibFunc::EI_ATAN:
1487     Res0 = atan(opr0);
1488     return true;
1489 
1490   case AMDGPULibFunc::EI_ATANH:
1491     // atanh(x) == (log(x+1) - log(x-1))/2;
1492     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1493     return true;
1494 
1495   case AMDGPULibFunc::EI_ATANPI:
1496     Res0 = atan(opr0) / MATH_PI;
1497     return true;
1498 
1499   case AMDGPULibFunc::EI_CBRT:
1500     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1501     return true;
1502 
1503   case AMDGPULibFunc::EI_COS:
1504     Res0 = cos(opr0);
1505     return true;
1506 
1507   case AMDGPULibFunc::EI_COSH:
1508     Res0 = cosh(opr0);
1509     return true;
1510 
1511   case AMDGPULibFunc::EI_COSPI:
1512     Res0 = cos(MATH_PI * opr0);
1513     return true;
1514 
1515   case AMDGPULibFunc::EI_EXP:
1516     Res0 = exp(opr0);
1517     return true;
1518 
1519   case AMDGPULibFunc::EI_EXP2:
1520     Res0 = pow(2.0, opr0);
1521     return true;
1522 
1523   case AMDGPULibFunc::EI_EXP10:
1524     Res0 = pow(10.0, opr0);
1525     return true;
1526 
1527   case AMDGPULibFunc::EI_EXPM1:
1528     Res0 = exp(opr0) - 1.0;
1529     return true;
1530 
1531   case AMDGPULibFunc::EI_LOG:
1532     Res0 = log(opr0);
1533     return true;
1534 
1535   case AMDGPULibFunc::EI_LOG2:
1536     Res0 = log(opr0) / log(2.0);
1537     return true;
1538 
1539   case AMDGPULibFunc::EI_LOG10:
1540     Res0 = log(opr0) / log(10.0);
1541     return true;
1542 
1543   case AMDGPULibFunc::EI_RSQRT:
1544     Res0 = 1.0 / sqrt(opr0);
1545     return true;
1546 
1547   case AMDGPULibFunc::EI_SIN:
1548     Res0 = sin(opr0);
1549     return true;
1550 
1551   case AMDGPULibFunc::EI_SINH:
1552     Res0 = sinh(opr0);
1553     return true;
1554 
1555   case AMDGPULibFunc::EI_SINPI:
1556     Res0 = sin(MATH_PI * opr0);
1557     return true;
1558 
1559   case AMDGPULibFunc::EI_SQRT:
1560     Res0 = sqrt(opr0);
1561     return true;
1562 
1563   case AMDGPULibFunc::EI_TAN:
1564     Res0 = tan(opr0);
1565     return true;
1566 
1567   case AMDGPULibFunc::EI_TANH:
1568     Res0 = tanh(opr0);
1569     return true;
1570 
1571   case AMDGPULibFunc::EI_TANPI:
1572     Res0 = tan(MATH_PI * opr0);
1573     return true;
1574 
1575   case AMDGPULibFunc::EI_RECIP:
1576     Res0 = 1.0 / opr0;
1577     return true;
1578 
1579   // two-arg functions
1580   case AMDGPULibFunc::EI_DIVIDE:
1581     Res0 = opr0 / opr1;
1582     return true;
1583 
1584   case AMDGPULibFunc::EI_POW:
1585   case AMDGPULibFunc::EI_POWR:
1586     Res0 = pow(opr0, opr1);
1587     return true;
1588 
1589   case AMDGPULibFunc::EI_POWN: {
1590     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1591       double val = (double)iopr1->getSExtValue();
1592       Res0 = pow(opr0, val);
1593       return true;
1594     }
1595     return false;
1596   }
1597 
1598   case AMDGPULibFunc::EI_ROOTN: {
1599     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1600       double val = (double)iopr1->getSExtValue();
1601       Res0 = pow(opr0, 1.0 / val);
1602       return true;
1603     }
1604     return false;
1605   }
1606 
1607   // with ptr arg
1608   case AMDGPULibFunc::EI_SINCOS:
1609     Res0 = sin(opr0);
1610     Res1 = cos(opr0);
1611     return true;
1612 
1613   // three-arg functions
1614   case AMDGPULibFunc::EI_FMA:
1615   case AMDGPULibFunc::EI_MAD:
1616     Res0 = opr0 * opr1 + opr2;
1617     return true;
1618   }
1619 
1620   return false;
1621 }
1622 
1623 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1624   int numArgs = (int)aCI->getNumArgOperands();
1625   if (numArgs > 3)
1626     return false;
1627 
1628   Constant *copr0 = nullptr;
1629   Constant *copr1 = nullptr;
1630   Constant *copr2 = nullptr;
1631   if (numArgs > 0) {
1632     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1633       return false;
1634   }
1635 
1636   if (numArgs > 1) {
1637     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1638       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1639         return false;
1640     }
1641   }
1642 
1643   if (numArgs > 2) {
1644     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1645       return false;
1646   }
1647 
1648   // At this point, all arguments to aCI are constants.
1649 
1650   // max vector size is 16, and sincos will generate two results.
1651   double DVal0[16], DVal1[16];
1652   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1653   if (getVecSize(FInfo) == 1) {
1654     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1655                                 DVal1[0], copr0, copr1, copr2)) {
1656       return false;
1657     }
1658   } else {
1659     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1660     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1661     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1662     for (int i=0; i < getVecSize(FInfo); ++i) {
1663       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1664       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1665       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1666       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1667                                   DVal1[i], celt0, celt1, celt2)) {
1668         return false;
1669       }
1670     }
1671   }
1672 
1673   LLVMContext &context = CI->getParent()->getParent()->getContext();
1674   Constant *nval0, *nval1;
1675   if (getVecSize(FInfo) == 1) {
1676     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1677     if (hasTwoResults)
1678       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1679   } else {
1680     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1681       SmallVector <float, 0> FVal0, FVal1;
1682       for (int i=0; i < getVecSize(FInfo); ++i)
1683         FVal0.push_back((float)DVal0[i]);
1684       ArrayRef<float> tmp0(FVal0);
1685       nval0 = ConstantDataVector::get(context, tmp0);
1686       if (hasTwoResults) {
1687         for (int i=0; i < getVecSize(FInfo); ++i)
1688           FVal1.push_back((float)DVal1[i]);
1689         ArrayRef<float> tmp1(FVal1);
1690         nval1 = ConstantDataVector::get(context, tmp1);
1691       }
1692     } else {
1693       ArrayRef<double> tmp0(DVal0);
1694       nval0 = ConstantDataVector::get(context, tmp0);
1695       if (hasTwoResults) {
1696         ArrayRef<double> tmp1(DVal1);
1697         nval1 = ConstantDataVector::get(context, tmp1);
1698       }
1699     }
1700   }
1701 
1702   if (hasTwoResults) {
1703     // sincos
1704     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1705            "math function with ptr arg not supported yet");
1706     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1707   }
1708 
1709   replaceCall(nval0);
1710   return true;
1711 }
1712 
1713 // Public interface to the Simplify LibCalls pass.
1714 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt,
1715                                                      const TargetMachine *TM) {
1716   return new AMDGPUSimplifyLibCalls(Opt, TM);
1717 }
1718 
1719 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1720   return new AMDGPUUseNativeCalls();
1721 }
1722 
1723 static bool setFastFlags(Function &F, const TargetOptions &Options) {
1724   AttrBuilder B;
1725 
1726   if (Options.UnsafeFPMath || Options.NoInfsFPMath)
1727     B.addAttribute("no-infs-fp-math", "true");
1728   if (Options.UnsafeFPMath || Options.NoNaNsFPMath)
1729     B.addAttribute("no-nans-fp-math", "true");
1730   if (Options.UnsafeFPMath) {
1731     B.addAttribute("less-precise-fpmad", "true");
1732     B.addAttribute("unsafe-fp-math", "true");
1733   }
1734 
1735   if (!B.hasAttributes())
1736     return false;
1737 
1738   F.addAttributes(AttributeList::FunctionIndex, B);
1739 
1740   return true;
1741 }
1742 
1743 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1744   if (skipFunction(F))
1745     return false;
1746 
1747   bool Changed = false;
1748   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1749 
1750   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1751              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1752 
1753   if (!EnablePreLink)
1754     Changed |= setFastFlags(F, Options);
1755 
1756   for (auto &BB : F) {
1757     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1758       // Ignore non-calls.
1759       CallInst *CI = dyn_cast<CallInst>(I);
1760       ++I;
1761       if (!CI) continue;
1762 
1763       // Ignore indirect calls.
1764       Function *Callee = CI->getCalledFunction();
1765       if (Callee == 0) continue;
1766 
1767       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1768                  dbgs().flush());
1769       if(Simplifier.fold(CI, AA))
1770         Changed = true;
1771     }
1772   }
1773   return Changed;
1774 }
1775 
1776 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1777   if (skipFunction(F) || UseNative.empty())
1778     return false;
1779 
1780   bool Changed = false;
1781   for (auto &BB : F) {
1782     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1783       // Ignore non-calls.
1784       CallInst *CI = dyn_cast<CallInst>(I);
1785       ++I;
1786       if (!CI) continue;
1787 
1788       // Ignore indirect calls.
1789       Function *Callee = CI->getCalledFunction();
1790       if (Callee == 0) continue;
1791 
1792       if(Simplifier.useNative(CI))
1793         Changed = true;
1794     }
1795   }
1796   return Changed;
1797 }
1798