1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/InitializePasses.h" 21 #include "llvm/Target/TargetMachine.h" 22 23 #define DEBUG_TYPE "amdgpu-simplifylib" 24 25 using namespace llvm; 26 27 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 28 cl::desc("Enable pre-link mode optimizations"), 29 cl::init(false), 30 cl::Hidden); 31 32 static cl::list<std::string> UseNative("amdgpu-use-native", 33 cl::desc("Comma separated list of functions to replace with native, or all"), 34 cl::CommaSeparated, cl::ValueOptional, 35 cl::Hidden); 36 37 #define MATH_PI numbers::pi 38 #define MATH_E numbers::e 39 #define MATH_SQRT2 numbers::sqrt2 40 #define MATH_SQRT1_2 numbers::inv_sqrt2 41 42 namespace llvm { 43 44 class AMDGPULibCalls { 45 private: 46 47 typedef llvm::AMDGPULibFunc FuncInfo; 48 49 const TargetMachine *TM; 50 51 // -fuse-native. 52 bool AllNative = false; 53 54 bool useNativeFunc(const StringRef F) const; 55 56 // Return a pointer (pointer expr) to the function if function defintion with 57 // "FuncName" exists. It may create a new function prototype in pre-link mode. 58 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 59 60 // Replace a normal function with its native version. 61 bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); 62 63 bool parseFunctionName(const StringRef& FMangledName, 64 FuncInfo *FInfo=nullptr /*out*/); 65 66 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 67 68 /* Specialized optimizations */ 69 70 // recip (half or native) 71 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 72 73 // divide (half or native) 74 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 75 76 // pow/powr/pown 77 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 78 79 // rootn 80 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 81 82 // fma/mad 83 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 84 85 // -fuse-native for sincos 86 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 87 88 // evaluate calls if calls' arguments are constants. 89 bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, 90 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 91 bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); 92 93 // exp 94 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 95 96 // exp2 97 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 98 99 // exp10 100 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 101 102 // log 103 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 104 105 // log2 106 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 107 108 // log10 109 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 110 111 // sqrt 112 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 113 114 // sin/cos 115 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 116 117 // __read_pipe/__write_pipe 118 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); 119 120 // llvm.amdgcn.wavefrontsize 121 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 122 123 // Get insertion point at entry. 124 BasicBlock::iterator getEntryIns(CallInst * UI); 125 // Insert an Alloc instruction. 126 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 127 // Get a scalar native builtin signle argument FP function 128 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 129 130 protected: 131 CallInst *CI; 132 133 bool isUnsafeMath(const CallInst *CI) const; 134 135 void replaceCall(Value *With) { 136 CI->replaceAllUsesWith(With); 137 CI->eraseFromParent(); 138 } 139 140 public: 141 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 142 143 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 144 145 void initNativeFuncs(); 146 147 // Replace a normal math function call with that native version 148 bool useNative(CallInst *CI); 149 }; 150 151 } // end llvm namespace 152 153 namespace { 154 155 class AMDGPUSimplifyLibCalls : public FunctionPass { 156 157 AMDGPULibCalls Simplifier; 158 159 public: 160 static char ID; // Pass identification 161 162 AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) 163 : FunctionPass(ID), Simplifier(TM) { 164 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 165 } 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 AU.addRequired<AAResultsWrapperPass>(); 169 } 170 171 bool runOnFunction(Function &M) override; 172 }; 173 174 class AMDGPUUseNativeCalls : public FunctionPass { 175 176 AMDGPULibCalls Simplifier; 177 178 public: 179 static char ID; // Pass identification 180 181 AMDGPUUseNativeCalls() : FunctionPass(ID) { 182 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 183 Simplifier.initNativeFuncs(); 184 } 185 186 bool runOnFunction(Function &F) override; 187 }; 188 189 } // end anonymous namespace. 190 191 char AMDGPUSimplifyLibCalls::ID = 0; 192 char AMDGPUUseNativeCalls::ID = 0; 193 194 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 195 "Simplify well-known AMD library calls", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 198 "Simplify well-known AMD library calls", false, false) 199 200 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 201 "Replace builtin math calls with that native versions.", 202 false, false) 203 204 template <typename IRB> 205 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 206 const Twine &Name = "") { 207 CallInst *R = B.CreateCall(Callee, Arg, Name); 208 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 209 R->setCallingConv(F->getCallingConv()); 210 return R; 211 } 212 213 template <typename IRB> 214 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 215 Value *Arg2, const Twine &Name = "") { 216 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 217 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 218 R->setCallingConv(F->getCallingConv()); 219 return R; 220 } 221 222 // Data structures for table-driven optimizations. 223 // FuncTbl works for both f32 and f64 functions with 1 input argument 224 225 struct TableEntry { 226 double result; 227 double input; 228 }; 229 230 /* a list of {result, input} */ 231 static const TableEntry tbl_acos[] = { 232 {MATH_PI / 2.0, 0.0}, 233 {MATH_PI / 2.0, -0.0}, 234 {0.0, 1.0}, 235 {MATH_PI, -1.0} 236 }; 237 static const TableEntry tbl_acosh[] = { 238 {0.0, 1.0} 239 }; 240 static const TableEntry tbl_acospi[] = { 241 {0.5, 0.0}, 242 {0.5, -0.0}, 243 {0.0, 1.0}, 244 {1.0, -1.0} 245 }; 246 static const TableEntry tbl_asin[] = { 247 {0.0, 0.0}, 248 {-0.0, -0.0}, 249 {MATH_PI / 2.0, 1.0}, 250 {-MATH_PI / 2.0, -1.0} 251 }; 252 static const TableEntry tbl_asinh[] = { 253 {0.0, 0.0}, 254 {-0.0, -0.0} 255 }; 256 static const TableEntry tbl_asinpi[] = { 257 {0.0, 0.0}, 258 {-0.0, -0.0}, 259 {0.5, 1.0}, 260 {-0.5, -1.0} 261 }; 262 static const TableEntry tbl_atan[] = { 263 {0.0, 0.0}, 264 {-0.0, -0.0}, 265 {MATH_PI / 4.0, 1.0}, 266 {-MATH_PI / 4.0, -1.0} 267 }; 268 static const TableEntry tbl_atanh[] = { 269 {0.0, 0.0}, 270 {-0.0, -0.0} 271 }; 272 static const TableEntry tbl_atanpi[] = { 273 {0.0, 0.0}, 274 {-0.0, -0.0}, 275 {0.25, 1.0}, 276 {-0.25, -1.0} 277 }; 278 static const TableEntry tbl_cbrt[] = { 279 {0.0, 0.0}, 280 {-0.0, -0.0}, 281 {1.0, 1.0}, 282 {-1.0, -1.0}, 283 }; 284 static const TableEntry tbl_cos[] = { 285 {1.0, 0.0}, 286 {1.0, -0.0} 287 }; 288 static const TableEntry tbl_cosh[] = { 289 {1.0, 0.0}, 290 {1.0, -0.0} 291 }; 292 static const TableEntry tbl_cospi[] = { 293 {1.0, 0.0}, 294 {1.0, -0.0} 295 }; 296 static const TableEntry tbl_erfc[] = { 297 {1.0, 0.0}, 298 {1.0, -0.0} 299 }; 300 static const TableEntry tbl_erf[] = { 301 {0.0, 0.0}, 302 {-0.0, -0.0} 303 }; 304 static const TableEntry tbl_exp[] = { 305 {1.0, 0.0}, 306 {1.0, -0.0}, 307 {MATH_E, 1.0} 308 }; 309 static const TableEntry tbl_exp2[] = { 310 {1.0, 0.0}, 311 {1.0, -0.0}, 312 {2.0, 1.0} 313 }; 314 static const TableEntry tbl_exp10[] = { 315 {1.0, 0.0}, 316 {1.0, -0.0}, 317 {10.0, 1.0} 318 }; 319 static const TableEntry tbl_expm1[] = { 320 {0.0, 0.0}, 321 {-0.0, -0.0} 322 }; 323 static const TableEntry tbl_log[] = { 324 {0.0, 1.0}, 325 {1.0, MATH_E} 326 }; 327 static const TableEntry tbl_log2[] = { 328 {0.0, 1.0}, 329 {1.0, 2.0} 330 }; 331 static const TableEntry tbl_log10[] = { 332 {0.0, 1.0}, 333 {1.0, 10.0} 334 }; 335 static const TableEntry tbl_rsqrt[] = { 336 {1.0, 1.0}, 337 {MATH_SQRT1_2, 2.0} 338 }; 339 static const TableEntry tbl_sin[] = { 340 {0.0, 0.0}, 341 {-0.0, -0.0} 342 }; 343 static const TableEntry tbl_sinh[] = { 344 {0.0, 0.0}, 345 {-0.0, -0.0} 346 }; 347 static const TableEntry tbl_sinpi[] = { 348 {0.0, 0.0}, 349 {-0.0, -0.0} 350 }; 351 static const TableEntry tbl_sqrt[] = { 352 {0.0, 0.0}, 353 {1.0, 1.0}, 354 {MATH_SQRT2, 2.0} 355 }; 356 static const TableEntry tbl_tan[] = { 357 {0.0, 0.0}, 358 {-0.0, -0.0} 359 }; 360 static const TableEntry tbl_tanh[] = { 361 {0.0, 0.0}, 362 {-0.0, -0.0} 363 }; 364 static const TableEntry tbl_tanpi[] = { 365 {0.0, 0.0}, 366 {-0.0, -0.0} 367 }; 368 static const TableEntry tbl_tgamma[] = { 369 {1.0, 1.0}, 370 {1.0, 2.0}, 371 {2.0, 3.0}, 372 {6.0, 4.0} 373 }; 374 375 static bool HasNative(AMDGPULibFunc::EFuncId id) { 376 switch(id) { 377 case AMDGPULibFunc::EI_DIVIDE: 378 case AMDGPULibFunc::EI_COS: 379 case AMDGPULibFunc::EI_EXP: 380 case AMDGPULibFunc::EI_EXP2: 381 case AMDGPULibFunc::EI_EXP10: 382 case AMDGPULibFunc::EI_LOG: 383 case AMDGPULibFunc::EI_LOG2: 384 case AMDGPULibFunc::EI_LOG10: 385 case AMDGPULibFunc::EI_POWR: 386 case AMDGPULibFunc::EI_RECIP: 387 case AMDGPULibFunc::EI_RSQRT: 388 case AMDGPULibFunc::EI_SIN: 389 case AMDGPULibFunc::EI_SINCOS: 390 case AMDGPULibFunc::EI_SQRT: 391 case AMDGPULibFunc::EI_TAN: 392 return true; 393 default:; 394 } 395 return false; 396 } 397 398 struct TableRef { 399 size_t size; 400 const TableEntry *table; // variable size: from 0 to (size - 1) 401 402 TableRef() : size(0), table(nullptr) {} 403 404 template <size_t N> 405 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 406 }; 407 408 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 409 switch(id) { 410 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 411 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 412 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 413 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 414 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 415 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 416 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 417 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 418 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 419 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 420 case AMDGPULibFunc::EI_NCOS: 421 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 422 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 423 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 424 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 425 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 426 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 427 case AMDGPULibFunc::EI_NEXP2: 428 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 429 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 430 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 431 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 432 case AMDGPULibFunc::EI_NLOG2: 433 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 434 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 435 case AMDGPULibFunc::EI_NRSQRT: 436 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 437 case AMDGPULibFunc::EI_NSIN: 438 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 439 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 440 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 441 case AMDGPULibFunc::EI_NSQRT: 442 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 443 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 444 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 445 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 446 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 447 default:; 448 } 449 return TableRef(); 450 } 451 452 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 453 return FInfo.getLeads()[0].VectorSize; 454 } 455 456 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 457 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 458 } 459 460 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 461 // If we are doing PreLinkOpt, the function is external. So it is safe to 462 // use getOrInsertFunction() at this stage. 463 464 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 465 : AMDGPULibFunc::getFunction(M, fInfo); 466 } 467 468 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, 469 FuncInfo *FInfo) { 470 return AMDGPULibFunc::parse(FMangledName, *FInfo); 471 } 472 473 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 474 if (auto Op = dyn_cast<FPMathOperator>(CI)) 475 if (Op->isFast()) 476 return true; 477 const Function *F = CI->getParent()->getParent(); 478 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 479 return Attr.getValueAsString() == "true"; 480 } 481 482 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 483 return AllNative || llvm::is_contained(UseNative, F); 484 } 485 486 void AMDGPULibCalls::initNativeFuncs() { 487 AllNative = useNativeFunc("all") || 488 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 489 UseNative.begin()->empty()); 490 } 491 492 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 493 bool native_sin = useNativeFunc("sin"); 494 bool native_cos = useNativeFunc("cos"); 495 496 if (native_sin && native_cos) { 497 Module *M = aCI->getModule(); 498 Value *opr0 = aCI->getArgOperand(0); 499 500 AMDGPULibFunc nf; 501 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 502 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 503 504 nf.setPrefix(AMDGPULibFunc::NATIVE); 505 nf.setId(AMDGPULibFunc::EI_SIN); 506 FunctionCallee sinExpr = getFunction(M, nf); 507 508 nf.setPrefix(AMDGPULibFunc::NATIVE); 509 nf.setId(AMDGPULibFunc::EI_COS); 510 FunctionCallee cosExpr = getFunction(M, nf); 511 if (sinExpr && cosExpr) { 512 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 513 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 514 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 515 516 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 517 << " with native version of sin/cos"); 518 519 replaceCall(sinval); 520 return true; 521 } 522 } 523 return false; 524 } 525 526 bool AMDGPULibCalls::useNative(CallInst *aCI) { 527 CI = aCI; 528 Function *Callee = aCI->getCalledFunction(); 529 530 FuncInfo FInfo; 531 if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || 532 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 533 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 534 !(AllNative || useNativeFunc(FInfo.getName()))) { 535 return false; 536 } 537 538 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 539 return sincosUseNative(aCI, FInfo); 540 541 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 542 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 543 if (!F) 544 return false; 545 546 aCI->setCalledFunction(F); 547 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 548 << " with native version"); 549 return true; 550 } 551 552 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 553 // builtin, with appended type size and alignment arguments, where 2 or 4 554 // indicates the original number of arguments. The library has optimized version 555 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 556 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 557 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 558 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 559 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 560 FuncInfo &FInfo) { 561 auto *Callee = CI->getCalledFunction(); 562 if (!Callee->isDeclaration()) 563 return false; 564 565 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 566 auto *M = Callee->getParent(); 567 auto &Ctx = M->getContext(); 568 std::string Name = std::string(Callee->getName()); 569 auto NumArg = CI->getNumArgOperands(); 570 if (NumArg != 4 && NumArg != 6) 571 return false; 572 auto *PacketSize = CI->getArgOperand(NumArg - 2); 573 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 574 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 575 return false; 576 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 577 Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue(); 578 if (Alignment != Size) 579 return false; 580 581 Type *PtrElemTy; 582 if (Size <= 8) 583 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 584 else 585 PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); 586 unsigned PtrArgLoc = CI->getNumArgOperands() - 3; 587 auto PtrArg = CI->getArgOperand(PtrArgLoc); 588 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 589 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 590 591 SmallVector<llvm::Type *, 6> ArgTys; 592 for (unsigned I = 0; I != PtrArgLoc; ++I) 593 ArgTys.push_back(CI->getArgOperand(I)->getType()); 594 ArgTys.push_back(PtrTy); 595 596 Name = Name + "_" + std::to_string(Size); 597 auto *FTy = FunctionType::get(Callee->getReturnType(), 598 ArrayRef<Type *>(ArgTys), false); 599 AMDGPULibFunc NewLibFunc(Name, FTy); 600 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 601 if (!F) 602 return false; 603 604 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 605 SmallVector<Value *, 6> Args; 606 for (unsigned I = 0; I != PtrArgLoc; ++I) 607 Args.push_back(CI->getArgOperand(I)); 608 Args.push_back(BCast); 609 610 auto *NCI = B.CreateCall(F, Args); 611 NCI->setAttributes(CI->getAttributes()); 612 CI->replaceAllUsesWith(NCI); 613 CI->dropAllReferences(); 614 CI->eraseFromParent(); 615 616 return true; 617 } 618 619 // This function returns false if no change; return true otherwise. 620 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 621 this->CI = CI; 622 Function *Callee = CI->getCalledFunction(); 623 624 // Ignore indirect calls. 625 if (Callee == 0) return false; 626 627 BasicBlock *BB = CI->getParent(); 628 LLVMContext &Context = CI->getParent()->getContext(); 629 IRBuilder<> B(Context); 630 631 // Set the builder to the instruction after the call. 632 B.SetInsertPoint(BB, CI->getIterator()); 633 634 // Copy fast flags from the original call. 635 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 636 B.setFastMathFlags(FPOp->getFastMathFlags()); 637 638 switch (Callee->getIntrinsicID()) { 639 default: 640 break; 641 case Intrinsic::amdgcn_wavefrontsize: 642 return !EnablePreLink && fold_wavefrontsize(CI, B); 643 } 644 645 FuncInfo FInfo; 646 if (!parseFunctionName(Callee->getName(), &FInfo)) 647 return false; 648 649 // Further check the number of arguments to see if they match. 650 if (CI->getNumArgOperands() != FInfo.getNumArgs()) 651 return false; 652 653 if (TDOFold(CI, FInfo)) 654 return true; 655 656 // Under unsafe-math, evaluate calls if possible. 657 // According to Brian Sumner, we can do this for all f32 function calls 658 // using host's double function calls. 659 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 660 return true; 661 662 // Specilized optimizations for each function call 663 switch (FInfo.getId()) { 664 case AMDGPULibFunc::EI_RECIP: 665 // skip vector function 666 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 667 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 668 "recip must be an either native or half function"); 669 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 670 671 case AMDGPULibFunc::EI_DIVIDE: 672 // skip vector function 673 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 674 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 675 "divide must be an either native or half function"); 676 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 677 678 case AMDGPULibFunc::EI_POW: 679 case AMDGPULibFunc::EI_POWR: 680 case AMDGPULibFunc::EI_POWN: 681 return fold_pow(CI, B, FInfo); 682 683 case AMDGPULibFunc::EI_ROOTN: 684 // skip vector function 685 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 686 687 case AMDGPULibFunc::EI_FMA: 688 case AMDGPULibFunc::EI_MAD: 689 case AMDGPULibFunc::EI_NFMA: 690 // skip vector function 691 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 692 693 case AMDGPULibFunc::EI_SQRT: 694 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 695 case AMDGPULibFunc::EI_COS: 696 case AMDGPULibFunc::EI_SIN: 697 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 698 getArgType(FInfo) == AMDGPULibFunc::F64) 699 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 700 return fold_sincos(CI, B, AA); 701 702 break; 703 case AMDGPULibFunc::EI_READ_PIPE_2: 704 case AMDGPULibFunc::EI_READ_PIPE_4: 705 case AMDGPULibFunc::EI_WRITE_PIPE_2: 706 case AMDGPULibFunc::EI_WRITE_PIPE_4: 707 return fold_read_write_pipe(CI, B, FInfo); 708 709 default: 710 break; 711 } 712 713 return false; 714 } 715 716 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 717 // Table-Driven optimization 718 const TableRef tr = getOptTable(FInfo.getId()); 719 if (tr.size==0) 720 return false; 721 722 int const sz = (int)tr.size; 723 const TableEntry * const ftbl = tr.table; 724 Value *opr0 = CI->getArgOperand(0); 725 726 if (getVecSize(FInfo) > 1) { 727 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 728 SmallVector<double, 0> DVal; 729 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 730 ConstantFP *eltval = dyn_cast<ConstantFP>( 731 CV->getElementAsConstant((unsigned)eltNo)); 732 assert(eltval && "Non-FP arguments in math function!"); 733 bool found = false; 734 for (int i=0; i < sz; ++i) { 735 if (eltval->isExactlyValue(ftbl[i].input)) { 736 DVal.push_back(ftbl[i].result); 737 found = true; 738 break; 739 } 740 } 741 if (!found) { 742 // This vector constants not handled yet. 743 return false; 744 } 745 } 746 LLVMContext &context = CI->getParent()->getParent()->getContext(); 747 Constant *nval; 748 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 749 SmallVector<float, 0> FVal; 750 for (unsigned i = 0; i < DVal.size(); ++i) { 751 FVal.push_back((float)DVal[i]); 752 } 753 ArrayRef<float> tmp(FVal); 754 nval = ConstantDataVector::get(context, tmp); 755 } else { // F64 756 ArrayRef<double> tmp(DVal); 757 nval = ConstantDataVector::get(context, tmp); 758 } 759 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 760 replaceCall(nval); 761 return true; 762 } 763 } else { 764 // Scalar version 765 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 766 for (int i = 0; i < sz; ++i) { 767 if (CF->isExactlyValue(ftbl[i].input)) { 768 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 769 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 770 replaceCall(nval); 771 return true; 772 } 773 } 774 } 775 } 776 777 return false; 778 } 779 780 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { 781 Module *M = CI->getModule(); 782 if (getArgType(FInfo) != AMDGPULibFunc::F32 || 783 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 784 !HasNative(FInfo.getId())) 785 return false; 786 787 AMDGPULibFunc nf = FInfo; 788 nf.setPrefix(AMDGPULibFunc::NATIVE); 789 if (FunctionCallee FPExpr = getFunction(M, nf)) { 790 LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); 791 792 CI->setCalledFunction(FPExpr); 793 794 LLVM_DEBUG(dbgs() << *CI << '\n'); 795 796 return true; 797 } 798 return false; 799 } 800 801 // [native_]half_recip(c) ==> 1.0/c 802 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 803 const FuncInfo &FInfo) { 804 Value *opr0 = CI->getArgOperand(0); 805 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 806 // Just create a normal div. Later, InstCombine will be able 807 // to compute the divide into a constant (avoid check float infinity 808 // or subnormal at this point). 809 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 810 opr0, 811 "recip2div"); 812 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 813 replaceCall(nval); 814 return true; 815 } 816 return false; 817 } 818 819 // [native_]half_divide(x, c) ==> x/c 820 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 821 const FuncInfo &FInfo) { 822 Value *opr0 = CI->getArgOperand(0); 823 Value *opr1 = CI->getArgOperand(1); 824 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 825 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 826 827 if ((CF0 && CF1) || // both are constants 828 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 829 // CF1 is constant && f32 divide 830 { 831 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 832 opr1, "__div2recip"); 833 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 834 replaceCall(nval); 835 return true; 836 } 837 return false; 838 } 839 840 namespace llvm { 841 static double log2(double V) { 842 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 843 return ::log2(V); 844 #else 845 return log(V) / numbers::ln2; 846 #endif 847 } 848 } 849 850 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 851 const FuncInfo &FInfo) { 852 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 853 FInfo.getId() == AMDGPULibFunc::EI_POWR || 854 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 855 "fold_pow: encounter a wrong function call"); 856 857 Value *opr0, *opr1; 858 ConstantFP *CF; 859 ConstantInt *CINT; 860 ConstantAggregateZero *CZero; 861 Type *eltType; 862 863 opr0 = CI->getArgOperand(0); 864 opr1 = CI->getArgOperand(1); 865 CZero = dyn_cast<ConstantAggregateZero>(opr1); 866 if (getVecSize(FInfo) == 1) { 867 eltType = opr0->getType(); 868 CF = dyn_cast<ConstantFP>(opr1); 869 CINT = dyn_cast<ConstantInt>(opr1); 870 } else { 871 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 872 assert(VTy && "Oprand of vector function should be of vectortype"); 873 eltType = VTy->getElementType(); 874 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 875 876 // Now, only Handle vector const whose elements have the same value. 877 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 878 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 879 } 880 881 // No unsafe math , no constant argument, do nothing 882 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 883 return false; 884 885 // 0x1111111 means that we don't do anything for this call. 886 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 887 888 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 889 // pow/powr/pown(x, 0) == 1 890 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 891 Constant *cnval = ConstantFP::get(eltType, 1.0); 892 if (getVecSize(FInfo) > 1) { 893 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 894 } 895 replaceCall(cnval); 896 return true; 897 } 898 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 899 // pow/powr/pown(x, 1.0) = x 900 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 901 replaceCall(opr0); 902 return true; 903 } 904 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 905 // pow/powr/pown(x, 2.0) = x*x 906 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 907 << "\n"); 908 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 909 replaceCall(nval); 910 return true; 911 } 912 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 913 // pow/powr/pown(x, -1.0) = 1.0/x 914 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 915 Constant *cnval = ConstantFP::get(eltType, 1.0); 916 if (getVecSize(FInfo) > 1) { 917 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 918 } 919 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 920 replaceCall(nval); 921 return true; 922 } 923 924 Module *M = CI->getModule(); 925 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 926 // pow[r](x, [-]0.5) = sqrt(x) 927 bool issqrt = CF->isExactlyValue(0.5); 928 if (FunctionCallee FPExpr = 929 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 930 : AMDGPULibFunc::EI_RSQRT, 931 FInfo))) { 932 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 933 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 934 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 935 : "__pow2rsqrt"); 936 replaceCall(nval); 937 return true; 938 } 939 } 940 941 if (!isUnsafeMath(CI)) 942 return false; 943 944 // Unsafe Math optimization 945 946 // Remember that ci_opr1 is set if opr1 is integral 947 if (CF) { 948 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 949 ? (double)CF->getValueAPF().convertToFloat() 950 : CF->getValueAPF().convertToDouble(); 951 int ival = (int)dval; 952 if ((double)ival == dval) { 953 ci_opr1 = ival; 954 } else 955 ci_opr1 = 0x11111111; 956 } 957 958 // pow/powr/pown(x, c) = [1/](x*x*..x); where 959 // trunc(c) == c && the number of x == c && |c| <= 12 960 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 961 if (abs_opr1 <= 12) { 962 Constant *cnval; 963 Value *nval; 964 if (abs_opr1 == 0) { 965 cnval = ConstantFP::get(eltType, 1.0); 966 if (getVecSize(FInfo) > 1) { 967 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 968 } 969 nval = cnval; 970 } else { 971 Value *valx2 = nullptr; 972 nval = nullptr; 973 while (abs_opr1 > 0) { 974 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 975 if (abs_opr1 & 1) { 976 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 977 } 978 abs_opr1 >>= 1; 979 } 980 } 981 982 if (ci_opr1 < 0) { 983 cnval = ConstantFP::get(eltType, 1.0); 984 if (getVecSize(FInfo) > 1) { 985 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 986 } 987 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 988 } 989 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 990 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 991 << ")\n"); 992 replaceCall(nval); 993 return true; 994 } 995 996 // powr ---> exp2(y * log2(x)) 997 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 998 FunctionCallee ExpExpr = 999 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1000 if (!ExpExpr) 1001 return false; 1002 1003 bool needlog = false; 1004 bool needabs = false; 1005 bool needcopysign = false; 1006 Constant *cnval = nullptr; 1007 if (getVecSize(FInfo) == 1) { 1008 CF = dyn_cast<ConstantFP>(opr0); 1009 1010 if (CF) { 1011 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1012 ? (double)CF->getValueAPF().convertToFloat() 1013 : CF->getValueAPF().convertToDouble(); 1014 1015 V = log2(std::abs(V)); 1016 cnval = ConstantFP::get(eltType, V); 1017 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1018 CF->isNegative(); 1019 } else { 1020 needlog = true; 1021 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1022 (!CF || CF->isNegative()); 1023 } 1024 } else { 1025 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1026 1027 if (!CDV) { 1028 needlog = true; 1029 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1030 } else { 1031 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1032 "Wrong vector size detected"); 1033 1034 SmallVector<double, 0> DVal; 1035 for (int i=0; i < getVecSize(FInfo); ++i) { 1036 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1037 ? (double)CDV->getElementAsFloat(i) 1038 : CDV->getElementAsDouble(i); 1039 if (V < 0.0) needcopysign = true; 1040 V = log2(std::abs(V)); 1041 DVal.push_back(V); 1042 } 1043 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1044 SmallVector<float, 0> FVal; 1045 for (unsigned i=0; i < DVal.size(); ++i) { 1046 FVal.push_back((float)DVal[i]); 1047 } 1048 ArrayRef<float> tmp(FVal); 1049 cnval = ConstantDataVector::get(M->getContext(), tmp); 1050 } else { 1051 ArrayRef<double> tmp(DVal); 1052 cnval = ConstantDataVector::get(M->getContext(), tmp); 1053 } 1054 } 1055 } 1056 1057 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1058 // We cannot handle corner cases for a general pow() function, give up 1059 // unless y is a constant integral value. Then proceed as if it were pown. 1060 if (getVecSize(FInfo) == 1) { 1061 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1062 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1063 ? (double)CF->getValueAPF().convertToFloat() 1064 : CF->getValueAPF().convertToDouble(); 1065 if (y != (double)(int64_t)y) 1066 return false; 1067 } else 1068 return false; 1069 } else { 1070 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1071 for (int i=0; i < getVecSize(FInfo); ++i) { 1072 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1073 ? (double)CDV->getElementAsFloat(i) 1074 : CDV->getElementAsDouble(i); 1075 if (y != (double)(int64_t)y) 1076 return false; 1077 } 1078 } else 1079 return false; 1080 } 1081 } 1082 1083 Value *nval; 1084 if (needabs) { 1085 FunctionCallee AbsExpr = 1086 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1087 if (!AbsExpr) 1088 return false; 1089 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1090 } else { 1091 nval = cnval ? cnval : opr0; 1092 } 1093 if (needlog) { 1094 FunctionCallee LogExpr = 1095 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1096 if (!LogExpr) 1097 return false; 1098 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1099 } 1100 1101 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1102 // convert int(32) to fp(f32 or f64) 1103 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1104 } 1105 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1106 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1107 1108 if (needcopysign) { 1109 Value *opr_n; 1110 Type* rTy = opr0->getType(); 1111 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1112 Type *nTy = nTyS; 1113 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1114 nTy = FixedVectorType::get(nTyS, vTy); 1115 unsigned size = nTy->getScalarSizeInBits(); 1116 opr_n = CI->getArgOperand(1); 1117 if (opr_n->getType()->isIntegerTy()) 1118 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1119 else 1120 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1121 1122 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1123 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1124 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1125 nval = B.CreateBitCast(nval, opr0->getType()); 1126 } 1127 1128 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1129 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1130 replaceCall(nval); 1131 1132 return true; 1133 } 1134 1135 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1136 const FuncInfo &FInfo) { 1137 Value *opr0 = CI->getArgOperand(0); 1138 Value *opr1 = CI->getArgOperand(1); 1139 1140 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1141 if (!CINT) { 1142 return false; 1143 } 1144 int ci_opr1 = (int)CINT->getSExtValue(); 1145 if (ci_opr1 == 1) { // rootn(x, 1) = x 1146 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1147 replaceCall(opr0); 1148 return true; 1149 } 1150 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1151 Module *M = CI->getModule(); 1152 if (FunctionCallee FPExpr = 1153 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1154 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1155 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1156 replaceCall(nval); 1157 return true; 1158 } 1159 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1160 Module *M = CI->getModule(); 1161 if (FunctionCallee FPExpr = 1162 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1163 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1164 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1165 replaceCall(nval); 1166 return true; 1167 } 1168 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1169 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1170 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1171 opr0, 1172 "__rootn2div"); 1173 replaceCall(nval); 1174 return true; 1175 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1176 Module *M = CI->getModule(); 1177 if (FunctionCallee FPExpr = 1178 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1179 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1180 << ")\n"); 1181 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1182 replaceCall(nval); 1183 return true; 1184 } 1185 } 1186 return false; 1187 } 1188 1189 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1190 const FuncInfo &FInfo) { 1191 Value *opr0 = CI->getArgOperand(0); 1192 Value *opr1 = CI->getArgOperand(1); 1193 Value *opr2 = CI->getArgOperand(2); 1194 1195 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1196 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1197 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1198 // fma/mad(a, b, c) = c if a=0 || b=0 1199 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1200 replaceCall(opr2); 1201 return true; 1202 } 1203 if (CF0 && CF0->isExactlyValue(1.0f)) { 1204 // fma/mad(a, b, c) = b+c if a=1 1205 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1206 << "\n"); 1207 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1208 replaceCall(nval); 1209 return true; 1210 } 1211 if (CF1 && CF1->isExactlyValue(1.0f)) { 1212 // fma/mad(a, b, c) = a+c if b=1 1213 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1214 << "\n"); 1215 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1216 replaceCall(nval); 1217 return true; 1218 } 1219 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1220 if (CF->isZero()) { 1221 // fma/mad(a, b, c) = a*b if c=0 1222 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1223 << *opr1 << "\n"); 1224 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1225 replaceCall(nval); 1226 return true; 1227 } 1228 } 1229 1230 return false; 1231 } 1232 1233 // Get a scalar native builtin signle argument FP function 1234 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1235 const FuncInfo &FInfo) { 1236 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1237 return nullptr; 1238 FuncInfo nf = FInfo; 1239 nf.setPrefix(AMDGPULibFunc::NATIVE); 1240 return getFunction(M, nf); 1241 } 1242 1243 // fold sqrt -> native_sqrt (x) 1244 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1245 const FuncInfo &FInfo) { 1246 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1247 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1248 if (FunctionCallee FPExpr = getNativeFunction( 1249 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1250 Value *opr0 = CI->getArgOperand(0); 1251 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1252 << "sqrt(" << *opr0 << ")\n"); 1253 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1254 replaceCall(nval); 1255 return true; 1256 } 1257 } 1258 return false; 1259 } 1260 1261 // fold sin, cos -> sincos. 1262 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1263 AliasAnalysis *AA) { 1264 AMDGPULibFunc fInfo; 1265 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1266 return false; 1267 1268 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1269 fInfo.getId() == AMDGPULibFunc::EI_COS); 1270 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1271 1272 Value *CArgVal = CI->getArgOperand(0); 1273 BasicBlock * const CBB = CI->getParent(); 1274 1275 int const MaxScan = 30; 1276 bool Changed = false; 1277 1278 { // fold in load value. 1279 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1280 if (LI && LI->getParent() == CBB) { 1281 BasicBlock::iterator BBI = LI->getIterator(); 1282 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1283 if (AvailableVal) { 1284 Changed = true; 1285 CArgVal->replaceAllUsesWith(AvailableVal); 1286 if (CArgVal->getNumUses() == 0) 1287 LI->eraseFromParent(); 1288 CArgVal = CI->getArgOperand(0); 1289 } 1290 } 1291 } 1292 1293 Module *M = CI->getModule(); 1294 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1295 std::string const PairName = fInfo.mangle(); 1296 1297 CallInst *UI = nullptr; 1298 for (User* U : CArgVal->users()) { 1299 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1300 if (!XI || XI == CI || XI->getParent() != CBB) 1301 continue; 1302 1303 Function *UCallee = XI->getCalledFunction(); 1304 if (!UCallee || !UCallee->getName().equals(PairName)) 1305 continue; 1306 1307 BasicBlock::iterator BBI = CI->getIterator(); 1308 if (BBI == CI->getParent()->begin()) 1309 break; 1310 --BBI; 1311 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1312 if (cast<Instruction>(BBI) == XI) { 1313 UI = XI; 1314 break; 1315 } 1316 } 1317 if (UI) break; 1318 } 1319 1320 if (!UI) 1321 return Changed; 1322 1323 // Merge the sin and cos. 1324 1325 // for OpenCL 2.0 we have only generic implementation of sincos 1326 // function. 1327 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1328 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1329 FunctionCallee Fsincos = getFunction(M, nf); 1330 if (!Fsincos) 1331 return Changed; 1332 1333 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1334 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1335 B.SetInsertPoint(UI); 1336 1337 Value *P = Alloc; 1338 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1339 // The allocaInst allocates the memory in private address space. This need 1340 // to be bitcasted to point to the address space of cos pointer type. 1341 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1342 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1343 P = B.CreateAddrSpaceCast(Alloc, PTy); 1344 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1345 1346 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1347 << *Call << "\n"); 1348 1349 if (!isSin) { // CI->cos, UI->sin 1350 B.SetInsertPoint(&*ItOld); 1351 UI->replaceAllUsesWith(&*Call); 1352 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1353 CI->replaceAllUsesWith(Reload); 1354 UI->eraseFromParent(); 1355 CI->eraseFromParent(); 1356 } else { // CI->sin, UI->cos 1357 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1358 UI->replaceAllUsesWith(Reload); 1359 CI->replaceAllUsesWith(Call); 1360 UI->eraseFromParent(); 1361 CI->eraseFromParent(); 1362 } 1363 return true; 1364 } 1365 1366 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1367 if (!TM) 1368 return false; 1369 1370 StringRef CPU = TM->getTargetCPU(); 1371 StringRef Features = TM->getTargetFeatureString(); 1372 if ((CPU.empty() || CPU.equals_lower("generic")) && 1373 (Features.empty() || 1374 Features.find_lower("wavefrontsize") == StringRef::npos)) 1375 return false; 1376 1377 Function *F = CI->getParent()->getParent(); 1378 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1379 unsigned N = ST.getWavefrontSize(); 1380 1381 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1382 << N << "\n"); 1383 1384 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1385 CI->eraseFromParent(); 1386 return true; 1387 } 1388 1389 // Get insertion point at entry. 1390 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1391 Function * Func = UI->getParent()->getParent(); 1392 BasicBlock * BB = &Func->getEntryBlock(); 1393 assert(BB && "Entry block not found!"); 1394 BasicBlock::iterator ItNew = BB->begin(); 1395 return ItNew; 1396 } 1397 1398 // Insert a AllocsInst at the beginning of function entry block. 1399 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1400 const char *prefix) { 1401 BasicBlock::iterator ItNew = getEntryIns(UI); 1402 Function *UCallee = UI->getCalledFunction(); 1403 Type *RetType = UCallee->getReturnType(); 1404 B.SetInsertPoint(&*ItNew); 1405 AllocaInst *Alloc = B.CreateAlloca(RetType, 0, 1406 std::string(prefix) + UI->getName()); 1407 Alloc->setAlignment( 1408 Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1409 return Alloc; 1410 } 1411 1412 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, 1413 double& Res0, double& Res1, 1414 Constant *copr0, Constant *copr1, 1415 Constant *copr2) { 1416 // By default, opr0/opr1/opr3 holds values of float/double type. 1417 // If they are not float/double, each function has to its 1418 // operand separately. 1419 double opr0=0.0, opr1=0.0, opr2=0.0; 1420 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1421 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1422 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1423 if (fpopr0) { 1424 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1425 ? fpopr0->getValueAPF().convertToDouble() 1426 : (double)fpopr0->getValueAPF().convertToFloat(); 1427 } 1428 1429 if (fpopr1) { 1430 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1431 ? fpopr1->getValueAPF().convertToDouble() 1432 : (double)fpopr1->getValueAPF().convertToFloat(); 1433 } 1434 1435 if (fpopr2) { 1436 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1437 ? fpopr2->getValueAPF().convertToDouble() 1438 : (double)fpopr2->getValueAPF().convertToFloat(); 1439 } 1440 1441 switch (FInfo.getId()) { 1442 default : return false; 1443 1444 case AMDGPULibFunc::EI_ACOS: 1445 Res0 = acos(opr0); 1446 return true; 1447 1448 case AMDGPULibFunc::EI_ACOSH: 1449 // acosh(x) == log(x + sqrt(x*x - 1)) 1450 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1451 return true; 1452 1453 case AMDGPULibFunc::EI_ACOSPI: 1454 Res0 = acos(opr0) / MATH_PI; 1455 return true; 1456 1457 case AMDGPULibFunc::EI_ASIN: 1458 Res0 = asin(opr0); 1459 return true; 1460 1461 case AMDGPULibFunc::EI_ASINH: 1462 // asinh(x) == log(x + sqrt(x*x + 1)) 1463 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1464 return true; 1465 1466 case AMDGPULibFunc::EI_ASINPI: 1467 Res0 = asin(opr0) / MATH_PI; 1468 return true; 1469 1470 case AMDGPULibFunc::EI_ATAN: 1471 Res0 = atan(opr0); 1472 return true; 1473 1474 case AMDGPULibFunc::EI_ATANH: 1475 // atanh(x) == (log(x+1) - log(x-1))/2; 1476 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1477 return true; 1478 1479 case AMDGPULibFunc::EI_ATANPI: 1480 Res0 = atan(opr0) / MATH_PI; 1481 return true; 1482 1483 case AMDGPULibFunc::EI_CBRT: 1484 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1485 return true; 1486 1487 case AMDGPULibFunc::EI_COS: 1488 Res0 = cos(opr0); 1489 return true; 1490 1491 case AMDGPULibFunc::EI_COSH: 1492 Res0 = cosh(opr0); 1493 return true; 1494 1495 case AMDGPULibFunc::EI_COSPI: 1496 Res0 = cos(MATH_PI * opr0); 1497 return true; 1498 1499 case AMDGPULibFunc::EI_EXP: 1500 Res0 = exp(opr0); 1501 return true; 1502 1503 case AMDGPULibFunc::EI_EXP2: 1504 Res0 = pow(2.0, opr0); 1505 return true; 1506 1507 case AMDGPULibFunc::EI_EXP10: 1508 Res0 = pow(10.0, opr0); 1509 return true; 1510 1511 case AMDGPULibFunc::EI_EXPM1: 1512 Res0 = exp(opr0) - 1.0; 1513 return true; 1514 1515 case AMDGPULibFunc::EI_LOG: 1516 Res0 = log(opr0); 1517 return true; 1518 1519 case AMDGPULibFunc::EI_LOG2: 1520 Res0 = log(opr0) / log(2.0); 1521 return true; 1522 1523 case AMDGPULibFunc::EI_LOG10: 1524 Res0 = log(opr0) / log(10.0); 1525 return true; 1526 1527 case AMDGPULibFunc::EI_RSQRT: 1528 Res0 = 1.0 / sqrt(opr0); 1529 return true; 1530 1531 case AMDGPULibFunc::EI_SIN: 1532 Res0 = sin(opr0); 1533 return true; 1534 1535 case AMDGPULibFunc::EI_SINH: 1536 Res0 = sinh(opr0); 1537 return true; 1538 1539 case AMDGPULibFunc::EI_SINPI: 1540 Res0 = sin(MATH_PI * opr0); 1541 return true; 1542 1543 case AMDGPULibFunc::EI_SQRT: 1544 Res0 = sqrt(opr0); 1545 return true; 1546 1547 case AMDGPULibFunc::EI_TAN: 1548 Res0 = tan(opr0); 1549 return true; 1550 1551 case AMDGPULibFunc::EI_TANH: 1552 Res0 = tanh(opr0); 1553 return true; 1554 1555 case AMDGPULibFunc::EI_TANPI: 1556 Res0 = tan(MATH_PI * opr0); 1557 return true; 1558 1559 case AMDGPULibFunc::EI_RECIP: 1560 Res0 = 1.0 / opr0; 1561 return true; 1562 1563 // two-arg functions 1564 case AMDGPULibFunc::EI_DIVIDE: 1565 Res0 = opr0 / opr1; 1566 return true; 1567 1568 case AMDGPULibFunc::EI_POW: 1569 case AMDGPULibFunc::EI_POWR: 1570 Res0 = pow(opr0, opr1); 1571 return true; 1572 1573 case AMDGPULibFunc::EI_POWN: { 1574 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1575 double val = (double)iopr1->getSExtValue(); 1576 Res0 = pow(opr0, val); 1577 return true; 1578 } 1579 return false; 1580 } 1581 1582 case AMDGPULibFunc::EI_ROOTN: { 1583 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1584 double val = (double)iopr1->getSExtValue(); 1585 Res0 = pow(opr0, 1.0 / val); 1586 return true; 1587 } 1588 return false; 1589 } 1590 1591 // with ptr arg 1592 case AMDGPULibFunc::EI_SINCOS: 1593 Res0 = sin(opr0); 1594 Res1 = cos(opr0); 1595 return true; 1596 1597 // three-arg functions 1598 case AMDGPULibFunc::EI_FMA: 1599 case AMDGPULibFunc::EI_MAD: 1600 Res0 = opr0 * opr1 + opr2; 1601 return true; 1602 } 1603 1604 return false; 1605 } 1606 1607 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { 1608 int numArgs = (int)aCI->getNumArgOperands(); 1609 if (numArgs > 3) 1610 return false; 1611 1612 Constant *copr0 = nullptr; 1613 Constant *copr1 = nullptr; 1614 Constant *copr2 = nullptr; 1615 if (numArgs > 0) { 1616 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1617 return false; 1618 } 1619 1620 if (numArgs > 1) { 1621 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1622 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1623 return false; 1624 } 1625 } 1626 1627 if (numArgs > 2) { 1628 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1629 return false; 1630 } 1631 1632 // At this point, all arguments to aCI are constants. 1633 1634 // max vector size is 16, and sincos will generate two results. 1635 double DVal0[16], DVal1[16]; 1636 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1637 if (getVecSize(FInfo) == 1) { 1638 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1639 DVal1[0], copr0, copr1, copr2)) { 1640 return false; 1641 } 1642 } else { 1643 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1644 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1645 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1646 for (int i=0; i < getVecSize(FInfo); ++i) { 1647 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1648 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1649 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1650 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1651 DVal1[i], celt0, celt1, celt2)) { 1652 return false; 1653 } 1654 } 1655 } 1656 1657 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1658 Constant *nval0, *nval1; 1659 if (getVecSize(FInfo) == 1) { 1660 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1661 if (hasTwoResults) 1662 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1663 } else { 1664 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1665 SmallVector <float, 0> FVal0, FVal1; 1666 for (int i=0; i < getVecSize(FInfo); ++i) 1667 FVal0.push_back((float)DVal0[i]); 1668 ArrayRef<float> tmp0(FVal0); 1669 nval0 = ConstantDataVector::get(context, tmp0); 1670 if (hasTwoResults) { 1671 for (int i=0; i < getVecSize(FInfo); ++i) 1672 FVal1.push_back((float)DVal1[i]); 1673 ArrayRef<float> tmp1(FVal1); 1674 nval1 = ConstantDataVector::get(context, tmp1); 1675 } 1676 } else { 1677 ArrayRef<double> tmp0(DVal0); 1678 nval0 = ConstantDataVector::get(context, tmp0); 1679 if (hasTwoResults) { 1680 ArrayRef<double> tmp1(DVal1); 1681 nval1 = ConstantDataVector::get(context, tmp1); 1682 } 1683 } 1684 } 1685 1686 if (hasTwoResults) { 1687 // sincos 1688 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1689 "math function with ptr arg not supported yet"); 1690 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1691 } 1692 1693 replaceCall(nval0); 1694 return true; 1695 } 1696 1697 // Public interface to the Simplify LibCalls pass. 1698 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { 1699 return new AMDGPUSimplifyLibCalls(TM); 1700 } 1701 1702 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1703 return new AMDGPUUseNativeCalls(); 1704 } 1705 1706 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1707 if (skipFunction(F)) 1708 return false; 1709 1710 bool Changed = false; 1711 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1712 1713 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1714 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1715 1716 for (auto &BB : F) { 1717 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1718 // Ignore non-calls. 1719 CallInst *CI = dyn_cast<CallInst>(I); 1720 ++I; 1721 // Ignore intrinsics that do not become real instructions. 1722 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1723 continue; 1724 1725 // Ignore indirect calls. 1726 Function *Callee = CI->getCalledFunction(); 1727 if (Callee == 0) continue; 1728 1729 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1730 dbgs().flush()); 1731 if(Simplifier.fold(CI, AA)) 1732 Changed = true; 1733 } 1734 } 1735 return Changed; 1736 } 1737 1738 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1739 FunctionAnalysisManager &AM) { 1740 AMDGPULibCalls Simplifier(&TM); 1741 Simplifier.initNativeFuncs(); 1742 1743 bool Changed = false; 1744 auto AA = &AM.getResult<AAManager>(F); 1745 1746 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1747 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1748 1749 for (auto &BB : F) { 1750 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1751 // Ignore non-calls. 1752 CallInst *CI = dyn_cast<CallInst>(I); 1753 ++I; 1754 // Ignore intrinsics that do not become real instructions. 1755 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1756 continue; 1757 1758 // Ignore indirect calls. 1759 Function *Callee = CI->getCalledFunction(); 1760 if (Callee == 0) 1761 continue; 1762 1763 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1764 dbgs().flush()); 1765 if (Simplifier.fold(CI, AA)) 1766 Changed = true; 1767 } 1768 } 1769 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1770 } 1771 1772 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1773 if (skipFunction(F) || UseNative.empty()) 1774 return false; 1775 1776 bool Changed = false; 1777 for (auto &BB : F) { 1778 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1779 // Ignore non-calls. 1780 CallInst *CI = dyn_cast<CallInst>(I); 1781 ++I; 1782 if (!CI) continue; 1783 1784 // Ignore indirect calls. 1785 Function *Callee = CI->getCalledFunction(); 1786 if (Callee == 0) continue; 1787 1788 if(Simplifier.useNative(CI)) 1789 Changed = true; 1790 } 1791 } 1792 return Changed; 1793 } 1794 1795 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1796 FunctionAnalysisManager &AM) { 1797 if (UseNative.empty()) 1798 return PreservedAnalyses::all(); 1799 1800 AMDGPULibCalls Simplifier; 1801 Simplifier.initNativeFuncs(); 1802 1803 bool Changed = false; 1804 for (auto &BB : F) { 1805 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1806 // Ignore non-calls. 1807 CallInst *CI = dyn_cast<CallInst>(I); 1808 ++I; 1809 if (!CI) 1810 continue; 1811 1812 // Ignore indirect calls. 1813 Function *Callee = CI->getCalledFunction(); 1814 if (Callee == 0) 1815 continue; 1816 1817 if (Simplifier.useNative(CI)) 1818 Changed = true; 1819 } 1820 } 1821 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1822 } 1823