1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "AMDGPUSubtarget.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/StringSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetOptions.h" 36 #include <cmath> 37 #include <vector> 38 39 #define DEBUG_TYPE "amdgpu-simplifylib" 40 41 using namespace llvm; 42 43 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 44 cl::desc("Enable pre-link mode optimizations"), 45 cl::init(false), 46 cl::Hidden); 47 48 static cl::list<std::string> UseNative("amdgpu-use-native", 49 cl::desc("Comma separated list of functions to replace with native, or all"), 50 cl::CommaSeparated, cl::ValueOptional, 51 cl::Hidden); 52 53 #define MATH_PI numbers::pi 54 #define MATH_E numbers::e 55 #define MATH_SQRT2 numbers::sqrt2 56 #define MATH_SQRT1_2 numbers::inv_sqrt2 57 58 namespace llvm { 59 60 class AMDGPULibCalls { 61 private: 62 63 typedef llvm::AMDGPULibFunc FuncInfo; 64 65 const TargetMachine *TM; 66 67 // -fuse-native. 68 bool AllNative = false; 69 70 bool useNativeFunc(const StringRef F) const; 71 72 // Return a pointer (pointer expr) to the function if function defintion with 73 // "FuncName" exists. It may create a new function prototype in pre-link mode. 74 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 75 76 // Replace a normal function with its native version. 77 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); 78 79 bool parseFunctionName(const StringRef& FMangledName, 80 FuncInfo *FInfo=nullptr /*out*/); 81 82 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 83 84 /* Specialized optimizations */ 85 86 // recip (half or native) 87 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 88 89 // divide (half or native) 90 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 91 92 // pow/powr/pown 93 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 94 95 // rootn 96 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 97 98 // fma/mad 99 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 100 101 // -fuse-native for sincos 102 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 103 104 // evaluate calls if calls' arguments are constants. 105 bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, 106 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 107 bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); 108 109 // exp 110 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 111 112 // exp2 113 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 114 115 // exp10 116 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 117 118 // log 119 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 120 121 // log2 122 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 123 124 // log10 125 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 126 127 // sqrt 128 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 129 130 // sin/cos 131 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 132 133 // __read_pipe/__write_pipe 134 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); 135 136 // llvm.amdgcn.wavefrontsize 137 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 138 139 // Get insertion point at entry. 140 BasicBlock::iterator getEntryIns(CallInst * UI); 141 // Insert an Alloc instruction. 142 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 143 // Get a scalar native builtin signle argument FP function 144 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 145 146 protected: 147 CallInst *CI; 148 149 bool isUnsafeMath(const CallInst *CI) const; 150 151 void replaceCall(Value *With) { 152 CI->replaceAllUsesWith(With); 153 CI->eraseFromParent(); 154 } 155 156 public: 157 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 158 159 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 160 161 void initNativeFuncs(); 162 163 // Replace a normal math function call with that native version 164 bool useNative(CallInst *CI); 165 }; 166 167 } // end llvm namespace 168 169 namespace { 170 171 class AMDGPUSimplifyLibCalls : public FunctionPass { 172 173 const TargetOptions Options; 174 175 AMDGPULibCalls Simplifier; 176 177 public: 178 static char ID; // Pass identification 179 180 AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions(), 181 const TargetMachine *TM = nullptr) 182 : FunctionPass(ID), Options(Opt), Simplifier(TM) { 183 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 184 } 185 186 void getAnalysisUsage(AnalysisUsage &AU) const override { 187 AU.addRequired<AAResultsWrapperPass>(); 188 } 189 190 bool runOnFunction(Function &M) override; 191 }; 192 193 class AMDGPUUseNativeCalls : public FunctionPass { 194 195 AMDGPULibCalls Simplifier; 196 197 public: 198 static char ID; // Pass identification 199 200 AMDGPUUseNativeCalls() : FunctionPass(ID) { 201 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 202 Simplifier.initNativeFuncs(); 203 } 204 205 bool runOnFunction(Function &F) override; 206 }; 207 208 } // end anonymous namespace. 209 210 char AMDGPUSimplifyLibCalls::ID = 0; 211 char AMDGPUUseNativeCalls::ID = 0; 212 213 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 214 "Simplify well-known AMD library calls", false, false) 215 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 216 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 217 "Simplify well-known AMD library calls", false, false) 218 219 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 220 "Replace builtin math calls with that native versions.", 221 false, false) 222 223 template <typename IRB> 224 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 225 const Twine &Name = "") { 226 CallInst *R = B.CreateCall(Callee, Arg, Name); 227 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 228 R->setCallingConv(F->getCallingConv()); 229 return R; 230 } 231 232 template <typename IRB> 233 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 234 Value *Arg2, const Twine &Name = "") { 235 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 236 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 237 R->setCallingConv(F->getCallingConv()); 238 return R; 239 } 240 241 // Data structures for table-driven optimizations. 242 // FuncTbl works for both f32 and f64 functions with 1 input argument 243 244 struct TableEntry { 245 double result; 246 double input; 247 }; 248 249 /* a list of {result, input} */ 250 static const TableEntry tbl_acos[] = { 251 {MATH_PI / 2.0, 0.0}, 252 {MATH_PI / 2.0, -0.0}, 253 {0.0, 1.0}, 254 {MATH_PI, -1.0} 255 }; 256 static const TableEntry tbl_acosh[] = { 257 {0.0, 1.0} 258 }; 259 static const TableEntry tbl_acospi[] = { 260 {0.5, 0.0}, 261 {0.5, -0.0}, 262 {0.0, 1.0}, 263 {1.0, -1.0} 264 }; 265 static const TableEntry tbl_asin[] = { 266 {0.0, 0.0}, 267 {-0.0, -0.0}, 268 {MATH_PI / 2.0, 1.0}, 269 {-MATH_PI / 2.0, -1.0} 270 }; 271 static const TableEntry tbl_asinh[] = { 272 {0.0, 0.0}, 273 {-0.0, -0.0} 274 }; 275 static const TableEntry tbl_asinpi[] = { 276 {0.0, 0.0}, 277 {-0.0, -0.0}, 278 {0.5, 1.0}, 279 {-0.5, -1.0} 280 }; 281 static const TableEntry tbl_atan[] = { 282 {0.0, 0.0}, 283 {-0.0, -0.0}, 284 {MATH_PI / 4.0, 1.0}, 285 {-MATH_PI / 4.0, -1.0} 286 }; 287 static const TableEntry tbl_atanh[] = { 288 {0.0, 0.0}, 289 {-0.0, -0.0} 290 }; 291 static const TableEntry tbl_atanpi[] = { 292 {0.0, 0.0}, 293 {-0.0, -0.0}, 294 {0.25, 1.0}, 295 {-0.25, -1.0} 296 }; 297 static const TableEntry tbl_cbrt[] = { 298 {0.0, 0.0}, 299 {-0.0, -0.0}, 300 {1.0, 1.0}, 301 {-1.0, -1.0}, 302 }; 303 static const TableEntry tbl_cos[] = { 304 {1.0, 0.0}, 305 {1.0, -0.0} 306 }; 307 static const TableEntry tbl_cosh[] = { 308 {1.0, 0.0}, 309 {1.0, -0.0} 310 }; 311 static const TableEntry tbl_cospi[] = { 312 {1.0, 0.0}, 313 {1.0, -0.0} 314 }; 315 static const TableEntry tbl_erfc[] = { 316 {1.0, 0.0}, 317 {1.0, -0.0} 318 }; 319 static const TableEntry tbl_erf[] = { 320 {0.0, 0.0}, 321 {-0.0, -0.0} 322 }; 323 static const TableEntry tbl_exp[] = { 324 {1.0, 0.0}, 325 {1.0, -0.0}, 326 {MATH_E, 1.0} 327 }; 328 static const TableEntry tbl_exp2[] = { 329 {1.0, 0.0}, 330 {1.0, -0.0}, 331 {2.0, 1.0} 332 }; 333 static const TableEntry tbl_exp10[] = { 334 {1.0, 0.0}, 335 {1.0, -0.0}, 336 {10.0, 1.0} 337 }; 338 static const TableEntry tbl_expm1[] = { 339 {0.0, 0.0}, 340 {-0.0, -0.0} 341 }; 342 static const TableEntry tbl_log[] = { 343 {0.0, 1.0}, 344 {1.0, MATH_E} 345 }; 346 static const TableEntry tbl_log2[] = { 347 {0.0, 1.0}, 348 {1.0, 2.0} 349 }; 350 static const TableEntry tbl_log10[] = { 351 {0.0, 1.0}, 352 {1.0, 10.0} 353 }; 354 static const TableEntry tbl_rsqrt[] = { 355 {1.0, 1.0}, 356 {MATH_SQRT1_2, 2.0} 357 }; 358 static const TableEntry tbl_sin[] = { 359 {0.0, 0.0}, 360 {-0.0, -0.0} 361 }; 362 static const TableEntry tbl_sinh[] = { 363 {0.0, 0.0}, 364 {-0.0, -0.0} 365 }; 366 static const TableEntry tbl_sinpi[] = { 367 {0.0, 0.0}, 368 {-0.0, -0.0} 369 }; 370 static const TableEntry tbl_sqrt[] = { 371 {0.0, 0.0}, 372 {1.0, 1.0}, 373 {MATH_SQRT2, 2.0} 374 }; 375 static const TableEntry tbl_tan[] = { 376 {0.0, 0.0}, 377 {-0.0, -0.0} 378 }; 379 static const TableEntry tbl_tanh[] = { 380 {0.0, 0.0}, 381 {-0.0, -0.0} 382 }; 383 static const TableEntry tbl_tanpi[] = { 384 {0.0, 0.0}, 385 {-0.0, -0.0} 386 }; 387 static const TableEntry tbl_tgamma[] = { 388 {1.0, 1.0}, 389 {1.0, 2.0}, 390 {2.0, 3.0}, 391 {6.0, 4.0} 392 }; 393 394 static bool HasNative(AMDGPULibFunc::EFuncId id) { 395 switch(id) { 396 case AMDGPULibFunc::EI_DIVIDE: 397 case AMDGPULibFunc::EI_COS: 398 case AMDGPULibFunc::EI_EXP: 399 case AMDGPULibFunc::EI_EXP2: 400 case AMDGPULibFunc::EI_EXP10: 401 case AMDGPULibFunc::EI_LOG: 402 case AMDGPULibFunc::EI_LOG2: 403 case AMDGPULibFunc::EI_LOG10: 404 case AMDGPULibFunc::EI_POWR: 405 case AMDGPULibFunc::EI_RECIP: 406 case AMDGPULibFunc::EI_RSQRT: 407 case AMDGPULibFunc::EI_SIN: 408 case AMDGPULibFunc::EI_SINCOS: 409 case AMDGPULibFunc::EI_SQRT: 410 case AMDGPULibFunc::EI_TAN: 411 return true; 412 default:; 413 } 414 return false; 415 } 416 417 struct TableRef { 418 size_t size; 419 const TableEntry *table; // variable size: from 0 to (size - 1) 420 421 TableRef() : size(0), table(nullptr) {} 422 423 template <size_t N> 424 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 425 }; 426 427 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 428 switch(id) { 429 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 430 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 431 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 432 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 433 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 434 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 435 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 436 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 437 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 438 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 439 case AMDGPULibFunc::EI_NCOS: 440 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 441 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 442 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 443 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 444 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 445 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 446 case AMDGPULibFunc::EI_NEXP2: 447 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 448 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 449 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 450 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 451 case AMDGPULibFunc::EI_NLOG2: 452 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 453 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 454 case AMDGPULibFunc::EI_NRSQRT: 455 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 456 case AMDGPULibFunc::EI_NSIN: 457 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 458 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 459 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 460 case AMDGPULibFunc::EI_NSQRT: 461 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 462 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 463 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 464 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 465 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 466 default:; 467 } 468 return TableRef(); 469 } 470 471 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 472 return FInfo.getLeads()[0].VectorSize; 473 } 474 475 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 476 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 477 } 478 479 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 480 // If we are doing PreLinkOpt, the function is external. So it is safe to 481 // use getOrInsertFunction() at this stage. 482 483 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 484 : AMDGPULibFunc::getFunction(M, fInfo); 485 } 486 487 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, 488 FuncInfo *FInfo) { 489 return AMDGPULibFunc::parse(FMangledName, *FInfo); 490 } 491 492 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 493 if (auto Op = dyn_cast<FPMathOperator>(CI)) 494 if (Op->isFast()) 495 return true; 496 const Function *F = CI->getParent()->getParent(); 497 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 498 return Attr.getValueAsString() == "true"; 499 } 500 501 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 502 return AllNative || 503 std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); 504 } 505 506 void AMDGPULibCalls::initNativeFuncs() { 507 AllNative = useNativeFunc("all") || 508 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 509 UseNative.begin()->empty()); 510 } 511 512 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 513 bool native_sin = useNativeFunc("sin"); 514 bool native_cos = useNativeFunc("cos"); 515 516 if (native_sin && native_cos) { 517 Module *M = aCI->getModule(); 518 Value *opr0 = aCI->getArgOperand(0); 519 520 AMDGPULibFunc nf; 521 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 522 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 523 524 nf.setPrefix(AMDGPULibFunc::NATIVE); 525 nf.setId(AMDGPULibFunc::EI_SIN); 526 FunctionCallee sinExpr = getFunction(M, nf); 527 528 nf.setPrefix(AMDGPULibFunc::NATIVE); 529 nf.setId(AMDGPULibFunc::EI_COS); 530 FunctionCallee cosExpr = getFunction(M, nf); 531 if (sinExpr && cosExpr) { 532 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 533 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 534 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 535 536 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 537 << " with native version of sin/cos"); 538 539 replaceCall(sinval); 540 return true; 541 } 542 } 543 return false; 544 } 545 546 bool AMDGPULibCalls::useNative(CallInst *aCI) { 547 CI = aCI; 548 Function *Callee = aCI->getCalledFunction(); 549 550 FuncInfo FInfo; 551 if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || 552 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 553 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 554 !(AllNative || useNativeFunc(FInfo.getName()))) { 555 return false; 556 } 557 558 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 559 return sincosUseNative(aCI, FInfo); 560 561 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 562 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 563 if (!F) 564 return false; 565 566 aCI->setCalledFunction(F); 567 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 568 << " with native version"); 569 return true; 570 } 571 572 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 573 // builtin, with appended type size and alignment arguments, where 2 or 4 574 // indicates the original number of arguments. The library has optimized version 575 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 576 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 577 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 578 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 579 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 580 FuncInfo &FInfo) { 581 auto *Callee = CI->getCalledFunction(); 582 if (!Callee->isDeclaration()) 583 return false; 584 585 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 586 auto *M = Callee->getParent(); 587 auto &Ctx = M->getContext(); 588 std::string Name = Callee->getName(); 589 auto NumArg = CI->getNumArgOperands(); 590 if (NumArg != 4 && NumArg != 6) 591 return false; 592 auto *PacketSize = CI->getArgOperand(NumArg - 2); 593 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 594 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 595 return false; 596 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 597 unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue(); 598 if (Size != Align || !isPowerOf2_32(Size)) 599 return false; 600 601 Type *PtrElemTy; 602 if (Size <= 8) 603 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 604 else 605 PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8); 606 unsigned PtrArgLoc = CI->getNumArgOperands() - 3; 607 auto PtrArg = CI->getArgOperand(PtrArgLoc); 608 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 609 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 610 611 SmallVector<llvm::Type *, 6> ArgTys; 612 for (unsigned I = 0; I != PtrArgLoc; ++I) 613 ArgTys.push_back(CI->getArgOperand(I)->getType()); 614 ArgTys.push_back(PtrTy); 615 616 Name = Name + "_" + std::to_string(Size); 617 auto *FTy = FunctionType::get(Callee->getReturnType(), 618 ArrayRef<Type *>(ArgTys), false); 619 AMDGPULibFunc NewLibFunc(Name, FTy); 620 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 621 if (!F) 622 return false; 623 624 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 625 SmallVector<Value *, 6> Args; 626 for (unsigned I = 0; I != PtrArgLoc; ++I) 627 Args.push_back(CI->getArgOperand(I)); 628 Args.push_back(BCast); 629 630 auto *NCI = B.CreateCall(F, Args); 631 NCI->setAttributes(CI->getAttributes()); 632 CI->replaceAllUsesWith(NCI); 633 CI->dropAllReferences(); 634 CI->eraseFromParent(); 635 636 return true; 637 } 638 639 // This function returns false if no change; return true otherwise. 640 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 641 this->CI = CI; 642 Function *Callee = CI->getCalledFunction(); 643 644 // Ignore indirect calls. 645 if (Callee == 0) return false; 646 647 BasicBlock *BB = CI->getParent(); 648 LLVMContext &Context = CI->getParent()->getContext(); 649 IRBuilder<> B(Context); 650 651 // Set the builder to the instruction after the call. 652 B.SetInsertPoint(BB, CI->getIterator()); 653 654 // Copy fast flags from the original call. 655 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 656 B.setFastMathFlags(FPOp->getFastMathFlags()); 657 658 switch (Callee->getIntrinsicID()) { 659 default: 660 break; 661 case Intrinsic::amdgcn_wavefrontsize: 662 return !EnablePreLink && fold_wavefrontsize(CI, B); 663 } 664 665 FuncInfo FInfo; 666 if (!parseFunctionName(Callee->getName(), &FInfo)) 667 return false; 668 669 // Further check the number of arguments to see if they match. 670 if (CI->getNumArgOperands() != FInfo.getNumArgs()) 671 return false; 672 673 if (TDOFold(CI, FInfo)) 674 return true; 675 676 // Under unsafe-math, evaluate calls if possible. 677 // According to Brian Sumner, we can do this for all f32 function calls 678 // using host's double function calls. 679 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 680 return true; 681 682 // Specilized optimizations for each function call 683 switch (FInfo.getId()) { 684 case AMDGPULibFunc::EI_RECIP: 685 // skip vector function 686 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 687 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 688 "recip must be an either native or half function"); 689 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 690 691 case AMDGPULibFunc::EI_DIVIDE: 692 // skip vector function 693 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 694 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 695 "divide must be an either native or half function"); 696 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 697 698 case AMDGPULibFunc::EI_POW: 699 case AMDGPULibFunc::EI_POWR: 700 case AMDGPULibFunc::EI_POWN: 701 return fold_pow(CI, B, FInfo); 702 703 case AMDGPULibFunc::EI_ROOTN: 704 // skip vector function 705 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 706 707 case AMDGPULibFunc::EI_FMA: 708 case AMDGPULibFunc::EI_MAD: 709 case AMDGPULibFunc::EI_NFMA: 710 // skip vector function 711 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 712 713 case AMDGPULibFunc::EI_SQRT: 714 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 715 case AMDGPULibFunc::EI_COS: 716 case AMDGPULibFunc::EI_SIN: 717 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 718 getArgType(FInfo) == AMDGPULibFunc::F64) 719 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 720 return fold_sincos(CI, B, AA); 721 722 break; 723 case AMDGPULibFunc::EI_READ_PIPE_2: 724 case AMDGPULibFunc::EI_READ_PIPE_4: 725 case AMDGPULibFunc::EI_WRITE_PIPE_2: 726 case AMDGPULibFunc::EI_WRITE_PIPE_4: 727 return fold_read_write_pipe(CI, B, FInfo); 728 729 default: 730 break; 731 } 732 733 return false; 734 } 735 736 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 737 // Table-Driven optimization 738 const TableRef tr = getOptTable(FInfo.getId()); 739 if (tr.size==0) 740 return false; 741 742 int const sz = (int)tr.size; 743 const TableEntry * const ftbl = tr.table; 744 Value *opr0 = CI->getArgOperand(0); 745 746 if (getVecSize(FInfo) > 1) { 747 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 748 SmallVector<double, 0> DVal; 749 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 750 ConstantFP *eltval = dyn_cast<ConstantFP>( 751 CV->getElementAsConstant((unsigned)eltNo)); 752 assert(eltval && "Non-FP arguments in math function!"); 753 bool found = false; 754 for (int i=0; i < sz; ++i) { 755 if (eltval->isExactlyValue(ftbl[i].input)) { 756 DVal.push_back(ftbl[i].result); 757 found = true; 758 break; 759 } 760 } 761 if (!found) { 762 // This vector constants not handled yet. 763 return false; 764 } 765 } 766 LLVMContext &context = CI->getParent()->getParent()->getContext(); 767 Constant *nval; 768 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 769 SmallVector<float, 0> FVal; 770 for (unsigned i = 0; i < DVal.size(); ++i) { 771 FVal.push_back((float)DVal[i]); 772 } 773 ArrayRef<float> tmp(FVal); 774 nval = ConstantDataVector::get(context, tmp); 775 } else { // F64 776 ArrayRef<double> tmp(DVal); 777 nval = ConstantDataVector::get(context, tmp); 778 } 779 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 780 replaceCall(nval); 781 return true; 782 } 783 } else { 784 // Scalar version 785 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 786 for (int i = 0; i < sz; ++i) { 787 if (CF->isExactlyValue(ftbl[i].input)) { 788 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 789 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 790 replaceCall(nval); 791 return true; 792 } 793 } 794 } 795 } 796 797 return false; 798 } 799 800 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { 801 Module *M = CI->getModule(); 802 if (getArgType(FInfo) != AMDGPULibFunc::F32 || 803 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 804 !HasNative(FInfo.getId())) 805 return false; 806 807 AMDGPULibFunc nf = FInfo; 808 nf.setPrefix(AMDGPULibFunc::NATIVE); 809 if (FunctionCallee FPExpr = getFunction(M, nf)) { 810 LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); 811 812 CI->setCalledFunction(FPExpr); 813 814 LLVM_DEBUG(dbgs() << *CI << '\n'); 815 816 return true; 817 } 818 return false; 819 } 820 821 // [native_]half_recip(c) ==> 1.0/c 822 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 823 const FuncInfo &FInfo) { 824 Value *opr0 = CI->getArgOperand(0); 825 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 826 // Just create a normal div. Later, InstCombine will be able 827 // to compute the divide into a constant (avoid check float infinity 828 // or subnormal at this point). 829 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 830 opr0, 831 "recip2div"); 832 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 833 replaceCall(nval); 834 return true; 835 } 836 return false; 837 } 838 839 // [native_]half_divide(x, c) ==> x/c 840 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 841 const FuncInfo &FInfo) { 842 Value *opr0 = CI->getArgOperand(0); 843 Value *opr1 = CI->getArgOperand(1); 844 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 845 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 846 847 if ((CF0 && CF1) || // both are constants 848 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 849 // CF1 is constant && f32 divide 850 { 851 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 852 opr1, "__div2recip"); 853 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 854 replaceCall(nval); 855 return true; 856 } 857 return false; 858 } 859 860 namespace llvm { 861 static double log2(double V) { 862 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 863 return ::log2(V); 864 #else 865 return log(V) / numbers::ln2; 866 #endif 867 } 868 } 869 870 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 871 const FuncInfo &FInfo) { 872 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 873 FInfo.getId() == AMDGPULibFunc::EI_POWR || 874 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 875 "fold_pow: encounter a wrong function call"); 876 877 Value *opr0, *opr1; 878 ConstantFP *CF; 879 ConstantInt *CINT; 880 ConstantAggregateZero *CZero; 881 Type *eltType; 882 883 opr0 = CI->getArgOperand(0); 884 opr1 = CI->getArgOperand(1); 885 CZero = dyn_cast<ConstantAggregateZero>(opr1); 886 if (getVecSize(FInfo) == 1) { 887 eltType = opr0->getType(); 888 CF = dyn_cast<ConstantFP>(opr1); 889 CINT = dyn_cast<ConstantInt>(opr1); 890 } else { 891 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 892 assert(VTy && "Oprand of vector function should be of vectortype"); 893 eltType = VTy->getElementType(); 894 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 895 896 // Now, only Handle vector const whose elements have the same value. 897 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 898 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 899 } 900 901 // No unsafe math , no constant argument, do nothing 902 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 903 return false; 904 905 // 0x1111111 means that we don't do anything for this call. 906 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 907 908 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 909 // pow/powr/pown(x, 0) == 1 910 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 911 Constant *cnval = ConstantFP::get(eltType, 1.0); 912 if (getVecSize(FInfo) > 1) { 913 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 914 } 915 replaceCall(cnval); 916 return true; 917 } 918 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 919 // pow/powr/pown(x, 1.0) = x 920 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 921 replaceCall(opr0); 922 return true; 923 } 924 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 925 // pow/powr/pown(x, 2.0) = x*x 926 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 927 << "\n"); 928 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 929 replaceCall(nval); 930 return true; 931 } 932 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 933 // pow/powr/pown(x, -1.0) = 1.0/x 934 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 935 Constant *cnval = ConstantFP::get(eltType, 1.0); 936 if (getVecSize(FInfo) > 1) { 937 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 938 } 939 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 940 replaceCall(nval); 941 return true; 942 } 943 944 Module *M = CI->getModule(); 945 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 946 // pow[r](x, [-]0.5) = sqrt(x) 947 bool issqrt = CF->isExactlyValue(0.5); 948 if (FunctionCallee FPExpr = 949 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 950 : AMDGPULibFunc::EI_RSQRT, 951 FInfo))) { 952 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 953 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 954 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 955 : "__pow2rsqrt"); 956 replaceCall(nval); 957 return true; 958 } 959 } 960 961 if (!isUnsafeMath(CI)) 962 return false; 963 964 // Unsafe Math optimization 965 966 // Remember that ci_opr1 is set if opr1 is integral 967 if (CF) { 968 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 969 ? (double)CF->getValueAPF().convertToFloat() 970 : CF->getValueAPF().convertToDouble(); 971 int ival = (int)dval; 972 if ((double)ival == dval) { 973 ci_opr1 = ival; 974 } else 975 ci_opr1 = 0x11111111; 976 } 977 978 // pow/powr/pown(x, c) = [1/](x*x*..x); where 979 // trunc(c) == c && the number of x == c && |c| <= 12 980 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 981 if (abs_opr1 <= 12) { 982 Constant *cnval; 983 Value *nval; 984 if (abs_opr1 == 0) { 985 cnval = ConstantFP::get(eltType, 1.0); 986 if (getVecSize(FInfo) > 1) { 987 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 988 } 989 nval = cnval; 990 } else { 991 Value *valx2 = nullptr; 992 nval = nullptr; 993 while (abs_opr1 > 0) { 994 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 995 if (abs_opr1 & 1) { 996 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 997 } 998 abs_opr1 >>= 1; 999 } 1000 } 1001 1002 if (ci_opr1 < 0) { 1003 cnval = ConstantFP::get(eltType, 1.0); 1004 if (getVecSize(FInfo) > 1) { 1005 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 1006 } 1007 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 1008 } 1009 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1010 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 1011 << ")\n"); 1012 replaceCall(nval); 1013 return true; 1014 } 1015 1016 // powr ---> exp2(y * log2(x)) 1017 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1018 FunctionCallee ExpExpr = 1019 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1020 if (!ExpExpr) 1021 return false; 1022 1023 bool needlog = false; 1024 bool needabs = false; 1025 bool needcopysign = false; 1026 Constant *cnval = nullptr; 1027 if (getVecSize(FInfo) == 1) { 1028 CF = dyn_cast<ConstantFP>(opr0); 1029 1030 if (CF) { 1031 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1032 ? (double)CF->getValueAPF().convertToFloat() 1033 : CF->getValueAPF().convertToDouble(); 1034 1035 V = log2(std::abs(V)); 1036 cnval = ConstantFP::get(eltType, V); 1037 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1038 CF->isNegative(); 1039 } else { 1040 needlog = true; 1041 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1042 (!CF || CF->isNegative()); 1043 } 1044 } else { 1045 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1046 1047 if (!CDV) { 1048 needlog = true; 1049 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1050 } else { 1051 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1052 "Wrong vector size detected"); 1053 1054 SmallVector<double, 0> DVal; 1055 for (int i=0; i < getVecSize(FInfo); ++i) { 1056 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1057 ? (double)CDV->getElementAsFloat(i) 1058 : CDV->getElementAsDouble(i); 1059 if (V < 0.0) needcopysign = true; 1060 V = log2(std::abs(V)); 1061 DVal.push_back(V); 1062 } 1063 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1064 SmallVector<float, 0> FVal; 1065 for (unsigned i=0; i < DVal.size(); ++i) { 1066 FVal.push_back((float)DVal[i]); 1067 } 1068 ArrayRef<float> tmp(FVal); 1069 cnval = ConstantDataVector::get(M->getContext(), tmp); 1070 } else { 1071 ArrayRef<double> tmp(DVal); 1072 cnval = ConstantDataVector::get(M->getContext(), tmp); 1073 } 1074 } 1075 } 1076 1077 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1078 // We cannot handle corner cases for a general pow() function, give up 1079 // unless y is a constant integral value. Then proceed as if it were pown. 1080 if (getVecSize(FInfo) == 1) { 1081 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1082 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1083 ? (double)CF->getValueAPF().convertToFloat() 1084 : CF->getValueAPF().convertToDouble(); 1085 if (y != (double)(int64_t)y) 1086 return false; 1087 } else 1088 return false; 1089 } else { 1090 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1091 for (int i=0; i < getVecSize(FInfo); ++i) { 1092 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1093 ? (double)CDV->getElementAsFloat(i) 1094 : CDV->getElementAsDouble(i); 1095 if (y != (double)(int64_t)y) 1096 return false; 1097 } 1098 } else 1099 return false; 1100 } 1101 } 1102 1103 Value *nval; 1104 if (needabs) { 1105 FunctionCallee AbsExpr = 1106 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1107 if (!AbsExpr) 1108 return false; 1109 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1110 } else { 1111 nval = cnval ? cnval : opr0; 1112 } 1113 if (needlog) { 1114 FunctionCallee LogExpr = 1115 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1116 if (!LogExpr) 1117 return false; 1118 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1119 } 1120 1121 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1122 // convert int(32) to fp(f32 or f64) 1123 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1124 } 1125 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1126 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1127 1128 if (needcopysign) { 1129 Value *opr_n; 1130 Type* rTy = opr0->getType(); 1131 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1132 Type *nTy = nTyS; 1133 if (const VectorType *vTy = dyn_cast<VectorType>(rTy)) 1134 nTy = VectorType::get(nTyS, vTy->getNumElements()); 1135 unsigned size = nTy->getScalarSizeInBits(); 1136 opr_n = CI->getArgOperand(1); 1137 if (opr_n->getType()->isIntegerTy()) 1138 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1139 else 1140 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1141 1142 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1143 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1144 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1145 nval = B.CreateBitCast(nval, opr0->getType()); 1146 } 1147 1148 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1149 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1150 replaceCall(nval); 1151 1152 return true; 1153 } 1154 1155 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1156 const FuncInfo &FInfo) { 1157 Value *opr0 = CI->getArgOperand(0); 1158 Value *opr1 = CI->getArgOperand(1); 1159 1160 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1161 if (!CINT) { 1162 return false; 1163 } 1164 int ci_opr1 = (int)CINT->getSExtValue(); 1165 if (ci_opr1 == 1) { // rootn(x, 1) = x 1166 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1167 replaceCall(opr0); 1168 return true; 1169 } 1170 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1171 Module *M = CI->getModule(); 1172 if (FunctionCallee FPExpr = 1173 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1174 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1175 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1176 replaceCall(nval); 1177 return true; 1178 } 1179 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1180 Module *M = CI->getModule(); 1181 if (FunctionCallee FPExpr = 1182 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1183 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1184 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1185 replaceCall(nval); 1186 return true; 1187 } 1188 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1189 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1190 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1191 opr0, 1192 "__rootn2div"); 1193 replaceCall(nval); 1194 return true; 1195 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1196 Module *M = CI->getModule(); 1197 if (FunctionCallee FPExpr = 1198 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1199 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1200 << ")\n"); 1201 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1202 replaceCall(nval); 1203 return true; 1204 } 1205 } 1206 return false; 1207 } 1208 1209 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1210 const FuncInfo &FInfo) { 1211 Value *opr0 = CI->getArgOperand(0); 1212 Value *opr1 = CI->getArgOperand(1); 1213 Value *opr2 = CI->getArgOperand(2); 1214 1215 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1216 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1217 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1218 // fma/mad(a, b, c) = c if a=0 || b=0 1219 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1220 replaceCall(opr2); 1221 return true; 1222 } 1223 if (CF0 && CF0->isExactlyValue(1.0f)) { 1224 // fma/mad(a, b, c) = b+c if a=1 1225 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1226 << "\n"); 1227 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1228 replaceCall(nval); 1229 return true; 1230 } 1231 if (CF1 && CF1->isExactlyValue(1.0f)) { 1232 // fma/mad(a, b, c) = a+c if b=1 1233 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1234 << "\n"); 1235 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1236 replaceCall(nval); 1237 return true; 1238 } 1239 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1240 if (CF->isZero()) { 1241 // fma/mad(a, b, c) = a*b if c=0 1242 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1243 << *opr1 << "\n"); 1244 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1245 replaceCall(nval); 1246 return true; 1247 } 1248 } 1249 1250 return false; 1251 } 1252 1253 // Get a scalar native builtin signle argument FP function 1254 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1255 const FuncInfo &FInfo) { 1256 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1257 return nullptr; 1258 FuncInfo nf = FInfo; 1259 nf.setPrefix(AMDGPULibFunc::NATIVE); 1260 return getFunction(M, nf); 1261 } 1262 1263 // fold sqrt -> native_sqrt (x) 1264 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1265 const FuncInfo &FInfo) { 1266 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1267 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1268 if (FunctionCallee FPExpr = getNativeFunction( 1269 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1270 Value *opr0 = CI->getArgOperand(0); 1271 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1272 << "sqrt(" << *opr0 << ")\n"); 1273 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1274 replaceCall(nval); 1275 return true; 1276 } 1277 } 1278 return false; 1279 } 1280 1281 // fold sin, cos -> sincos. 1282 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1283 AliasAnalysis *AA) { 1284 AMDGPULibFunc fInfo; 1285 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1286 return false; 1287 1288 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1289 fInfo.getId() == AMDGPULibFunc::EI_COS); 1290 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1291 1292 Value *CArgVal = CI->getArgOperand(0); 1293 BasicBlock * const CBB = CI->getParent(); 1294 1295 int const MaxScan = 30; 1296 1297 { // fold in load value. 1298 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1299 if (LI && LI->getParent() == CBB) { 1300 BasicBlock::iterator BBI = LI->getIterator(); 1301 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1302 if (AvailableVal) { 1303 CArgVal->replaceAllUsesWith(AvailableVal); 1304 if (CArgVal->getNumUses() == 0) 1305 LI->eraseFromParent(); 1306 CArgVal = CI->getArgOperand(0); 1307 } 1308 } 1309 } 1310 1311 Module *M = CI->getModule(); 1312 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1313 std::string const PairName = fInfo.mangle(); 1314 1315 CallInst *UI = nullptr; 1316 for (User* U : CArgVal->users()) { 1317 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1318 if (!XI || XI == CI || XI->getParent() != CBB) 1319 continue; 1320 1321 Function *UCallee = XI->getCalledFunction(); 1322 if (!UCallee || !UCallee->getName().equals(PairName)) 1323 continue; 1324 1325 BasicBlock::iterator BBI = CI->getIterator(); 1326 if (BBI == CI->getParent()->begin()) 1327 break; 1328 --BBI; 1329 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1330 if (cast<Instruction>(BBI) == XI) { 1331 UI = XI; 1332 break; 1333 } 1334 } 1335 if (UI) break; 1336 } 1337 1338 if (!UI) return false; 1339 1340 // Merge the sin and cos. 1341 1342 // for OpenCL 2.0 we have only generic implementation of sincos 1343 // function. 1344 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1345 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1346 FunctionCallee Fsincos = getFunction(M, nf); 1347 if (!Fsincos) return false; 1348 1349 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1350 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1351 B.SetInsertPoint(UI); 1352 1353 Value *P = Alloc; 1354 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1355 // The allocaInst allocates the memory in private address space. This need 1356 // to be bitcasted to point to the address space of cos pointer type. 1357 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1358 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1359 P = B.CreateAddrSpaceCast(Alloc, PTy); 1360 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1361 1362 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1363 << *Call << "\n"); 1364 1365 if (!isSin) { // CI->cos, UI->sin 1366 B.SetInsertPoint(&*ItOld); 1367 UI->replaceAllUsesWith(&*Call); 1368 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1369 CI->replaceAllUsesWith(Reload); 1370 UI->eraseFromParent(); 1371 CI->eraseFromParent(); 1372 } else { // CI->sin, UI->cos 1373 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1374 UI->replaceAllUsesWith(Reload); 1375 CI->replaceAllUsesWith(Call); 1376 UI->eraseFromParent(); 1377 CI->eraseFromParent(); 1378 } 1379 return true; 1380 } 1381 1382 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1383 if (!TM) 1384 return false; 1385 1386 StringRef CPU = TM->getTargetCPU(); 1387 StringRef Features = TM->getTargetFeatureString(); 1388 if ((CPU.empty() || CPU.equals_lower("generic")) && 1389 (Features.empty() || 1390 Features.find_lower("wavefrontsize") == StringRef::npos)) 1391 return false; 1392 1393 Function *F = CI->getParent()->getParent(); 1394 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1395 unsigned N = ST.getWavefrontSize(); 1396 1397 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1398 << N << "\n"); 1399 1400 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1401 CI->eraseFromParent(); 1402 return true; 1403 } 1404 1405 // Get insertion point at entry. 1406 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1407 Function * Func = UI->getParent()->getParent(); 1408 BasicBlock * BB = &Func->getEntryBlock(); 1409 assert(BB && "Entry block not found!"); 1410 BasicBlock::iterator ItNew = BB->begin(); 1411 return ItNew; 1412 } 1413 1414 // Insert a AllocsInst at the beginning of function entry block. 1415 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1416 const char *prefix) { 1417 BasicBlock::iterator ItNew = getEntryIns(UI); 1418 Function *UCallee = UI->getCalledFunction(); 1419 Type *RetType = UCallee->getReturnType(); 1420 B.SetInsertPoint(&*ItNew); 1421 AllocaInst *Alloc = B.CreateAlloca(RetType, 0, 1422 std::string(prefix) + UI->getName()); 1423 Alloc->setAlignment(MaybeAlign( 1424 UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1425 return Alloc; 1426 } 1427 1428 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, 1429 double& Res0, double& Res1, 1430 Constant *copr0, Constant *copr1, 1431 Constant *copr2) { 1432 // By default, opr0/opr1/opr3 holds values of float/double type. 1433 // If they are not float/double, each function has to its 1434 // operand separately. 1435 double opr0=0.0, opr1=0.0, opr2=0.0; 1436 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1437 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1438 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1439 if (fpopr0) { 1440 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1441 ? fpopr0->getValueAPF().convertToDouble() 1442 : (double)fpopr0->getValueAPF().convertToFloat(); 1443 } 1444 1445 if (fpopr1) { 1446 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1447 ? fpopr1->getValueAPF().convertToDouble() 1448 : (double)fpopr1->getValueAPF().convertToFloat(); 1449 } 1450 1451 if (fpopr2) { 1452 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1453 ? fpopr2->getValueAPF().convertToDouble() 1454 : (double)fpopr2->getValueAPF().convertToFloat(); 1455 } 1456 1457 switch (FInfo.getId()) { 1458 default : return false; 1459 1460 case AMDGPULibFunc::EI_ACOS: 1461 Res0 = acos(opr0); 1462 return true; 1463 1464 case AMDGPULibFunc::EI_ACOSH: 1465 // acosh(x) == log(x + sqrt(x*x - 1)) 1466 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1467 return true; 1468 1469 case AMDGPULibFunc::EI_ACOSPI: 1470 Res0 = acos(opr0) / MATH_PI; 1471 return true; 1472 1473 case AMDGPULibFunc::EI_ASIN: 1474 Res0 = asin(opr0); 1475 return true; 1476 1477 case AMDGPULibFunc::EI_ASINH: 1478 // asinh(x) == log(x + sqrt(x*x + 1)) 1479 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1480 return true; 1481 1482 case AMDGPULibFunc::EI_ASINPI: 1483 Res0 = asin(opr0) / MATH_PI; 1484 return true; 1485 1486 case AMDGPULibFunc::EI_ATAN: 1487 Res0 = atan(opr0); 1488 return true; 1489 1490 case AMDGPULibFunc::EI_ATANH: 1491 // atanh(x) == (log(x+1) - log(x-1))/2; 1492 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1493 return true; 1494 1495 case AMDGPULibFunc::EI_ATANPI: 1496 Res0 = atan(opr0) / MATH_PI; 1497 return true; 1498 1499 case AMDGPULibFunc::EI_CBRT: 1500 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1501 return true; 1502 1503 case AMDGPULibFunc::EI_COS: 1504 Res0 = cos(opr0); 1505 return true; 1506 1507 case AMDGPULibFunc::EI_COSH: 1508 Res0 = cosh(opr0); 1509 return true; 1510 1511 case AMDGPULibFunc::EI_COSPI: 1512 Res0 = cos(MATH_PI * opr0); 1513 return true; 1514 1515 case AMDGPULibFunc::EI_EXP: 1516 Res0 = exp(opr0); 1517 return true; 1518 1519 case AMDGPULibFunc::EI_EXP2: 1520 Res0 = pow(2.0, opr0); 1521 return true; 1522 1523 case AMDGPULibFunc::EI_EXP10: 1524 Res0 = pow(10.0, opr0); 1525 return true; 1526 1527 case AMDGPULibFunc::EI_EXPM1: 1528 Res0 = exp(opr0) - 1.0; 1529 return true; 1530 1531 case AMDGPULibFunc::EI_LOG: 1532 Res0 = log(opr0); 1533 return true; 1534 1535 case AMDGPULibFunc::EI_LOG2: 1536 Res0 = log(opr0) / log(2.0); 1537 return true; 1538 1539 case AMDGPULibFunc::EI_LOG10: 1540 Res0 = log(opr0) / log(10.0); 1541 return true; 1542 1543 case AMDGPULibFunc::EI_RSQRT: 1544 Res0 = 1.0 / sqrt(opr0); 1545 return true; 1546 1547 case AMDGPULibFunc::EI_SIN: 1548 Res0 = sin(opr0); 1549 return true; 1550 1551 case AMDGPULibFunc::EI_SINH: 1552 Res0 = sinh(opr0); 1553 return true; 1554 1555 case AMDGPULibFunc::EI_SINPI: 1556 Res0 = sin(MATH_PI * opr0); 1557 return true; 1558 1559 case AMDGPULibFunc::EI_SQRT: 1560 Res0 = sqrt(opr0); 1561 return true; 1562 1563 case AMDGPULibFunc::EI_TAN: 1564 Res0 = tan(opr0); 1565 return true; 1566 1567 case AMDGPULibFunc::EI_TANH: 1568 Res0 = tanh(opr0); 1569 return true; 1570 1571 case AMDGPULibFunc::EI_TANPI: 1572 Res0 = tan(MATH_PI * opr0); 1573 return true; 1574 1575 case AMDGPULibFunc::EI_RECIP: 1576 Res0 = 1.0 / opr0; 1577 return true; 1578 1579 // two-arg functions 1580 case AMDGPULibFunc::EI_DIVIDE: 1581 Res0 = opr0 / opr1; 1582 return true; 1583 1584 case AMDGPULibFunc::EI_POW: 1585 case AMDGPULibFunc::EI_POWR: 1586 Res0 = pow(opr0, opr1); 1587 return true; 1588 1589 case AMDGPULibFunc::EI_POWN: { 1590 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1591 double val = (double)iopr1->getSExtValue(); 1592 Res0 = pow(opr0, val); 1593 return true; 1594 } 1595 return false; 1596 } 1597 1598 case AMDGPULibFunc::EI_ROOTN: { 1599 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1600 double val = (double)iopr1->getSExtValue(); 1601 Res0 = pow(opr0, 1.0 / val); 1602 return true; 1603 } 1604 return false; 1605 } 1606 1607 // with ptr arg 1608 case AMDGPULibFunc::EI_SINCOS: 1609 Res0 = sin(opr0); 1610 Res1 = cos(opr0); 1611 return true; 1612 1613 // three-arg functions 1614 case AMDGPULibFunc::EI_FMA: 1615 case AMDGPULibFunc::EI_MAD: 1616 Res0 = opr0 * opr1 + opr2; 1617 return true; 1618 } 1619 1620 return false; 1621 } 1622 1623 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { 1624 int numArgs = (int)aCI->getNumArgOperands(); 1625 if (numArgs > 3) 1626 return false; 1627 1628 Constant *copr0 = nullptr; 1629 Constant *copr1 = nullptr; 1630 Constant *copr2 = nullptr; 1631 if (numArgs > 0) { 1632 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1633 return false; 1634 } 1635 1636 if (numArgs > 1) { 1637 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1638 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1639 return false; 1640 } 1641 } 1642 1643 if (numArgs > 2) { 1644 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1645 return false; 1646 } 1647 1648 // At this point, all arguments to aCI are constants. 1649 1650 // max vector size is 16, and sincos will generate two results. 1651 double DVal0[16], DVal1[16]; 1652 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1653 if (getVecSize(FInfo) == 1) { 1654 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1655 DVal1[0], copr0, copr1, copr2)) { 1656 return false; 1657 } 1658 } else { 1659 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1660 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1661 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1662 for (int i=0; i < getVecSize(FInfo); ++i) { 1663 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1664 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1665 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1666 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1667 DVal1[i], celt0, celt1, celt2)) { 1668 return false; 1669 } 1670 } 1671 } 1672 1673 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1674 Constant *nval0, *nval1; 1675 if (getVecSize(FInfo) == 1) { 1676 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1677 if (hasTwoResults) 1678 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1679 } else { 1680 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1681 SmallVector <float, 0> FVal0, FVal1; 1682 for (int i=0; i < getVecSize(FInfo); ++i) 1683 FVal0.push_back((float)DVal0[i]); 1684 ArrayRef<float> tmp0(FVal0); 1685 nval0 = ConstantDataVector::get(context, tmp0); 1686 if (hasTwoResults) { 1687 for (int i=0; i < getVecSize(FInfo); ++i) 1688 FVal1.push_back((float)DVal1[i]); 1689 ArrayRef<float> tmp1(FVal1); 1690 nval1 = ConstantDataVector::get(context, tmp1); 1691 } 1692 } else { 1693 ArrayRef<double> tmp0(DVal0); 1694 nval0 = ConstantDataVector::get(context, tmp0); 1695 if (hasTwoResults) { 1696 ArrayRef<double> tmp1(DVal1); 1697 nval1 = ConstantDataVector::get(context, tmp1); 1698 } 1699 } 1700 } 1701 1702 if (hasTwoResults) { 1703 // sincos 1704 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1705 "math function with ptr arg not supported yet"); 1706 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1707 } 1708 1709 replaceCall(nval0); 1710 return true; 1711 } 1712 1713 // Public interface to the Simplify LibCalls pass. 1714 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt, 1715 const TargetMachine *TM) { 1716 return new AMDGPUSimplifyLibCalls(Opt, TM); 1717 } 1718 1719 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1720 return new AMDGPUUseNativeCalls(); 1721 } 1722 1723 static bool setFastFlags(Function &F, const TargetOptions &Options) { 1724 AttrBuilder B; 1725 1726 if (Options.UnsafeFPMath || Options.NoInfsFPMath) 1727 B.addAttribute("no-infs-fp-math", "true"); 1728 if (Options.UnsafeFPMath || Options.NoNaNsFPMath) 1729 B.addAttribute("no-nans-fp-math", "true"); 1730 if (Options.UnsafeFPMath) { 1731 B.addAttribute("less-precise-fpmad", "true"); 1732 B.addAttribute("unsafe-fp-math", "true"); 1733 } 1734 1735 if (!B.hasAttributes()) 1736 return false; 1737 1738 F.addAttributes(AttributeList::FunctionIndex, B); 1739 1740 return true; 1741 } 1742 1743 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1744 if (skipFunction(F)) 1745 return false; 1746 1747 bool Changed = false; 1748 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1749 1750 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1751 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1752 1753 if (!EnablePreLink) 1754 Changed |= setFastFlags(F, Options); 1755 1756 for (auto &BB : F) { 1757 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1758 // Ignore non-calls. 1759 CallInst *CI = dyn_cast<CallInst>(I); 1760 ++I; 1761 if (!CI) continue; 1762 1763 // Ignore indirect calls. 1764 Function *Callee = CI->getCalledFunction(); 1765 if (Callee == 0) continue; 1766 1767 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1768 dbgs().flush()); 1769 if(Simplifier.fold(CI, AA)) 1770 Changed = true; 1771 } 1772 } 1773 return Changed; 1774 } 1775 1776 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1777 if (skipFunction(F) || UseNative.empty()) 1778 return false; 1779 1780 bool Changed = false; 1781 for (auto &BB : F) { 1782 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1783 // Ignore non-calls. 1784 CallInst *CI = dyn_cast<CallInst>(I); 1785 ++I; 1786 if (!CI) continue; 1787 1788 // Ignore indirect calls. 1789 Function *Callee = CI->getCalledFunction(); 1790 if (Callee == 0) continue; 1791 1792 if(Simplifier.useNative(CI)) 1793 Changed = true; 1794 } 1795 } 1796 return Changed; 1797 } 1798