1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Target/TargetMachine.h" 23 24 #define DEBUG_TYPE "amdgpu-simplifylib" 25 26 using namespace llvm; 27 28 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 29 cl::desc("Enable pre-link mode optimizations"), 30 cl::init(false), 31 cl::Hidden); 32 33 static cl::list<std::string> UseNative("amdgpu-use-native", 34 cl::desc("Comma separated list of functions to replace with native, or all"), 35 cl::CommaSeparated, cl::ValueOptional, 36 cl::Hidden); 37 38 #define MATH_PI numbers::pi 39 #define MATH_E numbers::e 40 #define MATH_SQRT2 numbers::sqrt2 41 #define MATH_SQRT1_2 numbers::inv_sqrt2 42 43 namespace llvm { 44 45 class AMDGPULibCalls { 46 private: 47 48 typedef llvm::AMDGPULibFunc FuncInfo; 49 50 const TargetMachine *TM; 51 52 // -fuse-native. 53 bool AllNative = false; 54 55 bool useNativeFunc(const StringRef F) const; 56 57 // Return a pointer (pointer expr) to the function if function definition with 58 // "FuncName" exists. It may create a new function prototype in pre-link mode. 59 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 60 61 // Replace a normal function with its native version. 62 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); 63 64 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); 65 66 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 67 68 /* Specialized optimizations */ 69 70 // recip (half or native) 71 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 72 73 // divide (half or native) 74 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 75 76 // pow/powr/pown 77 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 78 79 // rootn 80 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 81 82 // fma/mad 83 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 84 85 // -fuse-native for sincos 86 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 87 88 // evaluate calls if calls' arguments are constants. 89 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0, 90 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 91 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); 92 93 // exp 94 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 95 96 // exp2 97 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 98 99 // exp10 100 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 101 102 // log 103 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 104 105 // log2 106 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 107 108 // log10 109 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 110 111 // sqrt 112 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 113 114 // sin/cos 115 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 116 117 // __read_pipe/__write_pipe 118 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 119 const FuncInfo &FInfo); 120 121 // llvm.amdgcn.wavefrontsize 122 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 123 124 // Get insertion point at entry. 125 BasicBlock::iterator getEntryIns(CallInst * UI); 126 // Insert an Alloc instruction. 127 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 128 // Get a scalar native builtin single argument FP function 129 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 130 131 protected: 132 CallInst *CI; 133 134 bool isUnsafeMath(const CallInst *CI) const; 135 136 void replaceCall(Value *With) { 137 CI->replaceAllUsesWith(With); 138 CI->eraseFromParent(); 139 } 140 141 public: 142 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 143 144 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 145 146 void initNativeFuncs(); 147 148 // Replace a normal math function call with that native version 149 bool useNative(CallInst *CI); 150 }; 151 152 } // end llvm namespace 153 154 namespace { 155 156 class AMDGPUSimplifyLibCalls : public FunctionPass { 157 158 AMDGPULibCalls Simplifier; 159 160 public: 161 static char ID; // Pass identification 162 163 AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) 164 : FunctionPass(ID), Simplifier(TM) { 165 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 166 } 167 168 void getAnalysisUsage(AnalysisUsage &AU) const override { 169 AU.addRequired<AAResultsWrapperPass>(); 170 } 171 172 bool runOnFunction(Function &M) override; 173 }; 174 175 class AMDGPUUseNativeCalls : public FunctionPass { 176 177 AMDGPULibCalls Simplifier; 178 179 public: 180 static char ID; // Pass identification 181 182 AMDGPUUseNativeCalls() : FunctionPass(ID) { 183 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 184 Simplifier.initNativeFuncs(); 185 } 186 187 bool runOnFunction(Function &F) override; 188 }; 189 190 } // end anonymous namespace. 191 192 char AMDGPUSimplifyLibCalls::ID = 0; 193 char AMDGPUUseNativeCalls::ID = 0; 194 195 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 196 "Simplify well-known AMD library calls", false, false) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 199 "Simplify well-known AMD library calls", false, false) 200 201 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 202 "Replace builtin math calls with that native versions.", 203 false, false) 204 205 template <typename IRB> 206 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 207 const Twine &Name = "") { 208 CallInst *R = B.CreateCall(Callee, Arg, Name); 209 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 210 R->setCallingConv(F->getCallingConv()); 211 return R; 212 } 213 214 template <typename IRB> 215 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 216 Value *Arg2, const Twine &Name = "") { 217 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 218 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 219 R->setCallingConv(F->getCallingConv()); 220 return R; 221 } 222 223 // Data structures for table-driven optimizations. 224 // FuncTbl works for both f32 and f64 functions with 1 input argument 225 226 struct TableEntry { 227 double result; 228 double input; 229 }; 230 231 /* a list of {result, input} */ 232 static const TableEntry tbl_acos[] = { 233 {MATH_PI / 2.0, 0.0}, 234 {MATH_PI / 2.0, -0.0}, 235 {0.0, 1.0}, 236 {MATH_PI, -1.0} 237 }; 238 static const TableEntry tbl_acosh[] = { 239 {0.0, 1.0} 240 }; 241 static const TableEntry tbl_acospi[] = { 242 {0.5, 0.0}, 243 {0.5, -0.0}, 244 {0.0, 1.0}, 245 {1.0, -1.0} 246 }; 247 static const TableEntry tbl_asin[] = { 248 {0.0, 0.0}, 249 {-0.0, -0.0}, 250 {MATH_PI / 2.0, 1.0}, 251 {-MATH_PI / 2.0, -1.0} 252 }; 253 static const TableEntry tbl_asinh[] = { 254 {0.0, 0.0}, 255 {-0.0, -0.0} 256 }; 257 static const TableEntry tbl_asinpi[] = { 258 {0.0, 0.0}, 259 {-0.0, -0.0}, 260 {0.5, 1.0}, 261 {-0.5, -1.0} 262 }; 263 static const TableEntry tbl_atan[] = { 264 {0.0, 0.0}, 265 {-0.0, -0.0}, 266 {MATH_PI / 4.0, 1.0}, 267 {-MATH_PI / 4.0, -1.0} 268 }; 269 static const TableEntry tbl_atanh[] = { 270 {0.0, 0.0}, 271 {-0.0, -0.0} 272 }; 273 static const TableEntry tbl_atanpi[] = { 274 {0.0, 0.0}, 275 {-0.0, -0.0}, 276 {0.25, 1.0}, 277 {-0.25, -1.0} 278 }; 279 static const TableEntry tbl_cbrt[] = { 280 {0.0, 0.0}, 281 {-0.0, -0.0}, 282 {1.0, 1.0}, 283 {-1.0, -1.0}, 284 }; 285 static const TableEntry tbl_cos[] = { 286 {1.0, 0.0}, 287 {1.0, -0.0} 288 }; 289 static const TableEntry tbl_cosh[] = { 290 {1.0, 0.0}, 291 {1.0, -0.0} 292 }; 293 static const TableEntry tbl_cospi[] = { 294 {1.0, 0.0}, 295 {1.0, -0.0} 296 }; 297 static const TableEntry tbl_erfc[] = { 298 {1.0, 0.0}, 299 {1.0, -0.0} 300 }; 301 static const TableEntry tbl_erf[] = { 302 {0.0, 0.0}, 303 {-0.0, -0.0} 304 }; 305 static const TableEntry tbl_exp[] = { 306 {1.0, 0.0}, 307 {1.0, -0.0}, 308 {MATH_E, 1.0} 309 }; 310 static const TableEntry tbl_exp2[] = { 311 {1.0, 0.0}, 312 {1.0, -0.0}, 313 {2.0, 1.0} 314 }; 315 static const TableEntry tbl_exp10[] = { 316 {1.0, 0.0}, 317 {1.0, -0.0}, 318 {10.0, 1.0} 319 }; 320 static const TableEntry tbl_expm1[] = { 321 {0.0, 0.0}, 322 {-0.0, -0.0} 323 }; 324 static const TableEntry tbl_log[] = { 325 {0.0, 1.0}, 326 {1.0, MATH_E} 327 }; 328 static const TableEntry tbl_log2[] = { 329 {0.0, 1.0}, 330 {1.0, 2.0} 331 }; 332 static const TableEntry tbl_log10[] = { 333 {0.0, 1.0}, 334 {1.0, 10.0} 335 }; 336 static const TableEntry tbl_rsqrt[] = { 337 {1.0, 1.0}, 338 {MATH_SQRT1_2, 2.0} 339 }; 340 static const TableEntry tbl_sin[] = { 341 {0.0, 0.0}, 342 {-0.0, -0.0} 343 }; 344 static const TableEntry tbl_sinh[] = { 345 {0.0, 0.0}, 346 {-0.0, -0.0} 347 }; 348 static const TableEntry tbl_sinpi[] = { 349 {0.0, 0.0}, 350 {-0.0, -0.0} 351 }; 352 static const TableEntry tbl_sqrt[] = { 353 {0.0, 0.0}, 354 {1.0, 1.0}, 355 {MATH_SQRT2, 2.0} 356 }; 357 static const TableEntry tbl_tan[] = { 358 {0.0, 0.0}, 359 {-0.0, -0.0} 360 }; 361 static const TableEntry tbl_tanh[] = { 362 {0.0, 0.0}, 363 {-0.0, -0.0} 364 }; 365 static const TableEntry tbl_tanpi[] = { 366 {0.0, 0.0}, 367 {-0.0, -0.0} 368 }; 369 static const TableEntry tbl_tgamma[] = { 370 {1.0, 1.0}, 371 {1.0, 2.0}, 372 {2.0, 3.0}, 373 {6.0, 4.0} 374 }; 375 376 static bool HasNative(AMDGPULibFunc::EFuncId id) { 377 switch(id) { 378 case AMDGPULibFunc::EI_DIVIDE: 379 case AMDGPULibFunc::EI_COS: 380 case AMDGPULibFunc::EI_EXP: 381 case AMDGPULibFunc::EI_EXP2: 382 case AMDGPULibFunc::EI_EXP10: 383 case AMDGPULibFunc::EI_LOG: 384 case AMDGPULibFunc::EI_LOG2: 385 case AMDGPULibFunc::EI_LOG10: 386 case AMDGPULibFunc::EI_POWR: 387 case AMDGPULibFunc::EI_RECIP: 388 case AMDGPULibFunc::EI_RSQRT: 389 case AMDGPULibFunc::EI_SIN: 390 case AMDGPULibFunc::EI_SINCOS: 391 case AMDGPULibFunc::EI_SQRT: 392 case AMDGPULibFunc::EI_TAN: 393 return true; 394 default:; 395 } 396 return false; 397 } 398 399 struct TableRef { 400 size_t size; 401 const TableEntry *table; // variable size: from 0 to (size - 1) 402 403 TableRef() : size(0), table(nullptr) {} 404 405 template <size_t N> 406 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 407 }; 408 409 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 410 switch(id) { 411 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 412 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 413 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 414 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 415 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 416 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 417 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 418 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 419 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 420 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 421 case AMDGPULibFunc::EI_NCOS: 422 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 423 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 424 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 425 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 426 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 427 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 428 case AMDGPULibFunc::EI_NEXP2: 429 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 430 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 431 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 432 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 433 case AMDGPULibFunc::EI_NLOG2: 434 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 435 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 436 case AMDGPULibFunc::EI_NRSQRT: 437 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 438 case AMDGPULibFunc::EI_NSIN: 439 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 440 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 441 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 442 case AMDGPULibFunc::EI_NSQRT: 443 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 444 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 445 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 446 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 447 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 448 default:; 449 } 450 return TableRef(); 451 } 452 453 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 454 return FInfo.getLeads()[0].VectorSize; 455 } 456 457 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 458 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 459 } 460 461 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 462 // If we are doing PreLinkOpt, the function is external. So it is safe to 463 // use getOrInsertFunction() at this stage. 464 465 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 466 : AMDGPULibFunc::getFunction(M, fInfo); 467 } 468 469 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, 470 FuncInfo &FInfo) { 471 return AMDGPULibFunc::parse(FMangledName, FInfo); 472 } 473 474 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 475 if (auto Op = dyn_cast<FPMathOperator>(CI)) 476 if (Op->isFast()) 477 return true; 478 const Function *F = CI->getParent()->getParent(); 479 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 480 return Attr.getValueAsBool(); 481 } 482 483 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 484 return AllNative || llvm::is_contained(UseNative, F); 485 } 486 487 void AMDGPULibCalls::initNativeFuncs() { 488 AllNative = useNativeFunc("all") || 489 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 490 UseNative.begin()->empty()); 491 } 492 493 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 494 bool native_sin = useNativeFunc("sin"); 495 bool native_cos = useNativeFunc("cos"); 496 497 if (native_sin && native_cos) { 498 Module *M = aCI->getModule(); 499 Value *opr0 = aCI->getArgOperand(0); 500 501 AMDGPULibFunc nf; 502 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 503 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 504 505 nf.setPrefix(AMDGPULibFunc::NATIVE); 506 nf.setId(AMDGPULibFunc::EI_SIN); 507 FunctionCallee sinExpr = getFunction(M, nf); 508 509 nf.setPrefix(AMDGPULibFunc::NATIVE); 510 nf.setId(AMDGPULibFunc::EI_COS); 511 FunctionCallee cosExpr = getFunction(M, nf); 512 if (sinExpr && cosExpr) { 513 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 514 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 515 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 516 517 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 518 << " with native version of sin/cos"); 519 520 replaceCall(sinval); 521 return true; 522 } 523 } 524 return false; 525 } 526 527 bool AMDGPULibCalls::useNative(CallInst *aCI) { 528 CI = aCI; 529 Function *Callee = aCI->getCalledFunction(); 530 531 FuncInfo FInfo; 532 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || 533 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 534 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 535 !(AllNative || useNativeFunc(FInfo.getName()))) { 536 return false; 537 } 538 539 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 540 return sincosUseNative(aCI, FInfo); 541 542 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 543 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 544 if (!F) 545 return false; 546 547 aCI->setCalledFunction(F); 548 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 549 << " with native version"); 550 return true; 551 } 552 553 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 554 // builtin, with appended type size and alignment arguments, where 2 or 4 555 // indicates the original number of arguments. The library has optimized version 556 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 557 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 558 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 559 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 560 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 561 const FuncInfo &FInfo) { 562 auto *Callee = CI->getCalledFunction(); 563 if (!Callee->isDeclaration()) 564 return false; 565 566 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 567 auto *M = Callee->getParent(); 568 auto &Ctx = M->getContext(); 569 std::string Name = std::string(Callee->getName()); 570 auto NumArg = CI->arg_size(); 571 if (NumArg != 4 && NumArg != 6) 572 return false; 573 auto *PacketSize = CI->getArgOperand(NumArg - 2); 574 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 575 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 576 return false; 577 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 578 Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue(); 579 if (Alignment != Size) 580 return false; 581 582 Type *PtrElemTy; 583 if (Size <= 8) 584 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 585 else 586 PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); 587 unsigned PtrArgLoc = CI->arg_size() - 3; 588 auto PtrArg = CI->getArgOperand(PtrArgLoc); 589 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 590 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 591 592 SmallVector<llvm::Type *, 6> ArgTys; 593 for (unsigned I = 0; I != PtrArgLoc; ++I) 594 ArgTys.push_back(CI->getArgOperand(I)->getType()); 595 ArgTys.push_back(PtrTy); 596 597 Name = Name + "_" + std::to_string(Size); 598 auto *FTy = FunctionType::get(Callee->getReturnType(), 599 ArrayRef<Type *>(ArgTys), false); 600 AMDGPULibFunc NewLibFunc(Name, FTy); 601 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 602 if (!F) 603 return false; 604 605 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 606 SmallVector<Value *, 6> Args; 607 for (unsigned I = 0; I != PtrArgLoc; ++I) 608 Args.push_back(CI->getArgOperand(I)); 609 Args.push_back(BCast); 610 611 auto *NCI = B.CreateCall(F, Args); 612 NCI->setAttributes(CI->getAttributes()); 613 CI->replaceAllUsesWith(NCI); 614 CI->dropAllReferences(); 615 CI->eraseFromParent(); 616 617 return true; 618 } 619 620 // This function returns false if no change; return true otherwise. 621 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 622 this->CI = CI; 623 Function *Callee = CI->getCalledFunction(); 624 625 // Ignore indirect calls. 626 if (Callee == 0) return false; 627 628 BasicBlock *BB = CI->getParent(); 629 LLVMContext &Context = CI->getParent()->getContext(); 630 IRBuilder<> B(Context); 631 632 // Set the builder to the instruction after the call. 633 B.SetInsertPoint(BB, CI->getIterator()); 634 635 // Copy fast flags from the original call. 636 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 637 B.setFastMathFlags(FPOp->getFastMathFlags()); 638 639 switch (Callee->getIntrinsicID()) { 640 default: 641 break; 642 case Intrinsic::amdgcn_wavefrontsize: 643 return !EnablePreLink && fold_wavefrontsize(CI, B); 644 } 645 646 FuncInfo FInfo; 647 if (!parseFunctionName(Callee->getName(), FInfo)) 648 return false; 649 650 // Further check the number of arguments to see if they match. 651 if (CI->arg_size() != FInfo.getNumArgs()) 652 return false; 653 654 if (TDOFold(CI, FInfo)) 655 return true; 656 657 // Under unsafe-math, evaluate calls if possible. 658 // According to Brian Sumner, we can do this for all f32 function calls 659 // using host's double function calls. 660 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 661 return true; 662 663 // Specialized optimizations for each function call 664 switch (FInfo.getId()) { 665 case AMDGPULibFunc::EI_RECIP: 666 // skip vector function 667 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 668 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 669 "recip must be an either native or half function"); 670 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 671 672 case AMDGPULibFunc::EI_DIVIDE: 673 // skip vector function 674 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 675 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 676 "divide must be an either native or half function"); 677 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 678 679 case AMDGPULibFunc::EI_POW: 680 case AMDGPULibFunc::EI_POWR: 681 case AMDGPULibFunc::EI_POWN: 682 return fold_pow(CI, B, FInfo); 683 684 case AMDGPULibFunc::EI_ROOTN: 685 // skip vector function 686 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 687 688 case AMDGPULibFunc::EI_FMA: 689 case AMDGPULibFunc::EI_MAD: 690 case AMDGPULibFunc::EI_NFMA: 691 // skip vector function 692 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 693 694 case AMDGPULibFunc::EI_SQRT: 695 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 696 case AMDGPULibFunc::EI_COS: 697 case AMDGPULibFunc::EI_SIN: 698 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 699 getArgType(FInfo) == AMDGPULibFunc::F64) 700 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 701 return fold_sincos(CI, B, AA); 702 703 break; 704 case AMDGPULibFunc::EI_READ_PIPE_2: 705 case AMDGPULibFunc::EI_READ_PIPE_4: 706 case AMDGPULibFunc::EI_WRITE_PIPE_2: 707 case AMDGPULibFunc::EI_WRITE_PIPE_4: 708 return fold_read_write_pipe(CI, B, FInfo); 709 710 default: 711 break; 712 } 713 714 return false; 715 } 716 717 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 718 // Table-Driven optimization 719 const TableRef tr = getOptTable(FInfo.getId()); 720 if (tr.size==0) 721 return false; 722 723 int const sz = (int)tr.size; 724 const TableEntry * const ftbl = tr.table; 725 Value *opr0 = CI->getArgOperand(0); 726 727 if (getVecSize(FInfo) > 1) { 728 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 729 SmallVector<double, 0> DVal; 730 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 731 ConstantFP *eltval = dyn_cast<ConstantFP>( 732 CV->getElementAsConstant((unsigned)eltNo)); 733 assert(eltval && "Non-FP arguments in math function!"); 734 bool found = false; 735 for (int i=0; i < sz; ++i) { 736 if (eltval->isExactlyValue(ftbl[i].input)) { 737 DVal.push_back(ftbl[i].result); 738 found = true; 739 break; 740 } 741 } 742 if (!found) { 743 // This vector constants not handled yet. 744 return false; 745 } 746 } 747 LLVMContext &context = CI->getParent()->getParent()->getContext(); 748 Constant *nval; 749 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 750 SmallVector<float, 0> FVal; 751 for (unsigned i = 0; i < DVal.size(); ++i) { 752 FVal.push_back((float)DVal[i]); 753 } 754 ArrayRef<float> tmp(FVal); 755 nval = ConstantDataVector::get(context, tmp); 756 } else { // F64 757 ArrayRef<double> tmp(DVal); 758 nval = ConstantDataVector::get(context, tmp); 759 } 760 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 761 replaceCall(nval); 762 return true; 763 } 764 } else { 765 // Scalar version 766 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 767 for (int i = 0; i < sz; ++i) { 768 if (CF->isExactlyValue(ftbl[i].input)) { 769 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 770 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 771 replaceCall(nval); 772 return true; 773 } 774 } 775 } 776 } 777 778 return false; 779 } 780 781 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { 782 Module *M = CI->getModule(); 783 if (getArgType(FInfo) != AMDGPULibFunc::F32 || 784 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 785 !HasNative(FInfo.getId())) 786 return false; 787 788 AMDGPULibFunc nf = FInfo; 789 nf.setPrefix(AMDGPULibFunc::NATIVE); 790 if (FunctionCallee FPExpr = getFunction(M, nf)) { 791 LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); 792 793 CI->setCalledFunction(FPExpr); 794 795 LLVM_DEBUG(dbgs() << *CI << '\n'); 796 797 return true; 798 } 799 return false; 800 } 801 802 // [native_]half_recip(c) ==> 1.0/c 803 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 804 const FuncInfo &FInfo) { 805 Value *opr0 = CI->getArgOperand(0); 806 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 807 // Just create a normal div. Later, InstCombine will be able 808 // to compute the divide into a constant (avoid check float infinity 809 // or subnormal at this point). 810 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 811 opr0, 812 "recip2div"); 813 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 814 replaceCall(nval); 815 return true; 816 } 817 return false; 818 } 819 820 // [native_]half_divide(x, c) ==> x/c 821 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 822 const FuncInfo &FInfo) { 823 Value *opr0 = CI->getArgOperand(0); 824 Value *opr1 = CI->getArgOperand(1); 825 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 826 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 827 828 if ((CF0 && CF1) || // both are constants 829 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 830 // CF1 is constant && f32 divide 831 { 832 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 833 opr1, "__div2recip"); 834 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 835 replaceCall(nval); 836 return true; 837 } 838 return false; 839 } 840 841 namespace llvm { 842 static double log2(double V) { 843 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 844 return ::log2(V); 845 #else 846 return log(V) / numbers::ln2; 847 #endif 848 } 849 } 850 851 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 852 const FuncInfo &FInfo) { 853 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 854 FInfo.getId() == AMDGPULibFunc::EI_POWR || 855 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 856 "fold_pow: encounter a wrong function call"); 857 858 Value *opr0, *opr1; 859 ConstantFP *CF; 860 ConstantInt *CINT; 861 ConstantAggregateZero *CZero; 862 Type *eltType; 863 864 opr0 = CI->getArgOperand(0); 865 opr1 = CI->getArgOperand(1); 866 CZero = dyn_cast<ConstantAggregateZero>(opr1); 867 if (getVecSize(FInfo) == 1) { 868 eltType = opr0->getType(); 869 CF = dyn_cast<ConstantFP>(opr1); 870 CINT = dyn_cast<ConstantInt>(opr1); 871 } else { 872 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 873 assert(VTy && "Oprand of vector function should be of vectortype"); 874 eltType = VTy->getElementType(); 875 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 876 877 // Now, only Handle vector const whose elements have the same value. 878 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 879 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 880 } 881 882 // No unsafe math , no constant argument, do nothing 883 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 884 return false; 885 886 // 0x1111111 means that we don't do anything for this call. 887 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 888 889 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 890 // pow/powr/pown(x, 0) == 1 891 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 892 Constant *cnval = ConstantFP::get(eltType, 1.0); 893 if (getVecSize(FInfo) > 1) { 894 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 895 } 896 replaceCall(cnval); 897 return true; 898 } 899 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 900 // pow/powr/pown(x, 1.0) = x 901 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 902 replaceCall(opr0); 903 return true; 904 } 905 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 906 // pow/powr/pown(x, 2.0) = x*x 907 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 908 << "\n"); 909 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 910 replaceCall(nval); 911 return true; 912 } 913 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 914 // pow/powr/pown(x, -1.0) = 1.0/x 915 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 916 Constant *cnval = ConstantFP::get(eltType, 1.0); 917 if (getVecSize(FInfo) > 1) { 918 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 919 } 920 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 921 replaceCall(nval); 922 return true; 923 } 924 925 Module *M = CI->getModule(); 926 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 927 // pow[r](x, [-]0.5) = sqrt(x) 928 bool issqrt = CF->isExactlyValue(0.5); 929 if (FunctionCallee FPExpr = 930 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 931 : AMDGPULibFunc::EI_RSQRT, 932 FInfo))) { 933 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 934 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 935 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 936 : "__pow2rsqrt"); 937 replaceCall(nval); 938 return true; 939 } 940 } 941 942 if (!isUnsafeMath(CI)) 943 return false; 944 945 // Unsafe Math optimization 946 947 // Remember that ci_opr1 is set if opr1 is integral 948 if (CF) { 949 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 950 ? (double)CF->getValueAPF().convertToFloat() 951 : CF->getValueAPF().convertToDouble(); 952 int ival = (int)dval; 953 if ((double)ival == dval) { 954 ci_opr1 = ival; 955 } else 956 ci_opr1 = 0x11111111; 957 } 958 959 // pow/powr/pown(x, c) = [1/](x*x*..x); where 960 // trunc(c) == c && the number of x == c && |c| <= 12 961 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 962 if (abs_opr1 <= 12) { 963 Constant *cnval; 964 Value *nval; 965 if (abs_opr1 == 0) { 966 cnval = ConstantFP::get(eltType, 1.0); 967 if (getVecSize(FInfo) > 1) { 968 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 969 } 970 nval = cnval; 971 } else { 972 Value *valx2 = nullptr; 973 nval = nullptr; 974 while (abs_opr1 > 0) { 975 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 976 if (abs_opr1 & 1) { 977 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 978 } 979 abs_opr1 >>= 1; 980 } 981 } 982 983 if (ci_opr1 < 0) { 984 cnval = ConstantFP::get(eltType, 1.0); 985 if (getVecSize(FInfo) > 1) { 986 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 987 } 988 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 989 } 990 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 991 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 992 << ")\n"); 993 replaceCall(nval); 994 return true; 995 } 996 997 // powr ---> exp2(y * log2(x)) 998 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 999 FunctionCallee ExpExpr = 1000 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1001 if (!ExpExpr) 1002 return false; 1003 1004 bool needlog = false; 1005 bool needabs = false; 1006 bool needcopysign = false; 1007 Constant *cnval = nullptr; 1008 if (getVecSize(FInfo) == 1) { 1009 CF = dyn_cast<ConstantFP>(opr0); 1010 1011 if (CF) { 1012 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1013 ? (double)CF->getValueAPF().convertToFloat() 1014 : CF->getValueAPF().convertToDouble(); 1015 1016 V = log2(std::abs(V)); 1017 cnval = ConstantFP::get(eltType, V); 1018 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1019 CF->isNegative(); 1020 } else { 1021 needlog = true; 1022 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1023 (!CF || CF->isNegative()); 1024 } 1025 } else { 1026 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1027 1028 if (!CDV) { 1029 needlog = true; 1030 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1031 } else { 1032 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1033 "Wrong vector size detected"); 1034 1035 SmallVector<double, 0> DVal; 1036 for (int i=0; i < getVecSize(FInfo); ++i) { 1037 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1038 ? (double)CDV->getElementAsFloat(i) 1039 : CDV->getElementAsDouble(i); 1040 if (V < 0.0) needcopysign = true; 1041 V = log2(std::abs(V)); 1042 DVal.push_back(V); 1043 } 1044 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1045 SmallVector<float, 0> FVal; 1046 for (unsigned i=0; i < DVal.size(); ++i) { 1047 FVal.push_back((float)DVal[i]); 1048 } 1049 ArrayRef<float> tmp(FVal); 1050 cnval = ConstantDataVector::get(M->getContext(), tmp); 1051 } else { 1052 ArrayRef<double> tmp(DVal); 1053 cnval = ConstantDataVector::get(M->getContext(), tmp); 1054 } 1055 } 1056 } 1057 1058 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1059 // We cannot handle corner cases for a general pow() function, give up 1060 // unless y is a constant integral value. Then proceed as if it were pown. 1061 if (getVecSize(FInfo) == 1) { 1062 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1063 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1064 ? (double)CF->getValueAPF().convertToFloat() 1065 : CF->getValueAPF().convertToDouble(); 1066 if (y != (double)(int64_t)y) 1067 return false; 1068 } else 1069 return false; 1070 } else { 1071 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1072 for (int i=0; i < getVecSize(FInfo); ++i) { 1073 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1074 ? (double)CDV->getElementAsFloat(i) 1075 : CDV->getElementAsDouble(i); 1076 if (y != (double)(int64_t)y) 1077 return false; 1078 } 1079 } else 1080 return false; 1081 } 1082 } 1083 1084 Value *nval; 1085 if (needabs) { 1086 FunctionCallee AbsExpr = 1087 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1088 if (!AbsExpr) 1089 return false; 1090 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1091 } else { 1092 nval = cnval ? cnval : opr0; 1093 } 1094 if (needlog) { 1095 FunctionCallee LogExpr = 1096 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1097 if (!LogExpr) 1098 return false; 1099 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1100 } 1101 1102 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1103 // convert int(32) to fp(f32 or f64) 1104 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1105 } 1106 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1107 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1108 1109 if (needcopysign) { 1110 Value *opr_n; 1111 Type* rTy = opr0->getType(); 1112 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1113 Type *nTy = nTyS; 1114 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1115 nTy = FixedVectorType::get(nTyS, vTy); 1116 unsigned size = nTy->getScalarSizeInBits(); 1117 opr_n = CI->getArgOperand(1); 1118 if (opr_n->getType()->isIntegerTy()) 1119 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1120 else 1121 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1122 1123 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1124 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1125 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1126 nval = B.CreateBitCast(nval, opr0->getType()); 1127 } 1128 1129 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1130 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1131 replaceCall(nval); 1132 1133 return true; 1134 } 1135 1136 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1137 const FuncInfo &FInfo) { 1138 Value *opr0 = CI->getArgOperand(0); 1139 Value *opr1 = CI->getArgOperand(1); 1140 1141 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1142 if (!CINT) { 1143 return false; 1144 } 1145 int ci_opr1 = (int)CINT->getSExtValue(); 1146 if (ci_opr1 == 1) { // rootn(x, 1) = x 1147 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1148 replaceCall(opr0); 1149 return true; 1150 } 1151 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1152 Module *M = CI->getModule(); 1153 if (FunctionCallee FPExpr = 1154 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1155 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1156 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1157 replaceCall(nval); 1158 return true; 1159 } 1160 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1161 Module *M = CI->getModule(); 1162 if (FunctionCallee FPExpr = 1163 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1164 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1165 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1166 replaceCall(nval); 1167 return true; 1168 } 1169 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1170 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1171 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1172 opr0, 1173 "__rootn2div"); 1174 replaceCall(nval); 1175 return true; 1176 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1177 Module *M = CI->getModule(); 1178 if (FunctionCallee FPExpr = 1179 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1180 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1181 << ")\n"); 1182 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1183 replaceCall(nval); 1184 return true; 1185 } 1186 } 1187 return false; 1188 } 1189 1190 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1191 const FuncInfo &FInfo) { 1192 Value *opr0 = CI->getArgOperand(0); 1193 Value *opr1 = CI->getArgOperand(1); 1194 Value *opr2 = CI->getArgOperand(2); 1195 1196 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1197 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1198 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1199 // fma/mad(a, b, c) = c if a=0 || b=0 1200 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1201 replaceCall(opr2); 1202 return true; 1203 } 1204 if (CF0 && CF0->isExactlyValue(1.0f)) { 1205 // fma/mad(a, b, c) = b+c if a=1 1206 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1207 << "\n"); 1208 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1209 replaceCall(nval); 1210 return true; 1211 } 1212 if (CF1 && CF1->isExactlyValue(1.0f)) { 1213 // fma/mad(a, b, c) = a+c if b=1 1214 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1215 << "\n"); 1216 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1217 replaceCall(nval); 1218 return true; 1219 } 1220 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1221 if (CF->isZero()) { 1222 // fma/mad(a, b, c) = a*b if c=0 1223 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1224 << *opr1 << "\n"); 1225 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1226 replaceCall(nval); 1227 return true; 1228 } 1229 } 1230 1231 return false; 1232 } 1233 1234 // Get a scalar native builtin single argument FP function 1235 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1236 const FuncInfo &FInfo) { 1237 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1238 return nullptr; 1239 FuncInfo nf = FInfo; 1240 nf.setPrefix(AMDGPULibFunc::NATIVE); 1241 return getFunction(M, nf); 1242 } 1243 1244 // fold sqrt -> native_sqrt (x) 1245 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1246 const FuncInfo &FInfo) { 1247 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1248 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1249 if (FunctionCallee FPExpr = getNativeFunction( 1250 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1251 Value *opr0 = CI->getArgOperand(0); 1252 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1253 << "sqrt(" << *opr0 << ")\n"); 1254 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1255 replaceCall(nval); 1256 return true; 1257 } 1258 } 1259 return false; 1260 } 1261 1262 // fold sin, cos -> sincos. 1263 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1264 AliasAnalysis *AA) { 1265 AMDGPULibFunc fInfo; 1266 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1267 return false; 1268 1269 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1270 fInfo.getId() == AMDGPULibFunc::EI_COS); 1271 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1272 1273 Value *CArgVal = CI->getArgOperand(0); 1274 BasicBlock * const CBB = CI->getParent(); 1275 1276 int const MaxScan = 30; 1277 bool Changed = false; 1278 1279 { // fold in load value. 1280 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1281 if (LI && LI->getParent() == CBB) { 1282 BasicBlock::iterator BBI = LI->getIterator(); 1283 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1284 if (AvailableVal) { 1285 Changed = true; 1286 CArgVal->replaceAllUsesWith(AvailableVal); 1287 if (CArgVal->getNumUses() == 0) 1288 LI->eraseFromParent(); 1289 CArgVal = CI->getArgOperand(0); 1290 } 1291 } 1292 } 1293 1294 Module *M = CI->getModule(); 1295 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1296 std::string const PairName = fInfo.mangle(); 1297 1298 CallInst *UI = nullptr; 1299 for (User* U : CArgVal->users()) { 1300 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1301 if (!XI || XI == CI || XI->getParent() != CBB) 1302 continue; 1303 1304 Function *UCallee = XI->getCalledFunction(); 1305 if (!UCallee || !UCallee->getName().equals(PairName)) 1306 continue; 1307 1308 BasicBlock::iterator BBI = CI->getIterator(); 1309 if (BBI == CI->getParent()->begin()) 1310 break; 1311 --BBI; 1312 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1313 if (cast<Instruction>(BBI) == XI) { 1314 UI = XI; 1315 break; 1316 } 1317 } 1318 if (UI) break; 1319 } 1320 1321 if (!UI) 1322 return Changed; 1323 1324 // Merge the sin and cos. 1325 1326 // for OpenCL 2.0 we have only generic implementation of sincos 1327 // function. 1328 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1329 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1330 FunctionCallee Fsincos = getFunction(M, nf); 1331 if (!Fsincos) 1332 return Changed; 1333 1334 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1335 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1336 B.SetInsertPoint(UI); 1337 1338 Value *P = Alloc; 1339 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1340 // The allocaInst allocates the memory in private address space. This need 1341 // to be bitcasted to point to the address space of cos pointer type. 1342 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1343 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1344 P = B.CreateAddrSpaceCast(Alloc, PTy); 1345 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1346 1347 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1348 << *Call << "\n"); 1349 1350 if (!isSin) { // CI->cos, UI->sin 1351 B.SetInsertPoint(&*ItOld); 1352 UI->replaceAllUsesWith(&*Call); 1353 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1354 CI->replaceAllUsesWith(Reload); 1355 UI->eraseFromParent(); 1356 CI->eraseFromParent(); 1357 } else { // CI->sin, UI->cos 1358 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1359 UI->replaceAllUsesWith(Reload); 1360 CI->replaceAllUsesWith(Call); 1361 UI->eraseFromParent(); 1362 CI->eraseFromParent(); 1363 } 1364 return true; 1365 } 1366 1367 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1368 if (!TM) 1369 return false; 1370 1371 StringRef CPU = TM->getTargetCPU(); 1372 StringRef Features = TM->getTargetFeatureString(); 1373 if ((CPU.empty() || CPU.equals_insensitive("generic")) && 1374 (Features.empty() || !Features.contains_insensitive("wavefrontsize"))) 1375 return false; 1376 1377 Function *F = CI->getParent()->getParent(); 1378 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1379 unsigned N = ST.getWavefrontSize(); 1380 1381 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1382 << N << "\n"); 1383 1384 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1385 CI->eraseFromParent(); 1386 return true; 1387 } 1388 1389 // Get insertion point at entry. 1390 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1391 Function * Func = UI->getParent()->getParent(); 1392 BasicBlock * BB = &Func->getEntryBlock(); 1393 assert(BB && "Entry block not found!"); 1394 BasicBlock::iterator ItNew = BB->begin(); 1395 return ItNew; 1396 } 1397 1398 // Insert a AllocsInst at the beginning of function entry block. 1399 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1400 const char *prefix) { 1401 BasicBlock::iterator ItNew = getEntryIns(UI); 1402 Function *UCallee = UI->getCalledFunction(); 1403 Type *RetType = UCallee->getReturnType(); 1404 B.SetInsertPoint(&*ItNew); 1405 AllocaInst *Alloc = B.CreateAlloca(RetType, 0, 1406 std::string(prefix) + UI->getName()); 1407 Alloc->setAlignment( 1408 Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1409 return Alloc; 1410 } 1411 1412 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, 1413 double& Res0, double& Res1, 1414 Constant *copr0, Constant *copr1, 1415 Constant *copr2) { 1416 // By default, opr0/opr1/opr3 holds values of float/double type. 1417 // If they are not float/double, each function has to its 1418 // operand separately. 1419 double opr0=0.0, opr1=0.0, opr2=0.0; 1420 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1421 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1422 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1423 if (fpopr0) { 1424 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1425 ? fpopr0->getValueAPF().convertToDouble() 1426 : (double)fpopr0->getValueAPF().convertToFloat(); 1427 } 1428 1429 if (fpopr1) { 1430 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1431 ? fpopr1->getValueAPF().convertToDouble() 1432 : (double)fpopr1->getValueAPF().convertToFloat(); 1433 } 1434 1435 if (fpopr2) { 1436 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1437 ? fpopr2->getValueAPF().convertToDouble() 1438 : (double)fpopr2->getValueAPF().convertToFloat(); 1439 } 1440 1441 switch (FInfo.getId()) { 1442 default : return false; 1443 1444 case AMDGPULibFunc::EI_ACOS: 1445 Res0 = acos(opr0); 1446 return true; 1447 1448 case AMDGPULibFunc::EI_ACOSH: 1449 // acosh(x) == log(x + sqrt(x*x - 1)) 1450 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1451 return true; 1452 1453 case AMDGPULibFunc::EI_ACOSPI: 1454 Res0 = acos(opr0) / MATH_PI; 1455 return true; 1456 1457 case AMDGPULibFunc::EI_ASIN: 1458 Res0 = asin(opr0); 1459 return true; 1460 1461 case AMDGPULibFunc::EI_ASINH: 1462 // asinh(x) == log(x + sqrt(x*x + 1)) 1463 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1464 return true; 1465 1466 case AMDGPULibFunc::EI_ASINPI: 1467 Res0 = asin(opr0) / MATH_PI; 1468 return true; 1469 1470 case AMDGPULibFunc::EI_ATAN: 1471 Res0 = atan(opr0); 1472 return true; 1473 1474 case AMDGPULibFunc::EI_ATANH: 1475 // atanh(x) == (log(x+1) - log(x-1))/2; 1476 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1477 return true; 1478 1479 case AMDGPULibFunc::EI_ATANPI: 1480 Res0 = atan(opr0) / MATH_PI; 1481 return true; 1482 1483 case AMDGPULibFunc::EI_CBRT: 1484 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1485 return true; 1486 1487 case AMDGPULibFunc::EI_COS: 1488 Res0 = cos(opr0); 1489 return true; 1490 1491 case AMDGPULibFunc::EI_COSH: 1492 Res0 = cosh(opr0); 1493 return true; 1494 1495 case AMDGPULibFunc::EI_COSPI: 1496 Res0 = cos(MATH_PI * opr0); 1497 return true; 1498 1499 case AMDGPULibFunc::EI_EXP: 1500 Res0 = exp(opr0); 1501 return true; 1502 1503 case AMDGPULibFunc::EI_EXP2: 1504 Res0 = pow(2.0, opr0); 1505 return true; 1506 1507 case AMDGPULibFunc::EI_EXP10: 1508 Res0 = pow(10.0, opr0); 1509 return true; 1510 1511 case AMDGPULibFunc::EI_EXPM1: 1512 Res0 = exp(opr0) - 1.0; 1513 return true; 1514 1515 case AMDGPULibFunc::EI_LOG: 1516 Res0 = log(opr0); 1517 return true; 1518 1519 case AMDGPULibFunc::EI_LOG2: 1520 Res0 = log(opr0) / log(2.0); 1521 return true; 1522 1523 case AMDGPULibFunc::EI_LOG10: 1524 Res0 = log(opr0) / log(10.0); 1525 return true; 1526 1527 case AMDGPULibFunc::EI_RSQRT: 1528 Res0 = 1.0 / sqrt(opr0); 1529 return true; 1530 1531 case AMDGPULibFunc::EI_SIN: 1532 Res0 = sin(opr0); 1533 return true; 1534 1535 case AMDGPULibFunc::EI_SINH: 1536 Res0 = sinh(opr0); 1537 return true; 1538 1539 case AMDGPULibFunc::EI_SINPI: 1540 Res0 = sin(MATH_PI * opr0); 1541 return true; 1542 1543 case AMDGPULibFunc::EI_SQRT: 1544 Res0 = sqrt(opr0); 1545 return true; 1546 1547 case AMDGPULibFunc::EI_TAN: 1548 Res0 = tan(opr0); 1549 return true; 1550 1551 case AMDGPULibFunc::EI_TANH: 1552 Res0 = tanh(opr0); 1553 return true; 1554 1555 case AMDGPULibFunc::EI_TANPI: 1556 Res0 = tan(MATH_PI * opr0); 1557 return true; 1558 1559 case AMDGPULibFunc::EI_RECIP: 1560 Res0 = 1.0 / opr0; 1561 return true; 1562 1563 // two-arg functions 1564 case AMDGPULibFunc::EI_DIVIDE: 1565 Res0 = opr0 / opr1; 1566 return true; 1567 1568 case AMDGPULibFunc::EI_POW: 1569 case AMDGPULibFunc::EI_POWR: 1570 Res0 = pow(opr0, opr1); 1571 return true; 1572 1573 case AMDGPULibFunc::EI_POWN: { 1574 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1575 double val = (double)iopr1->getSExtValue(); 1576 Res0 = pow(opr0, val); 1577 return true; 1578 } 1579 return false; 1580 } 1581 1582 case AMDGPULibFunc::EI_ROOTN: { 1583 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1584 double val = (double)iopr1->getSExtValue(); 1585 Res0 = pow(opr0, 1.0 / val); 1586 return true; 1587 } 1588 return false; 1589 } 1590 1591 // with ptr arg 1592 case AMDGPULibFunc::EI_SINCOS: 1593 Res0 = sin(opr0); 1594 Res1 = cos(opr0); 1595 return true; 1596 1597 // three-arg functions 1598 case AMDGPULibFunc::EI_FMA: 1599 case AMDGPULibFunc::EI_MAD: 1600 Res0 = opr0 * opr1 + opr2; 1601 return true; 1602 } 1603 1604 return false; 1605 } 1606 1607 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { 1608 int numArgs = (int)aCI->arg_size(); 1609 if (numArgs > 3) 1610 return false; 1611 1612 Constant *copr0 = nullptr; 1613 Constant *copr1 = nullptr; 1614 Constant *copr2 = nullptr; 1615 if (numArgs > 0) { 1616 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1617 return false; 1618 } 1619 1620 if (numArgs > 1) { 1621 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1622 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1623 return false; 1624 } 1625 } 1626 1627 if (numArgs > 2) { 1628 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1629 return false; 1630 } 1631 1632 // At this point, all arguments to aCI are constants. 1633 1634 // max vector size is 16, and sincos will generate two results. 1635 double DVal0[16], DVal1[16]; 1636 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1637 if (getVecSize(FInfo) == 1) { 1638 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1639 DVal1[0], copr0, copr1, copr2)) { 1640 return false; 1641 } 1642 } else { 1643 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1644 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1645 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1646 for (int i=0; i < getVecSize(FInfo); ++i) { 1647 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1648 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1649 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1650 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1651 DVal1[i], celt0, celt1, celt2)) { 1652 return false; 1653 } 1654 } 1655 } 1656 1657 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1658 Constant *nval0, *nval1; 1659 if (getVecSize(FInfo) == 1) { 1660 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1661 if (hasTwoResults) 1662 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1663 } else { 1664 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1665 SmallVector <float, 0> FVal0, FVal1; 1666 for (int i=0; i < getVecSize(FInfo); ++i) 1667 FVal0.push_back((float)DVal0[i]); 1668 ArrayRef<float> tmp0(FVal0); 1669 nval0 = ConstantDataVector::get(context, tmp0); 1670 if (hasTwoResults) { 1671 for (int i=0; i < getVecSize(FInfo); ++i) 1672 FVal1.push_back((float)DVal1[i]); 1673 ArrayRef<float> tmp1(FVal1); 1674 nval1 = ConstantDataVector::get(context, tmp1); 1675 } 1676 } else { 1677 ArrayRef<double> tmp0(DVal0); 1678 nval0 = ConstantDataVector::get(context, tmp0); 1679 if (hasTwoResults) { 1680 ArrayRef<double> tmp1(DVal1); 1681 nval1 = ConstantDataVector::get(context, tmp1); 1682 } 1683 } 1684 } 1685 1686 if (hasTwoResults) { 1687 // sincos 1688 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1689 "math function with ptr arg not supported yet"); 1690 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1691 } 1692 1693 replaceCall(nval0); 1694 return true; 1695 } 1696 1697 // Public interface to the Simplify LibCalls pass. 1698 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { 1699 return new AMDGPUSimplifyLibCalls(TM); 1700 } 1701 1702 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1703 return new AMDGPUUseNativeCalls(); 1704 } 1705 1706 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1707 if (skipFunction(F)) 1708 return false; 1709 1710 bool Changed = false; 1711 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1712 1713 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1714 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1715 1716 for (auto &BB : F) { 1717 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1718 // Ignore non-calls. 1719 CallInst *CI = dyn_cast<CallInst>(I); 1720 ++I; 1721 // Ignore intrinsics that do not become real instructions. 1722 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1723 continue; 1724 1725 // Ignore indirect calls. 1726 Function *Callee = CI->getCalledFunction(); 1727 if (Callee == 0) continue; 1728 1729 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1730 dbgs().flush()); 1731 if(Simplifier.fold(CI, AA)) 1732 Changed = true; 1733 } 1734 } 1735 return Changed; 1736 } 1737 1738 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1739 FunctionAnalysisManager &AM) { 1740 AMDGPULibCalls Simplifier(&TM); 1741 Simplifier.initNativeFuncs(); 1742 1743 bool Changed = false; 1744 auto AA = &AM.getResult<AAManager>(F); 1745 1746 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1747 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1748 1749 for (auto &BB : F) { 1750 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1751 // Ignore non-calls. 1752 CallInst *CI = dyn_cast<CallInst>(I); 1753 ++I; 1754 // Ignore intrinsics that do not become real instructions. 1755 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1756 continue; 1757 1758 // Ignore indirect calls. 1759 Function *Callee = CI->getCalledFunction(); 1760 if (Callee == 0) 1761 continue; 1762 1763 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1764 dbgs().flush()); 1765 if (Simplifier.fold(CI, AA)) 1766 Changed = true; 1767 } 1768 } 1769 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1770 } 1771 1772 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1773 if (skipFunction(F) || UseNative.empty()) 1774 return false; 1775 1776 bool Changed = false; 1777 for (auto &BB : F) { 1778 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1779 // Ignore non-calls. 1780 CallInst *CI = dyn_cast<CallInst>(I); 1781 ++I; 1782 if (!CI) continue; 1783 1784 // Ignore indirect calls. 1785 Function *Callee = CI->getCalledFunction(); 1786 if (Callee == 0) continue; 1787 1788 if(Simplifier.useNative(CI)) 1789 Changed = true; 1790 } 1791 } 1792 return Changed; 1793 } 1794 1795 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1796 FunctionAnalysisManager &AM) { 1797 if (UseNative.empty()) 1798 return PreservedAnalyses::all(); 1799 1800 AMDGPULibCalls Simplifier; 1801 Simplifier.initNativeFuncs(); 1802 1803 bool Changed = false; 1804 for (auto &BB : F) { 1805 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1806 // Ignore non-calls. 1807 CallInst *CI = dyn_cast<CallInst>(I); 1808 ++I; 1809 if (!CI) 1810 continue; 1811 1812 // Ignore indirect calls. 1813 Function *Callee = CI->getCalledFunction(); 1814 if (Callee == 0) 1815 continue; 1816 1817 if (Simplifier.useNative(CI)) 1818 Changed = true; 1819 } 1820 } 1821 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1822 } 1823