1//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file contains instruction defs that are common to all hw codegen 10// targets. 11// 12//===----------------------------------------------------------------------===// 13 14class AddressSpacesImpl { 15 int Flat = 0; 16 int Global = 1; 17 int Region = 2; 18 int Local = 3; 19 int Constant = 4; 20 int Private = 5; 21} 22 23def AddrSpaces : AddressSpacesImpl; 24 25 26class AMDGPUInst <dag outs, dag ins, string asm = "", 27 list<dag> pattern = []> : Instruction { 28 field bit isRegisterLoad = 0; 29 field bit isRegisterStore = 0; 30 31 let Namespace = "AMDGPU"; 32 let OutOperandList = outs; 33 let InOperandList = ins; 34 let AsmString = asm; 35 let Pattern = pattern; 36 let Itinerary = NullALU; 37 38 // SoftFail is a field the disassembler can use to provide a way for 39 // instructions to not match without killing the whole decode process. It is 40 // mainly used for ARM, but Tablegen expects this field to exist or it fails 41 // to build the decode table. 42 field bits<64> SoftFail = 0; 43 44 let DecoderNamespace = Namespace; 45 46 let TSFlags{63} = isRegisterLoad; 47 let TSFlags{62} = isRegisterStore; 48} 49 50class AMDGPUShaderInst <dag outs, dag ins, string asm = "", 51 list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern> { 52 53 field bits<32> Inst = 0xffffffff; 54} 55 56//===---------------------------------------------------------------------===// 57// Return instruction 58//===---------------------------------------------------------------------===// 59 60class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern> 61: Instruction { 62 63 let Namespace = "AMDGPU"; 64 dag OutOperandList = outs; 65 dag InOperandList = ins; 66 let Pattern = pattern; 67 let AsmString = !strconcat(asmstr, "\n"); 68 let isPseudo = 1; 69 let Itinerary = NullALU; 70 bit hasIEEEFlag = 0; 71 bit hasZeroOpFlag = 0; 72 let mayLoad = 0; 73 let mayStore = 0; 74 let hasSideEffects = 0; 75 let isCodeGenOnly = 1; 76} 77 78def TruePredicate : Predicate<"">; 79 80class PredicateControl { 81 Predicate SubtargetPredicate = TruePredicate; 82 list<Predicate> AssemblerPredicates = []; 83 Predicate AssemblerPredicate = TruePredicate; 84 Predicate WaveSizePredicate = TruePredicate; 85 list<Predicate> OtherPredicates = []; 86 list<Predicate> Predicates = !listconcat([SubtargetPredicate, 87 AssemblerPredicate, 88 WaveSizePredicate], 89 AssemblerPredicates, 90 OtherPredicates); 91} 92class AMDGPUPat<dag pattern, dag result> : Pat<pattern, result>, 93 PredicateControl; 94 95def FP16Denormals : Predicate<"Subtarget->hasFP16Denormals()">; 96def FP32Denormals : Predicate<"Subtarget->hasFP32Denormals()">; 97def FP64Denormals : Predicate<"Subtarget->hasFP64Denormals()">; 98def NoFP16Denormals : Predicate<"!Subtarget->hasFP16Denormals()">; 99def NoFP32Denormals : Predicate<"!Subtarget->hasFP32Denormals()">; 100def NoFP64Denormals : Predicate<"!Subtarget->hasFP64Denormals()">; 101def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">; 102def FMA : Predicate<"Subtarget->hasFMA()">; 103 104def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>; 105 106def u16ImmTarget : AsmOperandClass { 107 let Name = "U16Imm"; 108 let RenderMethod = "addImmOperands"; 109} 110 111def s16ImmTarget : AsmOperandClass { 112 let Name = "S16Imm"; 113 let RenderMethod = "addImmOperands"; 114} 115 116let OperandType = "OPERAND_IMMEDIATE" in { 117 118def u32imm : Operand<i32> { 119 let PrintMethod = "printU32ImmOperand"; 120} 121 122def u16imm : Operand<i16> { 123 let PrintMethod = "printU16ImmOperand"; 124 let ParserMatchClass = u16ImmTarget; 125} 126 127def s16imm : Operand<i16> { 128 let PrintMethod = "printU16ImmOperand"; 129 let ParserMatchClass = s16ImmTarget; 130} 131 132def u8imm : Operand<i8> { 133 let PrintMethod = "printU8ImmOperand"; 134} 135 136} // End OperandType = "OPERAND_IMMEDIATE" 137 138//===--------------------------------------------------------------------===// 139// Custom Operands 140//===--------------------------------------------------------------------===// 141def brtarget : Operand<OtherVT>; 142 143//===----------------------------------------------------------------------===// 144// Misc. PatFrags 145//===----------------------------------------------------------------------===// 146 147class HasOneUseUnaryOp<SDPatternOperator op> : PatFrag< 148 (ops node:$src0), 149 (op $src0), 150 [{ return N->hasOneUse(); }] 151>; 152 153class HasOneUseBinOp<SDPatternOperator op> : PatFrag< 154 (ops node:$src0, node:$src1), 155 (op $src0, $src1), 156 [{ return N->hasOneUse(); }] 157>; 158 159class HasOneUseTernaryOp<SDPatternOperator op> : PatFrag< 160 (ops node:$src0, node:$src1, node:$src2), 161 (op $src0, $src1, $src2), 162 [{ return N->hasOneUse(); }] 163>; 164 165let Properties = [SDNPCommutative, SDNPAssociative] in { 166def smax_oneuse : HasOneUseBinOp<smax>; 167def smin_oneuse : HasOneUseBinOp<smin>; 168def umax_oneuse : HasOneUseBinOp<umax>; 169def umin_oneuse : HasOneUseBinOp<umin>; 170 171def fminnum_oneuse : HasOneUseBinOp<fminnum>; 172def fmaxnum_oneuse : HasOneUseBinOp<fmaxnum>; 173 174def fminnum_ieee_oneuse : HasOneUseBinOp<fminnum_ieee>; 175def fmaxnum_ieee_oneuse : HasOneUseBinOp<fmaxnum_ieee>; 176 177 178def and_oneuse : HasOneUseBinOp<and>; 179def or_oneuse : HasOneUseBinOp<or>; 180def xor_oneuse : HasOneUseBinOp<xor>; 181} // Properties = [SDNPCommutative, SDNPAssociative] 182 183def not_oneuse : HasOneUseUnaryOp<not>; 184 185def add_oneuse : HasOneUseBinOp<add>; 186def sub_oneuse : HasOneUseBinOp<sub>; 187 188def srl_oneuse : HasOneUseBinOp<srl>; 189def shl_oneuse : HasOneUseBinOp<shl>; 190 191def select_oneuse : HasOneUseTernaryOp<select>; 192 193def AMDGPUmul_u24_oneuse : HasOneUseBinOp<AMDGPUmul_u24>; 194def AMDGPUmul_i24_oneuse : HasOneUseBinOp<AMDGPUmul_i24>; 195 196def srl_16 : PatFrag< 197 (ops node:$src0), (srl_oneuse node:$src0, (i32 16)) 198>; 199 200 201def hi_i16_elt : PatFrag< 202 (ops node:$src0), (i16 (trunc (i32 (srl_16 node:$src0)))) 203>; 204 205 206def hi_f16_elt : PatLeaf< 207 (vt), [{ 208 if (N->getOpcode() != ISD::BITCAST) 209 return false; 210 SDValue Tmp = N->getOperand(0); 211 212 if (Tmp.getOpcode() != ISD::SRL) 213 return false; 214 if (const auto *RHS = dyn_cast<ConstantSDNode>(Tmp.getOperand(1)) 215 return RHS->getZExtValue() == 16; 216 return false; 217}]>; 218 219//===----------------------------------------------------------------------===// 220// PatLeafs for floating-point comparisons 221//===----------------------------------------------------------------------===// 222 223def COND_OEQ : PatFrags<(ops), [(OtherVT SETOEQ), (OtherVT SETEQ)]>; 224def COND_ONE : PatFrags<(ops), [(OtherVT SETONE), (OtherVT SETNE)]>; 225def COND_OGT : PatFrags<(ops), [(OtherVT SETOGT), (OtherVT SETGT)]>; 226def COND_OGE : PatFrags<(ops), [(OtherVT SETOGE), (OtherVT SETGE)]>; 227def COND_OLT : PatFrags<(ops), [(OtherVT SETOLT), (OtherVT SETLT)]>; 228def COND_OLE : PatFrags<(ops), [(OtherVT SETOLE), (OtherVT SETLE)]>; 229def COND_O : PatFrags<(ops), [(OtherVT SETO)]>; 230def COND_UO : PatFrags<(ops), [(OtherVT SETUO)]>; 231 232//===----------------------------------------------------------------------===// 233// PatLeafs for unsigned / unordered comparisons 234//===----------------------------------------------------------------------===// 235 236def COND_UEQ : PatFrag<(ops), (OtherVT SETUEQ)>; 237def COND_UNE : PatFrag<(ops), (OtherVT SETUNE)>; 238def COND_UGT : PatFrag<(ops), (OtherVT SETUGT)>; 239def COND_UGE : PatFrag<(ops), (OtherVT SETUGE)>; 240def COND_ULT : PatFrag<(ops), (OtherVT SETULT)>; 241def COND_ULE : PatFrag<(ops), (OtherVT SETULE)>; 242 243// XXX - For some reason R600 version is preferring to use unordered 244// for setne? 245def COND_UNE_NE : PatFrags<(ops), [(OtherVT SETUNE), (OtherVT SETNE)]>; 246 247//===----------------------------------------------------------------------===// 248// PatLeafs for signed comparisons 249//===----------------------------------------------------------------------===// 250 251def COND_SGT : PatFrag<(ops), (OtherVT SETGT)>; 252def COND_SGE : PatFrag<(ops), (OtherVT SETGE)>; 253def COND_SLT : PatFrag<(ops), (OtherVT SETLT)>; 254def COND_SLE : PatFrag<(ops), (OtherVT SETLE)>; 255 256//===----------------------------------------------------------------------===// 257// PatLeafs for integer equality 258//===----------------------------------------------------------------------===// 259 260def COND_EQ : PatFrags<(ops), [(OtherVT SETEQ), (OtherVT SETUEQ)]>; 261def COND_NE : PatFrags<(ops), [(OtherVT SETNE), (OtherVT SETUNE)]>; 262 263// FIXME: Should not need code predicate 264//def COND_NULL : PatLeaf<(OtherVT null_frag)>; 265def COND_NULL : PatLeaf < 266 (cond), 267 [{(void)N; return false;}] 268>; 269 270//===----------------------------------------------------------------------===// 271// PatLeafs for Texture Constants 272//===----------------------------------------------------------------------===// 273 274def TEX_ARRAY : PatLeaf< 275 (imm), 276 [{uint32_t TType = (uint32_t)N->getZExtValue(); 277 return TType == 9 || TType == 10 || TType == 16; 278 }] 279>; 280 281def TEX_RECT : PatLeaf< 282 (imm), 283 [{uint32_t TType = (uint32_t)N->getZExtValue(); 284 return TType == 5; 285 }] 286>; 287 288def TEX_SHADOW : PatLeaf< 289 (imm), 290 [{uint32_t TType = (uint32_t)N->getZExtValue(); 291 return (TType >= 6 && TType <= 8) || TType == 13; 292 }] 293>; 294 295def TEX_SHADOW_ARRAY : PatLeaf< 296 (imm), 297 [{uint32_t TType = (uint32_t)N->getZExtValue(); 298 return TType == 11 || TType == 12 || TType == 17; 299 }] 300>; 301 302//===----------------------------------------------------------------------===// 303// Load/Store Pattern Fragments 304//===----------------------------------------------------------------------===// 305 306def atomic_cmp_swap_glue : SDNode <"ISD::ATOMIC_CMP_SWAP", SDTAtomic3, 307 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand, SDNPInGlue] 308>; 309 310class AddressSpaceList<list<int> AS> { 311 list<int> AddrSpaces = AS; 312} 313 314class Aligned<int Bytes> { 315 int MinAlignment = Bytes; 316} 317 318class LoadFrag <SDPatternOperator op> : PatFrag<(ops node:$ptr), (op node:$ptr)>; 319 320class StoreFrag<SDPatternOperator op> : PatFrag < 321 (ops node:$value, node:$ptr), (op node:$value, node:$ptr) 322>; 323 324class StoreHi16<SDPatternOperator op> : PatFrag < 325 (ops node:$value, node:$ptr), (op (srl node:$value, (i32 16)), node:$ptr) 326>; 327 328def LoadAddress_constant : AddressSpaceList<[ AddrSpaces.Constant ]>; 329def LoadAddress_global : AddressSpaceList<[ AddrSpaces.Global, AddrSpaces.Constant ]>; 330def StoreAddress_global : AddressSpaceList<[ AddrSpaces.Global ]>; 331 332def LoadAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, 333 AddrSpaces.Global, 334 AddrSpaces.Constant ]>; 335def StoreAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, AddrSpaces.Global ]>; 336 337def LoadAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>; 338def StoreAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>; 339 340def LoadAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>; 341def StoreAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>; 342 343def LoadAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>; 344def StoreAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>; 345 346 347 348class GlobalLoadAddress : CodePatPred<[{ 349 auto AS = cast<MemSDNode>(N)->getAddressSpace(); 350 return AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS; 351}]>; 352 353class FlatLoadAddress : CodePatPred<[{ 354 const auto AS = cast<MemSDNode>(N)->getAddressSpace(); 355 return AS == AMDGPUAS::FLAT_ADDRESS || 356 AS == AMDGPUAS::GLOBAL_ADDRESS || 357 AS == AMDGPUAS::CONSTANT_ADDRESS; 358}]>; 359 360class GlobalAddress : CodePatPred<[{ 361 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 362}]>; 363 364class PrivateAddress : CodePatPred<[{ 365 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS; 366}]>; 367 368class LocalAddress : CodePatPred<[{ 369 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 370}]>; 371 372class RegionAddress : CodePatPred<[{ 373 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 374}]>; 375 376class FlatStoreAddress : CodePatPred<[{ 377 const auto AS = cast<MemSDNode>(N)->getAddressSpace(); 378 return AS == AMDGPUAS::FLAT_ADDRESS || 379 AS == AMDGPUAS::GLOBAL_ADDRESS; 380}]>; 381 382// TODO: Remove these when stores to new PatFrag format. 383class PrivateStore <SDPatternOperator op> : StoreFrag <op>, PrivateAddress; 384class LocalStore <SDPatternOperator op> : StoreFrag <op>, LocalAddress; 385class RegionStore <SDPatternOperator op> : StoreFrag <op>, RegionAddress; 386class GlobalStore <SDPatternOperator op> : StoreFrag<op>, GlobalAddress; 387class FlatStore <SDPatternOperator op> : StoreFrag <op>, FlatStoreAddress; 388 389 390foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in { 391let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in { 392 393def load_#as : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 394 let IsLoad = 1; 395 let IsNonExtLoad = 1; 396} 397 398def extloadi8_#as : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 399 let IsLoad = 1; 400 let MemoryVT = i8; 401} 402 403def extloadi16_#as : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 404 let IsLoad = 1; 405 let MemoryVT = i16; 406} 407 408def sextloadi8_#as : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 409 let IsLoad = 1; 410 let MemoryVT = i8; 411} 412 413def sextloadi16_#as : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 414 let IsLoad = 1; 415 let MemoryVT = i16; 416} 417 418def zextloadi8_#as : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 419 let IsLoad = 1; 420 let MemoryVT = i8; 421} 422 423def zextloadi16_#as : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 424 let IsLoad = 1; 425 let MemoryVT = i16; 426} 427 428def atomic_load_32_#as : PatFrag<(ops node:$ptr), (atomic_load_32 node:$ptr)> { 429 let IsAtomic = 1; 430 let MemoryVT = i32; 431} 432 433def atomic_load_64_#as : PatFrag<(ops node:$ptr), (atomic_load_64 node:$ptr)> { 434 let IsAtomic = 1; 435 let MemoryVT = i64; 436} 437 438def store_#as : PatFrag<(ops node:$val, node:$ptr), 439 (unindexedstore node:$val, node:$ptr)> { 440 let IsStore = 1; 441 let IsTruncStore = 0; 442} 443 444// truncstore fragments. 445def truncstore_#as : PatFrag<(ops node:$val, node:$ptr), 446 (unindexedstore node:$val, node:$ptr)> { 447 let IsStore = 1; 448 let IsTruncStore = 1; 449} 450 451// TODO: We don't really need the truncstore here. We can use 452// unindexedstore with MemoryVT directly, which will save an 453// unnecessary check that the memory size is less than the value type 454// in the generated matcher table. 455def truncstorei8_#as : PatFrag<(ops node:$val, node:$ptr), 456 (truncstore node:$val, node:$ptr)> { 457 let IsStore = 1; 458 let MemoryVT = i8; 459} 460 461def truncstorei16_#as : PatFrag<(ops node:$val, node:$ptr), 462 (truncstore node:$val, node:$ptr)> { 463 let IsStore = 1; 464 let MemoryVT = i16; 465} 466 467defm atomic_store_#as : binary_atomic_op<atomic_store>; 468 469} // End let AddressSpaces = ... 470} // End foreach AddrSpace 471 472 473multiclass ret_noret_binary_atomic_op<SDNode atomic_op, bit IsInt = 1> { 474 foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in { 475 let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in { 476 defm "_"#as : binary_atomic_op<atomic_op, IsInt>; 477 478 let PredicateCode = [{return (SDValue(N, 0).use_empty());}] in { 479 defm "_"#as#"_noret" : binary_atomic_op<atomic_op, IsInt>; 480 } 481 482 let PredicateCode = [{return !(SDValue(N, 0).use_empty());}] in { 483 defm "_"#as#"_ret" : binary_atomic_op<atomic_op, IsInt>; 484 } 485 } 486 } 487} 488 489defm atomic_swap : ret_noret_binary_atomic_op<atomic_swap>; 490defm atomic_load_add : ret_noret_binary_atomic_op<atomic_load_add>; 491defm atomic_load_and : ret_noret_binary_atomic_op<atomic_load_and>; 492defm atomic_load_max : ret_noret_binary_atomic_op<atomic_load_max>; 493defm atomic_load_min : ret_noret_binary_atomic_op<atomic_load_min>; 494defm atomic_load_or : ret_noret_binary_atomic_op<atomic_load_or>; 495defm atomic_load_sub : ret_noret_binary_atomic_op<atomic_load_sub>; 496defm atomic_load_umax : ret_noret_binary_atomic_op<atomic_load_umax>; 497defm atomic_load_umin : ret_noret_binary_atomic_op<atomic_load_umin>; 498defm atomic_load_xor : ret_noret_binary_atomic_op<atomic_load_xor>; 499defm atomic_load_fadd : ret_noret_binary_atomic_op<atomic_load_fadd, 0>; 500 501 502def store_hi16_private : StoreHi16 <truncstorei16>, PrivateAddress; 503def truncstorei8_hi16_private : StoreHi16<truncstorei8>, PrivateAddress; 504 505def store_atomic_global : GlobalStore<atomic_store>; 506def truncstorei8_hi16_global : StoreHi16 <truncstorei8>, GlobalAddress; 507def truncstorei16_hi16_global : StoreHi16 <truncstorei16>, GlobalAddress; 508 509def store_local_hi16 : StoreHi16 <truncstorei16>, LocalAddress; 510def truncstorei8_local_hi16 : StoreHi16<truncstorei8>, LocalAddress; 511def atomic_store_local : LocalStore <atomic_store>; 512 513 514def load_align8_local : PatFrag <(ops node:$ptr), (load_local node:$ptr)> { 515 let IsLoad = 1; 516 let IsNonExtLoad = 1; 517 let MinAlignment = 8; 518} 519 520def load_align16_local : PatFrag <(ops node:$ptr), (load_local node:$ptr)> { 521 let IsLoad = 1; 522 let IsNonExtLoad = 1; 523 let MinAlignment = 16; 524} 525 526def store_align8_local: PatFrag<(ops node:$val, node:$ptr), 527 (store_local node:$val, node:$ptr)>, Aligned<8> { 528 let IsStore = 1; 529 let IsTruncStore = 0; 530} 531 532def store_align16_local: PatFrag<(ops node:$val, node:$ptr), 533 (store_local node:$val, node:$ptr)>, Aligned<16> { 534 let IsStore = 1; 535 let IsTruncStore = 0; 536} 537 538 539def atomic_store_flat : FlatStore <atomic_store>; 540def truncstorei8_hi16_flat : StoreHi16<truncstorei8>, FlatStoreAddress; 541def truncstorei16_hi16_flat : StoreHi16<truncstorei16>, FlatStoreAddress; 542 543 544class local_binary_atomic_op<SDNode atomic_op> : 545 PatFrag<(ops node:$ptr, node:$value), 546 (atomic_op node:$ptr, node:$value), [{ 547 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 548}]>; 549 550class region_binary_atomic_op<SDNode atomic_op> : 551 PatFrag<(ops node:$ptr, node:$value), 552 (atomic_op node:$ptr, node:$value), [{ 553 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 554}]>; 555 556 557def mskor_global : PatFrag<(ops node:$val, node:$ptr), 558 (AMDGPUstore_mskor node:$val, node:$ptr), [{ 559 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 560}]>; 561 562let AddressSpaces = StoreAddress_local.AddrSpaces in { 563defm atomic_cmp_swap_local : ternary_atomic_op<atomic_cmp_swap>; 564defm atomic_cmp_swap_local_m0 : ternary_atomic_op<atomic_cmp_swap_glue>; 565} 566 567let AddressSpaces = StoreAddress_region.AddrSpaces in { 568defm atomic_cmp_swap_region : ternary_atomic_op<atomic_cmp_swap>; 569defm atomic_cmp_swap_region_m0 : ternary_atomic_op<atomic_cmp_swap_glue>; 570} 571 572class global_binary_atomic_op_frag<SDNode atomic_op> : PatFrag< 573 (ops node:$ptr, node:$value), 574 (atomic_op node:$ptr, node:$value), 575 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;}]>; 576 577// Legacy. 578def AMDGPUatomic_cmp_swap_global : PatFrag< 579 (ops node:$ptr, node:$value), 580 (AMDGPUatomic_cmp_swap node:$ptr, node:$value)>, GlobalAddress; 581 582def atomic_cmp_swap_global : PatFrag< 583 (ops node:$ptr, node:$cmp, node:$value), 584 (atomic_cmp_swap node:$ptr, node:$cmp, node:$value)>, GlobalAddress; 585 586 587def atomic_cmp_swap_global_noret : PatFrag< 588 (ops node:$ptr, node:$cmp, node:$value), 589 (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), 590 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>; 591 592def atomic_cmp_swap_global_ret : PatFrag< 593 (ops node:$ptr, node:$cmp, node:$value), 594 (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), 595 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>; 596 597//===----------------------------------------------------------------------===// 598// Misc Pattern Fragments 599//===----------------------------------------------------------------------===// 600 601class Constants { 602int TWO_PI = 0x40c90fdb; 603int PI = 0x40490fdb; 604int TWO_PI_INV = 0x3e22f983; 605int FP_UINT_MAX_PLUS_1 = 0x4f800000; // 1 << 32 in floating point encoding 606int FP16_ONE = 0x3C00; 607int FP16_NEG_ONE = 0xBC00; 608int FP32_ONE = 0x3f800000; 609int FP32_NEG_ONE = 0xbf800000; 610int FP64_ONE = 0x3ff0000000000000; 611int FP64_NEG_ONE = 0xbff0000000000000; 612} 613def CONST : Constants; 614 615def FP_ZERO : PatLeaf < 616 (fpimm), 617 [{return N->getValueAPF().isZero();}] 618>; 619 620def FP_ONE : PatLeaf < 621 (fpimm), 622 [{return N->isExactlyValue(1.0);}] 623>; 624 625def FP_HALF : PatLeaf < 626 (fpimm), 627 [{return N->isExactlyValue(0.5);}] 628>; 629 630/* Generic helper patterns for intrinsics */ 631/* -------------------------------------- */ 632 633class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul> 634 : AMDGPUPat < 635 (fpow f32:$src0, f32:$src1), 636 (exp_ieee (mul f32:$src1, (log_ieee f32:$src0))) 637>; 638 639/* Other helper patterns */ 640/* --------------------- */ 641 642/* Extract element pattern */ 643class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx, 644 SubRegIndex sub_reg> 645 : AMDGPUPat< 646 (sub_type (extractelt vec_type:$src, sub_idx)), 647 (EXTRACT_SUBREG $src, sub_reg) 648>; 649 650/* Insert element pattern */ 651class Insert_Element <ValueType elem_type, ValueType vec_type, 652 int sub_idx, SubRegIndex sub_reg> 653 : AMDGPUPat < 654 (insertelt vec_type:$vec, elem_type:$elem, sub_idx), 655 (INSERT_SUBREG $vec, $elem, sub_reg) 656>; 657 658// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer 659// can handle COPY instructions. 660// bitconvert pattern 661class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : AMDGPUPat < 662 (dt (bitconvert (st rc:$src0))), 663 (dt rc:$src0) 664>; 665 666// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer 667// can handle COPY instructions. 668class DwordAddrPat<ValueType vt, RegisterClass rc> : AMDGPUPat < 669 (vt (AMDGPUdwordaddr (vt rc:$addr))), 670 (vt rc:$addr) 671>; 672 673// BFI_INT patterns 674 675multiclass BFIPatterns <Instruction BFI_INT, 676 Instruction LoadImm32, 677 RegisterClass RC64> { 678 // Definition from ISA doc: 679 // (y & x) | (z & ~x) 680 def : AMDGPUPat < 681 (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), 682 (BFI_INT $x, $y, $z) 683 >; 684 685 // 64-bit version 686 def : AMDGPUPat < 687 (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), 688 (REG_SEQUENCE RC64, 689 (BFI_INT (i32 (EXTRACT_SUBREG $x, sub0)), 690 (i32 (EXTRACT_SUBREG $y, sub0)), 691 (i32 (EXTRACT_SUBREG $z, sub0))), sub0, 692 (BFI_INT (i32 (EXTRACT_SUBREG $x, sub1)), 693 (i32 (EXTRACT_SUBREG $y, sub1)), 694 (i32 (EXTRACT_SUBREG $z, sub1))), sub1) 695 >; 696 697 // SHA-256 Ch function 698 // z ^ (x & (y ^ z)) 699 def : AMDGPUPat < 700 (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), 701 (BFI_INT $x, $y, $z) 702 >; 703 704 // 64-bit version 705 def : AMDGPUPat < 706 (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), 707 (REG_SEQUENCE RC64, 708 (BFI_INT (i32 (EXTRACT_SUBREG $x, sub0)), 709 (i32 (EXTRACT_SUBREG $y, sub0)), 710 (i32 (EXTRACT_SUBREG $z, sub0))), sub0, 711 (BFI_INT (i32 (EXTRACT_SUBREG $x, sub1)), 712 (i32 (EXTRACT_SUBREG $y, sub1)), 713 (i32 (EXTRACT_SUBREG $z, sub1))), sub1) 714 >; 715 716 def : AMDGPUPat < 717 (fcopysign f32:$src0, f32:$src1), 718 (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, $src1) 719 >; 720 721 def : AMDGPUPat < 722 (f32 (fcopysign f32:$src0, f64:$src1)), 723 (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, 724 (i32 (EXTRACT_SUBREG $src1, sub1))) 725 >; 726 727 def : AMDGPUPat < 728 (f64 (fcopysign f64:$src0, f64:$src1)), 729 (REG_SEQUENCE RC64, 730 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 731 (BFI_INT (LoadImm32 (i32 0x7fffffff)), 732 (i32 (EXTRACT_SUBREG $src0, sub1)), 733 (i32 (EXTRACT_SUBREG $src1, sub1))), sub1) 734 >; 735 736 def : AMDGPUPat < 737 (f64 (fcopysign f64:$src0, f32:$src1)), 738 (REG_SEQUENCE RC64, 739 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 740 (BFI_INT (LoadImm32 (i32 0x7fffffff)), 741 (i32 (EXTRACT_SUBREG $src0, sub1)), 742 $src1), sub1) 743 >; 744} 745 746// SHA-256 Ma patterns 747 748// ((x & z) | (y & (x | z))) -> BFI_INT (XOR x, y), z, y 749multiclass SHA256MaPattern <Instruction BFI_INT, Instruction XOR, RegisterClass RC64> { 750 def : AMDGPUPat < 751 (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))), 752 (BFI_INT (XOR i32:$x, i32:$y), i32:$z, i32:$y) 753 >; 754 755 def : AMDGPUPat < 756 (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))), 757 (REG_SEQUENCE RC64, 758 (BFI_INT (XOR (i32 (EXTRACT_SUBREG $x, sub0)), 759 (i32 (EXTRACT_SUBREG $y, sub0))), 760 (i32 (EXTRACT_SUBREG $z, sub0)), 761 (i32 (EXTRACT_SUBREG $y, sub0))), sub0, 762 (BFI_INT (XOR (i32 (EXTRACT_SUBREG $x, sub1)), 763 (i32 (EXTRACT_SUBREG $y, sub1))), 764 (i32 (EXTRACT_SUBREG $z, sub1)), 765 (i32 (EXTRACT_SUBREG $y, sub1))), sub1) 766 >; 767} 768 769// Bitfield extract patterns 770 771def IMMZeroBasedBitfieldMask : PatLeaf <(imm), [{ 772 return isMask_32(N->getZExtValue()); 773}]>; 774 775def IMMPopCount : SDNodeXForm<imm, [{ 776 return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N), 777 MVT::i32); 778}]>; 779 780multiclass BFEPattern <Instruction UBFE, Instruction SBFE, Instruction MOV> { 781 def : AMDGPUPat < 782 (i32 (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask)), 783 (UBFE $src, $rshift, (MOV (i32 (IMMPopCount $mask)))) 784 >; 785 786 // x & ((1 << y) - 1) 787 def : AMDGPUPat < 788 (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), 789 (UBFE $src, (MOV (i32 0)), $width) 790 >; 791 792 // x & ~(-1 << y) 793 def : AMDGPUPat < 794 (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)), 795 (UBFE $src, (MOV (i32 0)), $width) 796 >; 797 798 // x & (-1 >> (bitwidth - y)) 799 def : AMDGPUPat < 800 (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))), 801 (UBFE $src, (MOV (i32 0)), $width) 802 >; 803 804 // x << (bitwidth - y) >> (bitwidth - y) 805 def : AMDGPUPat < 806 (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), 807 (UBFE $src, (MOV (i32 0)), $width) 808 >; 809 810 def : AMDGPUPat < 811 (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), 812 (SBFE $src, (MOV (i32 0)), $width) 813 >; 814} 815 816// rotr pattern 817class ROTRPattern <Instruction BIT_ALIGN> : AMDGPUPat < 818 (rotr i32:$src0, i32:$src1), 819 (BIT_ALIGN $src0, $src0, $src1) 820>; 821 822multiclass IntMed3Pat<Instruction med3Inst, 823 SDPatternOperator min, 824 SDPatternOperator max, 825 SDPatternOperator min_oneuse, 826 SDPatternOperator max_oneuse, 827 ValueType vt = i32> { 828 829 // This matches 16 permutations of 830 // min(max(a, b), max(min(a, b), c)) 831 def : AMDGPUPat < 832 (min (max_oneuse vt:$src0, vt:$src1), 833 (max_oneuse (min_oneuse vt:$src0, vt:$src1), vt:$src2)), 834 (med3Inst vt:$src0, vt:$src1, vt:$src2) 835>; 836 837 // This matches 16 permutations of 838 // max(min(x, y), min(max(x, y), z)) 839 def : AMDGPUPat < 840 (max (min_oneuse vt:$src0, vt:$src1), 841 (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)), 842 (med3Inst $src0, $src1, $src2) 843>; 844} 845 846// Special conversion patterns 847 848def cvt_rpi_i32_f32 : PatFrag < 849 (ops node:$src), 850 (fp_to_sint (ffloor (fadd $src, FP_HALF))), 851 [{ (void) N; return TM.Options.NoNaNsFPMath; }] 852>; 853 854def cvt_flr_i32_f32 : PatFrag < 855 (ops node:$src), 856 (fp_to_sint (ffloor $src)), 857 [{ (void)N; return TM.Options.NoNaNsFPMath; }] 858>; 859 860let AddedComplexity = 2 in { 861class IMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < 862 (add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2), 863 !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), 864 (Inst $src0, $src1, $src2)) 865>; 866 867class UMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < 868 (add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2), 869 !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), 870 (Inst $src0, $src1, $src2)) 871>; 872} // AddedComplexity. 873 874class RcpPat<Instruction RcpInst, ValueType vt> : AMDGPUPat < 875 (fdiv FP_ONE, vt:$src), 876 (RcpInst $src) 877>; 878 879class RsqPat<Instruction RsqInst, ValueType vt> : AMDGPUPat < 880 (AMDGPUrcp (fsqrt vt:$src)), 881 (RsqInst $src) 882>; 883 884// Instructions which select to the same v_min_f* 885def fminnum_like : PatFrags<(ops node:$src0, node:$src1), 886 [(fminnum_ieee node:$src0, node:$src1), 887 (fminnum node:$src0, node:$src1)] 888>; 889 890// Instructions which select to the same v_max_f* 891def fmaxnum_like : PatFrags<(ops node:$src0, node:$src1), 892 [(fmaxnum_ieee node:$src0, node:$src1), 893 (fmaxnum node:$src0, node:$src1)] 894>; 895 896def fminnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1), 897 [(fminnum_ieee_oneuse node:$src0, node:$src1), 898 (fminnum_oneuse node:$src0, node:$src1)] 899>; 900 901def fmaxnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1), 902 [(fmaxnum_ieee_oneuse node:$src0, node:$src1), 903 (fmaxnum_oneuse node:$src0, node:$src1)] 904>; 905