1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "AMDGPUSubtarget.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/StringSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cmath> 36 #include <vector> 37 38 #define DEBUG_TYPE "amdgpu-simplifylib" 39 40 using namespace llvm; 41 42 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 43 cl::desc("Enable pre-link mode optimizations"), 44 cl::init(false), 45 cl::Hidden); 46 47 static cl::list<std::string> UseNative("amdgpu-use-native", 48 cl::desc("Comma separated list of functions to replace with native, or all"), 49 cl::CommaSeparated, cl::ValueOptional, 50 cl::Hidden); 51 52 #define MATH_PI numbers::pi 53 #define MATH_E numbers::e 54 #define MATH_SQRT2 numbers::sqrt2 55 #define MATH_SQRT1_2 numbers::inv_sqrt2 56 57 namespace llvm { 58 59 class AMDGPULibCalls { 60 private: 61 62 typedef llvm::AMDGPULibFunc FuncInfo; 63 64 const TargetMachine *TM; 65 66 // -fuse-native. 67 bool AllNative = false; 68 69 bool useNativeFunc(const StringRef F) const; 70 71 // Return a pointer (pointer expr) to the function if function defintion with 72 // "FuncName" exists. It may create a new function prototype in pre-link mode. 73 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 74 75 // Replace a normal function with its native version. 76 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); 77 78 bool parseFunctionName(const StringRef& FMangledName, 79 FuncInfo *FInfo=nullptr /*out*/); 80 81 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 82 83 /* Specialized optimizations */ 84 85 // recip (half or native) 86 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 87 88 // divide (half or native) 89 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 90 91 // pow/powr/pown 92 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 93 94 // rootn 95 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 96 97 // fma/mad 98 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 99 100 // -fuse-native for sincos 101 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 102 103 // evaluate calls if calls' arguments are constants. 104 bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, 105 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 106 bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); 107 108 // exp 109 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 110 111 // exp2 112 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 113 114 // exp10 115 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 116 117 // log 118 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 119 120 // log2 121 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 122 123 // log10 124 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 125 126 // sqrt 127 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 128 129 // sin/cos 130 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 131 132 // __read_pipe/__write_pipe 133 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); 134 135 // llvm.amdgcn.wavefrontsize 136 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 137 138 // Get insertion point at entry. 139 BasicBlock::iterator getEntryIns(CallInst * UI); 140 // Insert an Alloc instruction. 141 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 142 // Get a scalar native builtin signle argument FP function 143 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 144 145 protected: 146 CallInst *CI; 147 148 bool isUnsafeMath(const CallInst *CI) const; 149 150 void replaceCall(Value *With) { 151 CI->replaceAllUsesWith(With); 152 CI->eraseFromParent(); 153 } 154 155 public: 156 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 157 158 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 159 160 void initNativeFuncs(); 161 162 // Replace a normal math function call with that native version 163 bool useNative(CallInst *CI); 164 }; 165 166 } // end llvm namespace 167 168 namespace { 169 170 class AMDGPUSimplifyLibCalls : public FunctionPass { 171 172 AMDGPULibCalls Simplifier; 173 174 public: 175 static char ID; // Pass identification 176 177 AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) 178 : FunctionPass(ID), Simplifier(TM) { 179 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 180 } 181 182 void getAnalysisUsage(AnalysisUsage &AU) const override { 183 AU.addRequired<AAResultsWrapperPass>(); 184 } 185 186 bool runOnFunction(Function &M) override; 187 }; 188 189 class AMDGPUUseNativeCalls : public FunctionPass { 190 191 AMDGPULibCalls Simplifier; 192 193 public: 194 static char ID; // Pass identification 195 196 AMDGPUUseNativeCalls() : FunctionPass(ID) { 197 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 198 Simplifier.initNativeFuncs(); 199 } 200 201 bool runOnFunction(Function &F) override; 202 }; 203 204 } // end anonymous namespace. 205 206 char AMDGPUSimplifyLibCalls::ID = 0; 207 char AMDGPUUseNativeCalls::ID = 0; 208 209 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 210 "Simplify well-known AMD library calls", false, false) 211 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 212 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 213 "Simplify well-known AMD library calls", false, false) 214 215 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 216 "Replace builtin math calls with that native versions.", 217 false, false) 218 219 template <typename IRB> 220 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 221 const Twine &Name = "") { 222 CallInst *R = B.CreateCall(Callee, Arg, Name); 223 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 224 R->setCallingConv(F->getCallingConv()); 225 return R; 226 } 227 228 template <typename IRB> 229 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 230 Value *Arg2, const Twine &Name = "") { 231 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 232 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 233 R->setCallingConv(F->getCallingConv()); 234 return R; 235 } 236 237 // Data structures for table-driven optimizations. 238 // FuncTbl works for both f32 and f64 functions with 1 input argument 239 240 struct TableEntry { 241 double result; 242 double input; 243 }; 244 245 /* a list of {result, input} */ 246 static const TableEntry tbl_acos[] = { 247 {MATH_PI / 2.0, 0.0}, 248 {MATH_PI / 2.0, -0.0}, 249 {0.0, 1.0}, 250 {MATH_PI, -1.0} 251 }; 252 static const TableEntry tbl_acosh[] = { 253 {0.0, 1.0} 254 }; 255 static const TableEntry tbl_acospi[] = { 256 {0.5, 0.0}, 257 {0.5, -0.0}, 258 {0.0, 1.0}, 259 {1.0, -1.0} 260 }; 261 static const TableEntry tbl_asin[] = { 262 {0.0, 0.0}, 263 {-0.0, -0.0}, 264 {MATH_PI / 2.0, 1.0}, 265 {-MATH_PI / 2.0, -1.0} 266 }; 267 static const TableEntry tbl_asinh[] = { 268 {0.0, 0.0}, 269 {-0.0, -0.0} 270 }; 271 static const TableEntry tbl_asinpi[] = { 272 {0.0, 0.0}, 273 {-0.0, -0.0}, 274 {0.5, 1.0}, 275 {-0.5, -1.0} 276 }; 277 static const TableEntry tbl_atan[] = { 278 {0.0, 0.0}, 279 {-0.0, -0.0}, 280 {MATH_PI / 4.0, 1.0}, 281 {-MATH_PI / 4.0, -1.0} 282 }; 283 static const TableEntry tbl_atanh[] = { 284 {0.0, 0.0}, 285 {-0.0, -0.0} 286 }; 287 static const TableEntry tbl_atanpi[] = { 288 {0.0, 0.0}, 289 {-0.0, -0.0}, 290 {0.25, 1.0}, 291 {-0.25, -1.0} 292 }; 293 static const TableEntry tbl_cbrt[] = { 294 {0.0, 0.0}, 295 {-0.0, -0.0}, 296 {1.0, 1.0}, 297 {-1.0, -1.0}, 298 }; 299 static const TableEntry tbl_cos[] = { 300 {1.0, 0.0}, 301 {1.0, -0.0} 302 }; 303 static const TableEntry tbl_cosh[] = { 304 {1.0, 0.0}, 305 {1.0, -0.0} 306 }; 307 static const TableEntry tbl_cospi[] = { 308 {1.0, 0.0}, 309 {1.0, -0.0} 310 }; 311 static const TableEntry tbl_erfc[] = { 312 {1.0, 0.0}, 313 {1.0, -0.0} 314 }; 315 static const TableEntry tbl_erf[] = { 316 {0.0, 0.0}, 317 {-0.0, -0.0} 318 }; 319 static const TableEntry tbl_exp[] = { 320 {1.0, 0.0}, 321 {1.0, -0.0}, 322 {MATH_E, 1.0} 323 }; 324 static const TableEntry tbl_exp2[] = { 325 {1.0, 0.0}, 326 {1.0, -0.0}, 327 {2.0, 1.0} 328 }; 329 static const TableEntry tbl_exp10[] = { 330 {1.0, 0.0}, 331 {1.0, -0.0}, 332 {10.0, 1.0} 333 }; 334 static const TableEntry tbl_expm1[] = { 335 {0.0, 0.0}, 336 {-0.0, -0.0} 337 }; 338 static const TableEntry tbl_log[] = { 339 {0.0, 1.0}, 340 {1.0, MATH_E} 341 }; 342 static const TableEntry tbl_log2[] = { 343 {0.0, 1.0}, 344 {1.0, 2.0} 345 }; 346 static const TableEntry tbl_log10[] = { 347 {0.0, 1.0}, 348 {1.0, 10.0} 349 }; 350 static const TableEntry tbl_rsqrt[] = { 351 {1.0, 1.0}, 352 {MATH_SQRT1_2, 2.0} 353 }; 354 static const TableEntry tbl_sin[] = { 355 {0.0, 0.0}, 356 {-0.0, -0.0} 357 }; 358 static const TableEntry tbl_sinh[] = { 359 {0.0, 0.0}, 360 {-0.0, -0.0} 361 }; 362 static const TableEntry tbl_sinpi[] = { 363 {0.0, 0.0}, 364 {-0.0, -0.0} 365 }; 366 static const TableEntry tbl_sqrt[] = { 367 {0.0, 0.0}, 368 {1.0, 1.0}, 369 {MATH_SQRT2, 2.0} 370 }; 371 static const TableEntry tbl_tan[] = { 372 {0.0, 0.0}, 373 {-0.0, -0.0} 374 }; 375 static const TableEntry tbl_tanh[] = { 376 {0.0, 0.0}, 377 {-0.0, -0.0} 378 }; 379 static const TableEntry tbl_tanpi[] = { 380 {0.0, 0.0}, 381 {-0.0, -0.0} 382 }; 383 static const TableEntry tbl_tgamma[] = { 384 {1.0, 1.0}, 385 {1.0, 2.0}, 386 {2.0, 3.0}, 387 {6.0, 4.0} 388 }; 389 390 static bool HasNative(AMDGPULibFunc::EFuncId id) { 391 switch(id) { 392 case AMDGPULibFunc::EI_DIVIDE: 393 case AMDGPULibFunc::EI_COS: 394 case AMDGPULibFunc::EI_EXP: 395 case AMDGPULibFunc::EI_EXP2: 396 case AMDGPULibFunc::EI_EXP10: 397 case AMDGPULibFunc::EI_LOG: 398 case AMDGPULibFunc::EI_LOG2: 399 case AMDGPULibFunc::EI_LOG10: 400 case AMDGPULibFunc::EI_POWR: 401 case AMDGPULibFunc::EI_RECIP: 402 case AMDGPULibFunc::EI_RSQRT: 403 case AMDGPULibFunc::EI_SIN: 404 case AMDGPULibFunc::EI_SINCOS: 405 case AMDGPULibFunc::EI_SQRT: 406 case AMDGPULibFunc::EI_TAN: 407 return true; 408 default:; 409 } 410 return false; 411 } 412 413 struct TableRef { 414 size_t size; 415 const TableEntry *table; // variable size: from 0 to (size - 1) 416 417 TableRef() : size(0), table(nullptr) {} 418 419 template <size_t N> 420 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 421 }; 422 423 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 424 switch(id) { 425 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 426 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 427 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 428 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 429 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 430 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 431 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 432 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 433 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 434 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 435 case AMDGPULibFunc::EI_NCOS: 436 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 437 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 438 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 439 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 440 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 441 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 442 case AMDGPULibFunc::EI_NEXP2: 443 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 444 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 445 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 446 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 447 case AMDGPULibFunc::EI_NLOG2: 448 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 449 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 450 case AMDGPULibFunc::EI_NRSQRT: 451 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 452 case AMDGPULibFunc::EI_NSIN: 453 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 454 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 455 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 456 case AMDGPULibFunc::EI_NSQRT: 457 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 458 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 459 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 460 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 461 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 462 default:; 463 } 464 return TableRef(); 465 } 466 467 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 468 return FInfo.getLeads()[0].VectorSize; 469 } 470 471 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 472 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 473 } 474 475 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 476 // If we are doing PreLinkOpt, the function is external. So it is safe to 477 // use getOrInsertFunction() at this stage. 478 479 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 480 : AMDGPULibFunc::getFunction(M, fInfo); 481 } 482 483 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, 484 FuncInfo *FInfo) { 485 return AMDGPULibFunc::parse(FMangledName, *FInfo); 486 } 487 488 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 489 if (auto Op = dyn_cast<FPMathOperator>(CI)) 490 if (Op->isFast()) 491 return true; 492 const Function *F = CI->getParent()->getParent(); 493 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 494 return Attr.getValueAsString() == "true"; 495 } 496 497 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 498 return AllNative || 499 std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); 500 } 501 502 void AMDGPULibCalls::initNativeFuncs() { 503 AllNative = useNativeFunc("all") || 504 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 505 UseNative.begin()->empty()); 506 } 507 508 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 509 bool native_sin = useNativeFunc("sin"); 510 bool native_cos = useNativeFunc("cos"); 511 512 if (native_sin && native_cos) { 513 Module *M = aCI->getModule(); 514 Value *opr0 = aCI->getArgOperand(0); 515 516 AMDGPULibFunc nf; 517 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 518 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 519 520 nf.setPrefix(AMDGPULibFunc::NATIVE); 521 nf.setId(AMDGPULibFunc::EI_SIN); 522 FunctionCallee sinExpr = getFunction(M, nf); 523 524 nf.setPrefix(AMDGPULibFunc::NATIVE); 525 nf.setId(AMDGPULibFunc::EI_COS); 526 FunctionCallee cosExpr = getFunction(M, nf); 527 if (sinExpr && cosExpr) { 528 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 529 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 530 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 531 532 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 533 << " with native version of sin/cos"); 534 535 replaceCall(sinval); 536 return true; 537 } 538 } 539 return false; 540 } 541 542 bool AMDGPULibCalls::useNative(CallInst *aCI) { 543 CI = aCI; 544 Function *Callee = aCI->getCalledFunction(); 545 546 FuncInfo FInfo; 547 if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || 548 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 549 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 550 !(AllNative || useNativeFunc(FInfo.getName()))) { 551 return false; 552 } 553 554 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 555 return sincosUseNative(aCI, FInfo); 556 557 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 558 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 559 if (!F) 560 return false; 561 562 aCI->setCalledFunction(F); 563 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 564 << " with native version"); 565 return true; 566 } 567 568 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 569 // builtin, with appended type size and alignment arguments, where 2 or 4 570 // indicates the original number of arguments. The library has optimized version 571 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 572 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 573 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 574 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 575 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 576 FuncInfo &FInfo) { 577 auto *Callee = CI->getCalledFunction(); 578 if (!Callee->isDeclaration()) 579 return false; 580 581 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 582 auto *M = Callee->getParent(); 583 auto &Ctx = M->getContext(); 584 std::string Name = std::string(Callee->getName()); 585 auto NumArg = CI->getNumArgOperands(); 586 if (NumArg != 4 && NumArg != 6) 587 return false; 588 auto *PacketSize = CI->getArgOperand(NumArg - 2); 589 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 590 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 591 return false; 592 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 593 Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue(); 594 if (Alignment != Size) 595 return false; 596 597 Type *PtrElemTy; 598 if (Size <= 8) 599 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 600 else 601 PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); 602 unsigned PtrArgLoc = CI->getNumArgOperands() - 3; 603 auto PtrArg = CI->getArgOperand(PtrArgLoc); 604 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 605 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 606 607 SmallVector<llvm::Type *, 6> ArgTys; 608 for (unsigned I = 0; I != PtrArgLoc; ++I) 609 ArgTys.push_back(CI->getArgOperand(I)->getType()); 610 ArgTys.push_back(PtrTy); 611 612 Name = Name + "_" + std::to_string(Size); 613 auto *FTy = FunctionType::get(Callee->getReturnType(), 614 ArrayRef<Type *>(ArgTys), false); 615 AMDGPULibFunc NewLibFunc(Name, FTy); 616 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 617 if (!F) 618 return false; 619 620 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 621 SmallVector<Value *, 6> Args; 622 for (unsigned I = 0; I != PtrArgLoc; ++I) 623 Args.push_back(CI->getArgOperand(I)); 624 Args.push_back(BCast); 625 626 auto *NCI = B.CreateCall(F, Args); 627 NCI->setAttributes(CI->getAttributes()); 628 CI->replaceAllUsesWith(NCI); 629 CI->dropAllReferences(); 630 CI->eraseFromParent(); 631 632 return true; 633 } 634 635 // This function returns false if no change; return true otherwise. 636 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 637 this->CI = CI; 638 Function *Callee = CI->getCalledFunction(); 639 640 // Ignore indirect calls. 641 if (Callee == 0) return false; 642 643 BasicBlock *BB = CI->getParent(); 644 LLVMContext &Context = CI->getParent()->getContext(); 645 IRBuilder<> B(Context); 646 647 // Set the builder to the instruction after the call. 648 B.SetInsertPoint(BB, CI->getIterator()); 649 650 // Copy fast flags from the original call. 651 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 652 B.setFastMathFlags(FPOp->getFastMathFlags()); 653 654 switch (Callee->getIntrinsicID()) { 655 default: 656 break; 657 case Intrinsic::amdgcn_wavefrontsize: 658 return !EnablePreLink && fold_wavefrontsize(CI, B); 659 } 660 661 FuncInfo FInfo; 662 if (!parseFunctionName(Callee->getName(), &FInfo)) 663 return false; 664 665 // Further check the number of arguments to see if they match. 666 if (CI->getNumArgOperands() != FInfo.getNumArgs()) 667 return false; 668 669 if (TDOFold(CI, FInfo)) 670 return true; 671 672 // Under unsafe-math, evaluate calls if possible. 673 // According to Brian Sumner, we can do this for all f32 function calls 674 // using host's double function calls. 675 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 676 return true; 677 678 // Specilized optimizations for each function call 679 switch (FInfo.getId()) { 680 case AMDGPULibFunc::EI_RECIP: 681 // skip vector function 682 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 683 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 684 "recip must be an either native or half function"); 685 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 686 687 case AMDGPULibFunc::EI_DIVIDE: 688 // skip vector function 689 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 690 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 691 "divide must be an either native or half function"); 692 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 693 694 case AMDGPULibFunc::EI_POW: 695 case AMDGPULibFunc::EI_POWR: 696 case AMDGPULibFunc::EI_POWN: 697 return fold_pow(CI, B, FInfo); 698 699 case AMDGPULibFunc::EI_ROOTN: 700 // skip vector function 701 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 702 703 case AMDGPULibFunc::EI_FMA: 704 case AMDGPULibFunc::EI_MAD: 705 case AMDGPULibFunc::EI_NFMA: 706 // skip vector function 707 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 708 709 case AMDGPULibFunc::EI_SQRT: 710 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 711 case AMDGPULibFunc::EI_COS: 712 case AMDGPULibFunc::EI_SIN: 713 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 714 getArgType(FInfo) == AMDGPULibFunc::F64) 715 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 716 return fold_sincos(CI, B, AA); 717 718 break; 719 case AMDGPULibFunc::EI_READ_PIPE_2: 720 case AMDGPULibFunc::EI_READ_PIPE_4: 721 case AMDGPULibFunc::EI_WRITE_PIPE_2: 722 case AMDGPULibFunc::EI_WRITE_PIPE_4: 723 return fold_read_write_pipe(CI, B, FInfo); 724 725 default: 726 break; 727 } 728 729 return false; 730 } 731 732 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 733 // Table-Driven optimization 734 const TableRef tr = getOptTable(FInfo.getId()); 735 if (tr.size==0) 736 return false; 737 738 int const sz = (int)tr.size; 739 const TableEntry * const ftbl = tr.table; 740 Value *opr0 = CI->getArgOperand(0); 741 742 if (getVecSize(FInfo) > 1) { 743 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 744 SmallVector<double, 0> DVal; 745 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 746 ConstantFP *eltval = dyn_cast<ConstantFP>( 747 CV->getElementAsConstant((unsigned)eltNo)); 748 assert(eltval && "Non-FP arguments in math function!"); 749 bool found = false; 750 for (int i=0; i < sz; ++i) { 751 if (eltval->isExactlyValue(ftbl[i].input)) { 752 DVal.push_back(ftbl[i].result); 753 found = true; 754 break; 755 } 756 } 757 if (!found) { 758 // This vector constants not handled yet. 759 return false; 760 } 761 } 762 LLVMContext &context = CI->getParent()->getParent()->getContext(); 763 Constant *nval; 764 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 765 SmallVector<float, 0> FVal; 766 for (unsigned i = 0; i < DVal.size(); ++i) { 767 FVal.push_back((float)DVal[i]); 768 } 769 ArrayRef<float> tmp(FVal); 770 nval = ConstantDataVector::get(context, tmp); 771 } else { // F64 772 ArrayRef<double> tmp(DVal); 773 nval = ConstantDataVector::get(context, tmp); 774 } 775 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 776 replaceCall(nval); 777 return true; 778 } 779 } else { 780 // Scalar version 781 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 782 for (int i = 0; i < sz; ++i) { 783 if (CF->isExactlyValue(ftbl[i].input)) { 784 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 785 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 786 replaceCall(nval); 787 return true; 788 } 789 } 790 } 791 } 792 793 return false; 794 } 795 796 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { 797 Module *M = CI->getModule(); 798 if (getArgType(FInfo) != AMDGPULibFunc::F32 || 799 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 800 !HasNative(FInfo.getId())) 801 return false; 802 803 AMDGPULibFunc nf = FInfo; 804 nf.setPrefix(AMDGPULibFunc::NATIVE); 805 if (FunctionCallee FPExpr = getFunction(M, nf)) { 806 LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); 807 808 CI->setCalledFunction(FPExpr); 809 810 LLVM_DEBUG(dbgs() << *CI << '\n'); 811 812 return true; 813 } 814 return false; 815 } 816 817 // [native_]half_recip(c) ==> 1.0/c 818 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 819 const FuncInfo &FInfo) { 820 Value *opr0 = CI->getArgOperand(0); 821 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 822 // Just create a normal div. Later, InstCombine will be able 823 // to compute the divide into a constant (avoid check float infinity 824 // or subnormal at this point). 825 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 826 opr0, 827 "recip2div"); 828 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 829 replaceCall(nval); 830 return true; 831 } 832 return false; 833 } 834 835 // [native_]half_divide(x, c) ==> x/c 836 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 837 const FuncInfo &FInfo) { 838 Value *opr0 = CI->getArgOperand(0); 839 Value *opr1 = CI->getArgOperand(1); 840 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 841 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 842 843 if ((CF0 && CF1) || // both are constants 844 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 845 // CF1 is constant && f32 divide 846 { 847 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 848 opr1, "__div2recip"); 849 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 850 replaceCall(nval); 851 return true; 852 } 853 return false; 854 } 855 856 namespace llvm { 857 static double log2(double V) { 858 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 859 return ::log2(V); 860 #else 861 return log(V) / numbers::ln2; 862 #endif 863 } 864 } 865 866 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 867 const FuncInfo &FInfo) { 868 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 869 FInfo.getId() == AMDGPULibFunc::EI_POWR || 870 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 871 "fold_pow: encounter a wrong function call"); 872 873 Value *opr0, *opr1; 874 ConstantFP *CF; 875 ConstantInt *CINT; 876 ConstantAggregateZero *CZero; 877 Type *eltType; 878 879 opr0 = CI->getArgOperand(0); 880 opr1 = CI->getArgOperand(1); 881 CZero = dyn_cast<ConstantAggregateZero>(opr1); 882 if (getVecSize(FInfo) == 1) { 883 eltType = opr0->getType(); 884 CF = dyn_cast<ConstantFP>(opr1); 885 CINT = dyn_cast<ConstantInt>(opr1); 886 } else { 887 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 888 assert(VTy && "Oprand of vector function should be of vectortype"); 889 eltType = VTy->getElementType(); 890 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 891 892 // Now, only Handle vector const whose elements have the same value. 893 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 894 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 895 } 896 897 // No unsafe math , no constant argument, do nothing 898 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 899 return false; 900 901 // 0x1111111 means that we don't do anything for this call. 902 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 903 904 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 905 // pow/powr/pown(x, 0) == 1 906 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 907 Constant *cnval = ConstantFP::get(eltType, 1.0); 908 if (getVecSize(FInfo) > 1) { 909 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 910 } 911 replaceCall(cnval); 912 return true; 913 } 914 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 915 // pow/powr/pown(x, 1.0) = x 916 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 917 replaceCall(opr0); 918 return true; 919 } 920 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 921 // pow/powr/pown(x, 2.0) = x*x 922 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 923 << "\n"); 924 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 925 replaceCall(nval); 926 return true; 927 } 928 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 929 // pow/powr/pown(x, -1.0) = 1.0/x 930 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 931 Constant *cnval = ConstantFP::get(eltType, 1.0); 932 if (getVecSize(FInfo) > 1) { 933 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 934 } 935 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 936 replaceCall(nval); 937 return true; 938 } 939 940 Module *M = CI->getModule(); 941 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 942 // pow[r](x, [-]0.5) = sqrt(x) 943 bool issqrt = CF->isExactlyValue(0.5); 944 if (FunctionCallee FPExpr = 945 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 946 : AMDGPULibFunc::EI_RSQRT, 947 FInfo))) { 948 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 949 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 950 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 951 : "__pow2rsqrt"); 952 replaceCall(nval); 953 return true; 954 } 955 } 956 957 if (!isUnsafeMath(CI)) 958 return false; 959 960 // Unsafe Math optimization 961 962 // Remember that ci_opr1 is set if opr1 is integral 963 if (CF) { 964 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 965 ? (double)CF->getValueAPF().convertToFloat() 966 : CF->getValueAPF().convertToDouble(); 967 int ival = (int)dval; 968 if ((double)ival == dval) { 969 ci_opr1 = ival; 970 } else 971 ci_opr1 = 0x11111111; 972 } 973 974 // pow/powr/pown(x, c) = [1/](x*x*..x); where 975 // trunc(c) == c && the number of x == c && |c| <= 12 976 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 977 if (abs_opr1 <= 12) { 978 Constant *cnval; 979 Value *nval; 980 if (abs_opr1 == 0) { 981 cnval = ConstantFP::get(eltType, 1.0); 982 if (getVecSize(FInfo) > 1) { 983 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 984 } 985 nval = cnval; 986 } else { 987 Value *valx2 = nullptr; 988 nval = nullptr; 989 while (abs_opr1 > 0) { 990 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 991 if (abs_opr1 & 1) { 992 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 993 } 994 abs_opr1 >>= 1; 995 } 996 } 997 998 if (ci_opr1 < 0) { 999 cnval = ConstantFP::get(eltType, 1.0); 1000 if (getVecSize(FInfo) > 1) { 1001 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 1002 } 1003 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 1004 } 1005 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1006 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 1007 << ")\n"); 1008 replaceCall(nval); 1009 return true; 1010 } 1011 1012 // powr ---> exp2(y * log2(x)) 1013 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1014 FunctionCallee ExpExpr = 1015 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1016 if (!ExpExpr) 1017 return false; 1018 1019 bool needlog = false; 1020 bool needabs = false; 1021 bool needcopysign = false; 1022 Constant *cnval = nullptr; 1023 if (getVecSize(FInfo) == 1) { 1024 CF = dyn_cast<ConstantFP>(opr0); 1025 1026 if (CF) { 1027 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1028 ? (double)CF->getValueAPF().convertToFloat() 1029 : CF->getValueAPF().convertToDouble(); 1030 1031 V = log2(std::abs(V)); 1032 cnval = ConstantFP::get(eltType, V); 1033 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1034 CF->isNegative(); 1035 } else { 1036 needlog = true; 1037 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1038 (!CF || CF->isNegative()); 1039 } 1040 } else { 1041 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1042 1043 if (!CDV) { 1044 needlog = true; 1045 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1046 } else { 1047 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1048 "Wrong vector size detected"); 1049 1050 SmallVector<double, 0> DVal; 1051 for (int i=0; i < getVecSize(FInfo); ++i) { 1052 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1053 ? (double)CDV->getElementAsFloat(i) 1054 : CDV->getElementAsDouble(i); 1055 if (V < 0.0) needcopysign = true; 1056 V = log2(std::abs(V)); 1057 DVal.push_back(V); 1058 } 1059 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1060 SmallVector<float, 0> FVal; 1061 for (unsigned i=0; i < DVal.size(); ++i) { 1062 FVal.push_back((float)DVal[i]); 1063 } 1064 ArrayRef<float> tmp(FVal); 1065 cnval = ConstantDataVector::get(M->getContext(), tmp); 1066 } else { 1067 ArrayRef<double> tmp(DVal); 1068 cnval = ConstantDataVector::get(M->getContext(), tmp); 1069 } 1070 } 1071 } 1072 1073 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1074 // We cannot handle corner cases for a general pow() function, give up 1075 // unless y is a constant integral value. Then proceed as if it were pown. 1076 if (getVecSize(FInfo) == 1) { 1077 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1078 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1079 ? (double)CF->getValueAPF().convertToFloat() 1080 : CF->getValueAPF().convertToDouble(); 1081 if (y != (double)(int64_t)y) 1082 return false; 1083 } else 1084 return false; 1085 } else { 1086 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1087 for (int i=0; i < getVecSize(FInfo); ++i) { 1088 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1089 ? (double)CDV->getElementAsFloat(i) 1090 : CDV->getElementAsDouble(i); 1091 if (y != (double)(int64_t)y) 1092 return false; 1093 } 1094 } else 1095 return false; 1096 } 1097 } 1098 1099 Value *nval; 1100 if (needabs) { 1101 FunctionCallee AbsExpr = 1102 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1103 if (!AbsExpr) 1104 return false; 1105 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1106 } else { 1107 nval = cnval ? cnval : opr0; 1108 } 1109 if (needlog) { 1110 FunctionCallee LogExpr = 1111 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1112 if (!LogExpr) 1113 return false; 1114 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1115 } 1116 1117 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1118 // convert int(32) to fp(f32 or f64) 1119 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1120 } 1121 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1122 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1123 1124 if (needcopysign) { 1125 Value *opr_n; 1126 Type* rTy = opr0->getType(); 1127 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1128 Type *nTy = nTyS; 1129 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1130 nTy = FixedVectorType::get(nTyS, vTy); 1131 unsigned size = nTy->getScalarSizeInBits(); 1132 opr_n = CI->getArgOperand(1); 1133 if (opr_n->getType()->isIntegerTy()) 1134 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1135 else 1136 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1137 1138 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1139 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1140 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1141 nval = B.CreateBitCast(nval, opr0->getType()); 1142 } 1143 1144 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1145 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1146 replaceCall(nval); 1147 1148 return true; 1149 } 1150 1151 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1152 const FuncInfo &FInfo) { 1153 Value *opr0 = CI->getArgOperand(0); 1154 Value *opr1 = CI->getArgOperand(1); 1155 1156 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1157 if (!CINT) { 1158 return false; 1159 } 1160 int ci_opr1 = (int)CINT->getSExtValue(); 1161 if (ci_opr1 == 1) { // rootn(x, 1) = x 1162 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1163 replaceCall(opr0); 1164 return true; 1165 } 1166 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1167 Module *M = CI->getModule(); 1168 if (FunctionCallee FPExpr = 1169 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1170 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1171 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1172 replaceCall(nval); 1173 return true; 1174 } 1175 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1176 Module *M = CI->getModule(); 1177 if (FunctionCallee FPExpr = 1178 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1179 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1180 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1181 replaceCall(nval); 1182 return true; 1183 } 1184 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1185 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1186 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1187 opr0, 1188 "__rootn2div"); 1189 replaceCall(nval); 1190 return true; 1191 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1192 Module *M = CI->getModule(); 1193 if (FunctionCallee FPExpr = 1194 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1195 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1196 << ")\n"); 1197 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1198 replaceCall(nval); 1199 return true; 1200 } 1201 } 1202 return false; 1203 } 1204 1205 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1206 const FuncInfo &FInfo) { 1207 Value *opr0 = CI->getArgOperand(0); 1208 Value *opr1 = CI->getArgOperand(1); 1209 Value *opr2 = CI->getArgOperand(2); 1210 1211 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1212 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1213 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1214 // fma/mad(a, b, c) = c if a=0 || b=0 1215 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1216 replaceCall(opr2); 1217 return true; 1218 } 1219 if (CF0 && CF0->isExactlyValue(1.0f)) { 1220 // fma/mad(a, b, c) = b+c if a=1 1221 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1222 << "\n"); 1223 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1224 replaceCall(nval); 1225 return true; 1226 } 1227 if (CF1 && CF1->isExactlyValue(1.0f)) { 1228 // fma/mad(a, b, c) = a+c if b=1 1229 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1230 << "\n"); 1231 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1232 replaceCall(nval); 1233 return true; 1234 } 1235 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1236 if (CF->isZero()) { 1237 // fma/mad(a, b, c) = a*b if c=0 1238 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1239 << *opr1 << "\n"); 1240 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1241 replaceCall(nval); 1242 return true; 1243 } 1244 } 1245 1246 return false; 1247 } 1248 1249 // Get a scalar native builtin signle argument FP function 1250 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1251 const FuncInfo &FInfo) { 1252 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1253 return nullptr; 1254 FuncInfo nf = FInfo; 1255 nf.setPrefix(AMDGPULibFunc::NATIVE); 1256 return getFunction(M, nf); 1257 } 1258 1259 // fold sqrt -> native_sqrt (x) 1260 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1261 const FuncInfo &FInfo) { 1262 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1263 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1264 if (FunctionCallee FPExpr = getNativeFunction( 1265 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1266 Value *opr0 = CI->getArgOperand(0); 1267 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1268 << "sqrt(" << *opr0 << ")\n"); 1269 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1270 replaceCall(nval); 1271 return true; 1272 } 1273 } 1274 return false; 1275 } 1276 1277 // fold sin, cos -> sincos. 1278 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1279 AliasAnalysis *AA) { 1280 AMDGPULibFunc fInfo; 1281 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1282 return false; 1283 1284 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1285 fInfo.getId() == AMDGPULibFunc::EI_COS); 1286 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1287 1288 Value *CArgVal = CI->getArgOperand(0); 1289 BasicBlock * const CBB = CI->getParent(); 1290 1291 int const MaxScan = 30; 1292 1293 { // fold in load value. 1294 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1295 if (LI && LI->getParent() == CBB) { 1296 BasicBlock::iterator BBI = LI->getIterator(); 1297 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1298 if (AvailableVal) { 1299 CArgVal->replaceAllUsesWith(AvailableVal); 1300 if (CArgVal->getNumUses() == 0) 1301 LI->eraseFromParent(); 1302 CArgVal = CI->getArgOperand(0); 1303 } 1304 } 1305 } 1306 1307 Module *M = CI->getModule(); 1308 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1309 std::string const PairName = fInfo.mangle(); 1310 1311 CallInst *UI = nullptr; 1312 for (User* U : CArgVal->users()) { 1313 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1314 if (!XI || XI == CI || XI->getParent() != CBB) 1315 continue; 1316 1317 Function *UCallee = XI->getCalledFunction(); 1318 if (!UCallee || !UCallee->getName().equals(PairName)) 1319 continue; 1320 1321 BasicBlock::iterator BBI = CI->getIterator(); 1322 if (BBI == CI->getParent()->begin()) 1323 break; 1324 --BBI; 1325 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1326 if (cast<Instruction>(BBI) == XI) { 1327 UI = XI; 1328 break; 1329 } 1330 } 1331 if (UI) break; 1332 } 1333 1334 if (!UI) return false; 1335 1336 // Merge the sin and cos. 1337 1338 // for OpenCL 2.0 we have only generic implementation of sincos 1339 // function. 1340 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1341 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1342 FunctionCallee Fsincos = getFunction(M, nf); 1343 if (!Fsincos) return false; 1344 1345 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1346 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1347 B.SetInsertPoint(UI); 1348 1349 Value *P = Alloc; 1350 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1351 // The allocaInst allocates the memory in private address space. This need 1352 // to be bitcasted to point to the address space of cos pointer type. 1353 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1354 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1355 P = B.CreateAddrSpaceCast(Alloc, PTy); 1356 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1357 1358 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1359 << *Call << "\n"); 1360 1361 if (!isSin) { // CI->cos, UI->sin 1362 B.SetInsertPoint(&*ItOld); 1363 UI->replaceAllUsesWith(&*Call); 1364 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1365 CI->replaceAllUsesWith(Reload); 1366 UI->eraseFromParent(); 1367 CI->eraseFromParent(); 1368 } else { // CI->sin, UI->cos 1369 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1370 UI->replaceAllUsesWith(Reload); 1371 CI->replaceAllUsesWith(Call); 1372 UI->eraseFromParent(); 1373 CI->eraseFromParent(); 1374 } 1375 return true; 1376 } 1377 1378 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1379 if (!TM) 1380 return false; 1381 1382 StringRef CPU = TM->getTargetCPU(); 1383 StringRef Features = TM->getTargetFeatureString(); 1384 if ((CPU.empty() || CPU.equals_lower("generic")) && 1385 (Features.empty() || 1386 Features.find_lower("wavefrontsize") == StringRef::npos)) 1387 return false; 1388 1389 Function *F = CI->getParent()->getParent(); 1390 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1391 unsigned N = ST.getWavefrontSize(); 1392 1393 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1394 << N << "\n"); 1395 1396 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1397 CI->eraseFromParent(); 1398 return true; 1399 } 1400 1401 // Get insertion point at entry. 1402 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1403 Function * Func = UI->getParent()->getParent(); 1404 BasicBlock * BB = &Func->getEntryBlock(); 1405 assert(BB && "Entry block not found!"); 1406 BasicBlock::iterator ItNew = BB->begin(); 1407 return ItNew; 1408 } 1409 1410 // Insert a AllocsInst at the beginning of function entry block. 1411 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1412 const char *prefix) { 1413 BasicBlock::iterator ItNew = getEntryIns(UI); 1414 Function *UCallee = UI->getCalledFunction(); 1415 Type *RetType = UCallee->getReturnType(); 1416 B.SetInsertPoint(&*ItNew); 1417 AllocaInst *Alloc = B.CreateAlloca(RetType, 0, 1418 std::string(prefix) + UI->getName()); 1419 Alloc->setAlignment( 1420 Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1421 return Alloc; 1422 } 1423 1424 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, 1425 double& Res0, double& Res1, 1426 Constant *copr0, Constant *copr1, 1427 Constant *copr2) { 1428 // By default, opr0/opr1/opr3 holds values of float/double type. 1429 // If they are not float/double, each function has to its 1430 // operand separately. 1431 double opr0=0.0, opr1=0.0, opr2=0.0; 1432 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1433 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1434 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1435 if (fpopr0) { 1436 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1437 ? fpopr0->getValueAPF().convertToDouble() 1438 : (double)fpopr0->getValueAPF().convertToFloat(); 1439 } 1440 1441 if (fpopr1) { 1442 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1443 ? fpopr1->getValueAPF().convertToDouble() 1444 : (double)fpopr1->getValueAPF().convertToFloat(); 1445 } 1446 1447 if (fpopr2) { 1448 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1449 ? fpopr2->getValueAPF().convertToDouble() 1450 : (double)fpopr2->getValueAPF().convertToFloat(); 1451 } 1452 1453 switch (FInfo.getId()) { 1454 default : return false; 1455 1456 case AMDGPULibFunc::EI_ACOS: 1457 Res0 = acos(opr0); 1458 return true; 1459 1460 case AMDGPULibFunc::EI_ACOSH: 1461 // acosh(x) == log(x + sqrt(x*x - 1)) 1462 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1463 return true; 1464 1465 case AMDGPULibFunc::EI_ACOSPI: 1466 Res0 = acos(opr0) / MATH_PI; 1467 return true; 1468 1469 case AMDGPULibFunc::EI_ASIN: 1470 Res0 = asin(opr0); 1471 return true; 1472 1473 case AMDGPULibFunc::EI_ASINH: 1474 // asinh(x) == log(x + sqrt(x*x + 1)) 1475 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1476 return true; 1477 1478 case AMDGPULibFunc::EI_ASINPI: 1479 Res0 = asin(opr0) / MATH_PI; 1480 return true; 1481 1482 case AMDGPULibFunc::EI_ATAN: 1483 Res0 = atan(opr0); 1484 return true; 1485 1486 case AMDGPULibFunc::EI_ATANH: 1487 // atanh(x) == (log(x+1) - log(x-1))/2; 1488 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1489 return true; 1490 1491 case AMDGPULibFunc::EI_ATANPI: 1492 Res0 = atan(opr0) / MATH_PI; 1493 return true; 1494 1495 case AMDGPULibFunc::EI_CBRT: 1496 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1497 return true; 1498 1499 case AMDGPULibFunc::EI_COS: 1500 Res0 = cos(opr0); 1501 return true; 1502 1503 case AMDGPULibFunc::EI_COSH: 1504 Res0 = cosh(opr0); 1505 return true; 1506 1507 case AMDGPULibFunc::EI_COSPI: 1508 Res0 = cos(MATH_PI * opr0); 1509 return true; 1510 1511 case AMDGPULibFunc::EI_EXP: 1512 Res0 = exp(opr0); 1513 return true; 1514 1515 case AMDGPULibFunc::EI_EXP2: 1516 Res0 = pow(2.0, opr0); 1517 return true; 1518 1519 case AMDGPULibFunc::EI_EXP10: 1520 Res0 = pow(10.0, opr0); 1521 return true; 1522 1523 case AMDGPULibFunc::EI_EXPM1: 1524 Res0 = exp(opr0) - 1.0; 1525 return true; 1526 1527 case AMDGPULibFunc::EI_LOG: 1528 Res0 = log(opr0); 1529 return true; 1530 1531 case AMDGPULibFunc::EI_LOG2: 1532 Res0 = log(opr0) / log(2.0); 1533 return true; 1534 1535 case AMDGPULibFunc::EI_LOG10: 1536 Res0 = log(opr0) / log(10.0); 1537 return true; 1538 1539 case AMDGPULibFunc::EI_RSQRT: 1540 Res0 = 1.0 / sqrt(opr0); 1541 return true; 1542 1543 case AMDGPULibFunc::EI_SIN: 1544 Res0 = sin(opr0); 1545 return true; 1546 1547 case AMDGPULibFunc::EI_SINH: 1548 Res0 = sinh(opr0); 1549 return true; 1550 1551 case AMDGPULibFunc::EI_SINPI: 1552 Res0 = sin(MATH_PI * opr0); 1553 return true; 1554 1555 case AMDGPULibFunc::EI_SQRT: 1556 Res0 = sqrt(opr0); 1557 return true; 1558 1559 case AMDGPULibFunc::EI_TAN: 1560 Res0 = tan(opr0); 1561 return true; 1562 1563 case AMDGPULibFunc::EI_TANH: 1564 Res0 = tanh(opr0); 1565 return true; 1566 1567 case AMDGPULibFunc::EI_TANPI: 1568 Res0 = tan(MATH_PI * opr0); 1569 return true; 1570 1571 case AMDGPULibFunc::EI_RECIP: 1572 Res0 = 1.0 / opr0; 1573 return true; 1574 1575 // two-arg functions 1576 case AMDGPULibFunc::EI_DIVIDE: 1577 Res0 = opr0 / opr1; 1578 return true; 1579 1580 case AMDGPULibFunc::EI_POW: 1581 case AMDGPULibFunc::EI_POWR: 1582 Res0 = pow(opr0, opr1); 1583 return true; 1584 1585 case AMDGPULibFunc::EI_POWN: { 1586 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1587 double val = (double)iopr1->getSExtValue(); 1588 Res0 = pow(opr0, val); 1589 return true; 1590 } 1591 return false; 1592 } 1593 1594 case AMDGPULibFunc::EI_ROOTN: { 1595 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1596 double val = (double)iopr1->getSExtValue(); 1597 Res0 = pow(opr0, 1.0 / val); 1598 return true; 1599 } 1600 return false; 1601 } 1602 1603 // with ptr arg 1604 case AMDGPULibFunc::EI_SINCOS: 1605 Res0 = sin(opr0); 1606 Res1 = cos(opr0); 1607 return true; 1608 1609 // three-arg functions 1610 case AMDGPULibFunc::EI_FMA: 1611 case AMDGPULibFunc::EI_MAD: 1612 Res0 = opr0 * opr1 + opr2; 1613 return true; 1614 } 1615 1616 return false; 1617 } 1618 1619 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { 1620 int numArgs = (int)aCI->getNumArgOperands(); 1621 if (numArgs > 3) 1622 return false; 1623 1624 Constant *copr0 = nullptr; 1625 Constant *copr1 = nullptr; 1626 Constant *copr2 = nullptr; 1627 if (numArgs > 0) { 1628 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1629 return false; 1630 } 1631 1632 if (numArgs > 1) { 1633 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1634 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1635 return false; 1636 } 1637 } 1638 1639 if (numArgs > 2) { 1640 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1641 return false; 1642 } 1643 1644 // At this point, all arguments to aCI are constants. 1645 1646 // max vector size is 16, and sincos will generate two results. 1647 double DVal0[16], DVal1[16]; 1648 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1649 if (getVecSize(FInfo) == 1) { 1650 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1651 DVal1[0], copr0, copr1, copr2)) { 1652 return false; 1653 } 1654 } else { 1655 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1656 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1657 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1658 for (int i=0; i < getVecSize(FInfo); ++i) { 1659 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1660 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1661 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1662 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1663 DVal1[i], celt0, celt1, celt2)) { 1664 return false; 1665 } 1666 } 1667 } 1668 1669 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1670 Constant *nval0, *nval1; 1671 if (getVecSize(FInfo) == 1) { 1672 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1673 if (hasTwoResults) 1674 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1675 } else { 1676 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1677 SmallVector <float, 0> FVal0, FVal1; 1678 for (int i=0; i < getVecSize(FInfo); ++i) 1679 FVal0.push_back((float)DVal0[i]); 1680 ArrayRef<float> tmp0(FVal0); 1681 nval0 = ConstantDataVector::get(context, tmp0); 1682 if (hasTwoResults) { 1683 for (int i=0; i < getVecSize(FInfo); ++i) 1684 FVal1.push_back((float)DVal1[i]); 1685 ArrayRef<float> tmp1(FVal1); 1686 nval1 = ConstantDataVector::get(context, tmp1); 1687 } 1688 } else { 1689 ArrayRef<double> tmp0(DVal0); 1690 nval0 = ConstantDataVector::get(context, tmp0); 1691 if (hasTwoResults) { 1692 ArrayRef<double> tmp1(DVal1); 1693 nval1 = ConstantDataVector::get(context, tmp1); 1694 } 1695 } 1696 } 1697 1698 if (hasTwoResults) { 1699 // sincos 1700 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1701 "math function with ptr arg not supported yet"); 1702 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1703 } 1704 1705 replaceCall(nval0); 1706 return true; 1707 } 1708 1709 // Public interface to the Simplify LibCalls pass. 1710 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { 1711 return new AMDGPUSimplifyLibCalls(TM); 1712 } 1713 1714 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1715 return new AMDGPUUseNativeCalls(); 1716 } 1717 1718 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1719 if (skipFunction(F)) 1720 return false; 1721 1722 bool Changed = false; 1723 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1724 1725 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1726 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1727 1728 for (auto &BB : F) { 1729 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1730 // Ignore non-calls. 1731 CallInst *CI = dyn_cast<CallInst>(I); 1732 ++I; 1733 // Ignore intrinsics that do not become real instructions. 1734 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1735 continue; 1736 1737 // Ignore indirect calls. 1738 Function *Callee = CI->getCalledFunction(); 1739 if (Callee == 0) continue; 1740 1741 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1742 dbgs().flush()); 1743 if(Simplifier.fold(CI, AA)) 1744 Changed = true; 1745 } 1746 } 1747 return Changed; 1748 } 1749 1750 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1751 if (skipFunction(F) || UseNative.empty()) 1752 return false; 1753 1754 bool Changed = false; 1755 for (auto &BB : F) { 1756 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1757 // Ignore non-calls. 1758 CallInst *CI = dyn_cast<CallInst>(I); 1759 ++I; 1760 if (!CI) continue; 1761 1762 // Ignore indirect calls. 1763 Function *Callee = CI->getCalledFunction(); 1764 if (Callee == 0) continue; 1765 1766 if(Simplifier.useNative(CI)) 1767 Changed = true; 1768 } 1769 } 1770 return Changed; 1771 } 1772