xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPULibFunc.h"
16 #include "GCNSubtarget.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include <cmath>
25 
26 #define DEBUG_TYPE "amdgpu-simplifylib"
27 
28 using namespace llvm;
29 
30 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
31   cl::desc("Enable pre-link mode optimizations"),
32   cl::init(false),
33   cl::Hidden);
34 
35 static cl::list<std::string> UseNative("amdgpu-use-native",
36   cl::desc("Comma separated list of functions to replace with native, or all"),
37   cl::CommaSeparated, cl::ValueOptional,
38   cl::Hidden);
39 
40 #define MATH_PI      numbers::pi
41 #define MATH_E       numbers::e
42 #define MATH_SQRT2   numbers::sqrt2
43 #define MATH_SQRT1_2 numbers::inv_sqrt2
44 
45 namespace llvm {
46 
47 class AMDGPULibCalls {
48 private:
49 
50   typedef llvm::AMDGPULibFunc FuncInfo;
51 
52   const TargetMachine *TM;
53 
54   // -fuse-native.
55   bool AllNative = false;
56 
57   bool useNativeFunc(const StringRef F) const;
58 
59   // Return a pointer (pointer expr) to the function if function definition with
60   // "FuncName" exists. It may create a new function prototype in pre-link mode.
61   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
62 
63   bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo);
64 
65   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
66 
67   /* Specialized optimizations */
68 
69   // recip (half or native)
70   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
71 
72   // divide (half or native)
73   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
74 
75   // pow/powr/pown
76   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
77 
78   // rootn
79   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
80 
81   // fma/mad
82   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
83 
84   // -fuse-native for sincos
85   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
86 
87   // evaluate calls if calls' arguments are constants.
88   bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0,
89     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
90   bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo);
91 
92   // sqrt
93   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
94 
95   // sin/cos
96   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
97 
98   // __read_pipe/__write_pipe
99   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
100                             const FuncInfo &FInfo);
101 
102   // llvm.amdgcn.wavefrontsize
103   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
104 
105   // Get insertion point at entry.
106   BasicBlock::iterator getEntryIns(CallInst * UI);
107   // Insert an Alloc instruction.
108   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
109   // Get a scalar native builtin single argument FP function
110   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
111 
112 protected:
113   CallInst *CI;
114 
115   bool isUnsafeMath(const CallInst *CI) const;
116 
117   void replaceCall(Value *With) {
118     CI->replaceAllUsesWith(With);
119     CI->eraseFromParent();
120   }
121 
122 public:
123   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
124 
125   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
126 
127   void initNativeFuncs();
128 
129   // Replace a normal math function call with that native version
130   bool useNative(CallInst *CI);
131 };
132 
133 } // end llvm namespace
134 
135 namespace {
136 
137   class AMDGPUSimplifyLibCalls : public FunctionPass {
138 
139   AMDGPULibCalls Simplifier;
140 
141   public:
142     static char ID; // Pass identification
143 
144     AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr)
145       : FunctionPass(ID), Simplifier(TM) {
146       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
147     }
148 
149     void getAnalysisUsage(AnalysisUsage &AU) const override {
150       AU.addRequired<AAResultsWrapperPass>();
151     }
152 
153     bool runOnFunction(Function &M) override;
154   };
155 
156   class AMDGPUUseNativeCalls : public FunctionPass {
157 
158   AMDGPULibCalls Simplifier;
159 
160   public:
161     static char ID; // Pass identification
162 
163     AMDGPUUseNativeCalls() : FunctionPass(ID) {
164       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
165       Simplifier.initNativeFuncs();
166     }
167 
168     bool runOnFunction(Function &F) override;
169   };
170 
171 } // end anonymous namespace.
172 
173 char AMDGPUSimplifyLibCalls::ID = 0;
174 char AMDGPUUseNativeCalls::ID = 0;
175 
176 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
177                       "Simplify well-known AMD library calls", false, false)
178 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
179 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
180                     "Simplify well-known AMD library calls", false, false)
181 
182 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
183                 "Replace builtin math calls with that native versions.",
184                 false, false)
185 
186 template <typename IRB>
187 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
188                               const Twine &Name = "") {
189   CallInst *R = B.CreateCall(Callee, Arg, Name);
190   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
191     R->setCallingConv(F->getCallingConv());
192   return R;
193 }
194 
195 template <typename IRB>
196 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
197                                Value *Arg2, const Twine &Name = "") {
198   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
199   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
200     R->setCallingConv(F->getCallingConv());
201   return R;
202 }
203 
204 //  Data structures for table-driven optimizations.
205 //  FuncTbl works for both f32 and f64 functions with 1 input argument
206 
207 struct TableEntry {
208   double   result;
209   double   input;
210 };
211 
212 /* a list of {result, input} */
213 static const TableEntry tbl_acos[] = {
214   {MATH_PI / 2.0, 0.0},
215   {MATH_PI / 2.0, -0.0},
216   {0.0, 1.0},
217   {MATH_PI, -1.0}
218 };
219 static const TableEntry tbl_acosh[] = {
220   {0.0, 1.0}
221 };
222 static const TableEntry tbl_acospi[] = {
223   {0.5, 0.0},
224   {0.5, -0.0},
225   {0.0, 1.0},
226   {1.0, -1.0}
227 };
228 static const TableEntry tbl_asin[] = {
229   {0.0, 0.0},
230   {-0.0, -0.0},
231   {MATH_PI / 2.0, 1.0},
232   {-MATH_PI / 2.0, -1.0}
233 };
234 static const TableEntry tbl_asinh[] = {
235   {0.0, 0.0},
236   {-0.0, -0.0}
237 };
238 static const TableEntry tbl_asinpi[] = {
239   {0.0, 0.0},
240   {-0.0, -0.0},
241   {0.5, 1.0},
242   {-0.5, -1.0}
243 };
244 static const TableEntry tbl_atan[] = {
245   {0.0, 0.0},
246   {-0.0, -0.0},
247   {MATH_PI / 4.0, 1.0},
248   {-MATH_PI / 4.0, -1.0}
249 };
250 static const TableEntry tbl_atanh[] = {
251   {0.0, 0.0},
252   {-0.0, -0.0}
253 };
254 static const TableEntry tbl_atanpi[] = {
255   {0.0, 0.0},
256   {-0.0, -0.0},
257   {0.25, 1.0},
258   {-0.25, -1.0}
259 };
260 static const TableEntry tbl_cbrt[] = {
261   {0.0, 0.0},
262   {-0.0, -0.0},
263   {1.0, 1.0},
264   {-1.0, -1.0},
265 };
266 static const TableEntry tbl_cos[] = {
267   {1.0, 0.0},
268   {1.0, -0.0}
269 };
270 static const TableEntry tbl_cosh[] = {
271   {1.0, 0.0},
272   {1.0, -0.0}
273 };
274 static const TableEntry tbl_cospi[] = {
275   {1.0, 0.0},
276   {1.0, -0.0}
277 };
278 static const TableEntry tbl_erfc[] = {
279   {1.0, 0.0},
280   {1.0, -0.0}
281 };
282 static const TableEntry tbl_erf[] = {
283   {0.0, 0.0},
284   {-0.0, -0.0}
285 };
286 static const TableEntry tbl_exp[] = {
287   {1.0, 0.0},
288   {1.0, -0.0},
289   {MATH_E, 1.0}
290 };
291 static const TableEntry tbl_exp2[] = {
292   {1.0, 0.0},
293   {1.0, -0.0},
294   {2.0, 1.0}
295 };
296 static const TableEntry tbl_exp10[] = {
297   {1.0, 0.0},
298   {1.0, -0.0},
299   {10.0, 1.0}
300 };
301 static const TableEntry tbl_expm1[] = {
302   {0.0, 0.0},
303   {-0.0, -0.0}
304 };
305 static const TableEntry tbl_log[] = {
306   {0.0, 1.0},
307   {1.0, MATH_E}
308 };
309 static const TableEntry tbl_log2[] = {
310   {0.0, 1.0},
311   {1.0, 2.0}
312 };
313 static const TableEntry tbl_log10[] = {
314   {0.0, 1.0},
315   {1.0, 10.0}
316 };
317 static const TableEntry tbl_rsqrt[] = {
318   {1.0, 1.0},
319   {MATH_SQRT1_2, 2.0}
320 };
321 static const TableEntry tbl_sin[] = {
322   {0.0, 0.0},
323   {-0.0, -0.0}
324 };
325 static const TableEntry tbl_sinh[] = {
326   {0.0, 0.0},
327   {-0.0, -0.0}
328 };
329 static const TableEntry tbl_sinpi[] = {
330   {0.0, 0.0},
331   {-0.0, -0.0}
332 };
333 static const TableEntry tbl_sqrt[] = {
334   {0.0, 0.0},
335   {1.0, 1.0},
336   {MATH_SQRT2, 2.0}
337 };
338 static const TableEntry tbl_tan[] = {
339   {0.0, 0.0},
340   {-0.0, -0.0}
341 };
342 static const TableEntry tbl_tanh[] = {
343   {0.0, 0.0},
344   {-0.0, -0.0}
345 };
346 static const TableEntry tbl_tanpi[] = {
347   {0.0, 0.0},
348   {-0.0, -0.0}
349 };
350 static const TableEntry tbl_tgamma[] = {
351   {1.0, 1.0},
352   {1.0, 2.0},
353   {2.0, 3.0},
354   {6.0, 4.0}
355 };
356 
357 static bool HasNative(AMDGPULibFunc::EFuncId id) {
358   switch(id) {
359   case AMDGPULibFunc::EI_DIVIDE:
360   case AMDGPULibFunc::EI_COS:
361   case AMDGPULibFunc::EI_EXP:
362   case AMDGPULibFunc::EI_EXP2:
363   case AMDGPULibFunc::EI_EXP10:
364   case AMDGPULibFunc::EI_LOG:
365   case AMDGPULibFunc::EI_LOG2:
366   case AMDGPULibFunc::EI_LOG10:
367   case AMDGPULibFunc::EI_POWR:
368   case AMDGPULibFunc::EI_RECIP:
369   case AMDGPULibFunc::EI_RSQRT:
370   case AMDGPULibFunc::EI_SIN:
371   case AMDGPULibFunc::EI_SINCOS:
372   case AMDGPULibFunc::EI_SQRT:
373   case AMDGPULibFunc::EI_TAN:
374     return true;
375   default:;
376   }
377   return false;
378 }
379 
380 using TableRef = ArrayRef<TableEntry>;
381 
382 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
383   switch(id) {
384   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
385   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
386   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
387   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
388   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
389   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
390   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
391   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
392   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
393   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
394   case AMDGPULibFunc::EI_NCOS:
395   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
396   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
397   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
398   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
399   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
400   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
401   case AMDGPULibFunc::EI_NEXP2:
402   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
403   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
404   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
405   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
406   case AMDGPULibFunc::EI_NLOG2:
407   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
408   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
409   case AMDGPULibFunc::EI_NRSQRT:
410   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
411   case AMDGPULibFunc::EI_NSIN:
412   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
413   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
414   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
415   case AMDGPULibFunc::EI_NSQRT:
416   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
417   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
418   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
419   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
420   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
421   default:;
422   }
423   return TableRef();
424 }
425 
426 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
427   return FInfo.getLeads()[0].VectorSize;
428 }
429 
430 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
431   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
432 }
433 
434 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
435   // If we are doing PreLinkOpt, the function is external. So it is safe to
436   // use getOrInsertFunction() at this stage.
437 
438   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
439                        : AMDGPULibFunc::getFunction(M, fInfo);
440 }
441 
442 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName,
443                                        FuncInfo &FInfo) {
444   return AMDGPULibFunc::parse(FMangledName, FInfo);
445 }
446 
447 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
448   if (auto Op = dyn_cast<FPMathOperator>(CI))
449     if (Op->isFast())
450       return true;
451   const Function *F = CI->getParent()->getParent();
452   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
453   return Attr.getValueAsBool();
454 }
455 
456 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
457   return AllNative || llvm::is_contained(UseNative, F);
458 }
459 
460 void AMDGPULibCalls::initNativeFuncs() {
461   AllNative = useNativeFunc("all") ||
462               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
463                UseNative.begin()->empty());
464 }
465 
466 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
467   bool native_sin = useNativeFunc("sin");
468   bool native_cos = useNativeFunc("cos");
469 
470   if (native_sin && native_cos) {
471     Module *M = aCI->getModule();
472     Value *opr0 = aCI->getArgOperand(0);
473 
474     AMDGPULibFunc nf;
475     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
476     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
477 
478     nf.setPrefix(AMDGPULibFunc::NATIVE);
479     nf.setId(AMDGPULibFunc::EI_SIN);
480     FunctionCallee sinExpr = getFunction(M, nf);
481 
482     nf.setPrefix(AMDGPULibFunc::NATIVE);
483     nf.setId(AMDGPULibFunc::EI_COS);
484     FunctionCallee cosExpr = getFunction(M, nf);
485     if (sinExpr && cosExpr) {
486       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
487       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
488       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
489 
490       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
491                                           << " with native version of sin/cos");
492 
493       replaceCall(sinval);
494       return true;
495     }
496   }
497   return false;
498 }
499 
500 bool AMDGPULibCalls::useNative(CallInst *aCI) {
501   CI = aCI;
502   Function *Callee = aCI->getCalledFunction();
503 
504   FuncInfo FInfo;
505   if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() ||
506       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
507       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
508       !(AllNative || useNativeFunc(FInfo.getName()))) {
509     return false;
510   }
511 
512   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
513     return sincosUseNative(aCI, FInfo);
514 
515   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
516   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
517   if (!F)
518     return false;
519 
520   aCI->setCalledFunction(F);
521   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
522                                       << " with native version");
523   return true;
524 }
525 
526 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
527 // builtin, with appended type size and alignment arguments, where 2 or 4
528 // indicates the original number of arguments. The library has optimized version
529 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
530 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
531 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
532 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
533 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
534                                           const FuncInfo &FInfo) {
535   auto *Callee = CI->getCalledFunction();
536   if (!Callee->isDeclaration())
537     return false;
538 
539   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
540   auto *M = Callee->getParent();
541   auto &Ctx = M->getContext();
542   std::string Name = std::string(Callee->getName());
543   auto NumArg = CI->arg_size();
544   if (NumArg != 4 && NumArg != 6)
545     return false;
546   auto *PacketSize = CI->getArgOperand(NumArg - 2);
547   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
548   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
549     return false;
550   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
551   Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue();
552   if (Alignment != Size)
553     return false;
554 
555   Type *PtrElemTy;
556   if (Size <= 8)
557     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
558   else
559     PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8);
560   unsigned PtrArgLoc = CI->arg_size() - 3;
561   auto PtrArg = CI->getArgOperand(PtrArgLoc);
562   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
563   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
564 
565   SmallVector<llvm::Type *, 6> ArgTys;
566   for (unsigned I = 0; I != PtrArgLoc; ++I)
567     ArgTys.push_back(CI->getArgOperand(I)->getType());
568   ArgTys.push_back(PtrTy);
569 
570   Name = Name + "_" + std::to_string(Size);
571   auto *FTy = FunctionType::get(Callee->getReturnType(),
572                                 ArrayRef<Type *>(ArgTys), false);
573   AMDGPULibFunc NewLibFunc(Name, FTy);
574   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
575   if (!F)
576     return false;
577 
578   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
579   SmallVector<Value *, 6> Args;
580   for (unsigned I = 0; I != PtrArgLoc; ++I)
581     Args.push_back(CI->getArgOperand(I));
582   Args.push_back(BCast);
583 
584   auto *NCI = B.CreateCall(F, Args);
585   NCI->setAttributes(CI->getAttributes());
586   CI->replaceAllUsesWith(NCI);
587   CI->dropAllReferences();
588   CI->eraseFromParent();
589 
590   return true;
591 }
592 
593 // This function returns false if no change; return true otherwise.
594 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
595   this->CI = CI;
596   Function *Callee = CI->getCalledFunction();
597 
598   // Ignore indirect calls.
599   if (Callee == nullptr)
600     return false;
601 
602   BasicBlock *BB = CI->getParent();
603   LLVMContext &Context = CI->getParent()->getContext();
604   IRBuilder<> B(Context);
605 
606   // Set the builder to the instruction after the call.
607   B.SetInsertPoint(BB, CI->getIterator());
608 
609   // Copy fast flags from the original call.
610   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
611     B.setFastMathFlags(FPOp->getFastMathFlags());
612 
613   switch (Callee->getIntrinsicID()) {
614   default:
615     break;
616   case Intrinsic::amdgcn_wavefrontsize:
617     return !EnablePreLink && fold_wavefrontsize(CI, B);
618   }
619 
620   FuncInfo FInfo;
621   if (!parseFunctionName(Callee->getName(), FInfo))
622     return false;
623 
624   // Further check the number of arguments to see if they match.
625   if (CI->arg_size() != FInfo.getNumArgs())
626     return false;
627 
628   if (TDOFold(CI, FInfo))
629     return true;
630 
631   // Under unsafe-math, evaluate calls if possible.
632   // According to Brian Sumner, we can do this for all f32 function calls
633   // using host's double function calls.
634   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
635     return true;
636 
637   // Specialized optimizations for each function call
638   switch (FInfo.getId()) {
639   case AMDGPULibFunc::EI_RECIP:
640     // skip vector function
641     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
642              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
643             "recip must be an either native or half function");
644     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
645 
646   case AMDGPULibFunc::EI_DIVIDE:
647     // skip vector function
648     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
649              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
650             "divide must be an either native or half function");
651     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
652 
653   case AMDGPULibFunc::EI_POW:
654   case AMDGPULibFunc::EI_POWR:
655   case AMDGPULibFunc::EI_POWN:
656     return fold_pow(CI, B, FInfo);
657 
658   case AMDGPULibFunc::EI_ROOTN:
659     // skip vector function
660     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
661 
662   case AMDGPULibFunc::EI_FMA:
663   case AMDGPULibFunc::EI_MAD:
664   case AMDGPULibFunc::EI_NFMA:
665     // skip vector function
666     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
667 
668   case AMDGPULibFunc::EI_SQRT:
669     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
670   case AMDGPULibFunc::EI_COS:
671   case AMDGPULibFunc::EI_SIN:
672     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
673          getArgType(FInfo) == AMDGPULibFunc::F64)
674         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
675       return fold_sincos(CI, B, AA);
676 
677     break;
678   case AMDGPULibFunc::EI_READ_PIPE_2:
679   case AMDGPULibFunc::EI_READ_PIPE_4:
680   case AMDGPULibFunc::EI_WRITE_PIPE_2:
681   case AMDGPULibFunc::EI_WRITE_PIPE_4:
682     return fold_read_write_pipe(CI, B, FInfo);
683 
684   default:
685     break;
686   }
687 
688   return false;
689 }
690 
691 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
692   // Table-Driven optimization
693   const TableRef tr = getOptTable(FInfo.getId());
694   if (tr.empty())
695     return false;
696 
697   int const sz = (int)tr.size();
698   Value *opr0 = CI->getArgOperand(0);
699 
700   if (getVecSize(FInfo) > 1) {
701     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
702       SmallVector<double, 0> DVal;
703       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
704         ConstantFP *eltval = dyn_cast<ConstantFP>(
705                                CV->getElementAsConstant((unsigned)eltNo));
706         assert(eltval && "Non-FP arguments in math function!");
707         bool found = false;
708         for (int i=0; i < sz; ++i) {
709           if (eltval->isExactlyValue(tr[i].input)) {
710             DVal.push_back(tr[i].result);
711             found = true;
712             break;
713           }
714         }
715         if (!found) {
716           // This vector constants not handled yet.
717           return false;
718         }
719       }
720       LLVMContext &context = CI->getParent()->getParent()->getContext();
721       Constant *nval;
722       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
723         SmallVector<float, 0> FVal;
724         for (unsigned i = 0; i < DVal.size(); ++i) {
725           FVal.push_back((float)DVal[i]);
726         }
727         ArrayRef<float> tmp(FVal);
728         nval = ConstantDataVector::get(context, tmp);
729       } else { // F64
730         ArrayRef<double> tmp(DVal);
731         nval = ConstantDataVector::get(context, tmp);
732       }
733       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
734       replaceCall(nval);
735       return true;
736     }
737   } else {
738     // Scalar version
739     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
740       for (int i = 0; i < sz; ++i) {
741         if (CF->isExactlyValue(tr[i].input)) {
742           Value *nval = ConstantFP::get(CF->getType(), tr[i].result);
743           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
744           replaceCall(nval);
745           return true;
746         }
747       }
748     }
749   }
750 
751   return false;
752 }
753 
754 //  [native_]half_recip(c) ==> 1.0/c
755 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
756                                 const FuncInfo &FInfo) {
757   Value *opr0 = CI->getArgOperand(0);
758   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
759     // Just create a normal div. Later, InstCombine will be able
760     // to compute the divide into a constant (avoid check float infinity
761     // or subnormal at this point).
762     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
763                                opr0,
764                                "recip2div");
765     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
766     replaceCall(nval);
767     return true;
768   }
769   return false;
770 }
771 
772 //  [native_]half_divide(x, c) ==> x/c
773 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
774                                  const FuncInfo &FInfo) {
775   Value *opr0 = CI->getArgOperand(0);
776   Value *opr1 = CI->getArgOperand(1);
777   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
778   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
779 
780   if ((CF0 && CF1) ||  // both are constants
781       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
782       // CF1 is constant && f32 divide
783   {
784     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
785                                 opr1, "__div2recip");
786     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
787     replaceCall(nval);
788     return true;
789   }
790   return false;
791 }
792 
793 namespace llvm {
794 static double log2(double V) {
795 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
796   return ::log2(V);
797 #else
798   return log(V) / numbers::ln2;
799 #endif
800 }
801 }
802 
803 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
804                               const FuncInfo &FInfo) {
805   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
806           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
807           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
808          "fold_pow: encounter a wrong function call");
809 
810   Value *opr0, *opr1;
811   ConstantFP *CF;
812   ConstantInt *CINT;
813   ConstantAggregateZero *CZero;
814   Type *eltType;
815 
816   opr0 = CI->getArgOperand(0);
817   opr1 = CI->getArgOperand(1);
818   CZero = dyn_cast<ConstantAggregateZero>(opr1);
819   if (getVecSize(FInfo) == 1) {
820     eltType = opr0->getType();
821     CF = dyn_cast<ConstantFP>(opr1);
822     CINT = dyn_cast<ConstantInt>(opr1);
823   } else {
824     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
825     assert(VTy && "Oprand of vector function should be of vectortype");
826     eltType = VTy->getElementType();
827     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
828 
829     // Now, only Handle vector const whose elements have the same value.
830     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
831     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
832   }
833 
834   // No unsafe math , no constant argument, do nothing
835   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
836     return false;
837 
838   // 0x1111111 means that we don't do anything for this call.
839   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
840 
841   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
842     //  pow/powr/pown(x, 0) == 1
843     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
844     Constant *cnval = ConstantFP::get(eltType, 1.0);
845     if (getVecSize(FInfo) > 1) {
846       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
847     }
848     replaceCall(cnval);
849     return true;
850   }
851   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
852     // pow/powr/pown(x, 1.0) = x
853     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
854     replaceCall(opr0);
855     return true;
856   }
857   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
858     // pow/powr/pown(x, 2.0) = x*x
859     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
860                       << "\n");
861     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
862     replaceCall(nval);
863     return true;
864   }
865   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
866     // pow/powr/pown(x, -1.0) = 1.0/x
867     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
868     Constant *cnval = ConstantFP::get(eltType, 1.0);
869     if (getVecSize(FInfo) > 1) {
870       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
871     }
872     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
873     replaceCall(nval);
874     return true;
875   }
876 
877   Module *M = CI->getModule();
878   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
879     // pow[r](x, [-]0.5) = sqrt(x)
880     bool issqrt = CF->isExactlyValue(0.5);
881     if (FunctionCallee FPExpr =
882             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
883                                                 : AMDGPULibFunc::EI_RSQRT,
884                                          FInfo))) {
885       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
886                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
887       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
888                                                         : "__pow2rsqrt");
889       replaceCall(nval);
890       return true;
891     }
892   }
893 
894   if (!isUnsafeMath(CI))
895     return false;
896 
897   // Unsafe Math optimization
898 
899   // Remember that ci_opr1 is set if opr1 is integral
900   if (CF) {
901     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
902                     ? (double)CF->getValueAPF().convertToFloat()
903                     : CF->getValueAPF().convertToDouble();
904     int ival = (int)dval;
905     if ((double)ival == dval) {
906       ci_opr1 = ival;
907     } else
908       ci_opr1 = 0x11111111;
909   }
910 
911   // pow/powr/pown(x, c) = [1/](x*x*..x); where
912   //   trunc(c) == c && the number of x == c && |c| <= 12
913   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
914   if (abs_opr1 <= 12) {
915     Constant *cnval;
916     Value *nval;
917     if (abs_opr1 == 0) {
918       cnval = ConstantFP::get(eltType, 1.0);
919       if (getVecSize(FInfo) > 1) {
920         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
921       }
922       nval = cnval;
923     } else {
924       Value *valx2 = nullptr;
925       nval = nullptr;
926       while (abs_opr1 > 0) {
927         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
928         if (abs_opr1 & 1) {
929           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
930         }
931         abs_opr1 >>= 1;
932       }
933     }
934 
935     if (ci_opr1 < 0) {
936       cnval = ConstantFP::get(eltType, 1.0);
937       if (getVecSize(FInfo) > 1) {
938         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
939       }
940       nval = B.CreateFDiv(cnval, nval, "__1powprod");
941     }
942     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
943                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
944                       << ")\n");
945     replaceCall(nval);
946     return true;
947   }
948 
949   // powr ---> exp2(y * log2(x))
950   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
951   FunctionCallee ExpExpr =
952       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
953   if (!ExpExpr)
954     return false;
955 
956   bool needlog = false;
957   bool needabs = false;
958   bool needcopysign = false;
959   Constant *cnval = nullptr;
960   if (getVecSize(FInfo) == 1) {
961     CF = dyn_cast<ConstantFP>(opr0);
962 
963     if (CF) {
964       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
965                    ? (double)CF->getValueAPF().convertToFloat()
966                    : CF->getValueAPF().convertToDouble();
967 
968       V = log2(std::abs(V));
969       cnval = ConstantFP::get(eltType, V);
970       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
971                      CF->isNegative();
972     } else {
973       needlog = true;
974       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
975                                (!CF || CF->isNegative());
976     }
977   } else {
978     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
979 
980     if (!CDV) {
981       needlog = true;
982       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
983     } else {
984       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
985               "Wrong vector size detected");
986 
987       SmallVector<double, 0> DVal;
988       for (int i=0; i < getVecSize(FInfo); ++i) {
989         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
990                      ? (double)CDV->getElementAsFloat(i)
991                      : CDV->getElementAsDouble(i);
992         if (V < 0.0) needcopysign = true;
993         V = log2(std::abs(V));
994         DVal.push_back(V);
995       }
996       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
997         SmallVector<float, 0> FVal;
998         for (unsigned i=0; i < DVal.size(); ++i) {
999           FVal.push_back((float)DVal[i]);
1000         }
1001         ArrayRef<float> tmp(FVal);
1002         cnval = ConstantDataVector::get(M->getContext(), tmp);
1003       } else {
1004         ArrayRef<double> tmp(DVal);
1005         cnval = ConstantDataVector::get(M->getContext(), tmp);
1006       }
1007     }
1008   }
1009 
1010   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1011     // We cannot handle corner cases for a general pow() function, give up
1012     // unless y is a constant integral value. Then proceed as if it were pown.
1013     if (getVecSize(FInfo) == 1) {
1014       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1015         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1016                    ? (double)CF->getValueAPF().convertToFloat()
1017                    : CF->getValueAPF().convertToDouble();
1018         if (y != (double)(int64_t)y)
1019           return false;
1020       } else
1021         return false;
1022     } else {
1023       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1024         for (int i=0; i < getVecSize(FInfo); ++i) {
1025           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1026                      ? (double)CDV->getElementAsFloat(i)
1027                      : CDV->getElementAsDouble(i);
1028           if (y != (double)(int64_t)y)
1029             return false;
1030         }
1031       } else
1032         return false;
1033     }
1034   }
1035 
1036   Value *nval;
1037   if (needabs) {
1038     FunctionCallee AbsExpr =
1039         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1040     if (!AbsExpr)
1041       return false;
1042     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1043   } else {
1044     nval = cnval ? cnval : opr0;
1045   }
1046   if (needlog) {
1047     FunctionCallee LogExpr =
1048         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1049     if (!LogExpr)
1050       return false;
1051     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1052   }
1053 
1054   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1055     // convert int(32) to fp(f32 or f64)
1056     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1057   }
1058   nval = B.CreateFMul(opr1, nval, "__ylogx");
1059   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1060 
1061   if (needcopysign) {
1062     Value *opr_n;
1063     Type* rTy = opr0->getType();
1064     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1065     Type *nTy = nTyS;
1066     if (const auto *vTy = dyn_cast<FixedVectorType>(rTy))
1067       nTy = FixedVectorType::get(nTyS, vTy);
1068     unsigned size = nTy->getScalarSizeInBits();
1069     opr_n = CI->getArgOperand(1);
1070     if (opr_n->getType()->isIntegerTy())
1071       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1072     else
1073       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1074 
1075     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1076     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1077     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1078     nval = B.CreateBitCast(nval, opr0->getType());
1079   }
1080 
1081   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1082                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1083   replaceCall(nval);
1084 
1085   return true;
1086 }
1087 
1088 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1089                                 const FuncInfo &FInfo) {
1090   Value *opr0 = CI->getArgOperand(0);
1091   Value *opr1 = CI->getArgOperand(1);
1092 
1093   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1094   if (!CINT) {
1095     return false;
1096   }
1097   int ci_opr1 = (int)CINT->getSExtValue();
1098   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1099     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1100     replaceCall(opr0);
1101     return true;
1102   }
1103   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1104     Module *M = CI->getModule();
1105     if (FunctionCallee FPExpr =
1106             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1107       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1108       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1109       replaceCall(nval);
1110       return true;
1111     }
1112   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1113     Module *M = CI->getModule();
1114     if (FunctionCallee FPExpr =
1115             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1116       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1117       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1118       replaceCall(nval);
1119       return true;
1120     }
1121   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1122     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1123     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1124                                opr0,
1125                                "__rootn2div");
1126     replaceCall(nval);
1127     return true;
1128   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1129     Module *M = CI->getModule();
1130     if (FunctionCallee FPExpr =
1131             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1132       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1133                         << ")\n");
1134       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1135       replaceCall(nval);
1136       return true;
1137     }
1138   }
1139   return false;
1140 }
1141 
1142 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1143                                   const FuncInfo &FInfo) {
1144   Value *opr0 = CI->getArgOperand(0);
1145   Value *opr1 = CI->getArgOperand(1);
1146   Value *opr2 = CI->getArgOperand(2);
1147 
1148   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1149   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1150   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1151     // fma/mad(a, b, c) = c if a=0 || b=0
1152     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1153     replaceCall(opr2);
1154     return true;
1155   }
1156   if (CF0 && CF0->isExactlyValue(1.0f)) {
1157     // fma/mad(a, b, c) = b+c if a=1
1158     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1159                       << "\n");
1160     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1161     replaceCall(nval);
1162     return true;
1163   }
1164   if (CF1 && CF1->isExactlyValue(1.0f)) {
1165     // fma/mad(a, b, c) = a+c if b=1
1166     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1167                       << "\n");
1168     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1169     replaceCall(nval);
1170     return true;
1171   }
1172   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1173     if (CF->isZero()) {
1174       // fma/mad(a, b, c) = a*b if c=0
1175       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1176                         << *opr1 << "\n");
1177       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1178       replaceCall(nval);
1179       return true;
1180     }
1181   }
1182 
1183   return false;
1184 }
1185 
1186 // Get a scalar native builtin single argument FP function
1187 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1188                                                  const FuncInfo &FInfo) {
1189   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1190     return nullptr;
1191   FuncInfo nf = FInfo;
1192   nf.setPrefix(AMDGPULibFunc::NATIVE);
1193   return getFunction(M, nf);
1194 }
1195 
1196 // fold sqrt -> native_sqrt (x)
1197 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1198                                const FuncInfo &FInfo) {
1199   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1200       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1201     if (FunctionCallee FPExpr = getNativeFunction(
1202             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1203       Value *opr0 = CI->getArgOperand(0);
1204       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1205                         << "sqrt(" << *opr0 << ")\n");
1206       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1207       replaceCall(nval);
1208       return true;
1209     }
1210   }
1211   return false;
1212 }
1213 
1214 // fold sin, cos -> sincos.
1215 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1216                                  AliasAnalysis *AA) {
1217   AMDGPULibFunc fInfo;
1218   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1219     return false;
1220 
1221   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1222          fInfo.getId() == AMDGPULibFunc::EI_COS);
1223   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1224 
1225   Value *CArgVal = CI->getArgOperand(0);
1226   BasicBlock * const CBB = CI->getParent();
1227 
1228   int const MaxScan = 30;
1229   bool Changed = false;
1230 
1231   { // fold in load value.
1232     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1233     if (LI && LI->getParent() == CBB) {
1234       BasicBlock::iterator BBI = LI->getIterator();
1235       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1236       if (AvailableVal) {
1237         Changed = true;
1238         CArgVal->replaceAllUsesWith(AvailableVal);
1239         if (CArgVal->getNumUses() == 0)
1240           LI->eraseFromParent();
1241         CArgVal = CI->getArgOperand(0);
1242       }
1243     }
1244   }
1245 
1246   Module *M = CI->getModule();
1247   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1248   std::string const PairName = fInfo.mangle();
1249 
1250   CallInst *UI = nullptr;
1251   for (User* U : CArgVal->users()) {
1252     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1253     if (!XI || XI == CI || XI->getParent() != CBB)
1254       continue;
1255 
1256     Function *UCallee = XI->getCalledFunction();
1257     if (!UCallee || !UCallee->getName().equals(PairName))
1258       continue;
1259 
1260     BasicBlock::iterator BBI = CI->getIterator();
1261     if (BBI == CI->getParent()->begin())
1262       break;
1263     --BBI;
1264     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1265       if (cast<Instruction>(BBI) == XI) {
1266         UI = XI;
1267         break;
1268       }
1269     }
1270     if (UI) break;
1271   }
1272 
1273   if (!UI)
1274     return Changed;
1275 
1276   // Merge the sin and cos.
1277 
1278   // for OpenCL 2.0 we have only generic implementation of sincos
1279   // function.
1280   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1281   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1282   FunctionCallee Fsincos = getFunction(M, nf);
1283   if (!Fsincos)
1284     return Changed;
1285 
1286   BasicBlock::iterator ItOld = B.GetInsertPoint();
1287   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1288   B.SetInsertPoint(UI);
1289 
1290   Value *P = Alloc;
1291   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1292   // The allocaInst allocates the memory in private address space. This need
1293   // to be bitcasted to point to the address space of cos pointer type.
1294   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1295   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1296     P = B.CreateAddrSpaceCast(Alloc, PTy);
1297   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1298 
1299   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1300                     << *Call << "\n");
1301 
1302   if (!isSin) { // CI->cos, UI->sin
1303     B.SetInsertPoint(&*ItOld);
1304     UI->replaceAllUsesWith(&*Call);
1305     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1306     CI->replaceAllUsesWith(Reload);
1307     UI->eraseFromParent();
1308     CI->eraseFromParent();
1309   } else { // CI->sin, UI->cos
1310     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1311     UI->replaceAllUsesWith(Reload);
1312     CI->replaceAllUsesWith(Call);
1313     UI->eraseFromParent();
1314     CI->eraseFromParent();
1315   }
1316   return true;
1317 }
1318 
1319 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1320   if (!TM)
1321     return false;
1322 
1323   StringRef CPU = TM->getTargetCPU();
1324   StringRef Features = TM->getTargetFeatureString();
1325   if ((CPU.empty() || CPU.equals_insensitive("generic")) &&
1326       (Features.empty() || !Features.contains_insensitive("wavefrontsize")))
1327     return false;
1328 
1329   Function *F = CI->getParent()->getParent();
1330   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1331   unsigned N = ST.getWavefrontSize();
1332 
1333   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1334                << N << "\n");
1335 
1336   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1337   CI->eraseFromParent();
1338   return true;
1339 }
1340 
1341 // Get insertion point at entry.
1342 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1343   Function * Func = UI->getParent()->getParent();
1344   BasicBlock * BB = &Func->getEntryBlock();
1345   assert(BB && "Entry block not found!");
1346   BasicBlock::iterator ItNew = BB->begin();
1347   return ItNew;
1348 }
1349 
1350 // Insert a AllocsInst at the beginning of function entry block.
1351 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1352                                          const char *prefix) {
1353   BasicBlock::iterator ItNew = getEntryIns(UI);
1354   Function *UCallee = UI->getCalledFunction();
1355   Type *RetType = UCallee->getReturnType();
1356   B.SetInsertPoint(&*ItNew);
1357   AllocaInst *Alloc =
1358       B.CreateAlloca(RetType, nullptr, std::string(prefix) + UI->getName());
1359   Alloc->setAlignment(
1360       Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
1361   return Alloc;
1362 }
1363 
1364 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo,
1365                                             double& Res0, double& Res1,
1366                                             Constant *copr0, Constant *copr1,
1367                                             Constant *copr2) {
1368   // By default, opr0/opr1/opr3 holds values of float/double type.
1369   // If they are not float/double, each function has to its
1370   // operand separately.
1371   double opr0=0.0, opr1=0.0, opr2=0.0;
1372   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1373   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1374   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1375   if (fpopr0) {
1376     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1377              ? fpopr0->getValueAPF().convertToDouble()
1378              : (double)fpopr0->getValueAPF().convertToFloat();
1379   }
1380 
1381   if (fpopr1) {
1382     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1383              ? fpopr1->getValueAPF().convertToDouble()
1384              : (double)fpopr1->getValueAPF().convertToFloat();
1385   }
1386 
1387   if (fpopr2) {
1388     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1389              ? fpopr2->getValueAPF().convertToDouble()
1390              : (double)fpopr2->getValueAPF().convertToFloat();
1391   }
1392 
1393   switch (FInfo.getId()) {
1394   default : return false;
1395 
1396   case AMDGPULibFunc::EI_ACOS:
1397     Res0 = acos(opr0);
1398     return true;
1399 
1400   case AMDGPULibFunc::EI_ACOSH:
1401     // acosh(x) == log(x + sqrt(x*x - 1))
1402     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1403     return true;
1404 
1405   case AMDGPULibFunc::EI_ACOSPI:
1406     Res0 = acos(opr0) / MATH_PI;
1407     return true;
1408 
1409   case AMDGPULibFunc::EI_ASIN:
1410     Res0 = asin(opr0);
1411     return true;
1412 
1413   case AMDGPULibFunc::EI_ASINH:
1414     // asinh(x) == log(x + sqrt(x*x + 1))
1415     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1416     return true;
1417 
1418   case AMDGPULibFunc::EI_ASINPI:
1419     Res0 = asin(opr0) / MATH_PI;
1420     return true;
1421 
1422   case AMDGPULibFunc::EI_ATAN:
1423     Res0 = atan(opr0);
1424     return true;
1425 
1426   case AMDGPULibFunc::EI_ATANH:
1427     // atanh(x) == (log(x+1) - log(x-1))/2;
1428     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1429     return true;
1430 
1431   case AMDGPULibFunc::EI_ATANPI:
1432     Res0 = atan(opr0) / MATH_PI;
1433     return true;
1434 
1435   case AMDGPULibFunc::EI_CBRT:
1436     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1437     return true;
1438 
1439   case AMDGPULibFunc::EI_COS:
1440     Res0 = cos(opr0);
1441     return true;
1442 
1443   case AMDGPULibFunc::EI_COSH:
1444     Res0 = cosh(opr0);
1445     return true;
1446 
1447   case AMDGPULibFunc::EI_COSPI:
1448     Res0 = cos(MATH_PI * opr0);
1449     return true;
1450 
1451   case AMDGPULibFunc::EI_EXP:
1452     Res0 = exp(opr0);
1453     return true;
1454 
1455   case AMDGPULibFunc::EI_EXP2:
1456     Res0 = pow(2.0, opr0);
1457     return true;
1458 
1459   case AMDGPULibFunc::EI_EXP10:
1460     Res0 = pow(10.0, opr0);
1461     return true;
1462 
1463   case AMDGPULibFunc::EI_EXPM1:
1464     Res0 = exp(opr0) - 1.0;
1465     return true;
1466 
1467   case AMDGPULibFunc::EI_LOG:
1468     Res0 = log(opr0);
1469     return true;
1470 
1471   case AMDGPULibFunc::EI_LOG2:
1472     Res0 = log(opr0) / log(2.0);
1473     return true;
1474 
1475   case AMDGPULibFunc::EI_LOG10:
1476     Res0 = log(opr0) / log(10.0);
1477     return true;
1478 
1479   case AMDGPULibFunc::EI_RSQRT:
1480     Res0 = 1.0 / sqrt(opr0);
1481     return true;
1482 
1483   case AMDGPULibFunc::EI_SIN:
1484     Res0 = sin(opr0);
1485     return true;
1486 
1487   case AMDGPULibFunc::EI_SINH:
1488     Res0 = sinh(opr0);
1489     return true;
1490 
1491   case AMDGPULibFunc::EI_SINPI:
1492     Res0 = sin(MATH_PI * opr0);
1493     return true;
1494 
1495   case AMDGPULibFunc::EI_SQRT:
1496     Res0 = sqrt(opr0);
1497     return true;
1498 
1499   case AMDGPULibFunc::EI_TAN:
1500     Res0 = tan(opr0);
1501     return true;
1502 
1503   case AMDGPULibFunc::EI_TANH:
1504     Res0 = tanh(opr0);
1505     return true;
1506 
1507   case AMDGPULibFunc::EI_TANPI:
1508     Res0 = tan(MATH_PI * opr0);
1509     return true;
1510 
1511   case AMDGPULibFunc::EI_RECIP:
1512     Res0 = 1.0 / opr0;
1513     return true;
1514 
1515   // two-arg functions
1516   case AMDGPULibFunc::EI_DIVIDE:
1517     Res0 = opr0 / opr1;
1518     return true;
1519 
1520   case AMDGPULibFunc::EI_POW:
1521   case AMDGPULibFunc::EI_POWR:
1522     Res0 = pow(opr0, opr1);
1523     return true;
1524 
1525   case AMDGPULibFunc::EI_POWN: {
1526     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1527       double val = (double)iopr1->getSExtValue();
1528       Res0 = pow(opr0, val);
1529       return true;
1530     }
1531     return false;
1532   }
1533 
1534   case AMDGPULibFunc::EI_ROOTN: {
1535     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1536       double val = (double)iopr1->getSExtValue();
1537       Res0 = pow(opr0, 1.0 / val);
1538       return true;
1539     }
1540     return false;
1541   }
1542 
1543   // with ptr arg
1544   case AMDGPULibFunc::EI_SINCOS:
1545     Res0 = sin(opr0);
1546     Res1 = cos(opr0);
1547     return true;
1548 
1549   // three-arg functions
1550   case AMDGPULibFunc::EI_FMA:
1551   case AMDGPULibFunc::EI_MAD:
1552     Res0 = opr0 * opr1 + opr2;
1553     return true;
1554   }
1555 
1556   return false;
1557 }
1558 
1559 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) {
1560   int numArgs = (int)aCI->arg_size();
1561   if (numArgs > 3)
1562     return false;
1563 
1564   Constant *copr0 = nullptr;
1565   Constant *copr1 = nullptr;
1566   Constant *copr2 = nullptr;
1567   if (numArgs > 0) {
1568     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1569       return false;
1570   }
1571 
1572   if (numArgs > 1) {
1573     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1574       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1575         return false;
1576     }
1577   }
1578 
1579   if (numArgs > 2) {
1580     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1581       return false;
1582   }
1583 
1584   // At this point, all arguments to aCI are constants.
1585 
1586   // max vector size is 16, and sincos will generate two results.
1587   double DVal0[16], DVal1[16];
1588   int FuncVecSize = getVecSize(FInfo);
1589   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1590   if (FuncVecSize == 1) {
1591     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1592                                 DVal1[0], copr0, copr1, copr2)) {
1593       return false;
1594     }
1595   } else {
1596     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1597     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1598     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1599     for (int i = 0; i < FuncVecSize; ++i) {
1600       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1601       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1602       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1603       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1604                                   DVal1[i], celt0, celt1, celt2)) {
1605         return false;
1606       }
1607     }
1608   }
1609 
1610   LLVMContext &context = CI->getParent()->getParent()->getContext();
1611   Constant *nval0, *nval1;
1612   if (FuncVecSize == 1) {
1613     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1614     if (hasTwoResults)
1615       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1616   } else {
1617     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1618       SmallVector <float, 0> FVal0, FVal1;
1619       for (int i = 0; i < FuncVecSize; ++i)
1620         FVal0.push_back((float)DVal0[i]);
1621       ArrayRef<float> tmp0(FVal0);
1622       nval0 = ConstantDataVector::get(context, tmp0);
1623       if (hasTwoResults) {
1624         for (int i = 0; i < FuncVecSize; ++i)
1625           FVal1.push_back((float)DVal1[i]);
1626         ArrayRef<float> tmp1(FVal1);
1627         nval1 = ConstantDataVector::get(context, tmp1);
1628       }
1629     } else {
1630       ArrayRef<double> tmp0(DVal0);
1631       nval0 = ConstantDataVector::get(context, tmp0);
1632       if (hasTwoResults) {
1633         ArrayRef<double> tmp1(DVal1);
1634         nval1 = ConstantDataVector::get(context, tmp1);
1635       }
1636     }
1637   }
1638 
1639   if (hasTwoResults) {
1640     // sincos
1641     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1642            "math function with ptr arg not supported yet");
1643     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1644   }
1645 
1646   replaceCall(nval0);
1647   return true;
1648 }
1649 
1650 // Public interface to the Simplify LibCalls pass.
1651 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) {
1652   return new AMDGPUSimplifyLibCalls(TM);
1653 }
1654 
1655 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1656   return new AMDGPUUseNativeCalls();
1657 }
1658 
1659 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1660   if (skipFunction(F))
1661     return false;
1662 
1663   bool Changed = false;
1664   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1665 
1666   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1667              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1668 
1669   for (auto &BB : F) {
1670     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1671       // Ignore non-calls.
1672       CallInst *CI = dyn_cast<CallInst>(I);
1673       ++I;
1674       // Ignore intrinsics that do not become real instructions.
1675       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1676         continue;
1677 
1678       // Ignore indirect calls.
1679       Function *Callee = CI->getCalledFunction();
1680       if (Callee == nullptr)
1681         continue;
1682 
1683       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1684                  dbgs().flush());
1685       if(Simplifier.fold(CI, AA))
1686         Changed = true;
1687     }
1688   }
1689   return Changed;
1690 }
1691 
1692 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F,
1693                                                   FunctionAnalysisManager &AM) {
1694   AMDGPULibCalls Simplifier(&TM);
1695   Simplifier.initNativeFuncs();
1696 
1697   bool Changed = false;
1698   auto AA = &AM.getResult<AAManager>(F);
1699 
1700   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1701              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1702 
1703   for (auto &BB : F) {
1704     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1705       // Ignore non-calls.
1706       CallInst *CI = dyn_cast<CallInst>(I);
1707       ++I;
1708       // Ignore intrinsics that do not become real instructions.
1709       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1710         continue;
1711 
1712       // Ignore indirect calls.
1713       Function *Callee = CI->getCalledFunction();
1714       if (Callee == nullptr)
1715         continue;
1716 
1717       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1718                  dbgs().flush());
1719       if (Simplifier.fold(CI, AA))
1720         Changed = true;
1721     }
1722   }
1723   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1724 }
1725 
1726 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1727   if (skipFunction(F) || UseNative.empty())
1728     return false;
1729 
1730   bool Changed = false;
1731   for (auto &BB : F) {
1732     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1733       // Ignore non-calls.
1734       CallInst *CI = dyn_cast<CallInst>(I);
1735       ++I;
1736       if (!CI) continue;
1737 
1738       // Ignore indirect calls.
1739       Function *Callee = CI->getCalledFunction();
1740       if (Callee == nullptr)
1741         continue;
1742 
1743       if (Simplifier.useNative(CI))
1744         Changed = true;
1745     }
1746   }
1747   return Changed;
1748 }
1749 
1750 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F,
1751                                                 FunctionAnalysisManager &AM) {
1752   if (UseNative.empty())
1753     return PreservedAnalyses::all();
1754 
1755   AMDGPULibCalls Simplifier;
1756   Simplifier.initNativeFuncs();
1757 
1758   bool Changed = false;
1759   for (auto &BB : F) {
1760     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1761       // Ignore non-calls.
1762       CallInst *CI = dyn_cast<CallInst>(I);
1763       ++I;
1764       if (!CI)
1765         continue;
1766 
1767       // Ignore indirect calls.
1768       Function *Callee = CI->getCalledFunction();
1769       if (Callee == nullptr)
1770         continue;
1771 
1772       if (Simplifier.useNative(CI))
1773         Changed = true;
1774     }
1775   }
1776   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1777 }
1778