1//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file contains instruction defs that are common to all hw codegen 10// targets. 11// 12//===----------------------------------------------------------------------===// 13 14class AddressSpacesImpl { 15 int Flat = 0; 16 int Global = 1; 17 int Region = 2; 18 int Local = 3; 19 int Constant = 4; 20 int Private = 5; 21} 22 23def AddrSpaces : AddressSpacesImpl; 24 25 26class AMDGPUInst <dag outs, dag ins, string asm = "", 27 list<dag> pattern = []> : Instruction { 28 field bit isRegisterLoad = 0; 29 field bit isRegisterStore = 0; 30 31 let Namespace = "AMDGPU"; 32 let OutOperandList = outs; 33 let InOperandList = ins; 34 let AsmString = asm; 35 let Pattern = pattern; 36 let Itinerary = NullALU; 37 38 // SoftFail is a field the disassembler can use to provide a way for 39 // instructions to not match without killing the whole decode process. It is 40 // mainly used for ARM, but Tablegen expects this field to exist or it fails 41 // to build the decode table. 42 field bits<64> SoftFail = 0; 43 44 let DecoderNamespace = Namespace; 45 46 let TSFlags{63} = isRegisterLoad; 47 let TSFlags{62} = isRegisterStore; 48} 49 50class AMDGPUShaderInst <dag outs, dag ins, string asm = "", 51 list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern> { 52 53 field bits<32> Inst = 0xffffffff; 54} 55 56//===---------------------------------------------------------------------===// 57// Return instruction 58//===---------------------------------------------------------------------===// 59 60class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern> 61: Instruction { 62 63 let Namespace = "AMDGPU"; 64 dag OutOperandList = outs; 65 dag InOperandList = ins; 66 let Pattern = pattern; 67 let AsmString = !strconcat(asmstr, "\n"); 68 let isPseudo = 1; 69 let Itinerary = NullALU; 70 bit hasIEEEFlag = 0; 71 bit hasZeroOpFlag = 0; 72 let mayLoad = 0; 73 let mayStore = 0; 74 let hasSideEffects = 0; 75 let isCodeGenOnly = 1; 76} 77 78def TruePredicate : Predicate<"true">; 79 80class PredicateControl { 81 Predicate SubtargetPredicate = TruePredicate; 82 list<Predicate> AssemblerPredicates = []; 83 Predicate AssemblerPredicate = TruePredicate; 84 Predicate WaveSizePredicate = TruePredicate; 85 list<Predicate> OtherPredicates = []; 86 list<Predicate> Predicates = !listconcat([SubtargetPredicate, 87 AssemblerPredicate, 88 WaveSizePredicate], 89 AssemblerPredicates, 90 OtherPredicates); 91} 92class AMDGPUPat<dag pattern, dag result> : Pat<pattern, result>, 93 PredicateControl; 94 95def FP16Denormals : Predicate<"Subtarget->hasFP16Denormals()">; 96def FP32Denormals : Predicate<"Subtarget->hasFP32Denormals()">; 97def FP64Denormals : Predicate<"Subtarget->hasFP64Denormals()">; 98def NoFP16Denormals : Predicate<"!Subtarget->hasFP16Denormals()">; 99def NoFP32Denormals : Predicate<"!Subtarget->hasFP32Denormals()">; 100def NoFP64Denormals : Predicate<"!Subtarget->hasFP64Denormals()">; 101def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">; 102def FMA : Predicate<"Subtarget->hasFMA()">; 103 104def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>; 105 106def u16ImmTarget : AsmOperandClass { 107 let Name = "U16Imm"; 108 let RenderMethod = "addImmOperands"; 109} 110 111def s16ImmTarget : AsmOperandClass { 112 let Name = "S16Imm"; 113 let RenderMethod = "addImmOperands"; 114} 115 116let OperandType = "OPERAND_IMMEDIATE" in { 117 118def u32imm : Operand<i32> { 119 let PrintMethod = "printU32ImmOperand"; 120} 121 122def u16imm : Operand<i16> { 123 let PrintMethod = "printU16ImmOperand"; 124 let ParserMatchClass = u16ImmTarget; 125} 126 127def s16imm : Operand<i16> { 128 let PrintMethod = "printU16ImmOperand"; 129 let ParserMatchClass = s16ImmTarget; 130} 131 132def u8imm : Operand<i8> { 133 let PrintMethod = "printU8ImmOperand"; 134} 135 136} // End OperandType = "OPERAND_IMMEDIATE" 137 138//===--------------------------------------------------------------------===// 139// Custom Operands 140//===--------------------------------------------------------------------===// 141def brtarget : Operand<OtherVT>; 142 143//===----------------------------------------------------------------------===// 144// Misc. PatFrags 145//===----------------------------------------------------------------------===// 146 147class HasOneUseUnaryOp<SDPatternOperator op> : PatFrag< 148 (ops node:$src0), 149 (op $src0), 150 [{ return N->hasOneUse(); }] 151>; 152 153class HasOneUseBinOp<SDPatternOperator op> : PatFrag< 154 (ops node:$src0, node:$src1), 155 (op $src0, $src1), 156 [{ return N->hasOneUse(); }] 157>; 158 159class HasOneUseTernaryOp<SDPatternOperator op> : PatFrag< 160 (ops node:$src0, node:$src1, node:$src2), 161 (op $src0, $src1, $src2), 162 [{ return N->hasOneUse(); }] 163>; 164 165let Properties = [SDNPCommutative, SDNPAssociative] in { 166def smax_oneuse : HasOneUseBinOp<smax>; 167def smin_oneuse : HasOneUseBinOp<smin>; 168def umax_oneuse : HasOneUseBinOp<umax>; 169def umin_oneuse : HasOneUseBinOp<umin>; 170 171def fminnum_oneuse : HasOneUseBinOp<fminnum>; 172def fmaxnum_oneuse : HasOneUseBinOp<fmaxnum>; 173 174def fminnum_ieee_oneuse : HasOneUseBinOp<fminnum_ieee>; 175def fmaxnum_ieee_oneuse : HasOneUseBinOp<fmaxnum_ieee>; 176 177 178def and_oneuse : HasOneUseBinOp<and>; 179def or_oneuse : HasOneUseBinOp<or>; 180def xor_oneuse : HasOneUseBinOp<xor>; 181} // Properties = [SDNPCommutative, SDNPAssociative] 182 183def not_oneuse : HasOneUseUnaryOp<not>; 184 185def add_oneuse : HasOneUseBinOp<add>; 186def sub_oneuse : HasOneUseBinOp<sub>; 187 188def srl_oneuse : HasOneUseBinOp<srl>; 189def shl_oneuse : HasOneUseBinOp<shl>; 190 191def select_oneuse : HasOneUseTernaryOp<select>; 192 193def AMDGPUmul_u24_oneuse : HasOneUseBinOp<AMDGPUmul_u24>; 194def AMDGPUmul_i24_oneuse : HasOneUseBinOp<AMDGPUmul_i24>; 195 196def srl_16 : PatFrag< 197 (ops node:$src0), (srl_oneuse node:$src0, (i32 16)) 198>; 199 200 201def hi_i16_elt : PatFrag< 202 (ops node:$src0), (i16 (trunc (i32 (srl_16 node:$src0)))) 203>; 204 205 206def hi_f16_elt : PatLeaf< 207 (vt), [{ 208 if (N->getOpcode() != ISD::BITCAST) 209 return false; 210 SDValue Tmp = N->getOperand(0); 211 212 if (Tmp.getOpcode() != ISD::SRL) 213 return false; 214 if (const auto *RHS = dyn_cast<ConstantSDNode>(Tmp.getOperand(1)) 215 return RHS->getZExtValue() == 16; 216 return false; 217}]>; 218 219//===----------------------------------------------------------------------===// 220// PatLeafs for floating-point comparisons 221//===----------------------------------------------------------------------===// 222 223def COND_OEQ : PatLeaf < 224 (cond), 225 [{return N->get() == ISD::SETOEQ || N->get() == ISD::SETEQ;}] 226>; 227 228def COND_ONE : PatLeaf < 229 (cond), 230 [{return N->get() == ISD::SETONE || N->get() == ISD::SETNE;}] 231>; 232 233def COND_OGT : PatLeaf < 234 (cond), 235 [{return N->get() == ISD::SETOGT || N->get() == ISD::SETGT;}] 236>; 237 238def COND_OGE : PatLeaf < 239 (cond), 240 [{return N->get() == ISD::SETOGE || N->get() == ISD::SETGE;}] 241>; 242 243def COND_OLT : PatLeaf < 244 (cond), 245 [{return N->get() == ISD::SETOLT || N->get() == ISD::SETLT;}] 246>; 247 248def COND_OLE : PatLeaf < 249 (cond), 250 [{return N->get() == ISD::SETOLE || N->get() == ISD::SETLE;}] 251>; 252 253def COND_O : PatLeaf <(cond), [{return N->get() == ISD::SETO;}]>; 254def COND_UO : PatLeaf <(cond), [{return N->get() == ISD::SETUO;}]>; 255 256//===----------------------------------------------------------------------===// 257// PatLeafs for unsigned / unordered comparisons 258//===----------------------------------------------------------------------===// 259 260def COND_UEQ : PatLeaf <(cond), [{return N->get() == ISD::SETUEQ;}]>; 261def COND_UNE : PatLeaf <(cond), [{return N->get() == ISD::SETUNE;}]>; 262def COND_UGT : PatLeaf <(cond), [{return N->get() == ISD::SETUGT;}]>; 263def COND_UGE : PatLeaf <(cond), [{return N->get() == ISD::SETUGE;}]>; 264def COND_ULT : PatLeaf <(cond), [{return N->get() == ISD::SETULT;}]>; 265def COND_ULE : PatLeaf <(cond), [{return N->get() == ISD::SETULE;}]>; 266 267// XXX - For some reason R600 version is preferring to use unordered 268// for setne? 269def COND_UNE_NE : PatLeaf < 270 (cond), 271 [{return N->get() == ISD::SETUNE || N->get() == ISD::SETNE;}] 272>; 273 274//===----------------------------------------------------------------------===// 275// PatLeafs for signed comparisons 276//===----------------------------------------------------------------------===// 277 278def COND_SGT : PatLeaf <(cond), [{return N->get() == ISD::SETGT;}]>; 279def COND_SGE : PatLeaf <(cond), [{return N->get() == ISD::SETGE;}]>; 280def COND_SLT : PatLeaf <(cond), [{return N->get() == ISD::SETLT;}]>; 281def COND_SLE : PatLeaf <(cond), [{return N->get() == ISD::SETLE;}]>; 282 283//===----------------------------------------------------------------------===// 284// PatLeafs for integer equality 285//===----------------------------------------------------------------------===// 286 287def COND_EQ : PatLeaf < 288 (cond), 289 [{return N->get() == ISD::SETEQ || N->get() == ISD::SETUEQ;}] 290>; 291 292def COND_NE : PatLeaf < 293 (cond), 294 [{return N->get() == ISD::SETNE || N->get() == ISD::SETUNE;}] 295>; 296 297def COND_NULL : PatLeaf < 298 (cond), 299 [{(void)N; return false;}] 300>; 301 302//===----------------------------------------------------------------------===// 303// PatLeafs for Texture Constants 304//===----------------------------------------------------------------------===// 305 306def TEX_ARRAY : PatLeaf< 307 (imm), 308 [{uint32_t TType = (uint32_t)N->getZExtValue(); 309 return TType == 9 || TType == 10 || TType == 16; 310 }] 311>; 312 313def TEX_RECT : PatLeaf< 314 (imm), 315 [{uint32_t TType = (uint32_t)N->getZExtValue(); 316 return TType == 5; 317 }] 318>; 319 320def TEX_SHADOW : PatLeaf< 321 (imm), 322 [{uint32_t TType = (uint32_t)N->getZExtValue(); 323 return (TType >= 6 && TType <= 8) || TType == 13; 324 }] 325>; 326 327def TEX_SHADOW_ARRAY : PatLeaf< 328 (imm), 329 [{uint32_t TType = (uint32_t)N->getZExtValue(); 330 return TType == 11 || TType == 12 || TType == 17; 331 }] 332>; 333 334//===----------------------------------------------------------------------===// 335// Load/Store Pattern Fragments 336//===----------------------------------------------------------------------===// 337 338class AddressSpaceList<list<int> AS> { 339 list<int> AddrSpaces = AS; 340} 341 342class Aligned8Bytes <dag ops, dag frag> : PatFrag <ops, frag, [{ 343 return cast<MemSDNode>(N)->getAlignment() % 8 == 0; 344}]>; 345 346class Aligned16Bytes <dag ops, dag frag> : PatFrag <ops, frag, [{ 347 return cast<MemSDNode>(N)->getAlignment() >= 16; 348}]>; 349 350class LoadFrag <SDPatternOperator op> : PatFrag<(ops node:$ptr), (op node:$ptr)>; 351 352class StoreFrag<SDPatternOperator op> : PatFrag < 353 (ops node:$value, node:$ptr), (op node:$value, node:$ptr) 354>; 355 356class StoreHi16<SDPatternOperator op> : PatFrag < 357 (ops node:$value, node:$ptr), (op (srl node:$value, (i32 16)), node:$ptr) 358>; 359 360def LoadAddress_constant : AddressSpaceList<[ AddrSpaces.Constant ]>; 361def LoadAddress_global : AddressSpaceList<[ AddrSpaces.Global, AddrSpaces.Constant ]>; 362def StoreAddress_global : AddressSpaceList<[ AddrSpaces.Global ]>; 363 364def LoadAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, 365 AddrSpaces.Global, 366 AddrSpaces.Constant ]>; 367def StoreAddress_flat : AddressSpaceList<[ AddrSpaces.Flat, AddrSpaces.Global ]>; 368 369def LoadAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>; 370def StoreAddress_private : AddressSpaceList<[ AddrSpaces.Private ]>; 371 372def LoadAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>; 373def StoreAddress_local : AddressSpaceList<[ AddrSpaces.Local ]>; 374 375def LoadAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>; 376def StoreAddress_region : AddressSpaceList<[ AddrSpaces.Region ]>; 377 378 379 380class GlobalLoadAddress : CodePatPred<[{ 381 auto AS = cast<MemSDNode>(N)->getAddressSpace(); 382 return AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS; 383}]>; 384 385class FlatLoadAddress : CodePatPred<[{ 386 const auto AS = cast<MemSDNode>(N)->getAddressSpace(); 387 return AS == AMDGPUAS::FLAT_ADDRESS || 388 AS == AMDGPUAS::GLOBAL_ADDRESS || 389 AS == AMDGPUAS::CONSTANT_ADDRESS; 390}]>; 391 392class GlobalAddress : CodePatPred<[{ 393 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 394}]>; 395 396class PrivateAddress : CodePatPred<[{ 397 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS; 398}]>; 399 400class LocalAddress : CodePatPred<[{ 401 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 402}]>; 403 404class RegionAddress : CodePatPred<[{ 405 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 406}]>; 407 408class FlatStoreAddress : CodePatPred<[{ 409 const auto AS = cast<MemSDNode>(N)->getAddressSpace(); 410 return AS == AMDGPUAS::FLAT_ADDRESS || 411 AS == AMDGPUAS::GLOBAL_ADDRESS; 412}]>; 413 414// TODO: Remove these when stores to new PatFrag format. 415class PrivateStore <SDPatternOperator op> : StoreFrag <op>, PrivateAddress; 416class LocalStore <SDPatternOperator op> : StoreFrag <op>, LocalAddress; 417class RegionStore <SDPatternOperator op> : StoreFrag <op>, RegionAddress; 418class GlobalStore <SDPatternOperator op> : StoreFrag<op>, GlobalAddress; 419class FlatStore <SDPatternOperator op> : StoreFrag <op>, FlatStoreAddress; 420 421 422foreach as = [ "global", "flat", "constant", "local", "private", "region" ] in { 423let AddressSpaces = !cast<AddressSpaceList>("LoadAddress_"#as).AddrSpaces in { 424 425def load_#as : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 426 let IsLoad = 1; 427 let IsNonExtLoad = 1; 428} 429 430def extloadi8_#as : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 431 let IsLoad = 1; 432 let MemoryVT = i8; 433} 434 435def extloadi16_#as : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 436 let IsLoad = 1; 437 let MemoryVT = i16; 438} 439 440def sextloadi8_#as : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 441 let IsLoad = 1; 442 let MemoryVT = i8; 443} 444 445def sextloadi16_#as : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 446 let IsLoad = 1; 447 let MemoryVT = i16; 448} 449 450def zextloadi8_#as : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 451 let IsLoad = 1; 452 let MemoryVT = i8; 453} 454 455def zextloadi16_#as : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 456 let IsLoad = 1; 457 let MemoryVT = i16; 458} 459 460def atomic_load_32_#as : PatFrag<(ops node:$ptr), (atomic_load_32 node:$ptr)> { 461 let IsAtomic = 1; 462 let MemoryVT = i32; 463} 464 465def atomic_load_64_#as : PatFrag<(ops node:$ptr), (atomic_load_64 node:$ptr)> { 466 let IsAtomic = 1; 467 let MemoryVT = i64; 468} 469 470def store_#as : PatFrag<(ops node:$val, node:$ptr), 471 (unindexedstore node:$val, node:$ptr)> { 472 let IsStore = 1; 473 let IsTruncStore = 0; 474} 475 476// truncstore fragments. 477def truncstore_#as : PatFrag<(ops node:$val, node:$ptr), 478 (unindexedstore node:$val, node:$ptr)> { 479 let IsStore = 1; 480 let IsTruncStore = 1; 481} 482 483// TODO: We don't really need the truncstore here. We can use 484// unindexedstore with MemoryVT directly, which will save an 485// unnecessary check that the memory size is less than the value type 486// in the generated matcher table. 487def truncstorei8_#as : PatFrag<(ops node:$val, node:$ptr), 488 (truncstore node:$val, node:$ptr)> { 489 let IsStore = 1; 490 let MemoryVT = i8; 491} 492 493def truncstorei16_#as : PatFrag<(ops node:$val, node:$ptr), 494 (truncstore node:$val, node:$ptr)> { 495 let IsStore = 1; 496 let MemoryVT = i16; 497} 498 499defm atomic_store_#as : binary_atomic_op<atomic_store>; 500 501} // End let AddressSpaces = ... 502} // End foreach AddrSpace 503 504 505def store_hi16_private : StoreHi16 <truncstorei16>, PrivateAddress; 506def truncstorei8_hi16_private : StoreHi16<truncstorei8>, PrivateAddress; 507 508def store_atomic_global : GlobalStore<atomic_store>; 509def truncstorei8_hi16_global : StoreHi16 <truncstorei8>, GlobalAddress; 510def truncstorei16_hi16_global : StoreHi16 <truncstorei16>, GlobalAddress; 511 512def store_local_hi16 : StoreHi16 <truncstorei16>, LocalAddress; 513def truncstorei8_local_hi16 : StoreHi16<truncstorei8>, LocalAddress; 514def atomic_store_local : LocalStore <atomic_store>; 515 516def load_align8_local : Aligned8Bytes < 517 (ops node:$ptr), (load_local node:$ptr) 518>; 519 520def load_align16_local : Aligned16Bytes < 521 (ops node:$ptr), (load_local node:$ptr) 522>; 523 524def store_align8_local : Aligned8Bytes < 525 (ops node:$val, node:$ptr), (store_local node:$val, node:$ptr) 526>; 527 528def store_align16_local : Aligned16Bytes < 529 (ops node:$val, node:$ptr), (store_local node:$val, node:$ptr) 530>; 531 532def atomic_store_flat : FlatStore <atomic_store>; 533def truncstorei8_hi16_flat : StoreHi16<truncstorei8>, FlatStoreAddress; 534def truncstorei16_hi16_flat : StoreHi16<truncstorei16>, FlatStoreAddress; 535 536 537class local_binary_atomic_op<SDNode atomic_op> : 538 PatFrag<(ops node:$ptr, node:$value), 539 (atomic_op node:$ptr, node:$value), [{ 540 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 541}]>; 542 543class region_binary_atomic_op<SDNode atomic_op> : 544 PatFrag<(ops node:$ptr, node:$value), 545 (atomic_op node:$ptr, node:$value), [{ 546 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 547}]>; 548 549 550def atomic_swap_local : local_binary_atomic_op<atomic_swap>; 551def atomic_load_add_local : local_binary_atomic_op<atomic_load_add>; 552def atomic_load_sub_local : local_binary_atomic_op<atomic_load_sub>; 553def atomic_load_and_local : local_binary_atomic_op<atomic_load_and>; 554def atomic_load_or_local : local_binary_atomic_op<atomic_load_or>; 555def atomic_load_xor_local : local_binary_atomic_op<atomic_load_xor>; 556def atomic_load_nand_local : local_binary_atomic_op<atomic_load_nand>; 557def atomic_load_min_local : local_binary_atomic_op<atomic_load_min>; 558def atomic_load_max_local : local_binary_atomic_op<atomic_load_max>; 559def atomic_load_umin_local : local_binary_atomic_op<atomic_load_umin>; 560def atomic_load_umax_local : local_binary_atomic_op<atomic_load_umax>; 561 562def mskor_global : PatFrag<(ops node:$val, node:$ptr), 563 (AMDGPUstore_mskor node:$val, node:$ptr), [{ 564 return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 565}]>; 566 567class AtomicCmpSwapLocal <SDNode cmp_swap_node> : PatFrag< 568 (ops node:$ptr, node:$cmp, node:$swap), 569 (cmp_swap_node node:$ptr, node:$cmp, node:$swap), [{ 570 AtomicSDNode *AN = cast<AtomicSDNode>(N); 571 return AN->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 572}]>; 573 574class AtomicCmpSwapRegion <SDNode cmp_swap_node> : PatFrag< 575 (ops node:$ptr, node:$cmp, node:$swap), 576 (cmp_swap_node node:$ptr, node:$cmp, node:$swap), [{ 577 AtomicSDNode *AN = cast<AtomicSDNode>(N); 578 return AN->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 579}]>; 580 581def atomic_cmp_swap_local : AtomicCmpSwapLocal <atomic_cmp_swap>; 582 583class global_binary_atomic_op_frag<SDNode atomic_op> : PatFrag< 584 (ops node:$ptr, node:$value), 585 (atomic_op node:$ptr, node:$value), 586 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;}]>; 587 588multiclass global_binary_atomic_op<SDNode atomic_op> { 589 def "" : global_binary_atomic_op_frag<atomic_op>; 590 591 def _noret : PatFrag< 592 (ops node:$ptr, node:$value), 593 (atomic_op node:$ptr, node:$value), 594 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>; 595 596 def _ret : PatFrag< 597 (ops node:$ptr, node:$value), 598 (atomic_op node:$ptr, node:$value), 599 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>; 600} 601 602defm atomic_swap_global : global_binary_atomic_op<atomic_swap>; 603defm atomic_add_global : global_binary_atomic_op<atomic_load_add>; 604defm atomic_and_global : global_binary_atomic_op<atomic_load_and>; 605defm atomic_max_global : global_binary_atomic_op<atomic_load_max>; 606defm atomic_min_global : global_binary_atomic_op<atomic_load_min>; 607defm atomic_or_global : global_binary_atomic_op<atomic_load_or>; 608defm atomic_sub_global : global_binary_atomic_op<atomic_load_sub>; 609defm atomic_umax_global : global_binary_atomic_op<atomic_load_umax>; 610defm atomic_umin_global : global_binary_atomic_op<atomic_load_umin>; 611defm atomic_xor_global : global_binary_atomic_op<atomic_load_xor>; 612 613// Legacy. 614def AMDGPUatomic_cmp_swap_global : PatFrag< 615 (ops node:$ptr, node:$value), 616 (AMDGPUatomic_cmp_swap node:$ptr, node:$value)>, GlobalAddress; 617 618def atomic_cmp_swap_global : PatFrag< 619 (ops node:$ptr, node:$cmp, node:$value), 620 (atomic_cmp_swap node:$ptr, node:$cmp, node:$value)>, GlobalAddress; 621 622 623def atomic_cmp_swap_global_noret : PatFrag< 624 (ops node:$ptr, node:$cmp, node:$value), 625 (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), 626 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>; 627 628def atomic_cmp_swap_global_ret : PatFrag< 629 (ops node:$ptr, node:$cmp, node:$value), 630 (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), 631 [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>; 632 633//===----------------------------------------------------------------------===// 634// Misc Pattern Fragments 635//===----------------------------------------------------------------------===// 636 637class Constants { 638int TWO_PI = 0x40c90fdb; 639int PI = 0x40490fdb; 640int TWO_PI_INV = 0x3e22f983; 641int FP_UINT_MAX_PLUS_1 = 0x4f800000; // 1 << 32 in floating point encoding 642int FP16_ONE = 0x3C00; 643int FP16_NEG_ONE = 0xBC00; 644int FP32_ONE = 0x3f800000; 645int FP32_NEG_ONE = 0xbf800000; 646int FP64_ONE = 0x3ff0000000000000; 647int FP64_NEG_ONE = 0xbff0000000000000; 648} 649def CONST : Constants; 650 651def FP_ZERO : PatLeaf < 652 (fpimm), 653 [{return N->getValueAPF().isZero();}] 654>; 655 656def FP_ONE : PatLeaf < 657 (fpimm), 658 [{return N->isExactlyValue(1.0);}] 659>; 660 661def FP_HALF : PatLeaf < 662 (fpimm), 663 [{return N->isExactlyValue(0.5);}] 664>; 665 666/* Generic helper patterns for intrinsics */ 667/* -------------------------------------- */ 668 669class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul> 670 : AMDGPUPat < 671 (fpow f32:$src0, f32:$src1), 672 (exp_ieee (mul f32:$src1, (log_ieee f32:$src0))) 673>; 674 675/* Other helper patterns */ 676/* --------------------- */ 677 678/* Extract element pattern */ 679class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx, 680 SubRegIndex sub_reg> 681 : AMDGPUPat< 682 (sub_type (extractelt vec_type:$src, sub_idx)), 683 (EXTRACT_SUBREG $src, sub_reg) 684>; 685 686/* Insert element pattern */ 687class Insert_Element <ValueType elem_type, ValueType vec_type, 688 int sub_idx, SubRegIndex sub_reg> 689 : AMDGPUPat < 690 (insertelt vec_type:$vec, elem_type:$elem, sub_idx), 691 (INSERT_SUBREG $vec, $elem, sub_reg) 692>; 693 694// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer 695// can handle COPY instructions. 696// bitconvert pattern 697class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : AMDGPUPat < 698 (dt (bitconvert (st rc:$src0))), 699 (dt rc:$src0) 700>; 701 702// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer 703// can handle COPY instructions. 704class DwordAddrPat<ValueType vt, RegisterClass rc> : AMDGPUPat < 705 (vt (AMDGPUdwordaddr (vt rc:$addr))), 706 (vt rc:$addr) 707>; 708 709// BFI_INT patterns 710 711multiclass BFIPatterns <Instruction BFI_INT, 712 Instruction LoadImm32, 713 RegisterClass RC64> { 714 // Definition from ISA doc: 715 // (y & x) | (z & ~x) 716 def : AMDGPUPat < 717 (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), 718 (BFI_INT $x, $y, $z) 719 >; 720 721 // 64-bit version 722 def : AMDGPUPat < 723 (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), 724 (REG_SEQUENCE RC64, 725 (BFI_INT (i32 (EXTRACT_SUBREG $x, sub0)), 726 (i32 (EXTRACT_SUBREG $y, sub0)), 727 (i32 (EXTRACT_SUBREG $z, sub0))), sub0, 728 (BFI_INT (i32 (EXTRACT_SUBREG $x, sub1)), 729 (i32 (EXTRACT_SUBREG $y, sub1)), 730 (i32 (EXTRACT_SUBREG $z, sub1))), sub1) 731 >; 732 733 // SHA-256 Ch function 734 // z ^ (x & (y ^ z)) 735 def : AMDGPUPat < 736 (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), 737 (BFI_INT $x, $y, $z) 738 >; 739 740 // 64-bit version 741 def : AMDGPUPat < 742 (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), 743 (REG_SEQUENCE RC64, 744 (BFI_INT (i32 (EXTRACT_SUBREG $x, sub0)), 745 (i32 (EXTRACT_SUBREG $y, sub0)), 746 (i32 (EXTRACT_SUBREG $z, sub0))), sub0, 747 (BFI_INT (i32 (EXTRACT_SUBREG $x, sub1)), 748 (i32 (EXTRACT_SUBREG $y, sub1)), 749 (i32 (EXTRACT_SUBREG $z, sub1))), sub1) 750 >; 751 752 def : AMDGPUPat < 753 (fcopysign f32:$src0, f32:$src1), 754 (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, $src1) 755 >; 756 757 def : AMDGPUPat < 758 (f32 (fcopysign f32:$src0, f64:$src1)), 759 (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, 760 (i32 (EXTRACT_SUBREG $src1, sub1))) 761 >; 762 763 def : AMDGPUPat < 764 (f64 (fcopysign f64:$src0, f64:$src1)), 765 (REG_SEQUENCE RC64, 766 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 767 (BFI_INT (LoadImm32 (i32 0x7fffffff)), 768 (i32 (EXTRACT_SUBREG $src0, sub1)), 769 (i32 (EXTRACT_SUBREG $src1, sub1))), sub1) 770 >; 771 772 def : AMDGPUPat < 773 (f64 (fcopysign f64:$src0, f32:$src1)), 774 (REG_SEQUENCE RC64, 775 (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, 776 (BFI_INT (LoadImm32 (i32 0x7fffffff)), 777 (i32 (EXTRACT_SUBREG $src0, sub1)), 778 $src1), sub1) 779 >; 780} 781 782// SHA-256 Ma patterns 783 784// ((x & z) | (y & (x | z))) -> BFI_INT (XOR x, y), z, y 785multiclass SHA256MaPattern <Instruction BFI_INT, Instruction XOR, RegisterClass RC64> { 786 def : AMDGPUPat < 787 (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))), 788 (BFI_INT (XOR i32:$x, i32:$y), i32:$z, i32:$y) 789 >; 790 791 def : AMDGPUPat < 792 (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))), 793 (REG_SEQUENCE RC64, 794 (BFI_INT (XOR (i32 (EXTRACT_SUBREG $x, sub0)), 795 (i32 (EXTRACT_SUBREG $y, sub0))), 796 (i32 (EXTRACT_SUBREG $z, sub0)), 797 (i32 (EXTRACT_SUBREG $y, sub0))), sub0, 798 (BFI_INT (XOR (i32 (EXTRACT_SUBREG $x, sub1)), 799 (i32 (EXTRACT_SUBREG $y, sub1))), 800 (i32 (EXTRACT_SUBREG $z, sub1)), 801 (i32 (EXTRACT_SUBREG $y, sub1))), sub1) 802 >; 803} 804 805// Bitfield extract patterns 806 807def IMMZeroBasedBitfieldMask : PatLeaf <(imm), [{ 808 return isMask_32(N->getZExtValue()); 809}]>; 810 811def IMMPopCount : SDNodeXForm<imm, [{ 812 return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N), 813 MVT::i32); 814}]>; 815 816multiclass BFEPattern <Instruction UBFE, Instruction SBFE, Instruction MOV> { 817 def : AMDGPUPat < 818 (i32 (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask)), 819 (UBFE $src, $rshift, (MOV (i32 (IMMPopCount $mask)))) 820 >; 821 822 // x & ((1 << y) - 1) 823 def : AMDGPUPat < 824 (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), 825 (UBFE $src, (MOV (i32 0)), $width) 826 >; 827 828 // x & ~(-1 << y) 829 def : AMDGPUPat < 830 (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)), 831 (UBFE $src, (MOV (i32 0)), $width) 832 >; 833 834 // x & (-1 >> (bitwidth - y)) 835 def : AMDGPUPat < 836 (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))), 837 (UBFE $src, (MOV (i32 0)), $width) 838 >; 839 840 // x << (bitwidth - y) >> (bitwidth - y) 841 def : AMDGPUPat < 842 (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), 843 (UBFE $src, (MOV (i32 0)), $width) 844 >; 845 846 def : AMDGPUPat < 847 (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), 848 (SBFE $src, (MOV (i32 0)), $width) 849 >; 850} 851 852// rotr pattern 853class ROTRPattern <Instruction BIT_ALIGN> : AMDGPUPat < 854 (rotr i32:$src0, i32:$src1), 855 (BIT_ALIGN $src0, $src0, $src1) 856>; 857 858multiclass IntMed3Pat<Instruction med3Inst, 859 SDPatternOperator min, 860 SDPatternOperator max, 861 SDPatternOperator min_oneuse, 862 SDPatternOperator max_oneuse, 863 ValueType vt = i32> { 864 865 // This matches 16 permutations of 866 // min(max(a, b), max(min(a, b), c)) 867 def : AMDGPUPat < 868 (min (max_oneuse vt:$src0, vt:$src1), 869 (max_oneuse (min_oneuse vt:$src0, vt:$src1), vt:$src2)), 870 (med3Inst vt:$src0, vt:$src1, vt:$src2) 871>; 872 873 // This matches 16 permutations of 874 // max(min(x, y), min(max(x, y), z)) 875 def : AMDGPUPat < 876 (max (min_oneuse vt:$src0, vt:$src1), 877 (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)), 878 (med3Inst $src0, $src1, $src2) 879>; 880} 881 882// Special conversion patterns 883 884def cvt_rpi_i32_f32 : PatFrag < 885 (ops node:$src), 886 (fp_to_sint (ffloor (fadd $src, FP_HALF))), 887 [{ (void) N; return TM.Options.NoNaNsFPMath; }] 888>; 889 890def cvt_flr_i32_f32 : PatFrag < 891 (ops node:$src), 892 (fp_to_sint (ffloor $src)), 893 [{ (void)N; return TM.Options.NoNaNsFPMath; }] 894>; 895 896let AddedComplexity = 2 in { 897class IMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < 898 (add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2), 899 !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), 900 (Inst $src0, $src1, $src2)) 901>; 902 903class UMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < 904 (add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2), 905 !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), 906 (Inst $src0, $src1, $src2)) 907>; 908} // AddedComplexity. 909 910class RcpPat<Instruction RcpInst, ValueType vt> : AMDGPUPat < 911 (fdiv FP_ONE, vt:$src), 912 (RcpInst $src) 913>; 914 915class RsqPat<Instruction RsqInst, ValueType vt> : AMDGPUPat < 916 (AMDGPUrcp (fsqrt vt:$src)), 917 (RsqInst $src) 918>; 919 920// Instructions which select to the same v_min_f* 921def fminnum_like : PatFrags<(ops node:$src0, node:$src1), 922 [(fminnum_ieee node:$src0, node:$src1), 923 (fminnum node:$src0, node:$src1)] 924>; 925 926// Instructions which select to the same v_max_f* 927def fmaxnum_like : PatFrags<(ops node:$src0, node:$src1), 928 [(fmaxnum_ieee node:$src0, node:$src1), 929 (fmaxnum node:$src0, node:$src1)] 930>; 931 932def fminnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1), 933 [(fminnum_ieee_oneuse node:$src0, node:$src1), 934 (fminnum_oneuse node:$src0, node:$src1)] 935>; 936 937def fmaxnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1), 938 [(fmaxnum_ieee_oneuse node:$src0, node:$src1), 939 (fmaxnum_oneuse node:$src0, node:$src1)] 940>; 941