1 //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "GCNSubtarget.h" 20 #include "llvm/ADT/FloatingPointMode.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/Transforms/InstCombine/InstCombiner.h" 23 #include <optional> 24 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "AMDGPUtti" 29 30 namespace { 31 32 struct AMDGPUImageDMaskIntrinsic { 33 unsigned Intr; 34 }; 35 36 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 37 #include "InstCombineTables.inc" 38 39 } // end anonymous namespace 40 41 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 42 // 43 // A single NaN input is folded to minnum, so we rely on that folding for 44 // handling NaNs. 45 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 46 const APFloat &Src2) { 47 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 48 49 APFloat::cmpResult Cmp0 = Max3.compare(Src0); 50 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 51 if (Cmp0 == APFloat::cmpEqual) 52 return maxnum(Src1, Src2); 53 54 APFloat::cmpResult Cmp1 = Max3.compare(Src1); 55 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 56 if (Cmp1 == APFloat::cmpEqual) 57 return maxnum(Src0, Src2); 58 59 return maxnum(Src0, Src1); 60 } 61 62 // Check if a value can be converted to a 16-bit value without losing 63 // precision. 64 // The value is expected to be either a float (IsFloat = true) or an unsigned 65 // integer (IsFloat = false). 66 static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { 67 Type *VTy = V.getType(); 68 if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 69 // The value is already 16-bit, so we don't want to convert to 16-bit again! 70 return false; 71 } 72 if (IsFloat) { 73 if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 74 // We need to check that if we cast the index down to a half, we do not 75 // lose precision. 76 APFloat FloatValue(ConstFloat->getValueAPF()); 77 bool LosesInfo = true; 78 FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, 79 &LosesInfo); 80 return !LosesInfo; 81 } 82 } else { 83 if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) { 84 // We need to check that if we cast the index down to an i16, we do not 85 // lose precision. 86 APInt IntValue(ConstInt->getValue()); 87 return IntValue.getActiveBits() <= 16; 88 } 89 } 90 91 Value *CastSrc; 92 bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) 93 : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); 94 if (IsExt) { 95 Type *CastSrcTy = CastSrc->getType(); 96 if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 97 return true; 98 } 99 100 return false; 101 } 102 103 // Convert a value to 16-bit. 104 static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 105 Type *VTy = V.getType(); 106 if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 107 return cast<Instruction>(&V)->getOperand(0); 108 if (VTy->isIntegerTy()) 109 return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 110 if (VTy->isFloatingPointTy()) 111 return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 112 113 llvm_unreachable("Should never be called!"); 114 } 115 116 /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with 117 /// modified arguments (based on OldIntr) and replaces InstToReplace with 118 /// this newly created intrinsic call. 119 static std::optional<Instruction *> modifyIntrinsicCall( 120 IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, 121 InstCombiner &IC, 122 std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> 123 Func) { 124 SmallVector<Type *, 4> ArgTys; 125 if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys)) 126 return std::nullopt; 127 128 SmallVector<Value *, 8> Args(OldIntr.args()); 129 130 // Modify arguments and types 131 Func(Args, ArgTys); 132 133 Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys); 134 135 CallInst *NewCall = IC.Builder.CreateCall(I, Args); 136 NewCall->takeName(&OldIntr); 137 NewCall->copyMetadata(OldIntr); 138 if (isa<FPMathOperator>(NewCall)) 139 NewCall->copyFastMathFlags(&OldIntr); 140 141 // Erase and replace uses 142 if (!InstToReplace.getType()->isVoidTy()) 143 IC.replaceInstUsesWith(InstToReplace, NewCall); 144 145 bool RemoveOldIntr = &OldIntr != &InstToReplace; 146 147 auto RetValue = IC.eraseInstFromFunction(InstToReplace); 148 if (RemoveOldIntr) 149 IC.eraseInstFromFunction(OldIntr); 150 151 return RetValue; 152 } 153 154 static std::optional<Instruction *> 155 simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 156 const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 157 IntrinsicInst &II, InstCombiner &IC) { 158 // Optimize _L to _LZ when _L is zero 159 if (const auto *LZMappingInfo = 160 AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 161 if (auto *ConstantLod = 162 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) { 163 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 164 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 165 AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, 166 ImageDimIntr->Dim); 167 return modifyIntrinsicCall( 168 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 169 Args.erase(Args.begin() + ImageDimIntr->LodIndex); 170 }); 171 } 172 } 173 } 174 175 // Optimize _mip away, when 'lod' is zero 176 if (const auto *MIPMappingInfo = 177 AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 178 if (auto *ConstantMip = 179 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) { 180 if (ConstantMip->isZero()) { 181 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 182 AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, 183 ImageDimIntr->Dim); 184 return modifyIntrinsicCall( 185 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 186 Args.erase(Args.begin() + ImageDimIntr->MipIndex); 187 }); 188 } 189 } 190 } 191 192 // Optimize _bias away when 'bias' is zero 193 if (const auto *BiasMappingInfo = 194 AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { 195 if (auto *ConstantBias = 196 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) { 197 if (ConstantBias->isZero()) { 198 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 199 AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, 200 ImageDimIntr->Dim); 201 return modifyIntrinsicCall( 202 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 203 Args.erase(Args.begin() + ImageDimIntr->BiasIndex); 204 ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); 205 }); 206 } 207 } 208 } 209 210 // Optimize _offset away when 'offset' is zero 211 if (const auto *OffsetMappingInfo = 212 AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { 213 if (auto *ConstantOffset = 214 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) { 215 if (ConstantOffset->isZero()) { 216 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 217 AMDGPU::getImageDimIntrinsicByBaseOpcode( 218 OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); 219 return modifyIntrinsicCall( 220 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 221 Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); 222 }); 223 } 224 } 225 } 226 227 // Try to use D16 228 if (ST->hasD16Images()) { 229 230 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 231 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 232 233 if (BaseOpcode->HasD16) { 234 235 // If the only use of image intrinsic is a fptrunc (with conversion to 236 // half) then both fptrunc and image intrinsic will be replaced with image 237 // intrinsic with D16 flag. 238 if (II.hasOneUse()) { 239 Instruction *User = II.user_back(); 240 241 if (User->getOpcode() == Instruction::FPTrunc && 242 User->getType()->getScalarType()->isHalfTy()) { 243 244 return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC, 245 [&](auto &Args, auto &ArgTys) { 246 // Change return type of image intrinsic. 247 // Set it to return type of fptrunc. 248 ArgTys[0] = User->getType(); 249 }); 250 } 251 } 252 } 253 } 254 255 // Try to use A16 or G16 256 if (!ST->hasA16() && !ST->hasG16()) 257 return std::nullopt; 258 259 // Address is interpreted as float if the instruction has a sampler or as 260 // unsigned int if there is no sampler. 261 bool HasSampler = 262 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; 263 bool FloatCoord = false; 264 // true means derivatives can be converted to 16 bit, coordinates not 265 bool OnlyDerivatives = false; 266 267 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 268 OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 269 Value *Coord = II.getOperand(OperandIndex); 270 // If the values are not derived from 16-bit values, we cannot optimize. 271 if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { 272 if (OperandIndex < ImageDimIntr->CoordStart || 273 ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 274 return std::nullopt; 275 } 276 // All gradients can be converted, so convert only them 277 OnlyDerivatives = true; 278 break; 279 } 280 281 assert(OperandIndex == ImageDimIntr->GradientStart || 282 FloatCoord == Coord->getType()->isFloatingPointTy()); 283 FloatCoord = Coord->getType()->isFloatingPointTy(); 284 } 285 286 if (!OnlyDerivatives && !ST->hasA16()) 287 OnlyDerivatives = true; // Only supports G16 288 289 // Check if there is a bias parameter and if it can be converted to f16 290 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 291 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 292 assert(HasSampler && 293 "Only image instructions with a sampler can have a bias"); 294 if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) 295 OnlyDerivatives = true; 296 } 297 298 if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == 299 ImageDimIntr->CoordStart)) 300 return std::nullopt; 301 302 Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 303 : Type::getInt16Ty(II.getContext()); 304 305 return modifyIntrinsicCall( 306 II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { 307 ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 308 if (!OnlyDerivatives) { 309 ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 310 311 // Change the bias type 312 if (ImageDimIntr->NumBiasArgs != 0) 313 ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); 314 } 315 316 unsigned EndIndex = 317 OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 318 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 319 OperandIndex < EndIndex; OperandIndex++) { 320 Args[OperandIndex] = 321 convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 322 } 323 324 // Convert the bias 325 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 326 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 327 Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); 328 } 329 }); 330 } 331 332 bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, 333 const Value *Op0, const Value *Op1, 334 InstCombiner &IC) const { 335 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 336 // infinity, gives +0.0. If we can prove we don't have one of the special 337 // cases then we can use a normal multiply instead. 338 // TODO: Create and use isKnownFiniteNonZero instead of just matching 339 // constants here. 340 if (match(Op0, PatternMatch::m_FiniteNonZero()) || 341 match(Op1, PatternMatch::m_FiniteNonZero())) { 342 // One operand is not zero or infinity or NaN. 343 return true; 344 } 345 346 auto *TLI = &IC.getTargetLibraryInfo(); 347 if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0, 348 &IC.getAssumptionCache(), &I, 349 &IC.getDominatorTree()) && 350 isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0, 351 &IC.getAssumptionCache(), &I, 352 &IC.getDominatorTree())) { 353 // Neither operand is infinity or NaN. 354 return true; 355 } 356 return false; 357 } 358 359 /// Match an fpext from half to float, or a constant we can convert. 360 static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { 361 if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc))))) 362 return FPExtSrc->getType()->isHalfTy(); 363 364 ConstantFP *CFP; 365 if (match(Arg, m_ConstantFP(CFP))) { 366 bool LosesInfo; 367 APFloat Val(CFP->getValueAPF()); 368 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 369 if (LosesInfo) 370 return false; 371 372 FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val); 373 return true; 374 } 375 376 return false; 377 } 378 379 // Trim all zero components from the end of the vector \p UseV and return 380 // an appropriate bitset with known elements. 381 static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, 382 Instruction *I) { 383 auto *VTy = cast<FixedVectorType>(UseV->getType()); 384 unsigned VWidth = VTy->getNumElements(); 385 APInt DemandedElts = APInt::getAllOnes(VWidth); 386 387 for (int i = VWidth - 1; i > 0; --i) { 388 auto *Elt = findScalarElement(UseV, i); 389 if (!Elt) 390 break; 391 392 if (auto *ConstElt = dyn_cast<Constant>(Elt)) { 393 if (!ConstElt->isNullValue() && !isa<UndefValue>(Elt)) 394 break; 395 } else { 396 break; 397 } 398 399 DemandedElts.clearBit(i); 400 } 401 402 return DemandedElts; 403 } 404 405 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 406 IntrinsicInst &II, 407 APInt DemandedElts, 408 int DMaskIdx = -1, 409 bool IsLoad = true); 410 411 std::optional<Instruction *> 412 GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 413 Intrinsic::ID IID = II.getIntrinsicID(); 414 switch (IID) { 415 case Intrinsic::amdgcn_rcp: { 416 Value *Src = II.getArgOperand(0); 417 418 // TODO: Move to ConstantFolding/InstSimplify? 419 if (isa<UndefValue>(Src)) { 420 Type *Ty = II.getType(); 421 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 422 return IC.replaceInstUsesWith(II, QNaN); 423 } 424 425 if (II.isStrictFP()) 426 break; 427 428 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 429 const APFloat &ArgVal = C->getValueAPF(); 430 APFloat Val(ArgVal.getSemantics(), 1); 431 Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 432 433 // This is more precise than the instruction may give. 434 // 435 // TODO: The instruction always flushes denormal results (except for f16), 436 // should this also? 437 return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 438 } 439 440 break; 441 } 442 case Intrinsic::amdgcn_sqrt: 443 case Intrinsic::amdgcn_rsq: { 444 Value *Src = II.getArgOperand(0); 445 446 // TODO: Move to ConstantFolding/InstSimplify? 447 if (isa<UndefValue>(Src)) { 448 Type *Ty = II.getType(); 449 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 450 return IC.replaceInstUsesWith(II, QNaN); 451 } 452 453 break; 454 } 455 case Intrinsic::amdgcn_log: 456 case Intrinsic::amdgcn_exp2: { 457 const bool IsLog = IID == Intrinsic::amdgcn_log; 458 const bool IsExp = IID == Intrinsic::amdgcn_exp2; 459 Value *Src = II.getArgOperand(0); 460 Type *Ty = II.getType(); 461 462 if (isa<PoisonValue>(Src)) 463 return IC.replaceInstUsesWith(II, Src); 464 465 if (IC.getSimplifyQuery().isUndefValue(Src)) 466 return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 467 468 if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 469 if (C->isInfinity()) { 470 // exp2(+inf) -> +inf 471 // log2(+inf) -> +inf 472 if (!C->isNegative()) 473 return IC.replaceInstUsesWith(II, C); 474 475 // exp2(-inf) -> 0 476 if (IsExp && C->isNegative()) 477 return IC.replaceInstUsesWith(II, ConstantFP::getZero(Ty)); 478 } 479 480 if (II.isStrictFP()) 481 break; 482 483 if (C->isNaN()) { 484 Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet()); 485 return IC.replaceInstUsesWith(II, Quieted); 486 } 487 488 // f32 instruction doesn't handle denormals, f16 does. 489 if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) { 490 Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, true) 491 : ConstantFP::get(Ty, 1.0); 492 return IC.replaceInstUsesWith(II, FoldedValue); 493 } 494 495 if (IsLog && C->isNegative()) 496 return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 497 498 // TODO: Full constant folding matching hardware behavior. 499 } 500 501 break; 502 } 503 case Intrinsic::amdgcn_frexp_mant: 504 case Intrinsic::amdgcn_frexp_exp: { 505 Value *Src = II.getArgOperand(0); 506 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 507 int Exp; 508 APFloat Significand = 509 frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 510 511 if (IID == Intrinsic::amdgcn_frexp_mant) { 512 return IC.replaceInstUsesWith( 513 II, ConstantFP::get(II.getContext(), Significand)); 514 } 515 516 // Match instruction special case behavior. 517 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 518 Exp = 0; 519 520 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 521 } 522 523 if (isa<UndefValue>(Src)) { 524 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 525 } 526 527 break; 528 } 529 case Intrinsic::amdgcn_class: { 530 Value *Src0 = II.getArgOperand(0); 531 Value *Src1 = II.getArgOperand(1); 532 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 533 if (CMask) { 534 II.setCalledOperand(Intrinsic::getDeclaration( 535 II.getModule(), Intrinsic::is_fpclass, Src0->getType())); 536 537 // Clamp any excess bits, as they're illegal for the generic intrinsic. 538 II.setArgOperand(1, ConstantInt::get(Src1->getType(), 539 CMask->getZExtValue() & fcAllFlags)); 540 return &II; 541 } 542 543 // Propagate poison. 544 if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1)) 545 return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 546 547 // llvm.amdgcn.class(_, undef) -> false 548 if (IC.getSimplifyQuery().isUndefValue(Src1)) 549 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 550 551 // llvm.amdgcn.class(undef, mask) -> mask != 0 552 if (IC.getSimplifyQuery().isUndefValue(Src0)) { 553 Value *CmpMask = IC.Builder.CreateICmpNE( 554 Src1, ConstantInt::getNullValue(Src1->getType())); 555 return IC.replaceInstUsesWith(II, CmpMask); 556 } 557 break; 558 } 559 case Intrinsic::amdgcn_cvt_pkrtz: { 560 Value *Src0 = II.getArgOperand(0); 561 Value *Src1 = II.getArgOperand(1); 562 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 563 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 564 const fltSemantics &HalfSem = 565 II.getType()->getScalarType()->getFltSemantics(); 566 bool LosesInfo; 567 APFloat Val0 = C0->getValueAPF(); 568 APFloat Val1 = C1->getValueAPF(); 569 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 570 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 571 572 Constant *Folded = 573 ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 574 ConstantFP::get(II.getContext(), Val1)}); 575 return IC.replaceInstUsesWith(II, Folded); 576 } 577 } 578 579 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 580 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 581 } 582 583 break; 584 } 585 case Intrinsic::amdgcn_cvt_pknorm_i16: 586 case Intrinsic::amdgcn_cvt_pknorm_u16: 587 case Intrinsic::amdgcn_cvt_pk_i16: 588 case Intrinsic::amdgcn_cvt_pk_u16: { 589 Value *Src0 = II.getArgOperand(0); 590 Value *Src1 = II.getArgOperand(1); 591 592 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 593 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 594 } 595 596 break; 597 } 598 case Intrinsic::amdgcn_ubfe: 599 case Intrinsic::amdgcn_sbfe: { 600 // Decompose simple cases into standard shifts. 601 Value *Src = II.getArgOperand(0); 602 if (isa<UndefValue>(Src)) { 603 return IC.replaceInstUsesWith(II, Src); 604 } 605 606 unsigned Width; 607 Type *Ty = II.getType(); 608 unsigned IntSize = Ty->getIntegerBitWidth(); 609 610 ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 611 if (CWidth) { 612 Width = CWidth->getZExtValue(); 613 if ((Width & (IntSize - 1)) == 0) { 614 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 615 } 616 617 // Hardware ignores high bits, so remove those. 618 if (Width >= IntSize) { 619 return IC.replaceOperand( 620 II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 621 } 622 } 623 624 unsigned Offset; 625 ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 626 if (COffset) { 627 Offset = COffset->getZExtValue(); 628 if (Offset >= IntSize) { 629 return IC.replaceOperand( 630 II, 1, 631 ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 632 } 633 } 634 635 bool Signed = IID == Intrinsic::amdgcn_sbfe; 636 637 if (!CWidth || !COffset) 638 break; 639 640 // The case of Width == 0 is handled above, which makes this transformation 641 // safe. If Width == 0, then the ashr and lshr instructions become poison 642 // value since the shift amount would be equal to the bit size. 643 assert(Width != 0); 644 645 // TODO: This allows folding to undef when the hardware has specific 646 // behavior? 647 if (Offset + Width < IntSize) { 648 Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 649 Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 650 : IC.Builder.CreateLShr(Shl, IntSize - Width); 651 RightShift->takeName(&II); 652 return IC.replaceInstUsesWith(II, RightShift); 653 } 654 655 Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 656 : IC.Builder.CreateLShr(Src, Offset); 657 658 RightShift->takeName(&II); 659 return IC.replaceInstUsesWith(II, RightShift); 660 } 661 case Intrinsic::amdgcn_exp: 662 case Intrinsic::amdgcn_exp_row: 663 case Intrinsic::amdgcn_exp_compr: { 664 ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 665 unsigned EnBits = En->getZExtValue(); 666 if (EnBits == 0xf) 667 break; // All inputs enabled. 668 669 bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 670 bool Changed = false; 671 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 672 if ((!IsCompr && (EnBits & (1 << I)) == 0) || 673 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 674 Value *Src = II.getArgOperand(I + 2); 675 if (!isa<UndefValue>(Src)) { 676 IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 677 Changed = true; 678 } 679 } 680 } 681 682 if (Changed) { 683 return &II; 684 } 685 686 break; 687 } 688 case Intrinsic::amdgcn_fmed3: { 689 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 690 // for the shader. 691 692 Value *Src0 = II.getArgOperand(0); 693 Value *Src1 = II.getArgOperand(1); 694 Value *Src2 = II.getArgOperand(2); 695 696 // Checking for NaN before canonicalization provides better fidelity when 697 // mapping other operations onto fmed3 since the order of operands is 698 // unchanged. 699 CallInst *NewCall = nullptr; 700 if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 701 NewCall = IC.Builder.CreateMinNum(Src1, Src2); 702 } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 703 NewCall = IC.Builder.CreateMinNum(Src0, Src2); 704 } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 705 NewCall = IC.Builder.CreateMaxNum(Src0, Src1); 706 } 707 708 if (NewCall) { 709 NewCall->copyFastMathFlags(&II); 710 NewCall->takeName(&II); 711 return IC.replaceInstUsesWith(II, NewCall); 712 } 713 714 bool Swap = false; 715 // Canonicalize constants to RHS operands. 716 // 717 // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 718 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 719 std::swap(Src0, Src1); 720 Swap = true; 721 } 722 723 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 724 std::swap(Src1, Src2); 725 Swap = true; 726 } 727 728 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 729 std::swap(Src0, Src1); 730 Swap = true; 731 } 732 733 if (Swap) { 734 II.setArgOperand(0, Src0); 735 II.setArgOperand(1, Src1); 736 II.setArgOperand(2, Src2); 737 return &II; 738 } 739 740 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 741 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 742 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 743 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 744 C2->getValueAPF()); 745 return IC.replaceInstUsesWith( 746 II, ConstantFP::get(IC.Builder.getContext(), Result)); 747 } 748 } 749 } 750 751 if (!ST->hasMed3_16()) 752 break; 753 754 Value *X, *Y, *Z; 755 756 // Repeat floating-point width reduction done for minnum/maxnum. 757 // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) 758 if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) && 759 matchFPExtFromF16(Src2, Z)) { 760 Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()}, 761 {X, Y, Z}, &II, II.getName()); 762 return new FPExtInst(NewCall, II.getType()); 763 } 764 765 break; 766 } 767 case Intrinsic::amdgcn_icmp: 768 case Intrinsic::amdgcn_fcmp: { 769 const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 770 // Guard against invalid arguments. 771 int64_t CCVal = CC->getZExtValue(); 772 bool IsInteger = IID == Intrinsic::amdgcn_icmp; 773 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 774 CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 775 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 776 CCVal > CmpInst::LAST_FCMP_PREDICATE))) 777 break; 778 779 Value *Src0 = II.getArgOperand(0); 780 Value *Src1 = II.getArgOperand(1); 781 782 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 783 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 784 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 785 if (CCmp->isNullValue()) { 786 return IC.replaceInstUsesWith( 787 II, ConstantExpr::getSExt(CCmp, II.getType())); 788 } 789 790 // The result of V_ICMP/V_FCMP assembly instructions (which this 791 // intrinsic exposes) is one bit per thread, masked with the EXEC 792 // register (which contains the bitmask of live threads). So a 793 // comparison that always returns true is the same as a read of the 794 // EXEC register. 795 Function *NewF = Intrinsic::getDeclaration( 796 II.getModule(), Intrinsic::read_register, II.getType()); 797 Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 798 MDNode *MD = MDNode::get(II.getContext(), MDArgs); 799 Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 800 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 801 NewCall->addFnAttr(Attribute::Convergent); 802 NewCall->takeName(&II); 803 return IC.replaceInstUsesWith(II, NewCall); 804 } 805 806 // Canonicalize constants to RHS. 807 CmpInst::Predicate SwapPred = 808 CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 809 II.setArgOperand(0, Src1); 810 II.setArgOperand(1, Src0); 811 II.setArgOperand( 812 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 813 return &II; 814 } 815 816 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 817 break; 818 819 // Canonicalize compare eq with true value to compare != 0 820 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 821 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 822 // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 823 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 824 Value *ExtSrc; 825 if (CCVal == CmpInst::ICMP_EQ && 826 ((match(Src1, PatternMatch::m_One()) && 827 match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 828 (match(Src1, PatternMatch::m_AllOnes()) && 829 match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 830 ExtSrc->getType()->isIntegerTy(1)) { 831 IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 832 IC.replaceOperand(II, 2, 833 ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 834 return &II; 835 } 836 837 CmpInst::Predicate SrcPred; 838 Value *SrcLHS; 839 Value *SrcRHS; 840 841 // Fold compare eq/ne with 0 from a compare result as the predicate to the 842 // intrinsic. The typical use is a wave vote function in the library, which 843 // will be fed from a user code condition compared with 0. Fold in the 844 // redundant compare. 845 846 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 847 // -> llvm.amdgcn.[if]cmp(a, b, pred) 848 // 849 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 850 // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 851 if (match(Src1, PatternMatch::m_Zero()) && 852 match(Src0, PatternMatch::m_ZExtOrSExt( 853 m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 854 PatternMatch::m_Value(SrcRHS))))) { 855 if (CCVal == CmpInst::ICMP_EQ) 856 SrcPred = CmpInst::getInversePredicate(SrcPred); 857 858 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 859 ? Intrinsic::amdgcn_fcmp 860 : Intrinsic::amdgcn_icmp; 861 862 Type *Ty = SrcLHS->getType(); 863 if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 864 // Promote to next legal integer type. 865 unsigned Width = CmpType->getBitWidth(); 866 unsigned NewWidth = Width; 867 868 // Don't do anything for i1 comparisons. 869 if (Width == 1) 870 break; 871 872 if (Width <= 16) 873 NewWidth = 16; 874 else if (Width <= 32) 875 NewWidth = 32; 876 else if (Width <= 64) 877 NewWidth = 64; 878 else if (Width > 64) 879 break; // Can't handle this. 880 881 if (Width != NewWidth) { 882 IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 883 if (CmpInst::isSigned(SrcPred)) { 884 SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 885 SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 886 } else { 887 SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 888 SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 889 } 890 } 891 } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 892 break; 893 894 Function *NewF = Intrinsic::getDeclaration( 895 II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 896 Value *Args[] = {SrcLHS, SrcRHS, 897 ConstantInt::get(CC->getType(), SrcPred)}; 898 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 899 NewCall->takeName(&II); 900 return IC.replaceInstUsesWith(II, NewCall); 901 } 902 903 break; 904 } 905 case Intrinsic::amdgcn_mbcnt_hi: { 906 // exec_hi is all 0, so this is just a copy. 907 if (ST->isWave32()) 908 return IC.replaceInstUsesWith(II, II.getArgOperand(1)); 909 break; 910 } 911 case Intrinsic::amdgcn_ballot: { 912 if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 913 if (Src->isZero()) { 914 // amdgcn.ballot(i1 0) is zero. 915 return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 916 } 917 } 918 break; 919 } 920 case Intrinsic::amdgcn_wqm_vote: { 921 // wqm_vote is identity when the argument is constant. 922 if (!isa<Constant>(II.getArgOperand(0))) 923 break; 924 925 return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 926 } 927 case Intrinsic::amdgcn_kill: { 928 const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 929 if (!C || !C->getZExtValue()) 930 break; 931 932 // amdgcn.kill(i1 1) is a no-op 933 return IC.eraseInstFromFunction(II); 934 } 935 case Intrinsic::amdgcn_update_dpp: { 936 Value *Old = II.getArgOperand(0); 937 938 auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 939 auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 940 auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 941 if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 942 BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 943 break; 944 945 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 946 return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 947 } 948 case Intrinsic::amdgcn_permlane16: 949 case Intrinsic::amdgcn_permlanex16: { 950 // Discard vdst_in if it's not going to be read. 951 Value *VDstIn = II.getArgOperand(0); 952 if (isa<UndefValue>(VDstIn)) 953 break; 954 955 ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(4)); 956 ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(5)); 957 if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 958 break; 959 960 return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 961 } 962 case Intrinsic::amdgcn_permlane64: 963 // A constant value is trivially uniform. 964 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 965 return IC.replaceInstUsesWith(II, C); 966 } 967 break; 968 case Intrinsic::amdgcn_readfirstlane: 969 case Intrinsic::amdgcn_readlane: { 970 // A constant value is trivially uniform. 971 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 972 return IC.replaceInstUsesWith(II, C); 973 } 974 975 // The rest of these may not be safe if the exec may not be the same between 976 // the def and use. 977 Value *Src = II.getArgOperand(0); 978 Instruction *SrcInst = dyn_cast<Instruction>(Src); 979 if (SrcInst && SrcInst->getParent() != II.getParent()) 980 break; 981 982 // readfirstlane (readfirstlane x) -> readfirstlane x 983 // readlane (readfirstlane x), y -> readfirstlane x 984 if (match(Src, 985 PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 986 return IC.replaceInstUsesWith(II, Src); 987 } 988 989 if (IID == Intrinsic::amdgcn_readfirstlane) { 990 // readfirstlane (readlane x, y) -> readlane x, y 991 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 992 return IC.replaceInstUsesWith(II, Src); 993 } 994 } else { 995 // readlane (readlane x, y), y -> readlane x, y 996 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 997 PatternMatch::m_Value(), 998 PatternMatch::m_Specific(II.getArgOperand(1))))) { 999 return IC.replaceInstUsesWith(II, Src); 1000 } 1001 } 1002 1003 break; 1004 } 1005 case Intrinsic::amdgcn_ldexp: { 1006 // FIXME: This doesn't introduce new instructions and belongs in 1007 // InstructionSimplify. 1008 Type *Ty = II.getType(); 1009 Value *Op0 = II.getArgOperand(0); 1010 Value *Op1 = II.getArgOperand(1); 1011 1012 // Folding undef to qnan is safe regardless of the FP mode. 1013 if (isa<UndefValue>(Op0)) { 1014 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 1015 return IC.replaceInstUsesWith(II, QNaN); 1016 } 1017 1018 const APFloat *C = nullptr; 1019 match(Op0, PatternMatch::m_APFloat(C)); 1020 1021 // FIXME: Should flush denorms depending on FP mode, but that's ignored 1022 // everywhere else. 1023 // 1024 // These cases should be safe, even with strictfp. 1025 // ldexp(0.0, x) -> 0.0 1026 // ldexp(-0.0, x) -> -0.0 1027 // ldexp(inf, x) -> inf 1028 // ldexp(-inf, x) -> -inf 1029 if (C && (C->isZero() || C->isInfinity())) { 1030 return IC.replaceInstUsesWith(II, Op0); 1031 } 1032 1033 // With strictfp, be more careful about possibly needing to flush denormals 1034 // or not, and snan behavior depends on ieee_mode. 1035 if (II.isStrictFP()) 1036 break; 1037 1038 if (C && C->isNaN()) 1039 return IC.replaceInstUsesWith(II, ConstantFP::get(Ty, C->makeQuiet())); 1040 1041 // ldexp(x, 0) -> x 1042 // ldexp(x, undef) -> x 1043 if (isa<UndefValue>(Op1) || match(Op1, PatternMatch::m_ZeroInt())) { 1044 return IC.replaceInstUsesWith(II, Op0); 1045 } 1046 1047 break; 1048 } 1049 case Intrinsic::amdgcn_fmul_legacy: { 1050 Value *Op0 = II.getArgOperand(0); 1051 Value *Op1 = II.getArgOperand(1); 1052 1053 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1054 // infinity, gives +0.0. 1055 // TODO: Move to InstSimplify? 1056 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1057 match(Op1, PatternMatch::m_AnyZeroFP())) 1058 return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType())); 1059 1060 // If we can prove we don't have one of the special cases then we can use a 1061 // normal fmul instruction instead. 1062 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1063 auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 1064 FMul->takeName(&II); 1065 return IC.replaceInstUsesWith(II, FMul); 1066 } 1067 break; 1068 } 1069 case Intrinsic::amdgcn_fma_legacy: { 1070 Value *Op0 = II.getArgOperand(0); 1071 Value *Op1 = II.getArgOperand(1); 1072 Value *Op2 = II.getArgOperand(2); 1073 1074 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1075 // infinity, gives +0.0. 1076 // TODO: Move to InstSimplify? 1077 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1078 match(Op1, PatternMatch::m_AnyZeroFP())) { 1079 // It's tempting to just return Op2 here, but that would give the wrong 1080 // result if Op2 was -0.0. 1081 auto *Zero = ConstantFP::getZero(II.getType()); 1082 auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 1083 FAdd->takeName(&II); 1084 return IC.replaceInstUsesWith(II, FAdd); 1085 } 1086 1087 // If we can prove we don't have one of the special cases then we can use a 1088 // normal fma instead. 1089 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1090 II.setCalledOperand(Intrinsic::getDeclaration( 1091 II.getModule(), Intrinsic::fma, II.getType())); 1092 return &II; 1093 } 1094 break; 1095 } 1096 case Intrinsic::amdgcn_is_shared: 1097 case Intrinsic::amdgcn_is_private: { 1098 if (isa<UndefValue>(II.getArgOperand(0))) 1099 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 1100 1101 if (isa<ConstantPointerNull>(II.getArgOperand(0))) 1102 return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 1103 break; 1104 } 1105 case Intrinsic::amdgcn_buffer_store_format: 1106 case Intrinsic::amdgcn_raw_buffer_store_format: 1107 case Intrinsic::amdgcn_struct_buffer_store_format: 1108 case Intrinsic::amdgcn_raw_tbuffer_store: 1109 case Intrinsic::amdgcn_struct_tbuffer_store: 1110 case Intrinsic::amdgcn_tbuffer_store: 1111 case Intrinsic::amdgcn_image_store_1d: 1112 case Intrinsic::amdgcn_image_store_1darray: 1113 case Intrinsic::amdgcn_image_store_2d: 1114 case Intrinsic::amdgcn_image_store_2darray: 1115 case Intrinsic::amdgcn_image_store_2darraymsaa: 1116 case Intrinsic::amdgcn_image_store_2dmsaa: 1117 case Intrinsic::amdgcn_image_store_3d: 1118 case Intrinsic::amdgcn_image_store_cube: 1119 case Intrinsic::amdgcn_image_store_mip_1d: 1120 case Intrinsic::amdgcn_image_store_mip_1darray: 1121 case Intrinsic::amdgcn_image_store_mip_2d: 1122 case Intrinsic::amdgcn_image_store_mip_2darray: 1123 case Intrinsic::amdgcn_image_store_mip_3d: 1124 case Intrinsic::amdgcn_image_store_mip_cube: { 1125 if (!isa<FixedVectorType>(II.getArgOperand(0)->getType())) 1126 break; 1127 1128 APInt DemandedElts = 1129 trimTrailingZerosInVector(IC, II.getArgOperand(0), &II); 1130 1131 int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1; 1132 if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, 1133 false)) { 1134 return IC.eraseInstFromFunction(II); 1135 } 1136 1137 break; 1138 } 1139 } 1140 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 1141 AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 1142 return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 1143 } 1144 return std::nullopt; 1145 } 1146 1147 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1148 /// 1149 /// The result of simplifying amdgcn image and buffer store intrinsics is updating 1150 /// definitions of the intrinsics vector argument, not Uses of the result like 1151 /// image and buffer loads. 1152 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1153 /// struct returns. 1154 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 1155 IntrinsicInst &II, 1156 APInt DemandedElts, 1157 int DMaskIdx, bool IsLoad) { 1158 1159 auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType() 1160 : II.getOperand(0)->getType()); 1161 unsigned VWidth = IIVTy->getNumElements(); 1162 if (VWidth == 1) 1163 return nullptr; 1164 Type *EltTy = IIVTy->getElementType(); 1165 1166 IRBuilderBase::InsertPointGuard Guard(IC.Builder); 1167 IC.Builder.SetInsertPoint(&II); 1168 1169 // Assume the arguments are unchanged and later override them, if needed. 1170 SmallVector<Value *, 16> Args(II.args()); 1171 1172 if (DMaskIdx < 0) { 1173 // Buffer case. 1174 1175 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1176 const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); 1177 1178 // Start assuming the prefix of elements is demanded, but possibly clear 1179 // some other bits if there are trailing zeros (unused components at front) 1180 // and update offset. 1181 DemandedElts = (1 << ActiveBits) - 1; 1182 1183 if (UnusedComponentsAtFront > 0) { 1184 static const unsigned InvalidOffsetIdx = 0xf; 1185 1186 unsigned OffsetIdx; 1187 switch (II.getIntrinsicID()) { 1188 case Intrinsic::amdgcn_raw_buffer_load: 1189 case Intrinsic::amdgcn_raw_ptr_buffer_load: 1190 OffsetIdx = 1; 1191 break; 1192 case Intrinsic::amdgcn_s_buffer_load: 1193 // If resulting type is vec3, there is no point in trimming the 1194 // load with updated offset, as the vec3 would most likely be widened to 1195 // vec4 anyway during lowering. 1196 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1197 OffsetIdx = InvalidOffsetIdx; 1198 else 1199 OffsetIdx = 1; 1200 break; 1201 case Intrinsic::amdgcn_struct_buffer_load: 1202 case Intrinsic::amdgcn_struct_ptr_buffer_load: 1203 OffsetIdx = 2; 1204 break; 1205 default: 1206 // TODO: handle tbuffer* intrinsics. 1207 OffsetIdx = InvalidOffsetIdx; 1208 break; 1209 } 1210 1211 if (OffsetIdx != InvalidOffsetIdx) { 1212 // Clear demanded bits and update the offset. 1213 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1214 auto *Offset = Args[OffsetIdx]; 1215 unsigned SingleComponentSizeInBits = 1216 IC.getDataLayout().getTypeSizeInBits(EltTy); 1217 unsigned OffsetAdd = 1218 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1219 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1220 Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 1221 } 1222 } 1223 } else { 1224 // Image case. 1225 1226 ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]); 1227 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1228 1229 // Mask off values that are undefined because the dmask doesn't cover them 1230 DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1; 1231 1232 unsigned NewDMaskVal = 0; 1233 unsigned OrigLdStIdx = 0; 1234 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1235 const unsigned Bit = 1 << SrcIdx; 1236 if (!!(DMaskVal & Bit)) { 1237 if (!!DemandedElts[OrigLdStIdx]) 1238 NewDMaskVal |= Bit; 1239 OrigLdStIdx++; 1240 } 1241 } 1242 1243 if (DMaskVal != NewDMaskVal) 1244 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1245 } 1246 1247 unsigned NewNumElts = DemandedElts.popcount(); 1248 if (!NewNumElts) 1249 return UndefValue::get(IIVTy); 1250 1251 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1252 if (DMaskIdx >= 0) 1253 II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1254 return nullptr; 1255 } 1256 1257 // Validate function argument and return types, extracting overloaded types 1258 // along the way. 1259 SmallVector<Type *, 6> OverloadTys; 1260 if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1261 return nullptr; 1262 1263 Type *NewTy = 1264 (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1265 OverloadTys[0] = NewTy; 1266 1267 if (!IsLoad) { 1268 SmallVector<int, 8> EltMask; 1269 for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) 1270 if (DemandedElts[OrigStoreIdx]) 1271 EltMask.push_back(OrigStoreIdx); 1272 1273 if (NewNumElts == 1) 1274 Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]); 1275 else 1276 Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask); 1277 } 1278 1279 Function *NewIntrin = Intrinsic::getDeclaration( 1280 II.getModule(), II.getIntrinsicID(), OverloadTys); 1281 CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1282 NewCall->takeName(&II); 1283 NewCall->copyMetadata(II); 1284 1285 if (IsLoad) { 1286 if (NewNumElts == 1) { 1287 return IC.Builder.CreateInsertElement(UndefValue::get(IIVTy), NewCall, 1288 DemandedElts.countr_zero()); 1289 } 1290 1291 SmallVector<int, 8> EltMask; 1292 unsigned NewLoadIdx = 0; 1293 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1294 if (!!DemandedElts[OrigLoadIdx]) 1295 EltMask.push_back(NewLoadIdx++); 1296 else 1297 EltMask.push_back(NewNumElts); 1298 } 1299 1300 auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1301 1302 return Shuffle; 1303 } 1304 1305 return NewCall; 1306 } 1307 1308 std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1309 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1310 APInt &UndefElts2, APInt &UndefElts3, 1311 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1312 SimplifyAndSetOp) const { 1313 switch (II.getIntrinsicID()) { 1314 case Intrinsic::amdgcn_buffer_load: 1315 case Intrinsic::amdgcn_buffer_load_format: 1316 case Intrinsic::amdgcn_raw_buffer_load: 1317 case Intrinsic::amdgcn_raw_ptr_buffer_load: 1318 case Intrinsic::amdgcn_raw_buffer_load_format: 1319 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: 1320 case Intrinsic::amdgcn_raw_tbuffer_load: 1321 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: 1322 case Intrinsic::amdgcn_s_buffer_load: 1323 case Intrinsic::amdgcn_struct_buffer_load: 1324 case Intrinsic::amdgcn_struct_ptr_buffer_load: 1325 case Intrinsic::amdgcn_struct_buffer_load_format: 1326 case Intrinsic::amdgcn_struct_ptr_buffer_load_format: 1327 case Intrinsic::amdgcn_struct_tbuffer_load: 1328 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: 1329 case Intrinsic::amdgcn_tbuffer_load: 1330 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1331 default: { 1332 if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1333 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1334 } 1335 break; 1336 } 1337 } 1338 return std::nullopt; 1339 } 1340