1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/IRBuilder.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "amdgpu-simplifylib" 26 27 using namespace llvm; 28 29 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 30 cl::desc("Enable pre-link mode optimizations"), 31 cl::init(false), 32 cl::Hidden); 33 34 static cl::list<std::string> UseNative("amdgpu-use-native", 35 cl::desc("Comma separated list of functions to replace with native, or all"), 36 cl::CommaSeparated, cl::ValueOptional, 37 cl::Hidden); 38 39 #define MATH_PI numbers::pi 40 #define MATH_E numbers::e 41 #define MATH_SQRT2 numbers::sqrt2 42 #define MATH_SQRT1_2 numbers::inv_sqrt2 43 44 namespace llvm { 45 46 class AMDGPULibCalls { 47 private: 48 49 typedef llvm::AMDGPULibFunc FuncInfo; 50 51 const TargetMachine *TM; 52 53 // -fuse-native. 54 bool AllNative = false; 55 56 bool useNativeFunc(const StringRef F) const; 57 58 // Return a pointer (pointer expr) to the function if function definition with 59 // "FuncName" exists. It may create a new function prototype in pre-link mode. 60 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 61 62 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); 63 64 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 65 66 /* Specialized optimizations */ 67 68 // recip (half or native) 69 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 70 71 // divide (half or native) 72 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 73 74 // pow/powr/pown 75 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 76 77 // rootn 78 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 79 80 // fma/mad 81 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 82 83 // -fuse-native for sincos 84 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 85 86 // evaluate calls if calls' arguments are constants. 87 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0, 88 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 89 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); 90 91 // sqrt 92 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 93 94 // sin/cos 95 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 96 97 // __read_pipe/__write_pipe 98 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 99 const FuncInfo &FInfo); 100 101 // llvm.amdgcn.wavefrontsize 102 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 103 104 // Get insertion point at entry. 105 BasicBlock::iterator getEntryIns(CallInst * UI); 106 // Insert an Alloc instruction. 107 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 108 // Get a scalar native builtin single argument FP function 109 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 110 111 protected: 112 CallInst *CI; 113 114 bool isUnsafeMath(const CallInst *CI) const; 115 116 void replaceCall(Value *With) { 117 CI->replaceAllUsesWith(With); 118 CI->eraseFromParent(); 119 } 120 121 public: 122 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 123 124 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 125 126 void initNativeFuncs(); 127 128 // Replace a normal math function call with that native version 129 bool useNative(CallInst *CI); 130 }; 131 132 } // end llvm namespace 133 134 namespace { 135 136 class AMDGPUSimplifyLibCalls : public FunctionPass { 137 138 AMDGPULibCalls Simplifier; 139 140 public: 141 static char ID; // Pass identification 142 143 AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) 144 : FunctionPass(ID), Simplifier(TM) { 145 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 146 } 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 AU.addRequired<AAResultsWrapperPass>(); 150 } 151 152 bool runOnFunction(Function &M) override; 153 }; 154 155 class AMDGPUUseNativeCalls : public FunctionPass { 156 157 AMDGPULibCalls Simplifier; 158 159 public: 160 static char ID; // Pass identification 161 162 AMDGPUUseNativeCalls() : FunctionPass(ID) { 163 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 164 Simplifier.initNativeFuncs(); 165 } 166 167 bool runOnFunction(Function &F) override; 168 }; 169 170 } // end anonymous namespace. 171 172 char AMDGPUSimplifyLibCalls::ID = 0; 173 char AMDGPUUseNativeCalls::ID = 0; 174 175 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 176 "Simplify well-known AMD library calls", false, false) 177 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 178 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 179 "Simplify well-known AMD library calls", false, false) 180 181 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 182 "Replace builtin math calls with that native versions.", 183 false, false) 184 185 template <typename IRB> 186 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 187 const Twine &Name = "") { 188 CallInst *R = B.CreateCall(Callee, Arg, Name); 189 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 190 R->setCallingConv(F->getCallingConv()); 191 return R; 192 } 193 194 template <typename IRB> 195 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 196 Value *Arg2, const Twine &Name = "") { 197 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 198 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 199 R->setCallingConv(F->getCallingConv()); 200 return R; 201 } 202 203 // Data structures for table-driven optimizations. 204 // FuncTbl works for both f32 and f64 functions with 1 input argument 205 206 struct TableEntry { 207 double result; 208 double input; 209 }; 210 211 /* a list of {result, input} */ 212 static const TableEntry tbl_acos[] = { 213 {MATH_PI / 2.0, 0.0}, 214 {MATH_PI / 2.0, -0.0}, 215 {0.0, 1.0}, 216 {MATH_PI, -1.0} 217 }; 218 static const TableEntry tbl_acosh[] = { 219 {0.0, 1.0} 220 }; 221 static const TableEntry tbl_acospi[] = { 222 {0.5, 0.0}, 223 {0.5, -0.0}, 224 {0.0, 1.0}, 225 {1.0, -1.0} 226 }; 227 static const TableEntry tbl_asin[] = { 228 {0.0, 0.0}, 229 {-0.0, -0.0}, 230 {MATH_PI / 2.0, 1.0}, 231 {-MATH_PI / 2.0, -1.0} 232 }; 233 static const TableEntry tbl_asinh[] = { 234 {0.0, 0.0}, 235 {-0.0, -0.0} 236 }; 237 static const TableEntry tbl_asinpi[] = { 238 {0.0, 0.0}, 239 {-0.0, -0.0}, 240 {0.5, 1.0}, 241 {-0.5, -1.0} 242 }; 243 static const TableEntry tbl_atan[] = { 244 {0.0, 0.0}, 245 {-0.0, -0.0}, 246 {MATH_PI / 4.0, 1.0}, 247 {-MATH_PI / 4.0, -1.0} 248 }; 249 static const TableEntry tbl_atanh[] = { 250 {0.0, 0.0}, 251 {-0.0, -0.0} 252 }; 253 static const TableEntry tbl_atanpi[] = { 254 {0.0, 0.0}, 255 {-0.0, -0.0}, 256 {0.25, 1.0}, 257 {-0.25, -1.0} 258 }; 259 static const TableEntry tbl_cbrt[] = { 260 {0.0, 0.0}, 261 {-0.0, -0.0}, 262 {1.0, 1.0}, 263 {-1.0, -1.0}, 264 }; 265 static const TableEntry tbl_cos[] = { 266 {1.0, 0.0}, 267 {1.0, -0.0} 268 }; 269 static const TableEntry tbl_cosh[] = { 270 {1.0, 0.0}, 271 {1.0, -0.0} 272 }; 273 static const TableEntry tbl_cospi[] = { 274 {1.0, 0.0}, 275 {1.0, -0.0} 276 }; 277 static const TableEntry tbl_erfc[] = { 278 {1.0, 0.0}, 279 {1.0, -0.0} 280 }; 281 static const TableEntry tbl_erf[] = { 282 {0.0, 0.0}, 283 {-0.0, -0.0} 284 }; 285 static const TableEntry tbl_exp[] = { 286 {1.0, 0.0}, 287 {1.0, -0.0}, 288 {MATH_E, 1.0} 289 }; 290 static const TableEntry tbl_exp2[] = { 291 {1.0, 0.0}, 292 {1.0, -0.0}, 293 {2.0, 1.0} 294 }; 295 static const TableEntry tbl_exp10[] = { 296 {1.0, 0.0}, 297 {1.0, -0.0}, 298 {10.0, 1.0} 299 }; 300 static const TableEntry tbl_expm1[] = { 301 {0.0, 0.0}, 302 {-0.0, -0.0} 303 }; 304 static const TableEntry tbl_log[] = { 305 {0.0, 1.0}, 306 {1.0, MATH_E} 307 }; 308 static const TableEntry tbl_log2[] = { 309 {0.0, 1.0}, 310 {1.0, 2.0} 311 }; 312 static const TableEntry tbl_log10[] = { 313 {0.0, 1.0}, 314 {1.0, 10.0} 315 }; 316 static const TableEntry tbl_rsqrt[] = { 317 {1.0, 1.0}, 318 {MATH_SQRT1_2, 2.0} 319 }; 320 static const TableEntry tbl_sin[] = { 321 {0.0, 0.0}, 322 {-0.0, -0.0} 323 }; 324 static const TableEntry tbl_sinh[] = { 325 {0.0, 0.0}, 326 {-0.0, -0.0} 327 }; 328 static const TableEntry tbl_sinpi[] = { 329 {0.0, 0.0}, 330 {-0.0, -0.0} 331 }; 332 static const TableEntry tbl_sqrt[] = { 333 {0.0, 0.0}, 334 {1.0, 1.0}, 335 {MATH_SQRT2, 2.0} 336 }; 337 static const TableEntry tbl_tan[] = { 338 {0.0, 0.0}, 339 {-0.0, -0.0} 340 }; 341 static const TableEntry tbl_tanh[] = { 342 {0.0, 0.0}, 343 {-0.0, -0.0} 344 }; 345 static const TableEntry tbl_tanpi[] = { 346 {0.0, 0.0}, 347 {-0.0, -0.0} 348 }; 349 static const TableEntry tbl_tgamma[] = { 350 {1.0, 1.0}, 351 {1.0, 2.0}, 352 {2.0, 3.0}, 353 {6.0, 4.0} 354 }; 355 356 static bool HasNative(AMDGPULibFunc::EFuncId id) { 357 switch(id) { 358 case AMDGPULibFunc::EI_DIVIDE: 359 case AMDGPULibFunc::EI_COS: 360 case AMDGPULibFunc::EI_EXP: 361 case AMDGPULibFunc::EI_EXP2: 362 case AMDGPULibFunc::EI_EXP10: 363 case AMDGPULibFunc::EI_LOG: 364 case AMDGPULibFunc::EI_LOG2: 365 case AMDGPULibFunc::EI_LOG10: 366 case AMDGPULibFunc::EI_POWR: 367 case AMDGPULibFunc::EI_RECIP: 368 case AMDGPULibFunc::EI_RSQRT: 369 case AMDGPULibFunc::EI_SIN: 370 case AMDGPULibFunc::EI_SINCOS: 371 case AMDGPULibFunc::EI_SQRT: 372 case AMDGPULibFunc::EI_TAN: 373 return true; 374 default:; 375 } 376 return false; 377 } 378 379 using TableRef = ArrayRef<TableEntry>; 380 381 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 382 switch(id) { 383 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 384 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 385 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 386 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 387 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 388 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 389 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 390 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 391 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 392 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 393 case AMDGPULibFunc::EI_NCOS: 394 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 395 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 396 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 397 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 398 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 399 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 400 case AMDGPULibFunc::EI_NEXP2: 401 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 402 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 403 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 404 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 405 case AMDGPULibFunc::EI_NLOG2: 406 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 407 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 408 case AMDGPULibFunc::EI_NRSQRT: 409 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 410 case AMDGPULibFunc::EI_NSIN: 411 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 412 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 413 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 414 case AMDGPULibFunc::EI_NSQRT: 415 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 416 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 417 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 418 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 419 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 420 default:; 421 } 422 return TableRef(); 423 } 424 425 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 426 return FInfo.getLeads()[0].VectorSize; 427 } 428 429 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 430 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 431 } 432 433 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 434 // If we are doing PreLinkOpt, the function is external. So it is safe to 435 // use getOrInsertFunction() at this stage. 436 437 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 438 : AMDGPULibFunc::getFunction(M, fInfo); 439 } 440 441 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, 442 FuncInfo &FInfo) { 443 return AMDGPULibFunc::parse(FMangledName, FInfo); 444 } 445 446 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 447 if (auto Op = dyn_cast<FPMathOperator>(CI)) 448 if (Op->isFast()) 449 return true; 450 const Function *F = CI->getParent()->getParent(); 451 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 452 return Attr.getValueAsBool(); 453 } 454 455 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 456 return AllNative || llvm::is_contained(UseNative, F); 457 } 458 459 void AMDGPULibCalls::initNativeFuncs() { 460 AllNative = useNativeFunc("all") || 461 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 462 UseNative.begin()->empty()); 463 } 464 465 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 466 bool native_sin = useNativeFunc("sin"); 467 bool native_cos = useNativeFunc("cos"); 468 469 if (native_sin && native_cos) { 470 Module *M = aCI->getModule(); 471 Value *opr0 = aCI->getArgOperand(0); 472 473 AMDGPULibFunc nf; 474 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 475 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 476 477 nf.setPrefix(AMDGPULibFunc::NATIVE); 478 nf.setId(AMDGPULibFunc::EI_SIN); 479 FunctionCallee sinExpr = getFunction(M, nf); 480 481 nf.setPrefix(AMDGPULibFunc::NATIVE); 482 nf.setId(AMDGPULibFunc::EI_COS); 483 FunctionCallee cosExpr = getFunction(M, nf); 484 if (sinExpr && cosExpr) { 485 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 486 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 487 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 488 489 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 490 << " with native version of sin/cos"); 491 492 replaceCall(sinval); 493 return true; 494 } 495 } 496 return false; 497 } 498 499 bool AMDGPULibCalls::useNative(CallInst *aCI) { 500 CI = aCI; 501 Function *Callee = aCI->getCalledFunction(); 502 503 FuncInfo FInfo; 504 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || 505 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 506 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 507 !(AllNative || useNativeFunc(FInfo.getName()))) { 508 return false; 509 } 510 511 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 512 return sincosUseNative(aCI, FInfo); 513 514 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 515 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 516 if (!F) 517 return false; 518 519 aCI->setCalledFunction(F); 520 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 521 << " with native version"); 522 return true; 523 } 524 525 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 526 // builtin, with appended type size and alignment arguments, where 2 or 4 527 // indicates the original number of arguments. The library has optimized version 528 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 529 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 530 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 531 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 532 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 533 const FuncInfo &FInfo) { 534 auto *Callee = CI->getCalledFunction(); 535 if (!Callee->isDeclaration()) 536 return false; 537 538 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 539 auto *M = Callee->getParent(); 540 auto &Ctx = M->getContext(); 541 std::string Name = std::string(Callee->getName()); 542 auto NumArg = CI->arg_size(); 543 if (NumArg != 4 && NumArg != 6) 544 return false; 545 auto *PacketSize = CI->getArgOperand(NumArg - 2); 546 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 547 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 548 return false; 549 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 550 Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue(); 551 if (Alignment != Size) 552 return false; 553 554 Type *PtrElemTy; 555 if (Size <= 8) 556 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 557 else 558 PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); 559 unsigned PtrArgLoc = CI->arg_size() - 3; 560 auto PtrArg = CI->getArgOperand(PtrArgLoc); 561 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 562 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 563 564 SmallVector<llvm::Type *, 6> ArgTys; 565 for (unsigned I = 0; I != PtrArgLoc; ++I) 566 ArgTys.push_back(CI->getArgOperand(I)->getType()); 567 ArgTys.push_back(PtrTy); 568 569 Name = Name + "_" + std::to_string(Size); 570 auto *FTy = FunctionType::get(Callee->getReturnType(), 571 ArrayRef<Type *>(ArgTys), false); 572 AMDGPULibFunc NewLibFunc(Name, FTy); 573 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 574 if (!F) 575 return false; 576 577 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 578 SmallVector<Value *, 6> Args; 579 for (unsigned I = 0; I != PtrArgLoc; ++I) 580 Args.push_back(CI->getArgOperand(I)); 581 Args.push_back(BCast); 582 583 auto *NCI = B.CreateCall(F, Args); 584 NCI->setAttributes(CI->getAttributes()); 585 CI->replaceAllUsesWith(NCI); 586 CI->dropAllReferences(); 587 CI->eraseFromParent(); 588 589 return true; 590 } 591 592 // This function returns false if no change; return true otherwise. 593 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 594 this->CI = CI; 595 Function *Callee = CI->getCalledFunction(); 596 597 // Ignore indirect calls. 598 if (Callee == nullptr) 599 return false; 600 601 BasicBlock *BB = CI->getParent(); 602 LLVMContext &Context = CI->getParent()->getContext(); 603 IRBuilder<> B(Context); 604 605 // Set the builder to the instruction after the call. 606 B.SetInsertPoint(BB, CI->getIterator()); 607 608 // Copy fast flags from the original call. 609 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 610 B.setFastMathFlags(FPOp->getFastMathFlags()); 611 612 switch (Callee->getIntrinsicID()) { 613 default: 614 break; 615 case Intrinsic::amdgcn_wavefrontsize: 616 return !EnablePreLink && fold_wavefrontsize(CI, B); 617 } 618 619 FuncInfo FInfo; 620 if (!parseFunctionName(Callee->getName(), FInfo)) 621 return false; 622 623 // Further check the number of arguments to see if they match. 624 if (CI->arg_size() != FInfo.getNumArgs()) 625 return false; 626 627 if (TDOFold(CI, FInfo)) 628 return true; 629 630 // Under unsafe-math, evaluate calls if possible. 631 // According to Brian Sumner, we can do this for all f32 function calls 632 // using host's double function calls. 633 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 634 return true; 635 636 // Specialized optimizations for each function call 637 switch (FInfo.getId()) { 638 case AMDGPULibFunc::EI_RECIP: 639 // skip vector function 640 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 641 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 642 "recip must be an either native or half function"); 643 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 644 645 case AMDGPULibFunc::EI_DIVIDE: 646 // skip vector function 647 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 648 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 649 "divide must be an either native or half function"); 650 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 651 652 case AMDGPULibFunc::EI_POW: 653 case AMDGPULibFunc::EI_POWR: 654 case AMDGPULibFunc::EI_POWN: 655 return fold_pow(CI, B, FInfo); 656 657 case AMDGPULibFunc::EI_ROOTN: 658 // skip vector function 659 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 660 661 case AMDGPULibFunc::EI_FMA: 662 case AMDGPULibFunc::EI_MAD: 663 case AMDGPULibFunc::EI_NFMA: 664 // skip vector function 665 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 666 667 case AMDGPULibFunc::EI_SQRT: 668 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 669 case AMDGPULibFunc::EI_COS: 670 case AMDGPULibFunc::EI_SIN: 671 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 672 getArgType(FInfo) == AMDGPULibFunc::F64) 673 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 674 return fold_sincos(CI, B, AA); 675 676 break; 677 case AMDGPULibFunc::EI_READ_PIPE_2: 678 case AMDGPULibFunc::EI_READ_PIPE_4: 679 case AMDGPULibFunc::EI_WRITE_PIPE_2: 680 case AMDGPULibFunc::EI_WRITE_PIPE_4: 681 return fold_read_write_pipe(CI, B, FInfo); 682 683 default: 684 break; 685 } 686 687 return false; 688 } 689 690 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 691 // Table-Driven optimization 692 const TableRef tr = getOptTable(FInfo.getId()); 693 if (tr.empty()) 694 return false; 695 696 int const sz = (int)tr.size(); 697 Value *opr0 = CI->getArgOperand(0); 698 699 if (getVecSize(FInfo) > 1) { 700 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 701 SmallVector<double, 0> DVal; 702 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 703 ConstantFP *eltval = dyn_cast<ConstantFP>( 704 CV->getElementAsConstant((unsigned)eltNo)); 705 assert(eltval && "Non-FP arguments in math function!"); 706 bool found = false; 707 for (int i=0; i < sz; ++i) { 708 if (eltval->isExactlyValue(tr[i].input)) { 709 DVal.push_back(tr[i].result); 710 found = true; 711 break; 712 } 713 } 714 if (!found) { 715 // This vector constants not handled yet. 716 return false; 717 } 718 } 719 LLVMContext &context = CI->getParent()->getParent()->getContext(); 720 Constant *nval; 721 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 722 SmallVector<float, 0> FVal; 723 for (unsigned i = 0; i < DVal.size(); ++i) { 724 FVal.push_back((float)DVal[i]); 725 } 726 ArrayRef<float> tmp(FVal); 727 nval = ConstantDataVector::get(context, tmp); 728 } else { // F64 729 ArrayRef<double> tmp(DVal); 730 nval = ConstantDataVector::get(context, tmp); 731 } 732 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 733 replaceCall(nval); 734 return true; 735 } 736 } else { 737 // Scalar version 738 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 739 for (int i = 0; i < sz; ++i) { 740 if (CF->isExactlyValue(tr[i].input)) { 741 Value *nval = ConstantFP::get(CF->getType(), tr[i].result); 742 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 743 replaceCall(nval); 744 return true; 745 } 746 } 747 } 748 } 749 750 return false; 751 } 752 753 // [native_]half_recip(c) ==> 1.0/c 754 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 755 const FuncInfo &FInfo) { 756 Value *opr0 = CI->getArgOperand(0); 757 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 758 // Just create a normal div. Later, InstCombine will be able 759 // to compute the divide into a constant (avoid check float infinity 760 // or subnormal at this point). 761 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 762 opr0, 763 "recip2div"); 764 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 765 replaceCall(nval); 766 return true; 767 } 768 return false; 769 } 770 771 // [native_]half_divide(x, c) ==> x/c 772 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 773 const FuncInfo &FInfo) { 774 Value *opr0 = CI->getArgOperand(0); 775 Value *opr1 = CI->getArgOperand(1); 776 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 777 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 778 779 if ((CF0 && CF1) || // both are constants 780 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 781 // CF1 is constant && f32 divide 782 { 783 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 784 opr1, "__div2recip"); 785 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 786 replaceCall(nval); 787 return true; 788 } 789 return false; 790 } 791 792 namespace llvm { 793 static double log2(double V) { 794 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 795 return ::log2(V); 796 #else 797 return log(V) / numbers::ln2; 798 #endif 799 } 800 } 801 802 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 803 const FuncInfo &FInfo) { 804 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 805 FInfo.getId() == AMDGPULibFunc::EI_POWR || 806 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 807 "fold_pow: encounter a wrong function call"); 808 809 Value *opr0, *opr1; 810 ConstantFP *CF; 811 ConstantInt *CINT; 812 ConstantAggregateZero *CZero; 813 Type *eltType; 814 815 opr0 = CI->getArgOperand(0); 816 opr1 = CI->getArgOperand(1); 817 CZero = dyn_cast<ConstantAggregateZero>(opr1); 818 if (getVecSize(FInfo) == 1) { 819 eltType = opr0->getType(); 820 CF = dyn_cast<ConstantFP>(opr1); 821 CINT = dyn_cast<ConstantInt>(opr1); 822 } else { 823 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 824 assert(VTy && "Oprand of vector function should be of vectortype"); 825 eltType = VTy->getElementType(); 826 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 827 828 // Now, only Handle vector const whose elements have the same value. 829 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 830 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 831 } 832 833 // No unsafe math , no constant argument, do nothing 834 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 835 return false; 836 837 // 0x1111111 means that we don't do anything for this call. 838 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 839 840 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 841 // pow/powr/pown(x, 0) == 1 842 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 843 Constant *cnval = ConstantFP::get(eltType, 1.0); 844 if (getVecSize(FInfo) > 1) { 845 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 846 } 847 replaceCall(cnval); 848 return true; 849 } 850 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 851 // pow/powr/pown(x, 1.0) = x 852 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 853 replaceCall(opr0); 854 return true; 855 } 856 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 857 // pow/powr/pown(x, 2.0) = x*x 858 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 859 << "\n"); 860 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 861 replaceCall(nval); 862 return true; 863 } 864 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 865 // pow/powr/pown(x, -1.0) = 1.0/x 866 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 867 Constant *cnval = ConstantFP::get(eltType, 1.0); 868 if (getVecSize(FInfo) > 1) { 869 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 870 } 871 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 872 replaceCall(nval); 873 return true; 874 } 875 876 Module *M = CI->getModule(); 877 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 878 // pow[r](x, [-]0.5) = sqrt(x) 879 bool issqrt = CF->isExactlyValue(0.5); 880 if (FunctionCallee FPExpr = 881 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 882 : AMDGPULibFunc::EI_RSQRT, 883 FInfo))) { 884 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 885 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 886 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 887 : "__pow2rsqrt"); 888 replaceCall(nval); 889 return true; 890 } 891 } 892 893 if (!isUnsafeMath(CI)) 894 return false; 895 896 // Unsafe Math optimization 897 898 // Remember that ci_opr1 is set if opr1 is integral 899 if (CF) { 900 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 901 ? (double)CF->getValueAPF().convertToFloat() 902 : CF->getValueAPF().convertToDouble(); 903 int ival = (int)dval; 904 if ((double)ival == dval) { 905 ci_opr1 = ival; 906 } else 907 ci_opr1 = 0x11111111; 908 } 909 910 // pow/powr/pown(x, c) = [1/](x*x*..x); where 911 // trunc(c) == c && the number of x == c && |c| <= 12 912 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 913 if (abs_opr1 <= 12) { 914 Constant *cnval; 915 Value *nval; 916 if (abs_opr1 == 0) { 917 cnval = ConstantFP::get(eltType, 1.0); 918 if (getVecSize(FInfo) > 1) { 919 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 920 } 921 nval = cnval; 922 } else { 923 Value *valx2 = nullptr; 924 nval = nullptr; 925 while (abs_opr1 > 0) { 926 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 927 if (abs_opr1 & 1) { 928 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 929 } 930 abs_opr1 >>= 1; 931 } 932 } 933 934 if (ci_opr1 < 0) { 935 cnval = ConstantFP::get(eltType, 1.0); 936 if (getVecSize(FInfo) > 1) { 937 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 938 } 939 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 940 } 941 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 942 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 943 << ")\n"); 944 replaceCall(nval); 945 return true; 946 } 947 948 // powr ---> exp2(y * log2(x)) 949 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 950 FunctionCallee ExpExpr = 951 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 952 if (!ExpExpr) 953 return false; 954 955 bool needlog = false; 956 bool needabs = false; 957 bool needcopysign = false; 958 Constant *cnval = nullptr; 959 if (getVecSize(FInfo) == 1) { 960 CF = dyn_cast<ConstantFP>(opr0); 961 962 if (CF) { 963 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 964 ? (double)CF->getValueAPF().convertToFloat() 965 : CF->getValueAPF().convertToDouble(); 966 967 V = log2(std::abs(V)); 968 cnval = ConstantFP::get(eltType, V); 969 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 970 CF->isNegative(); 971 } else { 972 needlog = true; 973 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 974 (!CF || CF->isNegative()); 975 } 976 } else { 977 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 978 979 if (!CDV) { 980 needlog = true; 981 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 982 } else { 983 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 984 "Wrong vector size detected"); 985 986 SmallVector<double, 0> DVal; 987 for (int i=0; i < getVecSize(FInfo); ++i) { 988 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 989 ? (double)CDV->getElementAsFloat(i) 990 : CDV->getElementAsDouble(i); 991 if (V < 0.0) needcopysign = true; 992 V = log2(std::abs(V)); 993 DVal.push_back(V); 994 } 995 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 996 SmallVector<float, 0> FVal; 997 for (unsigned i=0; i < DVal.size(); ++i) { 998 FVal.push_back((float)DVal[i]); 999 } 1000 ArrayRef<float> tmp(FVal); 1001 cnval = ConstantDataVector::get(M->getContext(), tmp); 1002 } else { 1003 ArrayRef<double> tmp(DVal); 1004 cnval = ConstantDataVector::get(M->getContext(), tmp); 1005 } 1006 } 1007 } 1008 1009 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1010 // We cannot handle corner cases for a general pow() function, give up 1011 // unless y is a constant integral value. Then proceed as if it were pown. 1012 if (getVecSize(FInfo) == 1) { 1013 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1014 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1015 ? (double)CF->getValueAPF().convertToFloat() 1016 : CF->getValueAPF().convertToDouble(); 1017 if (y != (double)(int64_t)y) 1018 return false; 1019 } else 1020 return false; 1021 } else { 1022 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1023 for (int i=0; i < getVecSize(FInfo); ++i) { 1024 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1025 ? (double)CDV->getElementAsFloat(i) 1026 : CDV->getElementAsDouble(i); 1027 if (y != (double)(int64_t)y) 1028 return false; 1029 } 1030 } else 1031 return false; 1032 } 1033 } 1034 1035 Value *nval; 1036 if (needabs) { 1037 FunctionCallee AbsExpr = 1038 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1039 if (!AbsExpr) 1040 return false; 1041 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1042 } else { 1043 nval = cnval ? cnval : opr0; 1044 } 1045 if (needlog) { 1046 FunctionCallee LogExpr = 1047 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1048 if (!LogExpr) 1049 return false; 1050 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1051 } 1052 1053 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1054 // convert int(32) to fp(f32 or f64) 1055 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1056 } 1057 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1058 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1059 1060 if (needcopysign) { 1061 Value *opr_n; 1062 Type* rTy = opr0->getType(); 1063 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1064 Type *nTy = nTyS; 1065 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1066 nTy = FixedVectorType::get(nTyS, vTy); 1067 unsigned size = nTy->getScalarSizeInBits(); 1068 opr_n = CI->getArgOperand(1); 1069 if (opr_n->getType()->isIntegerTy()) 1070 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1071 else 1072 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1073 1074 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1075 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1076 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1077 nval = B.CreateBitCast(nval, opr0->getType()); 1078 } 1079 1080 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1081 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1082 replaceCall(nval); 1083 1084 return true; 1085 } 1086 1087 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1088 const FuncInfo &FInfo) { 1089 Value *opr0 = CI->getArgOperand(0); 1090 Value *opr1 = CI->getArgOperand(1); 1091 1092 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1093 if (!CINT) { 1094 return false; 1095 } 1096 int ci_opr1 = (int)CINT->getSExtValue(); 1097 if (ci_opr1 == 1) { // rootn(x, 1) = x 1098 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1099 replaceCall(opr0); 1100 return true; 1101 } 1102 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1103 Module *M = CI->getModule(); 1104 if (FunctionCallee FPExpr = 1105 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1106 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1107 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1108 replaceCall(nval); 1109 return true; 1110 } 1111 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1112 Module *M = CI->getModule(); 1113 if (FunctionCallee FPExpr = 1114 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1115 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1116 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1117 replaceCall(nval); 1118 return true; 1119 } 1120 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1121 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1122 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1123 opr0, 1124 "__rootn2div"); 1125 replaceCall(nval); 1126 return true; 1127 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1128 Module *M = CI->getModule(); 1129 if (FunctionCallee FPExpr = 1130 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1131 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1132 << ")\n"); 1133 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1134 replaceCall(nval); 1135 return true; 1136 } 1137 } 1138 return false; 1139 } 1140 1141 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1142 const FuncInfo &FInfo) { 1143 Value *opr0 = CI->getArgOperand(0); 1144 Value *opr1 = CI->getArgOperand(1); 1145 Value *opr2 = CI->getArgOperand(2); 1146 1147 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1148 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1149 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1150 // fma/mad(a, b, c) = c if a=0 || b=0 1151 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1152 replaceCall(opr2); 1153 return true; 1154 } 1155 if (CF0 && CF0->isExactlyValue(1.0f)) { 1156 // fma/mad(a, b, c) = b+c if a=1 1157 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1158 << "\n"); 1159 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1160 replaceCall(nval); 1161 return true; 1162 } 1163 if (CF1 && CF1->isExactlyValue(1.0f)) { 1164 // fma/mad(a, b, c) = a+c if b=1 1165 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1166 << "\n"); 1167 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1168 replaceCall(nval); 1169 return true; 1170 } 1171 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1172 if (CF->isZero()) { 1173 // fma/mad(a, b, c) = a*b if c=0 1174 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1175 << *opr1 << "\n"); 1176 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1177 replaceCall(nval); 1178 return true; 1179 } 1180 } 1181 1182 return false; 1183 } 1184 1185 // Get a scalar native builtin single argument FP function 1186 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1187 const FuncInfo &FInfo) { 1188 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1189 return nullptr; 1190 FuncInfo nf = FInfo; 1191 nf.setPrefix(AMDGPULibFunc::NATIVE); 1192 return getFunction(M, nf); 1193 } 1194 1195 // fold sqrt -> native_sqrt (x) 1196 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1197 const FuncInfo &FInfo) { 1198 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1199 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1200 if (FunctionCallee FPExpr = getNativeFunction( 1201 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1202 Value *opr0 = CI->getArgOperand(0); 1203 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1204 << "sqrt(" << *opr0 << ")\n"); 1205 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1206 replaceCall(nval); 1207 return true; 1208 } 1209 } 1210 return false; 1211 } 1212 1213 // fold sin, cos -> sincos. 1214 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1215 AliasAnalysis *AA) { 1216 AMDGPULibFunc fInfo; 1217 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1218 return false; 1219 1220 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1221 fInfo.getId() == AMDGPULibFunc::EI_COS); 1222 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1223 1224 Value *CArgVal = CI->getArgOperand(0); 1225 BasicBlock * const CBB = CI->getParent(); 1226 1227 int const MaxScan = 30; 1228 bool Changed = false; 1229 1230 { // fold in load value. 1231 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1232 if (LI && LI->getParent() == CBB) { 1233 BasicBlock::iterator BBI = LI->getIterator(); 1234 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1235 if (AvailableVal) { 1236 Changed = true; 1237 CArgVal->replaceAllUsesWith(AvailableVal); 1238 if (CArgVal->getNumUses() == 0) 1239 LI->eraseFromParent(); 1240 CArgVal = CI->getArgOperand(0); 1241 } 1242 } 1243 } 1244 1245 Module *M = CI->getModule(); 1246 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1247 std::string const PairName = fInfo.mangle(); 1248 1249 CallInst *UI = nullptr; 1250 for (User* U : CArgVal->users()) { 1251 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1252 if (!XI || XI == CI || XI->getParent() != CBB) 1253 continue; 1254 1255 Function *UCallee = XI->getCalledFunction(); 1256 if (!UCallee || !UCallee->getName().equals(PairName)) 1257 continue; 1258 1259 BasicBlock::iterator BBI = CI->getIterator(); 1260 if (BBI == CI->getParent()->begin()) 1261 break; 1262 --BBI; 1263 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1264 if (cast<Instruction>(BBI) == XI) { 1265 UI = XI; 1266 break; 1267 } 1268 } 1269 if (UI) break; 1270 } 1271 1272 if (!UI) 1273 return Changed; 1274 1275 // Merge the sin and cos. 1276 1277 // for OpenCL 2.0 we have only generic implementation of sincos 1278 // function. 1279 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1280 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1281 FunctionCallee Fsincos = getFunction(M, nf); 1282 if (!Fsincos) 1283 return Changed; 1284 1285 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1286 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1287 B.SetInsertPoint(UI); 1288 1289 Value *P = Alloc; 1290 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1291 // The allocaInst allocates the memory in private address space. This need 1292 // to be bitcasted to point to the address space of cos pointer type. 1293 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1294 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1295 P = B.CreateAddrSpaceCast(Alloc, PTy); 1296 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1297 1298 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1299 << *Call << "\n"); 1300 1301 if (!isSin) { // CI->cos, UI->sin 1302 B.SetInsertPoint(&*ItOld); 1303 UI->replaceAllUsesWith(&*Call); 1304 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1305 CI->replaceAllUsesWith(Reload); 1306 UI->eraseFromParent(); 1307 CI->eraseFromParent(); 1308 } else { // CI->sin, UI->cos 1309 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1310 UI->replaceAllUsesWith(Reload); 1311 CI->replaceAllUsesWith(Call); 1312 UI->eraseFromParent(); 1313 CI->eraseFromParent(); 1314 } 1315 return true; 1316 } 1317 1318 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1319 if (!TM) 1320 return false; 1321 1322 StringRef CPU = TM->getTargetCPU(); 1323 StringRef Features = TM->getTargetFeatureString(); 1324 if ((CPU.empty() || CPU.equals_insensitive("generic")) && 1325 (Features.empty() || !Features.contains_insensitive("wavefrontsize"))) 1326 return false; 1327 1328 Function *F = CI->getParent()->getParent(); 1329 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1330 unsigned N = ST.getWavefrontSize(); 1331 1332 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1333 << N << "\n"); 1334 1335 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1336 CI->eraseFromParent(); 1337 return true; 1338 } 1339 1340 // Get insertion point at entry. 1341 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1342 Function * Func = UI->getParent()->getParent(); 1343 BasicBlock * BB = &Func->getEntryBlock(); 1344 assert(BB && "Entry block not found!"); 1345 BasicBlock::iterator ItNew = BB->begin(); 1346 return ItNew; 1347 } 1348 1349 // Insert a AllocsInst at the beginning of function entry block. 1350 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1351 const char *prefix) { 1352 BasicBlock::iterator ItNew = getEntryIns(UI); 1353 Function *UCallee = UI->getCalledFunction(); 1354 Type *RetType = UCallee->getReturnType(); 1355 B.SetInsertPoint(&*ItNew); 1356 AllocaInst *Alloc = 1357 B.CreateAlloca(RetType, nullptr, std::string(prefix) + UI->getName()); 1358 Alloc->setAlignment( 1359 Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1360 return Alloc; 1361 } 1362 1363 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, 1364 double& Res0, double& Res1, 1365 Constant *copr0, Constant *copr1, 1366 Constant *copr2) { 1367 // By default, opr0/opr1/opr3 holds values of float/double type. 1368 // If they are not float/double, each function has to its 1369 // operand separately. 1370 double opr0=0.0, opr1=0.0, opr2=0.0; 1371 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1372 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1373 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1374 if (fpopr0) { 1375 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1376 ? fpopr0->getValueAPF().convertToDouble() 1377 : (double)fpopr0->getValueAPF().convertToFloat(); 1378 } 1379 1380 if (fpopr1) { 1381 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1382 ? fpopr1->getValueAPF().convertToDouble() 1383 : (double)fpopr1->getValueAPF().convertToFloat(); 1384 } 1385 1386 if (fpopr2) { 1387 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1388 ? fpopr2->getValueAPF().convertToDouble() 1389 : (double)fpopr2->getValueAPF().convertToFloat(); 1390 } 1391 1392 switch (FInfo.getId()) { 1393 default : return false; 1394 1395 case AMDGPULibFunc::EI_ACOS: 1396 Res0 = acos(opr0); 1397 return true; 1398 1399 case AMDGPULibFunc::EI_ACOSH: 1400 // acosh(x) == log(x + sqrt(x*x - 1)) 1401 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1402 return true; 1403 1404 case AMDGPULibFunc::EI_ACOSPI: 1405 Res0 = acos(opr0) / MATH_PI; 1406 return true; 1407 1408 case AMDGPULibFunc::EI_ASIN: 1409 Res0 = asin(opr0); 1410 return true; 1411 1412 case AMDGPULibFunc::EI_ASINH: 1413 // asinh(x) == log(x + sqrt(x*x + 1)) 1414 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1415 return true; 1416 1417 case AMDGPULibFunc::EI_ASINPI: 1418 Res0 = asin(opr0) / MATH_PI; 1419 return true; 1420 1421 case AMDGPULibFunc::EI_ATAN: 1422 Res0 = atan(opr0); 1423 return true; 1424 1425 case AMDGPULibFunc::EI_ATANH: 1426 // atanh(x) == (log(x+1) - log(x-1))/2; 1427 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1428 return true; 1429 1430 case AMDGPULibFunc::EI_ATANPI: 1431 Res0 = atan(opr0) / MATH_PI; 1432 return true; 1433 1434 case AMDGPULibFunc::EI_CBRT: 1435 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1436 return true; 1437 1438 case AMDGPULibFunc::EI_COS: 1439 Res0 = cos(opr0); 1440 return true; 1441 1442 case AMDGPULibFunc::EI_COSH: 1443 Res0 = cosh(opr0); 1444 return true; 1445 1446 case AMDGPULibFunc::EI_COSPI: 1447 Res0 = cos(MATH_PI * opr0); 1448 return true; 1449 1450 case AMDGPULibFunc::EI_EXP: 1451 Res0 = exp(opr0); 1452 return true; 1453 1454 case AMDGPULibFunc::EI_EXP2: 1455 Res0 = pow(2.0, opr0); 1456 return true; 1457 1458 case AMDGPULibFunc::EI_EXP10: 1459 Res0 = pow(10.0, opr0); 1460 return true; 1461 1462 case AMDGPULibFunc::EI_EXPM1: 1463 Res0 = exp(opr0) - 1.0; 1464 return true; 1465 1466 case AMDGPULibFunc::EI_LOG: 1467 Res0 = log(opr0); 1468 return true; 1469 1470 case AMDGPULibFunc::EI_LOG2: 1471 Res0 = log(opr0) / log(2.0); 1472 return true; 1473 1474 case AMDGPULibFunc::EI_LOG10: 1475 Res0 = log(opr0) / log(10.0); 1476 return true; 1477 1478 case AMDGPULibFunc::EI_RSQRT: 1479 Res0 = 1.0 / sqrt(opr0); 1480 return true; 1481 1482 case AMDGPULibFunc::EI_SIN: 1483 Res0 = sin(opr0); 1484 return true; 1485 1486 case AMDGPULibFunc::EI_SINH: 1487 Res0 = sinh(opr0); 1488 return true; 1489 1490 case AMDGPULibFunc::EI_SINPI: 1491 Res0 = sin(MATH_PI * opr0); 1492 return true; 1493 1494 case AMDGPULibFunc::EI_SQRT: 1495 Res0 = sqrt(opr0); 1496 return true; 1497 1498 case AMDGPULibFunc::EI_TAN: 1499 Res0 = tan(opr0); 1500 return true; 1501 1502 case AMDGPULibFunc::EI_TANH: 1503 Res0 = tanh(opr0); 1504 return true; 1505 1506 case AMDGPULibFunc::EI_TANPI: 1507 Res0 = tan(MATH_PI * opr0); 1508 return true; 1509 1510 case AMDGPULibFunc::EI_RECIP: 1511 Res0 = 1.0 / opr0; 1512 return true; 1513 1514 // two-arg functions 1515 case AMDGPULibFunc::EI_DIVIDE: 1516 Res0 = opr0 / opr1; 1517 return true; 1518 1519 case AMDGPULibFunc::EI_POW: 1520 case AMDGPULibFunc::EI_POWR: 1521 Res0 = pow(opr0, opr1); 1522 return true; 1523 1524 case AMDGPULibFunc::EI_POWN: { 1525 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1526 double val = (double)iopr1->getSExtValue(); 1527 Res0 = pow(opr0, val); 1528 return true; 1529 } 1530 return false; 1531 } 1532 1533 case AMDGPULibFunc::EI_ROOTN: { 1534 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1535 double val = (double)iopr1->getSExtValue(); 1536 Res0 = pow(opr0, 1.0 / val); 1537 return true; 1538 } 1539 return false; 1540 } 1541 1542 // with ptr arg 1543 case AMDGPULibFunc::EI_SINCOS: 1544 Res0 = sin(opr0); 1545 Res1 = cos(opr0); 1546 return true; 1547 1548 // three-arg functions 1549 case AMDGPULibFunc::EI_FMA: 1550 case AMDGPULibFunc::EI_MAD: 1551 Res0 = opr0 * opr1 + opr2; 1552 return true; 1553 } 1554 1555 return false; 1556 } 1557 1558 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { 1559 int numArgs = (int)aCI->arg_size(); 1560 if (numArgs > 3) 1561 return false; 1562 1563 Constant *copr0 = nullptr; 1564 Constant *copr1 = nullptr; 1565 Constant *copr2 = nullptr; 1566 if (numArgs > 0) { 1567 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1568 return false; 1569 } 1570 1571 if (numArgs > 1) { 1572 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1573 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1574 return false; 1575 } 1576 } 1577 1578 if (numArgs > 2) { 1579 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1580 return false; 1581 } 1582 1583 // At this point, all arguments to aCI are constants. 1584 1585 // max vector size is 16, and sincos will generate two results. 1586 double DVal0[16], DVal1[16]; 1587 int FuncVecSize = getVecSize(FInfo); 1588 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1589 if (FuncVecSize == 1) { 1590 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1591 DVal1[0], copr0, copr1, copr2)) { 1592 return false; 1593 } 1594 } else { 1595 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1596 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1597 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1598 for (int i = 0; i < FuncVecSize; ++i) { 1599 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1600 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1601 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1602 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1603 DVal1[i], celt0, celt1, celt2)) { 1604 return false; 1605 } 1606 } 1607 } 1608 1609 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1610 Constant *nval0, *nval1; 1611 if (FuncVecSize == 1) { 1612 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1613 if (hasTwoResults) 1614 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1615 } else { 1616 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1617 SmallVector <float, 0> FVal0, FVal1; 1618 for (int i = 0; i < FuncVecSize; ++i) 1619 FVal0.push_back((float)DVal0[i]); 1620 ArrayRef<float> tmp0(FVal0); 1621 nval0 = ConstantDataVector::get(context, tmp0); 1622 if (hasTwoResults) { 1623 for (int i = 0; i < FuncVecSize; ++i) 1624 FVal1.push_back((float)DVal1[i]); 1625 ArrayRef<float> tmp1(FVal1); 1626 nval1 = ConstantDataVector::get(context, tmp1); 1627 } 1628 } else { 1629 ArrayRef<double> tmp0(DVal0); 1630 nval0 = ConstantDataVector::get(context, tmp0); 1631 if (hasTwoResults) { 1632 ArrayRef<double> tmp1(DVal1); 1633 nval1 = ConstantDataVector::get(context, tmp1); 1634 } 1635 } 1636 } 1637 1638 if (hasTwoResults) { 1639 // sincos 1640 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1641 "math function with ptr arg not supported yet"); 1642 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1643 } 1644 1645 replaceCall(nval0); 1646 return true; 1647 } 1648 1649 // Public interface to the Simplify LibCalls pass. 1650 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { 1651 return new AMDGPUSimplifyLibCalls(TM); 1652 } 1653 1654 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1655 return new AMDGPUUseNativeCalls(); 1656 } 1657 1658 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1659 if (skipFunction(F)) 1660 return false; 1661 1662 bool Changed = false; 1663 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1664 1665 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1666 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1667 1668 for (auto &BB : F) { 1669 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1670 // Ignore non-calls. 1671 CallInst *CI = dyn_cast<CallInst>(I); 1672 ++I; 1673 // Ignore intrinsics that do not become real instructions. 1674 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1675 continue; 1676 1677 // Ignore indirect calls. 1678 Function *Callee = CI->getCalledFunction(); 1679 if (Callee == nullptr) 1680 continue; 1681 1682 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1683 dbgs().flush()); 1684 if(Simplifier.fold(CI, AA)) 1685 Changed = true; 1686 } 1687 } 1688 return Changed; 1689 } 1690 1691 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1692 FunctionAnalysisManager &AM) { 1693 AMDGPULibCalls Simplifier(&TM); 1694 Simplifier.initNativeFuncs(); 1695 1696 bool Changed = false; 1697 auto AA = &AM.getResult<AAManager>(F); 1698 1699 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1700 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1701 1702 for (auto &BB : F) { 1703 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1704 // Ignore non-calls. 1705 CallInst *CI = dyn_cast<CallInst>(I); 1706 ++I; 1707 // Ignore intrinsics that do not become real instructions. 1708 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1709 continue; 1710 1711 // Ignore indirect calls. 1712 Function *Callee = CI->getCalledFunction(); 1713 if (Callee == nullptr) 1714 continue; 1715 1716 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1717 dbgs().flush()); 1718 if (Simplifier.fold(CI, AA)) 1719 Changed = true; 1720 } 1721 } 1722 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1723 } 1724 1725 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1726 if (skipFunction(F) || UseNative.empty()) 1727 return false; 1728 1729 bool Changed = false; 1730 for (auto &BB : F) { 1731 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1732 // Ignore non-calls. 1733 CallInst *CI = dyn_cast<CallInst>(I); 1734 ++I; 1735 if (!CI) continue; 1736 1737 // Ignore indirect calls. 1738 Function *Callee = CI->getCalledFunction(); 1739 if (Callee == nullptr) 1740 continue; 1741 1742 if (Simplifier.useNative(CI)) 1743 Changed = true; 1744 } 1745 } 1746 return Changed; 1747 } 1748 1749 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1750 FunctionAnalysisManager &AM) { 1751 if (UseNative.empty()) 1752 return PreservedAnalyses::all(); 1753 1754 AMDGPULibCalls Simplifier; 1755 Simplifier.initNativeFuncs(); 1756 1757 bool Changed = false; 1758 for (auto &BB : F) { 1759 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1760 // Ignore non-calls. 1761 CallInst *CI = dyn_cast<CallInst>(I); 1762 ++I; 1763 if (!CI) 1764 continue; 1765 1766 // Ignore indirect calls. 1767 Function *Callee = CI->getCalledFunction(); 1768 if (Callee == nullptr) 1769 continue; 1770 1771 if (Simplifier.useNative(CI)) 1772 Changed = true; 1773 } 1774 } 1775 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1776 } 1777