1//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file contains instruction defs that are common to all hw codegen 10// targets. 11// 12//===----------------------------------------------------------------------===// 13 14class AddressSpacesImpl { 15 int Flat = 0; 16 int Global = 1; 17 int Region = 2; 18 int Local = 3; 19 int Constant = 4; 20 int Private = 5; 21} 22 23def AddrSpaces : AddressSpacesImpl; 24 25 26class AMDGPUInst <dag outs, dag ins, string asm = "", 27 list<dag> pattern = []> : Instruction { 28 field bit isRegisterLoad = 0; 29 field bit isRegisterStore = 0; 30 31 let Namespace = "AMDGPU"; 32 let OutOperandList = outs; 33 let InOperandList = ins; 34 let AsmString = asm; 35 let Pattern = pattern; 36 let Itinerary = NullALU; 37 38 // SoftFail is a field the disassembler can use to provide a way for 39 // instructions to not match without killing the whole decode process. It is 40 // mainly used for ARM, but Tablegen expects this field to exist or it fails 41 // to build the decode table. 42 field bits<64> SoftFail = 0; 43 44 let DecoderNamespace = Namespace; 45 46 let TSFlags{63} = isRegisterLoad; 47 let TSFlags{62} = isRegisterStore; 48} 49 50class AMDGPUShaderInst <dag outs, dag ins, string asm = "", 51 list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern> { 52 53 field bits<32> Inst = 0xffffffff; 54} 55 56//===---------------------------------------------------------------------===// 57// Return instruction 58//===---------------------------------------------------------------------===// 59 60class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern> 61: Instruction { 62 63 let Namespace = "AMDGPU"; 64 dag OutOperandList = outs; 65 dag InOperandList = ins; 66 let Pattern = pattern; 67 let AsmString = !strconcat(asmstr, "\n"); 68 let isPseudo = 1; 69 let Itinerary = NullALU; 70 bit hasIEEEFlag = 0; 71 bit hasZeroOpFlag = 0; 72 let mayLoad = 0; 73 let mayStore = 0; 74 let hasSideEffects = 0; 75 let isCodeGenOnly = 1; 76} 77 78def TruePredicate : Predicate<"">; 79 80// FIXME: Tablegen should specially supports this 81def FalsePredicate : Predicate<"false">; 82 83// Add a predicate to the list if does not already exist to deduplicate it. 84class PredConcat<list<Predicate> lst, Predicate pred> { 85 list<Predicate> ret = 86 !foldl([pred], lst, acc, cur, 87 !listconcat(acc, !if(!eq(!cast<string>(cur),!cast<string>(pred)), 88 [], [cur]))); 89} 90 91class PredicateControl { 92 Predicate SubtargetPredicate = TruePredicate; 93 Predicate AssemblerPredicate = TruePredicate; 94 Predicate WaveSizePredicate = TruePredicate; 95 list<Predicate> OtherPredicates = []; 96 list<Predicate> Predicates = PredConcat< 97 PredConcat<PredConcat<OtherPredicates, 98 SubtargetPredicate>.ret, 99 AssemblerPredicate>.ret, 100 WaveSizePredicate>.ret; 101} 102 103class AMDGPUPat<dag pattern, dag result> : Pat<pattern, result>, 104 PredicateControl; 105 106let RecomputePerFunction = 1 in { 107def FP16Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP64FP16Denormals()">; 108def FP32Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP32Denormals()">; 109def FP64Denormals : Predicate<"MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP64FP16Denormals()">; 110def NoFP16Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP64FP16Denormals()">; 111def NoFP32Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP32Denormals()">; 112def NoFP64Denormals : Predicate<"!MF->getInfo<SIMachineFunctionInfo>()->getMode().allFP64FP16Denormals()">; 113def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">; 114} 115 116def FMA : Predicate<"Subtarget->hasFMA()">; 117 118def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>; 119 120def u16ImmTarget : AsmOperandClass { 121 let Name = "U16Imm"; 122 let RenderMethod = "addImmOperands"; 123} 124 125def s16ImmTarget : AsmOperandClass { 126 let Name = "S16Imm"; 127 let RenderMethod = "addImmOperands"; 128} 129 130let OperandType = "OPERAND_IMMEDIATE" in { 131 132def u32imm : Operand<i32> { 133 let PrintMethod = "printU32ImmOperand"; 134} 135 136def u16imm : Operand<i16> { 137 let PrintMethod = "printU16ImmOperand"; 138 let ParserMatchClass = u16ImmTarget; 139} 140 141def s16imm : Operand<i16> { 142 let PrintMethod = "printU16ImmOperand"; 143 let ParserMatchClass = s16ImmTarget; 144} 145 146def u8imm : Operand<i8> { 147 let PrintMethod = "printU8ImmOperand"; 148} 149 150} // End OperandType = "OPERAND_IMMEDIATE" 151 152//===--------------------------------------------------------------------===// 153// Custom Operands 154//===--------------------------------------------------------------------===// 155def brtarget : Operand<OtherVT>; 156 157//===----------------------------------------------------------------------===// 158// Misc. PatFrags 159//===----------------------------------------------------------------------===// 160 161class HasOneUseUnaryOp<SDPatternOperator op> : PatFrag< 162 (ops node:$src0), 163 (op $src0), 164 [{ return N->hasOneUse(); }]> { 165 166 let GISelPredicateCode = [{ 167 return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg()); 168 }]; 169} 170 171class HasOneUseBinOp<SDPatternOperator op> : PatFrag< 172 (ops node:$src0, node:$src1), 173 (op $src0, $src1), 174 [{ return N->hasOneUse(); }]> { 175 let GISelPredicateCode = [{ 176 return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg()); 177 }]; 178} 179 180class HasOneUseTernaryOp<SDPatternOperator op> : PatFrag< 181 (ops node:$src0, node:$src1, node:$src2), 182 (op $src0, $src1, $src2), 183 [{ return N->hasOneUse(); }]> { 184 let GISelPredicateCode = [{ 185 return MRI.hasOneNonDBGUse(MI.getOperand(0).getReg()); 186 }]; 187} 188 189let Properties = [SDNPCommutative, SDNPAssociative] in { 190def smax_oneuse : HasOneUseBinOp<smax>; 191def smin_oneuse : HasOneUseBinOp<smin>; 192def umax_oneuse : HasOneUseBinOp<umax>; 193def umin_oneuse : HasOneUseBinOp<umin>; 194 195def fminnum_oneuse : HasOneUseBinOp<fminnum>; 196def fmaxnum_oneuse : HasOneUseBinOp<fmaxnum>; 197 198def fminnum_ieee_oneuse : HasOneUseBinOp<fminnum_ieee>; 199def fmaxnum_ieee_oneuse : HasOneUseBinOp<fmaxnum_ieee>; 200 201 202def and_oneuse : HasOneUseBinOp<and>; 203def or_oneuse : HasOneUseBinOp<or>; 204def xor_oneuse : HasOneUseBinOp<xor>; 205} // Properties = [SDNPCommutative, SDNPAssociative] 206 207def not_oneuse : HasOneUseUnaryOp<not>; 208 209def add_oneuse : HasOneUseBinOp<add>; 210def sub_oneuse : HasOneUseBinOp<sub>; 211 212def srl_oneuse : HasOneUseBinOp<srl>; 213def shl_oneuse : HasOneUseBinOp<shl>; 214 215def select_oneuse : HasOneUseTernaryOp<select>; 216 217def AMDGPUmul_u24_oneuse : HasOneUseBinOp<AMDGPUmul_u24>; 218def AMDGPUmul_i24_oneuse : HasOneUseBinOp<AMDGPUmul_i24>; 219 220def srl_16 : PatFrag< 221 (ops node:$src0), (srl_oneuse node:$src0, (i32 16)) 222>; 223 224 225def hi_i16_elt : PatFrag< 226 (ops node:$src0), (i16 (trunc (i32 (srl_16 node:$src0)))) 227>; 228 229 230def hi_f16_elt : PatLeaf< 231 (vt), [{ 232 if (N->getOpcode() != ISD::BITCAST) 233 return false; 234 SDValue Tmp = N->getOperand(0); 235 236 if (Tmp.getOpcode() != ISD::SRL) 237 return false; 238 if (const auto *RHS = dyn_cast<ConstantSDNode>(Tmp.getOperand(1)) 239 return RHS->getZExtValue() == 16; 240 return false; 241}]>; 242 243//===----------------------------------------------------------------------===// 244// PatLeafs for floating-point comparisons 245//===----------------------------------------------------------------------===// 246 247def COND_OEQ : PatFrags<(ops), [(OtherVT SETOEQ), (OtherVT SETEQ)]>; 248def COND_ONE : PatFrags<(ops), [(OtherVT SETONE), (OtherVT SETNE)]>; 249def COND_OGT : PatFrags<(ops), [(OtherVT SETOGT), (OtherVT SETGT)]>; 250def COND_OGE : PatFrags<(ops), [(OtherVT SETOGE), (OtherVT SETGE)]>; 251def COND_OLT : PatFrags<(ops), [(OtherVT SETOLT), (OtherVT SETLT)]>; 252def COND_OLE : PatFrags<(ops), [(OtherVT SETOLE), (OtherVT SETLE)]>; 253def COND_O : PatFrags<(ops), [(OtherVT SETO)]>; 254def COND_UO : PatFrags<(ops), [(OtherVT SETUO)]>; 255 256//===----------------------------------------------------------------------===// 257// PatLeafs for unsigned / unordered comparisons 258//===----------------------------------------------------------------------===// 259 260def COND_UEQ : PatFrag<(ops), (OtherVT SETUEQ)>; 261def COND_UNE : PatFrag<(ops), (OtherVT SETUNE)>; 262def COND_UGT : PatFrag<(ops), (OtherVT SETUGT)>; 263def COND_UGE : PatFrag<(ops), (OtherVT SETUGE)>; 264def COND_ULT : PatFrag<(ops), (OtherVT SETULT)>; 265def COND_ULE : PatFrag<(ops), (OtherVT SETULE)>; 266 267// XXX - For some reason R600 version is preferring to use unordered 268// for setne? 269def COND_UNE_NE : PatFrags<(ops), [(OtherVT SETUNE), (OtherVT SETNE)]>; 270 271//===----------------------------------------------------------------------===// 272// PatLeafs for signed comparisons 273//===----------------------------------------------------------------------===// 274 275def COND_SGT : PatFrag<(ops), (OtherVT SETGT)>; 276def COND_SGE : PatFrag<(ops), (OtherVT SETGE)>; 277def COND_SLT : PatFrag<(ops), (OtherVT SETLT)>; 278def COND_SLE : PatFrag<(ops), (OtherVT SETLE)>; 279 280//===----------------------------------------------------------------------===// 281// PatLeafs for integer equality 282//===----------------------------------------------------------------------===// 283 284def COND_EQ : PatFrags<(ops), [(OtherVT SETEQ), (OtherVT SETUEQ)]>; 285def COND_NE : PatFrags<(ops), [(OtherVT SETNE), (OtherVT SETUNE)]>; 286 287// FIXME: Should not need code predicate 288//def COND_NULL : PatLeaf<(OtherVT null_frag)>; 289def COND_NULL : PatLeaf < 290 (cond), 291 [{(void)N; return false;}] 292>; 293 294//===----------------------------------------------------------------------===// 295// PatLeafs for Texture Constants 296//===----------------------------------------------------------------------===// 297 298def TEX_ARRAY : PatLeaf< 299 (imm), 300 [{uint32_t TType = (uint32_t)N->getZExtValue(); 301 return TType == 9 || TType == 10 || TType == 16; 302 }] 303>; 304 305def TEX_RECT : PatLeaf< 306 (imm), 307 [{uint32_t TType = (uint32_t)N->getZExtValue(); 308 return TType == 5; 309 }] 310>; 311 312def TEX_SHADOW : PatLeaf< 313 (imm), 314 [{uint32_t TType = (uint32_t)N->getZExtValue(); 315 return (TType >= 6 && TType <= 8) || TType == 13; 316 }] 317>; 318 319def TEX_SHADOW_ARRAY : PatLeaf< 320 (imm), 321 [{uint32_t TType = (uint32_t)N->getZExtValue(); 322 return TType == 11 || TType == 12 || TType == 17; 323 }] 324>; 325 326//===----------------------------------------------------------------------===// 327// Load/Store Pattern Fragments 328//===----------------------------------------------------------------------===// 329 330def atomic_cmp_swap_glue : SDNode <"ISD::ATOMIC_CMP_SWAP", SDTAtomic3, 331 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand, SDNPInGlue] 332>; 333 334class AddressSpaceList<list<int> AS> { 335 list<int> AddrSpaces = AS; 336} 337 338class Aligned<int Bytes> { 339 int MinAlignment = Bytes; 340} 341 342class StoreHi16<SDPatternOperator op> : PatFrag < 343 (ops node:$value, node:$ptr), (op (srl node:$value, (i32 16)), node:$ptr)> { 344 let IsStore = 1; 345} 346 347def LoadAddress_constant : AddressSpaceList<[ AddrSpaces.Constant ]>; 348def LoadAddress_global : AddressSpaceList<[ AddrSpaces.Global, AddrSpaces.Constant ]>; 349def StoreAddress_global : AddressSpaceList<[ AddrSpaces.Global ]>; 350 351def LoadAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, 352 AddrSpaces.Global, 353 AddrSpaces.Constant ]>; 354def StoreAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, AddrSpaces.Global ]>; 355 356def LoadAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>; 357def StoreAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>; 358 359def LoadAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>; 360def StoreAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>; 361 362def LoadAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>; 363def StoreAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>; 364 365 366 367foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in { 368let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in { 369 370def load_#as : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 371 let IsLoad = 1; 372 let IsNonExtLoad = 1; 373} 374 375def extloadi8_#as : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 376 let IsLoad = 1; 377 let MemoryVT = i8; 378} 379 380def extloadi16_#as : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 381 let IsLoad = 1; 382 let MemoryVT = i16; 383} 384 385def sextloadi8_#as : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 386 let IsLoad = 1; 387 let MemoryVT = i8; 388} 389 390def sextloadi16_#as : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 391 let IsLoad = 1; 392 let MemoryVT = i16; 393} 394 395def zextloadi8_#as : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 396 let IsLoad = 1; 397 let MemoryVT = i8; 398} 399 400def zextloadi16_#as : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 401 let IsLoad = 1; 402 let MemoryVT = i16; 403} 404 405def atomic_load_32_#as : PatFrag<(ops node:$ptr), (atomic_load_32 node:$ptr)> { 406 let IsAtomic = 1; 407 let MemoryVT = i32; 408} 409 410def atomic_load_64_#as : PatFrag<(ops node:$ptr), (atomic_load_64 node:$ptr)> { 411 let IsAtomic = 1; 412 let MemoryVT = i64; 413} 414} // End let AddressSpaces 415} // End foreach as 416 417 418foreach as = [ "global", "flat", "local", "private", "region" ] in { 419let AddressSpaces = !cast<AddressSpaceList>("StoreAddress_"#as).AddrSpaces in { 420def store_#as : PatFrag<(ops node:$val, node:$ptr), 421 (unindexedstore node:$val, node:$ptr)> { 422 let IsStore = 1; 423 let IsTruncStore = 0; 424} 425 426// truncstore fragments. 427def truncstore_#as : PatFrag<(ops node:$val, node:$ptr), 428 (unindexedstore node:$val, node:$ptr)> { 429 let IsStore = 1; 430 let IsTruncStore = 1; 431} 432 433// TODO: We don't really need the truncstore here. We can use 434// unindexedstore with MemoryVT directly, which will save an 435// unnecessary check that the memory size is less than the value type 436// in the generated matcher table. 437def truncstorei8_#as : PatFrag<(ops node:$val, node:$ptr), 438 (truncstore node:$val, node:$ptr)> { 439 let IsStore = 1; 440 let MemoryVT = i8; 441} 442 443def truncstorei16_#as : PatFrag<(ops node:$val, node:$ptr), 444 (truncstore node:$val, node:$ptr)> { 445 let IsStore = 1; 446 let MemoryVT = i16; 447} 448 449def store_hi16_#as : StoreHi16 <truncstorei16>; 450def truncstorei8_hi16_#as : StoreHi16<truncstorei8>; 451def truncstorei16_hi16_#as : StoreHi16<truncstorei16>; 452 453defm atomic_store_#as : binary_atomic_op<atomic_store>; 454 455} // End let AddressSpaces 456} // End foreach as 457 458 459multiclass ret_noret_binary_atomic_op<SDNode atomic_op, bit IsInt = 1> { 460 foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in { 461 let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in { 462 defm "_"#as : binary_atomic_op<atomic_op, IsInt>; 463 464 let PredicateCode = [{return (SDValue(N, 0).use_empty());}] in { 465 defm "_"#as#"_noret" : binary_atomic_op<atomic_op, IsInt>; 466 } 467 468 let PredicateCode = [{return !(SDValue(N, 0).use_empty());}] in { 469 defm "_"#as#"_ret" : binary_atomic_op<atomic_op, IsInt>; 470 } 471 } 472 } 473} 474 475defm atomic_swap : ret_noret_binary_atomic_op<atomic_swap>; 476defm atomic_load_add : ret_noret_binary_atomic_op<atomic_load_add>; 477defm atomic_load_and : ret_noret_binary_atomic_op<atomic_load_and>; 478defm atomic_load_max : ret_noret_binary_atomic_op<atomic_load_max>; 479defm atomic_load_min : ret_noret_binary_atomic_op<atomic_load_min>; 480defm atomic_load_or : ret_noret_binary_atomic_op<atomic_load_or>; 481defm atomic_load_sub : ret_noret_binary_atomic_op<atomic_load_sub>; 482defm atomic_load_umax : ret_noret_binary_atomic_op<atomic_load_umax>; 483defm atomic_load_umin : ret_noret_binary_atomic_op<atomic_load_umin>; 484defm atomic_load_xor : ret_noret_binary_atomic_op<atomic_load_xor>; 485defm atomic_load_fadd : ret_noret_binary_atomic_op<atomic_load_fadd, 0>; 486defm AMDGPUatomic_cmp_swap : ret_noret_binary_atomic_op<AMDGPUatomic_cmp_swap>; 487 488 489def load_align8_local : PatFrag <(ops node:$ptr), (load_local node:$ptr)> { 490 let IsLoad = 1; 491 let IsNonExtLoad = 1; 492 let MinAlignment = 8; 493} 494 495def load_align16_local : PatFrag <(ops node:$ptr), (load_local node:$ptr)> { 496 let IsLoad = 1; 497 let IsNonExtLoad = 1; 498 let MinAlignment = 16; 499} 500 501def store_align8_local: PatFrag<(ops node:$val, node:$ptr), 502 (store_local node:$val, node:$ptr)>, Aligned<8> { 503 let IsStore = 1; 504 let IsTruncStore = 0; 505} 506 507def store_align16_local: PatFrag<(ops node:$val, node:$ptr), 508 (store_local node:$val, node:$ptr)>, Aligned<16> { 509 let IsStore = 1; 510 let IsTruncStore = 0; 511} 512 513let AddressSpaces = StoreAddress_local.AddrSpaces in { 514defm atomic_cmp_swap_local : ternary_atomic_op<atomic_cmp_swap>; 515defm atomic_cmp_swap_local_m0 : ternary_atomic_op<atomic_cmp_swap_glue>; 516} 517 518let AddressSpaces = StoreAddress_region.AddrSpaces in { 519defm atomic_cmp_swap_region : ternary_atomic_op<atomic_cmp_swap>; 520defm atomic_cmp_swap_region_m0 : ternary_atomic_op<atomic_cmp_swap_glue>; 521} 522 523//===----------------------------------------------------------------------===// 524// Misc Pattern Fragments 525//===----------------------------------------------------------------------===// 526 527class Constants { 528int TWO_PI = 0x40c90fdb; 529int PI = 0x40490fdb; 530int TWO_PI_INV = 0x3e22f983; 531int FP_4294966784 = 0x4f7ffffe; // 4294966784 = 4294967296 - 512 = 2^32 - 2^9 532int FP16_ONE = 0x3C00; 533int FP16_NEG_ONE = 0xBC00; 534int FP32_ONE = 0x3f800000; 535int FP32_NEG_ONE = 0xbf800000; 536int FP64_ONE = 0x3ff0000000000000; 537int FP64_NEG_ONE = 0xbff0000000000000; 538} 539def CONST : Constants; 540 541def FP_ZERO : PatLeaf < 542 (fpimm), 543 [{return N->getValueAPF().isZero();}] 544>; 545 546def FP_ONE : PatLeaf < 547 (fpimm), 548 [{return N->isExactlyValue(1.0);}] 549>; 550 551def FP_HALF : PatLeaf < 552 (fpimm), 553 [{return N->isExactlyValue(0.5);}] 554>; 555 556/* Generic helper patterns for intrinsics */ 557/* -------------------------------------- */ 558 559class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul> 560 : AMDGPUPat < 561 (fpow f32:$src0, f32:$src1), 562 (exp_ieee (mul f32:$src1, (log_ieee f32:$src0))) 563>; 564 565/* Other helper patterns */ 566/* --------------------- */ 567 568/* Extract element pattern */ 569class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx, 570 SubRegIndex sub_reg> 571 : AMDGPUPat< 572 (sub_type (extractelt vec_type:$src, sub_idx)), 573 (EXTRACT_SUBREG $src, sub_reg) 574>; 575 576/* Insert element pattern */ 577class Insert_Element <ValueType elem_type, ValueType vec_type, 578 int sub_idx, SubRegIndex sub_reg> 579 : AMDGPUPat < 580 (insertelt vec_type:$vec, elem_type:$elem, sub_idx), 581 (INSERT_SUBREG $vec, $elem, sub_reg) 582>; 583 584// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer 585// can handle COPY instructions. 586// bitconvert pattern 587class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : AMDGPUPat < 588 (dt (bitconvert (st rc:$src0))), 589 (dt rc:$src0) 590>; 591 592// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer 593// can handle COPY instructions. 594class DwordAddrPat<ValueType vt, RegisterClass rc> : AMDGPUPat < 595 (vt (AMDGPUdwordaddr (vt rc:$addr))), 596 (vt rc:$addr) 597>; 598 599// BFI_INT patterns 600 601multiclass BFIPatterns <Instruction BFI_INT, 602 Instruction LoadImm32, 603 RegisterClass RC64> { 604 // Definition from ISA doc: 605 // (y & x) | (z & ~x) 606 def : AMDGPUPat < 607 (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), 608 (BFI_INT $x, $y, $z) 609 >; 610 611 // 64-bit version 612 def : AMDGPUPat < 613 (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), 614 (REG_SEQUENCE RC64, 615 (BFI_INT (i32 (EXTRACT_SUBREG RC64:$x, sub0)), 616 (i32 (EXTRACT_SUBREG RC64:$y, sub0)), 617 (i32 (EXTRACT_SUBREG RC64:$z, sub0))), sub0, 618 (BFI_INT (i32 (EXTRACT_SUBREG RC64:$x, sub1)), 619 (i32 (EXTRACT_SUBREG RC64:$y, sub1)), 620 (i32 (EXTRACT_SUBREG RC64:$z, sub1))), sub1) 621 >; 622 623 // SHA-256 Ch function 624 // z ^ (x & (y ^ z)) 625 def : AMDGPUPat < 626 (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), 627 (BFI_INT $x, $y, $z) 628 >; 629 630 // 64-bit version 631 def : AMDGPUPat < 632 (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), 633 (REG_SEQUENCE RC64, 634 (BFI_INT (i32 (EXTRACT_SUBREG RC64:$x, sub0)), 635 (i32 (EXTRACT_SUBREG RC64:$y, sub0)), 636 (i32 (EXTRACT_SUBREG RC64:$z, sub0))), sub0, 637 (BFI_INT (i32 (EXTRACT_SUBREG RC64:$x, sub1)), 638 (i32 (EXTRACT_SUBREG RC64:$y, sub1)), 639 (i32 (EXTRACT_SUBREG RC64:$z, sub1))), sub1) 640 >; 641 642 def : AMDGPUPat < 643 (fcopysign f32:$src0, f32:$src1), 644 (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, $src1) 645 >; 646 647 def : AMDGPUPat < 648 (f32 (fcopysign f32:$src0, f64:$src1)), 649 (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, 650 (i32 (EXTRACT_SUBREG RC64:$src1, sub1))) 651 >; 652 653 def : AMDGPUPat < 654 (f64 (fcopysign f64:$src0, f64:$src1)), 655 (REG_SEQUENCE RC64, 656 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 657 (BFI_INT (LoadImm32 (i32 0x7fffffff)), 658 (i32 (EXTRACT_SUBREG RC64:$src0, sub1)), 659 (i32 (EXTRACT_SUBREG RC64:$src1, sub1))), sub1) 660 >; 661 662 def : AMDGPUPat < 663 (f64 (fcopysign f64:$src0, f32:$src1)), 664 (REG_SEQUENCE RC64, 665 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 666 (BFI_INT (LoadImm32 (i32 0x7fffffff)), 667 (i32 (EXTRACT_SUBREG RC64:$src0, sub1)), 668 $src1), sub1) 669 >; 670} 671 672// SHA-256 Ma patterns 673 674// ((x & z) | (y & (x | z))) -> BFI_INT (XOR x, y), z, y 675multiclass SHA256MaPattern <Instruction BFI_INT, Instruction XOR, RegisterClass RC64> { 676 def : AMDGPUPat < 677 (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))), 678 (BFI_INT (XOR i32:$x, i32:$y), i32:$z, i32:$y) 679 >; 680 681 def : AMDGPUPat < 682 (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))), 683 (REG_SEQUENCE RC64, 684 (BFI_INT (XOR (i32 (EXTRACT_SUBREG RC64:$x, sub0)), 685 (i32 (EXTRACT_SUBREG RC64:$y, sub0))), 686 (i32 (EXTRACT_SUBREG RC64:$z, sub0)), 687 (i32 (EXTRACT_SUBREG RC64:$y, sub0))), sub0, 688 (BFI_INT (XOR (i32 (EXTRACT_SUBREG RC64:$x, sub1)), 689 (i32 (EXTRACT_SUBREG RC64:$y, sub1))), 690 (i32 (EXTRACT_SUBREG RC64:$z, sub1)), 691 (i32 (EXTRACT_SUBREG RC64:$y, sub1))), sub1) 692 >; 693} 694 695// Bitfield extract patterns 696 697def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{ 698 return isMask_32(Imm); 699}]>; 700 701def IMMPopCount : SDNodeXForm<imm, [{ 702 return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N), 703 MVT::i32); 704}]>; 705 706multiclass BFEPattern <Instruction UBFE, Instruction SBFE, Instruction MOV> { 707 def : AMDGPUPat < 708 (i32 (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask)), 709 (UBFE $src, $rshift, (MOV (i32 (IMMPopCount $mask)))) 710 >; 711 712 // x & ((1 << y) - 1) 713 def : AMDGPUPat < 714 (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), 715 (UBFE $src, (MOV (i32 0)), $width) 716 >; 717 718 // x & ~(-1 << y) 719 def : AMDGPUPat < 720 (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)), 721 (UBFE $src, (MOV (i32 0)), $width) 722 >; 723 724 // x & (-1 >> (bitwidth - y)) 725 def : AMDGPUPat < 726 (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))), 727 (UBFE $src, (MOV (i32 0)), $width) 728 >; 729 730 // x << (bitwidth - y) >> (bitwidth - y) 731 def : AMDGPUPat < 732 (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), 733 (UBFE $src, (MOV (i32 0)), $width) 734 >; 735 736 def : AMDGPUPat < 737 (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), 738 (SBFE $src, (MOV (i32 0)), $width) 739 >; 740} 741 742// fshr pattern 743class FSHRPattern <Instruction BIT_ALIGN> : AMDGPUPat < 744 (fshr i32:$src0, i32:$src1, i32:$src2), 745 (BIT_ALIGN $src0, $src1, $src2) 746>; 747 748// rotr pattern 749class ROTRPattern <Instruction BIT_ALIGN> : AMDGPUPat < 750 (rotr i32:$src0, i32:$src1), 751 (BIT_ALIGN $src0, $src0, $src1) 752>; 753 754// Special conversion patterns 755 756def cvt_rpi_i32_f32 : PatFrag < 757 (ops node:$src), 758 (fp_to_sint (ffloor (fadd $src, FP_HALF))), 759 [{ (void) N; return TM.Options.NoNaNsFPMath; }] 760>; 761 762def cvt_flr_i32_f32 : PatFrag < 763 (ops node:$src), 764 (fp_to_sint (ffloor $src)), 765 [{ (void)N; return TM.Options.NoNaNsFPMath; }] 766>; 767 768let AddedComplexity = 2 in { 769class IMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < 770 (add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2), 771 !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), 772 (Inst $src0, $src1, $src2)) 773>; 774 775class UMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < 776 (add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2), 777 !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), 778 (Inst $src0, $src1, $src2)) 779>; 780} // AddedComplexity. 781 782class RcpPat<Instruction RcpInst, ValueType vt> : AMDGPUPat < 783 (fdiv FP_ONE, vt:$src), 784 (RcpInst $src) 785>; 786 787class RsqPat<Instruction RsqInst, ValueType vt> : AMDGPUPat < 788 (AMDGPUrcp (fsqrt vt:$src)), 789 (RsqInst $src) 790>; 791 792// Instructions which select to the same v_min_f* 793def fminnum_like : PatFrags<(ops node:$src0, node:$src1), 794 [(fminnum_ieee node:$src0, node:$src1), 795 (fminnum node:$src0, node:$src1)] 796>; 797 798// Instructions which select to the same v_max_f* 799def fmaxnum_like : PatFrags<(ops node:$src0, node:$src1), 800 [(fmaxnum_ieee node:$src0, node:$src1), 801 (fmaxnum node:$src0, node:$src1)] 802>; 803 804def fminnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1), 805 [(fminnum_ieee_oneuse node:$src0, node:$src1), 806 (fminnum_oneuse node:$src0, node:$src1)] 807>; 808 809def fmaxnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1), 810 [(fmaxnum_ieee_oneuse node:$src0, node:$src1), 811 (fmaxnum_oneuse node:$src0, node:$src1)] 812>; 813 814def any_fmad : PatFrags<(ops node:$src0, node:$src1, node:$src2), 815 [(fmad node:$src0, node:$src1, node:$src2), 816 (AMDGPUfmad_ftz node:$src0, node:$src1, node:$src2)] 817>; 818 819// FIXME: fsqrt should not select directly 820def any_amdgcn_sqrt : PatFrags<(ops node:$src0), 821 [(fsqrt node:$src0), (int_amdgcn_sqrt node:$src0)] 822>; 823