xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPULibFunc.h"
16 #include "GCNSubtarget.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Target/TargetMachine.h"
23 
24 #define DEBUG_TYPE "amdgpu-simplifylib"
25 
26 using namespace llvm;
27 
28 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
29   cl::desc("Enable pre-link mode optimizations"),
30   cl::init(false),
31   cl::Hidden);
32 
33 static cl::list<std::string> UseNative("amdgpu-use-native",
34   cl::desc("Comma separated list of functions to replace with native, or all"),
35   cl::CommaSeparated, cl::ValueOptional,
36   cl::Hidden);
37 
38 #define MATH_PI      numbers::pi
39 #define MATH_E       numbers::e
40 #define MATH_SQRT2   numbers::sqrt2
41 #define MATH_SQRT1_2 numbers::inv_sqrt2
42 
43 namespace llvm {
44 
45 class AMDGPULibCalls {
46 private:
47 
48   typedef llvm::AMDGPULibFunc FuncInfo;
49 
50   const TargetMachine *TM;
51 
52   // -fuse-native.
53   bool AllNative = false;
54 
55   bool useNativeFunc(const StringRef F) const;
56 
57   // Return a pointer (pointer expr) to the function if function definition with
58   // "FuncName" exists. It may create a new function prototype in pre-link mode.
59   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
60 
61   // Replace a normal function with its native version.
62   bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
63 
64   bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo);
65 
66   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
67 
68   /* Specialized optimizations */
69 
70   // recip (half or native)
71   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
72 
73   // divide (half or native)
74   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
75 
76   // pow/powr/pown
77   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
78 
79   // rootn
80   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
81 
82   // fma/mad
83   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
84 
85   // -fuse-native for sincos
86   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
87 
88   // evaluate calls if calls' arguments are constants.
89   bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0,
90     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
91   bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo);
92 
93   // exp
94   bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
95 
96   // exp2
97   bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
98 
99   // exp10
100   bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
101 
102   // log
103   bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
104 
105   // log2
106   bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
107 
108   // log10
109   bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
110 
111   // sqrt
112   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
113 
114   // sin/cos
115   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
116 
117   // __read_pipe/__write_pipe
118   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
119                             const FuncInfo &FInfo);
120 
121   // llvm.amdgcn.wavefrontsize
122   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
123 
124   // Get insertion point at entry.
125   BasicBlock::iterator getEntryIns(CallInst * UI);
126   // Insert an Alloc instruction.
127   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
128   // Get a scalar native builtin single argument FP function
129   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
130 
131 protected:
132   CallInst *CI;
133 
134   bool isUnsafeMath(const CallInst *CI) const;
135 
136   void replaceCall(Value *With) {
137     CI->replaceAllUsesWith(With);
138     CI->eraseFromParent();
139   }
140 
141 public:
142   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
143 
144   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
145 
146   void initNativeFuncs();
147 
148   // Replace a normal math function call with that native version
149   bool useNative(CallInst *CI);
150 };
151 
152 } // end llvm namespace
153 
154 namespace {
155 
156   class AMDGPUSimplifyLibCalls : public FunctionPass {
157 
158   AMDGPULibCalls Simplifier;
159 
160   public:
161     static char ID; // Pass identification
162 
163     AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr)
164       : FunctionPass(ID), Simplifier(TM) {
165       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
166     }
167 
168     void getAnalysisUsage(AnalysisUsage &AU) const override {
169       AU.addRequired<AAResultsWrapperPass>();
170     }
171 
172     bool runOnFunction(Function &M) override;
173   };
174 
175   class AMDGPUUseNativeCalls : public FunctionPass {
176 
177   AMDGPULibCalls Simplifier;
178 
179   public:
180     static char ID; // Pass identification
181 
182     AMDGPUUseNativeCalls() : FunctionPass(ID) {
183       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
184       Simplifier.initNativeFuncs();
185     }
186 
187     bool runOnFunction(Function &F) override;
188   };
189 
190 } // end anonymous namespace.
191 
192 char AMDGPUSimplifyLibCalls::ID = 0;
193 char AMDGPUUseNativeCalls::ID = 0;
194 
195 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
196                       "Simplify well-known AMD library calls", false, false)
197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
198 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
199                     "Simplify well-known AMD library calls", false, false)
200 
201 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
202                 "Replace builtin math calls with that native versions.",
203                 false, false)
204 
205 template <typename IRB>
206 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
207                               const Twine &Name = "") {
208   CallInst *R = B.CreateCall(Callee, Arg, Name);
209   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
210     R->setCallingConv(F->getCallingConv());
211   return R;
212 }
213 
214 template <typename IRB>
215 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
216                                Value *Arg2, const Twine &Name = "") {
217   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
218   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
219     R->setCallingConv(F->getCallingConv());
220   return R;
221 }
222 
223 //  Data structures for table-driven optimizations.
224 //  FuncTbl works for both f32 and f64 functions with 1 input argument
225 
226 struct TableEntry {
227   double   result;
228   double   input;
229 };
230 
231 /* a list of {result, input} */
232 static const TableEntry tbl_acos[] = {
233   {MATH_PI / 2.0, 0.0},
234   {MATH_PI / 2.0, -0.0},
235   {0.0, 1.0},
236   {MATH_PI, -1.0}
237 };
238 static const TableEntry tbl_acosh[] = {
239   {0.0, 1.0}
240 };
241 static const TableEntry tbl_acospi[] = {
242   {0.5, 0.0},
243   {0.5, -0.0},
244   {0.0, 1.0},
245   {1.0, -1.0}
246 };
247 static const TableEntry tbl_asin[] = {
248   {0.0, 0.0},
249   {-0.0, -0.0},
250   {MATH_PI / 2.0, 1.0},
251   {-MATH_PI / 2.0, -1.0}
252 };
253 static const TableEntry tbl_asinh[] = {
254   {0.0, 0.0},
255   {-0.0, -0.0}
256 };
257 static const TableEntry tbl_asinpi[] = {
258   {0.0, 0.0},
259   {-0.0, -0.0},
260   {0.5, 1.0},
261   {-0.5, -1.0}
262 };
263 static const TableEntry tbl_atan[] = {
264   {0.0, 0.0},
265   {-0.0, -0.0},
266   {MATH_PI / 4.0, 1.0},
267   {-MATH_PI / 4.0, -1.0}
268 };
269 static const TableEntry tbl_atanh[] = {
270   {0.0, 0.0},
271   {-0.0, -0.0}
272 };
273 static const TableEntry tbl_atanpi[] = {
274   {0.0, 0.0},
275   {-0.0, -0.0},
276   {0.25, 1.0},
277   {-0.25, -1.0}
278 };
279 static const TableEntry tbl_cbrt[] = {
280   {0.0, 0.0},
281   {-0.0, -0.0},
282   {1.0, 1.0},
283   {-1.0, -1.0},
284 };
285 static const TableEntry tbl_cos[] = {
286   {1.0, 0.0},
287   {1.0, -0.0}
288 };
289 static const TableEntry tbl_cosh[] = {
290   {1.0, 0.0},
291   {1.0, -0.0}
292 };
293 static const TableEntry tbl_cospi[] = {
294   {1.0, 0.0},
295   {1.0, -0.0}
296 };
297 static const TableEntry tbl_erfc[] = {
298   {1.0, 0.0},
299   {1.0, -0.0}
300 };
301 static const TableEntry tbl_erf[] = {
302   {0.0, 0.0},
303   {-0.0, -0.0}
304 };
305 static const TableEntry tbl_exp[] = {
306   {1.0, 0.0},
307   {1.0, -0.0},
308   {MATH_E, 1.0}
309 };
310 static const TableEntry tbl_exp2[] = {
311   {1.0, 0.0},
312   {1.0, -0.0},
313   {2.0, 1.0}
314 };
315 static const TableEntry tbl_exp10[] = {
316   {1.0, 0.0},
317   {1.0, -0.0},
318   {10.0, 1.0}
319 };
320 static const TableEntry tbl_expm1[] = {
321   {0.0, 0.0},
322   {-0.0, -0.0}
323 };
324 static const TableEntry tbl_log[] = {
325   {0.0, 1.0},
326   {1.0, MATH_E}
327 };
328 static const TableEntry tbl_log2[] = {
329   {0.0, 1.0},
330   {1.0, 2.0}
331 };
332 static const TableEntry tbl_log10[] = {
333   {0.0, 1.0},
334   {1.0, 10.0}
335 };
336 static const TableEntry tbl_rsqrt[] = {
337   {1.0, 1.0},
338   {MATH_SQRT1_2, 2.0}
339 };
340 static const TableEntry tbl_sin[] = {
341   {0.0, 0.0},
342   {-0.0, -0.0}
343 };
344 static const TableEntry tbl_sinh[] = {
345   {0.0, 0.0},
346   {-0.0, -0.0}
347 };
348 static const TableEntry tbl_sinpi[] = {
349   {0.0, 0.0},
350   {-0.0, -0.0}
351 };
352 static const TableEntry tbl_sqrt[] = {
353   {0.0, 0.0},
354   {1.0, 1.0},
355   {MATH_SQRT2, 2.0}
356 };
357 static const TableEntry tbl_tan[] = {
358   {0.0, 0.0},
359   {-0.0, -0.0}
360 };
361 static const TableEntry tbl_tanh[] = {
362   {0.0, 0.0},
363   {-0.0, -0.0}
364 };
365 static const TableEntry tbl_tanpi[] = {
366   {0.0, 0.0},
367   {-0.0, -0.0}
368 };
369 static const TableEntry tbl_tgamma[] = {
370   {1.0, 1.0},
371   {1.0, 2.0},
372   {2.0, 3.0},
373   {6.0, 4.0}
374 };
375 
376 static bool HasNative(AMDGPULibFunc::EFuncId id) {
377   switch(id) {
378   case AMDGPULibFunc::EI_DIVIDE:
379   case AMDGPULibFunc::EI_COS:
380   case AMDGPULibFunc::EI_EXP:
381   case AMDGPULibFunc::EI_EXP2:
382   case AMDGPULibFunc::EI_EXP10:
383   case AMDGPULibFunc::EI_LOG:
384   case AMDGPULibFunc::EI_LOG2:
385   case AMDGPULibFunc::EI_LOG10:
386   case AMDGPULibFunc::EI_POWR:
387   case AMDGPULibFunc::EI_RECIP:
388   case AMDGPULibFunc::EI_RSQRT:
389   case AMDGPULibFunc::EI_SIN:
390   case AMDGPULibFunc::EI_SINCOS:
391   case AMDGPULibFunc::EI_SQRT:
392   case AMDGPULibFunc::EI_TAN:
393     return true;
394   default:;
395   }
396   return false;
397 }
398 
399 struct TableRef {
400   size_t size;
401   const TableEntry *table; // variable size: from 0 to (size - 1)
402 
403   TableRef() : size(0), table(nullptr) {}
404 
405   template <size_t N>
406   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
407 };
408 
409 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
410   switch(id) {
411   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
412   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
413   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
414   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
415   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
416   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
417   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
418   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
419   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
420   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
421   case AMDGPULibFunc::EI_NCOS:
422   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
423   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
424   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
425   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
426   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
427   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
428   case AMDGPULibFunc::EI_NEXP2:
429   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
430   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
431   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
432   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
433   case AMDGPULibFunc::EI_NLOG2:
434   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
435   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
436   case AMDGPULibFunc::EI_NRSQRT:
437   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
438   case AMDGPULibFunc::EI_NSIN:
439   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
440   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
441   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
442   case AMDGPULibFunc::EI_NSQRT:
443   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
444   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
445   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
446   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
447   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
448   default:;
449   }
450   return TableRef();
451 }
452 
453 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
454   return FInfo.getLeads()[0].VectorSize;
455 }
456 
457 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
458   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
459 }
460 
461 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
462   // If we are doing PreLinkOpt, the function is external. So it is safe to
463   // use getOrInsertFunction() at this stage.
464 
465   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
466                        : AMDGPULibFunc::getFunction(M, fInfo);
467 }
468 
469 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName,
470                                        FuncInfo &FInfo) {
471   return AMDGPULibFunc::parse(FMangledName, FInfo);
472 }
473 
474 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
475   if (auto Op = dyn_cast<FPMathOperator>(CI))
476     if (Op->isFast())
477       return true;
478   const Function *F = CI->getParent()->getParent();
479   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
480   return Attr.getValueAsBool();
481 }
482 
483 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
484   return AllNative || llvm::is_contained(UseNative, F);
485 }
486 
487 void AMDGPULibCalls::initNativeFuncs() {
488   AllNative = useNativeFunc("all") ||
489               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
490                UseNative.begin()->empty());
491 }
492 
493 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
494   bool native_sin = useNativeFunc("sin");
495   bool native_cos = useNativeFunc("cos");
496 
497   if (native_sin && native_cos) {
498     Module *M = aCI->getModule();
499     Value *opr0 = aCI->getArgOperand(0);
500 
501     AMDGPULibFunc nf;
502     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
503     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
504 
505     nf.setPrefix(AMDGPULibFunc::NATIVE);
506     nf.setId(AMDGPULibFunc::EI_SIN);
507     FunctionCallee sinExpr = getFunction(M, nf);
508 
509     nf.setPrefix(AMDGPULibFunc::NATIVE);
510     nf.setId(AMDGPULibFunc::EI_COS);
511     FunctionCallee cosExpr = getFunction(M, nf);
512     if (sinExpr && cosExpr) {
513       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
514       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
515       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
516 
517       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
518                                           << " with native version of sin/cos");
519 
520       replaceCall(sinval);
521       return true;
522     }
523   }
524   return false;
525 }
526 
527 bool AMDGPULibCalls::useNative(CallInst *aCI) {
528   CI = aCI;
529   Function *Callee = aCI->getCalledFunction();
530 
531   FuncInfo FInfo;
532   if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() ||
533       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
534       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
535       !(AllNative || useNativeFunc(FInfo.getName()))) {
536     return false;
537   }
538 
539   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
540     return sincosUseNative(aCI, FInfo);
541 
542   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
543   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
544   if (!F)
545     return false;
546 
547   aCI->setCalledFunction(F);
548   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
549                                       << " with native version");
550   return true;
551 }
552 
553 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
554 // builtin, with appended type size and alignment arguments, where 2 or 4
555 // indicates the original number of arguments. The library has optimized version
556 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
557 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
558 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
559 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
560 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
561                                           const FuncInfo &FInfo) {
562   auto *Callee = CI->getCalledFunction();
563   if (!Callee->isDeclaration())
564     return false;
565 
566   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
567   auto *M = Callee->getParent();
568   auto &Ctx = M->getContext();
569   std::string Name = std::string(Callee->getName());
570   auto NumArg = CI->arg_size();
571   if (NumArg != 4 && NumArg != 6)
572     return false;
573   auto *PacketSize = CI->getArgOperand(NumArg - 2);
574   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
575   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
576     return false;
577   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
578   Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue();
579   if (Alignment != Size)
580     return false;
581 
582   Type *PtrElemTy;
583   if (Size <= 8)
584     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
585   else
586     PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8);
587   unsigned PtrArgLoc = CI->arg_size() - 3;
588   auto PtrArg = CI->getArgOperand(PtrArgLoc);
589   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
590   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
591 
592   SmallVector<llvm::Type *, 6> ArgTys;
593   for (unsigned I = 0; I != PtrArgLoc; ++I)
594     ArgTys.push_back(CI->getArgOperand(I)->getType());
595   ArgTys.push_back(PtrTy);
596 
597   Name = Name + "_" + std::to_string(Size);
598   auto *FTy = FunctionType::get(Callee->getReturnType(),
599                                 ArrayRef<Type *>(ArgTys), false);
600   AMDGPULibFunc NewLibFunc(Name, FTy);
601   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
602   if (!F)
603     return false;
604 
605   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
606   SmallVector<Value *, 6> Args;
607   for (unsigned I = 0; I != PtrArgLoc; ++I)
608     Args.push_back(CI->getArgOperand(I));
609   Args.push_back(BCast);
610 
611   auto *NCI = B.CreateCall(F, Args);
612   NCI->setAttributes(CI->getAttributes());
613   CI->replaceAllUsesWith(NCI);
614   CI->dropAllReferences();
615   CI->eraseFromParent();
616 
617   return true;
618 }
619 
620 // This function returns false if no change; return true otherwise.
621 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
622   this->CI = CI;
623   Function *Callee = CI->getCalledFunction();
624 
625   // Ignore indirect calls.
626   if (Callee == 0) return false;
627 
628   BasicBlock *BB = CI->getParent();
629   LLVMContext &Context = CI->getParent()->getContext();
630   IRBuilder<> B(Context);
631 
632   // Set the builder to the instruction after the call.
633   B.SetInsertPoint(BB, CI->getIterator());
634 
635   // Copy fast flags from the original call.
636   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
637     B.setFastMathFlags(FPOp->getFastMathFlags());
638 
639   switch (Callee->getIntrinsicID()) {
640   default:
641     break;
642   case Intrinsic::amdgcn_wavefrontsize:
643     return !EnablePreLink && fold_wavefrontsize(CI, B);
644   }
645 
646   FuncInfo FInfo;
647   if (!parseFunctionName(Callee->getName(), FInfo))
648     return false;
649 
650   // Further check the number of arguments to see if they match.
651   if (CI->arg_size() != FInfo.getNumArgs())
652     return false;
653 
654   if (TDOFold(CI, FInfo))
655     return true;
656 
657   // Under unsafe-math, evaluate calls if possible.
658   // According to Brian Sumner, we can do this for all f32 function calls
659   // using host's double function calls.
660   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
661     return true;
662 
663   // Specialized optimizations for each function call
664   switch (FInfo.getId()) {
665   case AMDGPULibFunc::EI_RECIP:
666     // skip vector function
667     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
668              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
669             "recip must be an either native or half function");
670     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
671 
672   case AMDGPULibFunc::EI_DIVIDE:
673     // skip vector function
674     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
675              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
676             "divide must be an either native or half function");
677     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
678 
679   case AMDGPULibFunc::EI_POW:
680   case AMDGPULibFunc::EI_POWR:
681   case AMDGPULibFunc::EI_POWN:
682     return fold_pow(CI, B, FInfo);
683 
684   case AMDGPULibFunc::EI_ROOTN:
685     // skip vector function
686     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
687 
688   case AMDGPULibFunc::EI_FMA:
689   case AMDGPULibFunc::EI_MAD:
690   case AMDGPULibFunc::EI_NFMA:
691     // skip vector function
692     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
693 
694   case AMDGPULibFunc::EI_SQRT:
695     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
696   case AMDGPULibFunc::EI_COS:
697   case AMDGPULibFunc::EI_SIN:
698     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
699          getArgType(FInfo) == AMDGPULibFunc::F64)
700         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
701       return fold_sincos(CI, B, AA);
702 
703     break;
704   case AMDGPULibFunc::EI_READ_PIPE_2:
705   case AMDGPULibFunc::EI_READ_PIPE_4:
706   case AMDGPULibFunc::EI_WRITE_PIPE_2:
707   case AMDGPULibFunc::EI_WRITE_PIPE_4:
708     return fold_read_write_pipe(CI, B, FInfo);
709 
710   default:
711     break;
712   }
713 
714   return false;
715 }
716 
717 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
718   // Table-Driven optimization
719   const TableRef tr = getOptTable(FInfo.getId());
720   if (tr.size==0)
721     return false;
722 
723   int const sz = (int)tr.size;
724   const TableEntry * const ftbl = tr.table;
725   Value *opr0 = CI->getArgOperand(0);
726 
727   if (getVecSize(FInfo) > 1) {
728     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
729       SmallVector<double, 0> DVal;
730       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
731         ConstantFP *eltval = dyn_cast<ConstantFP>(
732                                CV->getElementAsConstant((unsigned)eltNo));
733         assert(eltval && "Non-FP arguments in math function!");
734         bool found = false;
735         for (int i=0; i < sz; ++i) {
736           if (eltval->isExactlyValue(ftbl[i].input)) {
737             DVal.push_back(ftbl[i].result);
738             found = true;
739             break;
740           }
741         }
742         if (!found) {
743           // This vector constants not handled yet.
744           return false;
745         }
746       }
747       LLVMContext &context = CI->getParent()->getParent()->getContext();
748       Constant *nval;
749       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
750         SmallVector<float, 0> FVal;
751         for (unsigned i = 0; i < DVal.size(); ++i) {
752           FVal.push_back((float)DVal[i]);
753         }
754         ArrayRef<float> tmp(FVal);
755         nval = ConstantDataVector::get(context, tmp);
756       } else { // F64
757         ArrayRef<double> tmp(DVal);
758         nval = ConstantDataVector::get(context, tmp);
759       }
760       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
761       replaceCall(nval);
762       return true;
763     }
764   } else {
765     // Scalar version
766     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
767       for (int i = 0; i < sz; ++i) {
768         if (CF->isExactlyValue(ftbl[i].input)) {
769           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
770           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
771           replaceCall(nval);
772           return true;
773         }
774       }
775     }
776   }
777 
778   return false;
779 }
780 
781 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
782   Module *M = CI->getModule();
783   if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
784       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
785       !HasNative(FInfo.getId()))
786     return false;
787 
788   AMDGPULibFunc nf = FInfo;
789   nf.setPrefix(AMDGPULibFunc::NATIVE);
790   if (FunctionCallee FPExpr = getFunction(M, nf)) {
791     LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
792 
793     CI->setCalledFunction(FPExpr);
794 
795     LLVM_DEBUG(dbgs() << *CI << '\n');
796 
797     return true;
798   }
799   return false;
800 }
801 
802 //  [native_]half_recip(c) ==> 1.0/c
803 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
804                                 const FuncInfo &FInfo) {
805   Value *opr0 = CI->getArgOperand(0);
806   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
807     // Just create a normal div. Later, InstCombine will be able
808     // to compute the divide into a constant (avoid check float infinity
809     // or subnormal at this point).
810     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
811                                opr0,
812                                "recip2div");
813     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
814     replaceCall(nval);
815     return true;
816   }
817   return false;
818 }
819 
820 //  [native_]half_divide(x, c) ==> x/c
821 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
822                                  const FuncInfo &FInfo) {
823   Value *opr0 = CI->getArgOperand(0);
824   Value *opr1 = CI->getArgOperand(1);
825   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
826   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
827 
828   if ((CF0 && CF1) ||  // both are constants
829       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
830       // CF1 is constant && f32 divide
831   {
832     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
833                                 opr1, "__div2recip");
834     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
835     replaceCall(nval);
836     return true;
837   }
838   return false;
839 }
840 
841 namespace llvm {
842 static double log2(double V) {
843 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
844   return ::log2(V);
845 #else
846   return log(V) / numbers::ln2;
847 #endif
848 }
849 }
850 
851 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
852                               const FuncInfo &FInfo) {
853   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
854           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
855           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
856          "fold_pow: encounter a wrong function call");
857 
858   Value *opr0, *opr1;
859   ConstantFP *CF;
860   ConstantInt *CINT;
861   ConstantAggregateZero *CZero;
862   Type *eltType;
863 
864   opr0 = CI->getArgOperand(0);
865   opr1 = CI->getArgOperand(1);
866   CZero = dyn_cast<ConstantAggregateZero>(opr1);
867   if (getVecSize(FInfo) == 1) {
868     eltType = opr0->getType();
869     CF = dyn_cast<ConstantFP>(opr1);
870     CINT = dyn_cast<ConstantInt>(opr1);
871   } else {
872     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
873     assert(VTy && "Oprand of vector function should be of vectortype");
874     eltType = VTy->getElementType();
875     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
876 
877     // Now, only Handle vector const whose elements have the same value.
878     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
879     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
880   }
881 
882   // No unsafe math , no constant argument, do nothing
883   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
884     return false;
885 
886   // 0x1111111 means that we don't do anything for this call.
887   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
888 
889   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
890     //  pow/powr/pown(x, 0) == 1
891     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
892     Constant *cnval = ConstantFP::get(eltType, 1.0);
893     if (getVecSize(FInfo) > 1) {
894       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
895     }
896     replaceCall(cnval);
897     return true;
898   }
899   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
900     // pow/powr/pown(x, 1.0) = x
901     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
902     replaceCall(opr0);
903     return true;
904   }
905   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
906     // pow/powr/pown(x, 2.0) = x*x
907     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
908                       << "\n");
909     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
910     replaceCall(nval);
911     return true;
912   }
913   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
914     // pow/powr/pown(x, -1.0) = 1.0/x
915     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
916     Constant *cnval = ConstantFP::get(eltType, 1.0);
917     if (getVecSize(FInfo) > 1) {
918       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
919     }
920     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
921     replaceCall(nval);
922     return true;
923   }
924 
925   Module *M = CI->getModule();
926   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
927     // pow[r](x, [-]0.5) = sqrt(x)
928     bool issqrt = CF->isExactlyValue(0.5);
929     if (FunctionCallee FPExpr =
930             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
931                                                 : AMDGPULibFunc::EI_RSQRT,
932                                          FInfo))) {
933       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
934                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
935       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
936                                                         : "__pow2rsqrt");
937       replaceCall(nval);
938       return true;
939     }
940   }
941 
942   if (!isUnsafeMath(CI))
943     return false;
944 
945   // Unsafe Math optimization
946 
947   // Remember that ci_opr1 is set if opr1 is integral
948   if (CF) {
949     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
950                     ? (double)CF->getValueAPF().convertToFloat()
951                     : CF->getValueAPF().convertToDouble();
952     int ival = (int)dval;
953     if ((double)ival == dval) {
954       ci_opr1 = ival;
955     } else
956       ci_opr1 = 0x11111111;
957   }
958 
959   // pow/powr/pown(x, c) = [1/](x*x*..x); where
960   //   trunc(c) == c && the number of x == c && |c| <= 12
961   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
962   if (abs_opr1 <= 12) {
963     Constant *cnval;
964     Value *nval;
965     if (abs_opr1 == 0) {
966       cnval = ConstantFP::get(eltType, 1.0);
967       if (getVecSize(FInfo) > 1) {
968         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
969       }
970       nval = cnval;
971     } else {
972       Value *valx2 = nullptr;
973       nval = nullptr;
974       while (abs_opr1 > 0) {
975         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
976         if (abs_opr1 & 1) {
977           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
978         }
979         abs_opr1 >>= 1;
980       }
981     }
982 
983     if (ci_opr1 < 0) {
984       cnval = ConstantFP::get(eltType, 1.0);
985       if (getVecSize(FInfo) > 1) {
986         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
987       }
988       nval = B.CreateFDiv(cnval, nval, "__1powprod");
989     }
990     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
991                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
992                       << ")\n");
993     replaceCall(nval);
994     return true;
995   }
996 
997   // powr ---> exp2(y * log2(x))
998   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
999   FunctionCallee ExpExpr =
1000       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1001   if (!ExpExpr)
1002     return false;
1003 
1004   bool needlog = false;
1005   bool needabs = false;
1006   bool needcopysign = false;
1007   Constant *cnval = nullptr;
1008   if (getVecSize(FInfo) == 1) {
1009     CF = dyn_cast<ConstantFP>(opr0);
1010 
1011     if (CF) {
1012       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1013                    ? (double)CF->getValueAPF().convertToFloat()
1014                    : CF->getValueAPF().convertToDouble();
1015 
1016       V = log2(std::abs(V));
1017       cnval = ConstantFP::get(eltType, V);
1018       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1019                      CF->isNegative();
1020     } else {
1021       needlog = true;
1022       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1023                                (!CF || CF->isNegative());
1024     }
1025   } else {
1026     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1027 
1028     if (!CDV) {
1029       needlog = true;
1030       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1031     } else {
1032       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1033               "Wrong vector size detected");
1034 
1035       SmallVector<double, 0> DVal;
1036       for (int i=0; i < getVecSize(FInfo); ++i) {
1037         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1038                      ? (double)CDV->getElementAsFloat(i)
1039                      : CDV->getElementAsDouble(i);
1040         if (V < 0.0) needcopysign = true;
1041         V = log2(std::abs(V));
1042         DVal.push_back(V);
1043       }
1044       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1045         SmallVector<float, 0> FVal;
1046         for (unsigned i=0; i < DVal.size(); ++i) {
1047           FVal.push_back((float)DVal[i]);
1048         }
1049         ArrayRef<float> tmp(FVal);
1050         cnval = ConstantDataVector::get(M->getContext(), tmp);
1051       } else {
1052         ArrayRef<double> tmp(DVal);
1053         cnval = ConstantDataVector::get(M->getContext(), tmp);
1054       }
1055     }
1056   }
1057 
1058   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1059     // We cannot handle corner cases for a general pow() function, give up
1060     // unless y is a constant integral value. Then proceed as if it were pown.
1061     if (getVecSize(FInfo) == 1) {
1062       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1063         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1064                    ? (double)CF->getValueAPF().convertToFloat()
1065                    : CF->getValueAPF().convertToDouble();
1066         if (y != (double)(int64_t)y)
1067           return false;
1068       } else
1069         return false;
1070     } else {
1071       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1072         for (int i=0; i < getVecSize(FInfo); ++i) {
1073           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1074                      ? (double)CDV->getElementAsFloat(i)
1075                      : CDV->getElementAsDouble(i);
1076           if (y != (double)(int64_t)y)
1077             return false;
1078         }
1079       } else
1080         return false;
1081     }
1082   }
1083 
1084   Value *nval;
1085   if (needabs) {
1086     FunctionCallee AbsExpr =
1087         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1088     if (!AbsExpr)
1089       return false;
1090     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1091   } else {
1092     nval = cnval ? cnval : opr0;
1093   }
1094   if (needlog) {
1095     FunctionCallee LogExpr =
1096         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1097     if (!LogExpr)
1098       return false;
1099     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1100   }
1101 
1102   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1103     // convert int(32) to fp(f32 or f64)
1104     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1105   }
1106   nval = B.CreateFMul(opr1, nval, "__ylogx");
1107   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1108 
1109   if (needcopysign) {
1110     Value *opr_n;
1111     Type* rTy = opr0->getType();
1112     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1113     Type *nTy = nTyS;
1114     if (const auto *vTy = dyn_cast<FixedVectorType>(rTy))
1115       nTy = FixedVectorType::get(nTyS, vTy);
1116     unsigned size = nTy->getScalarSizeInBits();
1117     opr_n = CI->getArgOperand(1);
1118     if (opr_n->getType()->isIntegerTy())
1119       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1120     else
1121       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1122 
1123     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1124     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1125     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1126     nval = B.CreateBitCast(nval, opr0->getType());
1127   }
1128 
1129   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1130                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1131   replaceCall(nval);
1132 
1133   return true;
1134 }
1135 
1136 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1137                                 const FuncInfo &FInfo) {
1138   Value *opr0 = CI->getArgOperand(0);
1139   Value *opr1 = CI->getArgOperand(1);
1140 
1141   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1142   if (!CINT) {
1143     return false;
1144   }
1145   int ci_opr1 = (int)CINT->getSExtValue();
1146   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1147     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1148     replaceCall(opr0);
1149     return true;
1150   }
1151   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1152     Module *M = CI->getModule();
1153     if (FunctionCallee FPExpr =
1154             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1155       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1156       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1157       replaceCall(nval);
1158       return true;
1159     }
1160   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1161     Module *M = CI->getModule();
1162     if (FunctionCallee FPExpr =
1163             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1164       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1165       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1166       replaceCall(nval);
1167       return true;
1168     }
1169   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1170     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1171     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1172                                opr0,
1173                                "__rootn2div");
1174     replaceCall(nval);
1175     return true;
1176   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1177     Module *M = CI->getModule();
1178     if (FunctionCallee FPExpr =
1179             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1180       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1181                         << ")\n");
1182       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1183       replaceCall(nval);
1184       return true;
1185     }
1186   }
1187   return false;
1188 }
1189 
1190 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1191                                   const FuncInfo &FInfo) {
1192   Value *opr0 = CI->getArgOperand(0);
1193   Value *opr1 = CI->getArgOperand(1);
1194   Value *opr2 = CI->getArgOperand(2);
1195 
1196   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1197   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1198   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1199     // fma/mad(a, b, c) = c if a=0 || b=0
1200     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1201     replaceCall(opr2);
1202     return true;
1203   }
1204   if (CF0 && CF0->isExactlyValue(1.0f)) {
1205     // fma/mad(a, b, c) = b+c if a=1
1206     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1207                       << "\n");
1208     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1209     replaceCall(nval);
1210     return true;
1211   }
1212   if (CF1 && CF1->isExactlyValue(1.0f)) {
1213     // fma/mad(a, b, c) = a+c if b=1
1214     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1215                       << "\n");
1216     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1217     replaceCall(nval);
1218     return true;
1219   }
1220   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1221     if (CF->isZero()) {
1222       // fma/mad(a, b, c) = a*b if c=0
1223       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1224                         << *opr1 << "\n");
1225       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1226       replaceCall(nval);
1227       return true;
1228     }
1229   }
1230 
1231   return false;
1232 }
1233 
1234 // Get a scalar native builtin single argument FP function
1235 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1236                                                  const FuncInfo &FInfo) {
1237   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1238     return nullptr;
1239   FuncInfo nf = FInfo;
1240   nf.setPrefix(AMDGPULibFunc::NATIVE);
1241   return getFunction(M, nf);
1242 }
1243 
1244 // fold sqrt -> native_sqrt (x)
1245 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1246                                const FuncInfo &FInfo) {
1247   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1248       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1249     if (FunctionCallee FPExpr = getNativeFunction(
1250             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1251       Value *opr0 = CI->getArgOperand(0);
1252       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1253                         << "sqrt(" << *opr0 << ")\n");
1254       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1255       replaceCall(nval);
1256       return true;
1257     }
1258   }
1259   return false;
1260 }
1261 
1262 // fold sin, cos -> sincos.
1263 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1264                                  AliasAnalysis *AA) {
1265   AMDGPULibFunc fInfo;
1266   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1267     return false;
1268 
1269   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1270          fInfo.getId() == AMDGPULibFunc::EI_COS);
1271   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1272 
1273   Value *CArgVal = CI->getArgOperand(0);
1274   BasicBlock * const CBB = CI->getParent();
1275 
1276   int const MaxScan = 30;
1277   bool Changed = false;
1278 
1279   { // fold in load value.
1280     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1281     if (LI && LI->getParent() == CBB) {
1282       BasicBlock::iterator BBI = LI->getIterator();
1283       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1284       if (AvailableVal) {
1285         Changed = true;
1286         CArgVal->replaceAllUsesWith(AvailableVal);
1287         if (CArgVal->getNumUses() == 0)
1288           LI->eraseFromParent();
1289         CArgVal = CI->getArgOperand(0);
1290       }
1291     }
1292   }
1293 
1294   Module *M = CI->getModule();
1295   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1296   std::string const PairName = fInfo.mangle();
1297 
1298   CallInst *UI = nullptr;
1299   for (User* U : CArgVal->users()) {
1300     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1301     if (!XI || XI == CI || XI->getParent() != CBB)
1302       continue;
1303 
1304     Function *UCallee = XI->getCalledFunction();
1305     if (!UCallee || !UCallee->getName().equals(PairName))
1306       continue;
1307 
1308     BasicBlock::iterator BBI = CI->getIterator();
1309     if (BBI == CI->getParent()->begin())
1310       break;
1311     --BBI;
1312     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1313       if (cast<Instruction>(BBI) == XI) {
1314         UI = XI;
1315         break;
1316       }
1317     }
1318     if (UI) break;
1319   }
1320 
1321   if (!UI)
1322     return Changed;
1323 
1324   // Merge the sin and cos.
1325 
1326   // for OpenCL 2.0 we have only generic implementation of sincos
1327   // function.
1328   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1329   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1330   FunctionCallee Fsincos = getFunction(M, nf);
1331   if (!Fsincos)
1332     return Changed;
1333 
1334   BasicBlock::iterator ItOld = B.GetInsertPoint();
1335   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1336   B.SetInsertPoint(UI);
1337 
1338   Value *P = Alloc;
1339   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1340   // The allocaInst allocates the memory in private address space. This need
1341   // to be bitcasted to point to the address space of cos pointer type.
1342   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1343   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1344     P = B.CreateAddrSpaceCast(Alloc, PTy);
1345   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1346 
1347   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1348                     << *Call << "\n");
1349 
1350   if (!isSin) { // CI->cos, UI->sin
1351     B.SetInsertPoint(&*ItOld);
1352     UI->replaceAllUsesWith(&*Call);
1353     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1354     CI->replaceAllUsesWith(Reload);
1355     UI->eraseFromParent();
1356     CI->eraseFromParent();
1357   } else { // CI->sin, UI->cos
1358     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1359     UI->replaceAllUsesWith(Reload);
1360     CI->replaceAllUsesWith(Call);
1361     UI->eraseFromParent();
1362     CI->eraseFromParent();
1363   }
1364   return true;
1365 }
1366 
1367 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1368   if (!TM)
1369     return false;
1370 
1371   StringRef CPU = TM->getTargetCPU();
1372   StringRef Features = TM->getTargetFeatureString();
1373   if ((CPU.empty() || CPU.equals_insensitive("generic")) &&
1374       (Features.empty() || !Features.contains_insensitive("wavefrontsize")))
1375     return false;
1376 
1377   Function *F = CI->getParent()->getParent();
1378   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1379   unsigned N = ST.getWavefrontSize();
1380 
1381   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1382                << N << "\n");
1383 
1384   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1385   CI->eraseFromParent();
1386   return true;
1387 }
1388 
1389 // Get insertion point at entry.
1390 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1391   Function * Func = UI->getParent()->getParent();
1392   BasicBlock * BB = &Func->getEntryBlock();
1393   assert(BB && "Entry block not found!");
1394   BasicBlock::iterator ItNew = BB->begin();
1395   return ItNew;
1396 }
1397 
1398 // Insert a AllocsInst at the beginning of function entry block.
1399 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1400                                          const char *prefix) {
1401   BasicBlock::iterator ItNew = getEntryIns(UI);
1402   Function *UCallee = UI->getCalledFunction();
1403   Type *RetType = UCallee->getReturnType();
1404   B.SetInsertPoint(&*ItNew);
1405   AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1406     std::string(prefix) + UI->getName());
1407   Alloc->setAlignment(
1408       Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
1409   return Alloc;
1410 }
1411 
1412 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo,
1413                                             double& Res0, double& Res1,
1414                                             Constant *copr0, Constant *copr1,
1415                                             Constant *copr2) {
1416   // By default, opr0/opr1/opr3 holds values of float/double type.
1417   // If they are not float/double, each function has to its
1418   // operand separately.
1419   double opr0=0.0, opr1=0.0, opr2=0.0;
1420   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1421   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1422   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1423   if (fpopr0) {
1424     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1425              ? fpopr0->getValueAPF().convertToDouble()
1426              : (double)fpopr0->getValueAPF().convertToFloat();
1427   }
1428 
1429   if (fpopr1) {
1430     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1431              ? fpopr1->getValueAPF().convertToDouble()
1432              : (double)fpopr1->getValueAPF().convertToFloat();
1433   }
1434 
1435   if (fpopr2) {
1436     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1437              ? fpopr2->getValueAPF().convertToDouble()
1438              : (double)fpopr2->getValueAPF().convertToFloat();
1439   }
1440 
1441   switch (FInfo.getId()) {
1442   default : return false;
1443 
1444   case AMDGPULibFunc::EI_ACOS:
1445     Res0 = acos(opr0);
1446     return true;
1447 
1448   case AMDGPULibFunc::EI_ACOSH:
1449     // acosh(x) == log(x + sqrt(x*x - 1))
1450     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1451     return true;
1452 
1453   case AMDGPULibFunc::EI_ACOSPI:
1454     Res0 = acos(opr0) / MATH_PI;
1455     return true;
1456 
1457   case AMDGPULibFunc::EI_ASIN:
1458     Res0 = asin(opr0);
1459     return true;
1460 
1461   case AMDGPULibFunc::EI_ASINH:
1462     // asinh(x) == log(x + sqrt(x*x + 1))
1463     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1464     return true;
1465 
1466   case AMDGPULibFunc::EI_ASINPI:
1467     Res0 = asin(opr0) / MATH_PI;
1468     return true;
1469 
1470   case AMDGPULibFunc::EI_ATAN:
1471     Res0 = atan(opr0);
1472     return true;
1473 
1474   case AMDGPULibFunc::EI_ATANH:
1475     // atanh(x) == (log(x+1) - log(x-1))/2;
1476     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1477     return true;
1478 
1479   case AMDGPULibFunc::EI_ATANPI:
1480     Res0 = atan(opr0) / MATH_PI;
1481     return true;
1482 
1483   case AMDGPULibFunc::EI_CBRT:
1484     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1485     return true;
1486 
1487   case AMDGPULibFunc::EI_COS:
1488     Res0 = cos(opr0);
1489     return true;
1490 
1491   case AMDGPULibFunc::EI_COSH:
1492     Res0 = cosh(opr0);
1493     return true;
1494 
1495   case AMDGPULibFunc::EI_COSPI:
1496     Res0 = cos(MATH_PI * opr0);
1497     return true;
1498 
1499   case AMDGPULibFunc::EI_EXP:
1500     Res0 = exp(opr0);
1501     return true;
1502 
1503   case AMDGPULibFunc::EI_EXP2:
1504     Res0 = pow(2.0, opr0);
1505     return true;
1506 
1507   case AMDGPULibFunc::EI_EXP10:
1508     Res0 = pow(10.0, opr0);
1509     return true;
1510 
1511   case AMDGPULibFunc::EI_EXPM1:
1512     Res0 = exp(opr0) - 1.0;
1513     return true;
1514 
1515   case AMDGPULibFunc::EI_LOG:
1516     Res0 = log(opr0);
1517     return true;
1518 
1519   case AMDGPULibFunc::EI_LOG2:
1520     Res0 = log(opr0) / log(2.0);
1521     return true;
1522 
1523   case AMDGPULibFunc::EI_LOG10:
1524     Res0 = log(opr0) / log(10.0);
1525     return true;
1526 
1527   case AMDGPULibFunc::EI_RSQRT:
1528     Res0 = 1.0 / sqrt(opr0);
1529     return true;
1530 
1531   case AMDGPULibFunc::EI_SIN:
1532     Res0 = sin(opr0);
1533     return true;
1534 
1535   case AMDGPULibFunc::EI_SINH:
1536     Res0 = sinh(opr0);
1537     return true;
1538 
1539   case AMDGPULibFunc::EI_SINPI:
1540     Res0 = sin(MATH_PI * opr0);
1541     return true;
1542 
1543   case AMDGPULibFunc::EI_SQRT:
1544     Res0 = sqrt(opr0);
1545     return true;
1546 
1547   case AMDGPULibFunc::EI_TAN:
1548     Res0 = tan(opr0);
1549     return true;
1550 
1551   case AMDGPULibFunc::EI_TANH:
1552     Res0 = tanh(opr0);
1553     return true;
1554 
1555   case AMDGPULibFunc::EI_TANPI:
1556     Res0 = tan(MATH_PI * opr0);
1557     return true;
1558 
1559   case AMDGPULibFunc::EI_RECIP:
1560     Res0 = 1.0 / opr0;
1561     return true;
1562 
1563   // two-arg functions
1564   case AMDGPULibFunc::EI_DIVIDE:
1565     Res0 = opr0 / opr1;
1566     return true;
1567 
1568   case AMDGPULibFunc::EI_POW:
1569   case AMDGPULibFunc::EI_POWR:
1570     Res0 = pow(opr0, opr1);
1571     return true;
1572 
1573   case AMDGPULibFunc::EI_POWN: {
1574     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1575       double val = (double)iopr1->getSExtValue();
1576       Res0 = pow(opr0, val);
1577       return true;
1578     }
1579     return false;
1580   }
1581 
1582   case AMDGPULibFunc::EI_ROOTN: {
1583     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1584       double val = (double)iopr1->getSExtValue();
1585       Res0 = pow(opr0, 1.0 / val);
1586       return true;
1587     }
1588     return false;
1589   }
1590 
1591   // with ptr arg
1592   case AMDGPULibFunc::EI_SINCOS:
1593     Res0 = sin(opr0);
1594     Res1 = cos(opr0);
1595     return true;
1596 
1597   // three-arg functions
1598   case AMDGPULibFunc::EI_FMA:
1599   case AMDGPULibFunc::EI_MAD:
1600     Res0 = opr0 * opr1 + opr2;
1601     return true;
1602   }
1603 
1604   return false;
1605 }
1606 
1607 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) {
1608   int numArgs = (int)aCI->arg_size();
1609   if (numArgs > 3)
1610     return false;
1611 
1612   Constant *copr0 = nullptr;
1613   Constant *copr1 = nullptr;
1614   Constant *copr2 = nullptr;
1615   if (numArgs > 0) {
1616     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1617       return false;
1618   }
1619 
1620   if (numArgs > 1) {
1621     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1622       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1623         return false;
1624     }
1625   }
1626 
1627   if (numArgs > 2) {
1628     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1629       return false;
1630   }
1631 
1632   // At this point, all arguments to aCI are constants.
1633 
1634   // max vector size is 16, and sincos will generate two results.
1635   double DVal0[16], DVal1[16];
1636   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1637   if (getVecSize(FInfo) == 1) {
1638     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1639                                 DVal1[0], copr0, copr1, copr2)) {
1640       return false;
1641     }
1642   } else {
1643     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1644     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1645     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1646     for (int i=0; i < getVecSize(FInfo); ++i) {
1647       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1648       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1649       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1650       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1651                                   DVal1[i], celt0, celt1, celt2)) {
1652         return false;
1653       }
1654     }
1655   }
1656 
1657   LLVMContext &context = CI->getParent()->getParent()->getContext();
1658   Constant *nval0, *nval1;
1659   if (getVecSize(FInfo) == 1) {
1660     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1661     if (hasTwoResults)
1662       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1663   } else {
1664     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1665       SmallVector <float, 0> FVal0, FVal1;
1666       for (int i=0; i < getVecSize(FInfo); ++i)
1667         FVal0.push_back((float)DVal0[i]);
1668       ArrayRef<float> tmp0(FVal0);
1669       nval0 = ConstantDataVector::get(context, tmp0);
1670       if (hasTwoResults) {
1671         for (int i=0; i < getVecSize(FInfo); ++i)
1672           FVal1.push_back((float)DVal1[i]);
1673         ArrayRef<float> tmp1(FVal1);
1674         nval1 = ConstantDataVector::get(context, tmp1);
1675       }
1676     } else {
1677       ArrayRef<double> tmp0(DVal0);
1678       nval0 = ConstantDataVector::get(context, tmp0);
1679       if (hasTwoResults) {
1680         ArrayRef<double> tmp1(DVal1);
1681         nval1 = ConstantDataVector::get(context, tmp1);
1682       }
1683     }
1684   }
1685 
1686   if (hasTwoResults) {
1687     // sincos
1688     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1689            "math function with ptr arg not supported yet");
1690     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1691   }
1692 
1693   replaceCall(nval0);
1694   return true;
1695 }
1696 
1697 // Public interface to the Simplify LibCalls pass.
1698 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) {
1699   return new AMDGPUSimplifyLibCalls(TM);
1700 }
1701 
1702 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1703   return new AMDGPUUseNativeCalls();
1704 }
1705 
1706 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1707   if (skipFunction(F))
1708     return false;
1709 
1710   bool Changed = false;
1711   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1712 
1713   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1714              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1715 
1716   for (auto &BB : F) {
1717     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1718       // Ignore non-calls.
1719       CallInst *CI = dyn_cast<CallInst>(I);
1720       ++I;
1721       // Ignore intrinsics that do not become real instructions.
1722       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1723         continue;
1724 
1725       // Ignore indirect calls.
1726       Function *Callee = CI->getCalledFunction();
1727       if (Callee == 0) continue;
1728 
1729       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1730                  dbgs().flush());
1731       if(Simplifier.fold(CI, AA))
1732         Changed = true;
1733     }
1734   }
1735   return Changed;
1736 }
1737 
1738 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F,
1739                                                   FunctionAnalysisManager &AM) {
1740   AMDGPULibCalls Simplifier(&TM);
1741   Simplifier.initNativeFuncs();
1742 
1743   bool Changed = false;
1744   auto AA = &AM.getResult<AAManager>(F);
1745 
1746   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1747              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1748 
1749   for (auto &BB : F) {
1750     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1751       // Ignore non-calls.
1752       CallInst *CI = dyn_cast<CallInst>(I);
1753       ++I;
1754       // Ignore intrinsics that do not become real instructions.
1755       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1756         continue;
1757 
1758       // Ignore indirect calls.
1759       Function *Callee = CI->getCalledFunction();
1760       if (Callee == 0)
1761         continue;
1762 
1763       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1764                  dbgs().flush());
1765       if (Simplifier.fold(CI, AA))
1766         Changed = true;
1767     }
1768   }
1769   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1770 }
1771 
1772 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1773   if (skipFunction(F) || UseNative.empty())
1774     return false;
1775 
1776   bool Changed = false;
1777   for (auto &BB : F) {
1778     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1779       // Ignore non-calls.
1780       CallInst *CI = dyn_cast<CallInst>(I);
1781       ++I;
1782       if (!CI) continue;
1783 
1784       // Ignore indirect calls.
1785       Function *Callee = CI->getCalledFunction();
1786       if (Callee == 0) continue;
1787 
1788       if(Simplifier.useNative(CI))
1789         Changed = true;
1790     }
1791   }
1792   return Changed;
1793 }
1794 
1795 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F,
1796                                                 FunctionAnalysisManager &AM) {
1797   if (UseNative.empty())
1798     return PreservedAnalyses::all();
1799 
1800   AMDGPULibCalls Simplifier;
1801   Simplifier.initNativeFuncs();
1802 
1803   bool Changed = false;
1804   for (auto &BB : F) {
1805     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1806       // Ignore non-calls.
1807       CallInst *CI = dyn_cast<CallInst>(I);
1808       ++I;
1809       if (!CI)
1810         continue;
1811 
1812       // Ignore indirect calls.
1813       Function *Callee = CI->getCalledFunction();
1814       if (Callee == 0)
1815         continue;
1816 
1817       if (Simplifier.useNative(CI))
1818         Changed = true;
1819     }
1820   }
1821   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1822 }
1823