1 //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "GCNSubtarget.h" 20 #include "llvm/ADT/FloatingPointMode.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/Transforms/InstCombine/InstCombiner.h" 23 #include <optional> 24 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "AMDGPUtti" 29 30 namespace { 31 32 struct AMDGPUImageDMaskIntrinsic { 33 unsigned Intr; 34 }; 35 36 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 37 #include "InstCombineTables.inc" 38 39 } // end anonymous namespace 40 41 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 42 // 43 // A single NaN input is folded to minnum, so we rely on that folding for 44 // handling NaNs. 45 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 46 const APFloat &Src2) { 47 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 48 49 APFloat::cmpResult Cmp0 = Max3.compare(Src0); 50 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 51 if (Cmp0 == APFloat::cmpEqual) 52 return maxnum(Src1, Src2); 53 54 APFloat::cmpResult Cmp1 = Max3.compare(Src1); 55 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 56 if (Cmp1 == APFloat::cmpEqual) 57 return maxnum(Src0, Src2); 58 59 return maxnum(Src0, Src1); 60 } 61 62 // Check if a value can be converted to a 16-bit value without losing 63 // precision. 64 // The value is expected to be either a float (IsFloat = true) or an unsigned 65 // integer (IsFloat = false). 66 static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { 67 Type *VTy = V.getType(); 68 if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 69 // The value is already 16-bit, so we don't want to convert to 16-bit again! 70 return false; 71 } 72 if (IsFloat) { 73 if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 74 // We need to check that if we cast the index down to a half, we do not 75 // lose precision. 76 APFloat FloatValue(ConstFloat->getValueAPF()); 77 bool LosesInfo = true; 78 FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, 79 &LosesInfo); 80 return !LosesInfo; 81 } 82 } else { 83 if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) { 84 // We need to check that if we cast the index down to an i16, we do not 85 // lose precision. 86 APInt IntValue(ConstInt->getValue()); 87 return IntValue.getActiveBits() <= 16; 88 } 89 } 90 91 Value *CastSrc; 92 bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) 93 : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); 94 if (IsExt) { 95 Type *CastSrcTy = CastSrc->getType(); 96 if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 97 return true; 98 } 99 100 return false; 101 } 102 103 // Convert a value to 16-bit. 104 static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 105 Type *VTy = V.getType(); 106 if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 107 return cast<Instruction>(&V)->getOperand(0); 108 if (VTy->isIntegerTy()) 109 return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 110 if (VTy->isFloatingPointTy()) 111 return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 112 113 llvm_unreachable("Should never be called!"); 114 } 115 116 /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with 117 /// modified arguments (based on OldIntr) and replaces InstToReplace with 118 /// this newly created intrinsic call. 119 static std::optional<Instruction *> modifyIntrinsicCall( 120 IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, 121 InstCombiner &IC, 122 std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> 123 Func) { 124 SmallVector<Type *, 4> ArgTys; 125 if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys)) 126 return std::nullopt; 127 128 SmallVector<Value *, 8> Args(OldIntr.args()); 129 130 // Modify arguments and types 131 Func(Args, ArgTys); 132 133 Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys); 134 135 CallInst *NewCall = IC.Builder.CreateCall(I, Args); 136 NewCall->takeName(&OldIntr); 137 NewCall->copyMetadata(OldIntr); 138 if (isa<FPMathOperator>(NewCall)) 139 NewCall->copyFastMathFlags(&OldIntr); 140 141 // Erase and replace uses 142 if (!InstToReplace.getType()->isVoidTy()) 143 IC.replaceInstUsesWith(InstToReplace, NewCall); 144 145 bool RemoveOldIntr = &OldIntr != &InstToReplace; 146 147 auto RetValue = IC.eraseInstFromFunction(InstToReplace); 148 if (RemoveOldIntr) 149 IC.eraseInstFromFunction(OldIntr); 150 151 return RetValue; 152 } 153 154 static std::optional<Instruction *> 155 simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 156 const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 157 IntrinsicInst &II, InstCombiner &IC) { 158 // Optimize _L to _LZ when _L is zero 159 if (const auto *LZMappingInfo = 160 AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 161 if (auto *ConstantLod = 162 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) { 163 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 164 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 165 AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, 166 ImageDimIntr->Dim); 167 return modifyIntrinsicCall( 168 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 169 Args.erase(Args.begin() + ImageDimIntr->LodIndex); 170 }); 171 } 172 } 173 } 174 175 // Optimize _mip away, when 'lod' is zero 176 if (const auto *MIPMappingInfo = 177 AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 178 if (auto *ConstantMip = 179 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) { 180 if (ConstantMip->isZero()) { 181 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 182 AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, 183 ImageDimIntr->Dim); 184 return modifyIntrinsicCall( 185 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 186 Args.erase(Args.begin() + ImageDimIntr->MipIndex); 187 }); 188 } 189 } 190 } 191 192 // Optimize _bias away when 'bias' is zero 193 if (const auto *BiasMappingInfo = 194 AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { 195 if (auto *ConstantBias = 196 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) { 197 if (ConstantBias->isZero()) { 198 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 199 AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, 200 ImageDimIntr->Dim); 201 return modifyIntrinsicCall( 202 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 203 Args.erase(Args.begin() + ImageDimIntr->BiasIndex); 204 ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); 205 }); 206 } 207 } 208 } 209 210 // Optimize _offset away when 'offset' is zero 211 if (const auto *OffsetMappingInfo = 212 AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { 213 if (auto *ConstantOffset = 214 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) { 215 if (ConstantOffset->isZero()) { 216 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 217 AMDGPU::getImageDimIntrinsicByBaseOpcode( 218 OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); 219 return modifyIntrinsicCall( 220 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 221 Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); 222 }); 223 } 224 } 225 } 226 227 // Try to use D16 228 if (ST->hasD16Images()) { 229 230 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 231 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 232 233 if (BaseOpcode->HasD16) { 234 235 // If the only use of image intrinsic is a fptrunc (with conversion to 236 // half) then both fptrunc and image intrinsic will be replaced with image 237 // intrinsic with D16 flag. 238 if (II.hasOneUse()) { 239 Instruction *User = II.user_back(); 240 241 if (User->getOpcode() == Instruction::FPTrunc && 242 User->getType()->getScalarType()->isHalfTy()) { 243 244 return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC, 245 [&](auto &Args, auto &ArgTys) { 246 // Change return type of image intrinsic. 247 // Set it to return type of fptrunc. 248 ArgTys[0] = User->getType(); 249 }); 250 } 251 } 252 } 253 } 254 255 // Try to use A16 or G16 256 if (!ST->hasA16() && !ST->hasG16()) 257 return std::nullopt; 258 259 // Address is interpreted as float if the instruction has a sampler or as 260 // unsigned int if there is no sampler. 261 bool HasSampler = 262 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; 263 bool FloatCoord = false; 264 // true means derivatives can be converted to 16 bit, coordinates not 265 bool OnlyDerivatives = false; 266 267 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 268 OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 269 Value *Coord = II.getOperand(OperandIndex); 270 // If the values are not derived from 16-bit values, we cannot optimize. 271 if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { 272 if (OperandIndex < ImageDimIntr->CoordStart || 273 ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 274 return std::nullopt; 275 } 276 // All gradients can be converted, so convert only them 277 OnlyDerivatives = true; 278 break; 279 } 280 281 assert(OperandIndex == ImageDimIntr->GradientStart || 282 FloatCoord == Coord->getType()->isFloatingPointTy()); 283 FloatCoord = Coord->getType()->isFloatingPointTy(); 284 } 285 286 if (!OnlyDerivatives && !ST->hasA16()) 287 OnlyDerivatives = true; // Only supports G16 288 289 // Check if there is a bias parameter and if it can be converted to f16 290 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 291 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 292 assert(HasSampler && 293 "Only image instructions with a sampler can have a bias"); 294 if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) 295 OnlyDerivatives = true; 296 } 297 298 if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == 299 ImageDimIntr->CoordStart)) 300 return std::nullopt; 301 302 Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 303 : Type::getInt16Ty(II.getContext()); 304 305 return modifyIntrinsicCall( 306 II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { 307 ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 308 if (!OnlyDerivatives) { 309 ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 310 311 // Change the bias type 312 if (ImageDimIntr->NumBiasArgs != 0) 313 ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); 314 } 315 316 unsigned EndIndex = 317 OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 318 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 319 OperandIndex < EndIndex; OperandIndex++) { 320 Args[OperandIndex] = 321 convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 322 } 323 324 // Convert the bias 325 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 326 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 327 Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); 328 } 329 }); 330 } 331 332 bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, 333 const Value *Op0, const Value *Op1, 334 InstCombiner &IC) const { 335 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 336 // infinity, gives +0.0. If we can prove we don't have one of the special 337 // cases then we can use a normal multiply instead. 338 // TODO: Create and use isKnownFiniteNonZero instead of just matching 339 // constants here. 340 if (match(Op0, PatternMatch::m_FiniteNonZero()) || 341 match(Op1, PatternMatch::m_FiniteNonZero())) { 342 // One operand is not zero or infinity or NaN. 343 return true; 344 } 345 346 SimplifyQuery SQ = IC.getSimplifyQuery().getWithInstruction(&I); 347 if (isKnownNeverInfOrNaN(Op0, /*Depth=*/0, SQ) && 348 isKnownNeverInfOrNaN(Op1, /*Depth=*/0, SQ)) { 349 // Neither operand is infinity or NaN. 350 return true; 351 } 352 return false; 353 } 354 355 /// Match an fpext from half to float, or a constant we can convert. 356 static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { 357 if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc))))) 358 return FPExtSrc->getType()->isHalfTy(); 359 360 ConstantFP *CFP; 361 if (match(Arg, m_ConstantFP(CFP))) { 362 bool LosesInfo; 363 APFloat Val(CFP->getValueAPF()); 364 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 365 if (LosesInfo) 366 return false; 367 368 FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val); 369 return true; 370 } 371 372 return false; 373 } 374 375 // Trim all zero components from the end of the vector \p UseV and return 376 // an appropriate bitset with known elements. 377 static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, 378 Instruction *I) { 379 auto *VTy = cast<FixedVectorType>(UseV->getType()); 380 unsigned VWidth = VTy->getNumElements(); 381 APInt DemandedElts = APInt::getAllOnes(VWidth); 382 383 for (int i = VWidth - 1; i > 0; --i) { 384 auto *Elt = findScalarElement(UseV, i); 385 if (!Elt) 386 break; 387 388 if (auto *ConstElt = dyn_cast<Constant>(Elt)) { 389 if (!ConstElt->isNullValue() && !isa<UndefValue>(Elt)) 390 break; 391 } else { 392 break; 393 } 394 395 DemandedElts.clearBit(i); 396 } 397 398 return DemandedElts; 399 } 400 401 // Trim elements of the end of the vector \p V, if they are 402 // equal to the first element of the vector. 403 static APInt defaultComponentBroadcast(Value *V) { 404 auto *VTy = cast<FixedVectorType>(V->getType()); 405 unsigned VWidth = VTy->getNumElements(); 406 APInt DemandedElts = APInt::getAllOnes(VWidth); 407 Value *FirstComponent = findScalarElement(V, 0); 408 409 SmallVector<int> ShuffleMask; 410 if (auto *SVI = dyn_cast<ShuffleVectorInst>(V)) 411 SVI->getShuffleMask(ShuffleMask); 412 413 for (int I = VWidth - 1; I > 0; --I) { 414 if (ShuffleMask.empty()) { 415 auto *Elt = findScalarElement(V, I); 416 if (!Elt || (Elt != FirstComponent && !isa<UndefValue>(Elt))) 417 break; 418 } else { 419 // Detect identical elements in the shufflevector result, even though 420 // findScalarElement cannot tell us what that element is. 421 if (ShuffleMask[I] != ShuffleMask[0] && ShuffleMask[I] != PoisonMaskElem) 422 break; 423 } 424 DemandedElts.clearBit(I); 425 } 426 427 return DemandedElts; 428 } 429 430 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 431 IntrinsicInst &II, 432 APInt DemandedElts, 433 int DMaskIdx = -1, 434 bool IsLoad = true); 435 436 /// Return true if it's legal to contract llvm.amdgcn.rcp(llvm.sqrt) 437 static bool canContractSqrtToRsq(const FPMathOperator *SqrtOp) { 438 return (SqrtOp->getType()->isFloatTy() && 439 (SqrtOp->hasApproxFunc() || SqrtOp->getFPAccuracy() >= 1.0f)) || 440 SqrtOp->getType()->isHalfTy(); 441 } 442 443 std::optional<Instruction *> 444 GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 445 Intrinsic::ID IID = II.getIntrinsicID(); 446 switch (IID) { 447 case Intrinsic::amdgcn_rcp: { 448 Value *Src = II.getArgOperand(0); 449 450 // TODO: Move to ConstantFolding/InstSimplify? 451 if (isa<UndefValue>(Src)) { 452 Type *Ty = II.getType(); 453 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 454 return IC.replaceInstUsesWith(II, QNaN); 455 } 456 457 if (II.isStrictFP()) 458 break; 459 460 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 461 const APFloat &ArgVal = C->getValueAPF(); 462 APFloat Val(ArgVal.getSemantics(), 1); 463 Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 464 465 // This is more precise than the instruction may give. 466 // 467 // TODO: The instruction always flushes denormal results (except for f16), 468 // should this also? 469 return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 470 } 471 472 FastMathFlags FMF = cast<FPMathOperator>(II).getFastMathFlags(); 473 if (!FMF.allowContract()) 474 break; 475 auto *SrcCI = dyn_cast<IntrinsicInst>(Src); 476 if (!SrcCI) 477 break; 478 479 auto IID = SrcCI->getIntrinsicID(); 480 // llvm.amdgcn.rcp(llvm.amdgcn.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable 481 // 482 // llvm.amdgcn.rcp(llvm.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable and 483 // relaxed. 484 if (IID == Intrinsic::amdgcn_sqrt || IID == Intrinsic::sqrt) { 485 const FPMathOperator *SqrtOp = cast<FPMathOperator>(SrcCI); 486 FastMathFlags InnerFMF = SqrtOp->getFastMathFlags(); 487 if (!InnerFMF.allowContract() || !SrcCI->hasOneUse()) 488 break; 489 490 if (IID == Intrinsic::sqrt && !canContractSqrtToRsq(SqrtOp)) 491 break; 492 493 Function *NewDecl = Intrinsic::getDeclaration( 494 SrcCI->getModule(), Intrinsic::amdgcn_rsq, {SrcCI->getType()}); 495 496 InnerFMF |= FMF; 497 II.setFastMathFlags(InnerFMF); 498 499 II.setCalledFunction(NewDecl); 500 return IC.replaceOperand(II, 0, SrcCI->getArgOperand(0)); 501 } 502 503 break; 504 } 505 case Intrinsic::amdgcn_sqrt: 506 case Intrinsic::amdgcn_rsq: { 507 Value *Src = II.getArgOperand(0); 508 509 // TODO: Move to ConstantFolding/InstSimplify? 510 if (isa<UndefValue>(Src)) { 511 Type *Ty = II.getType(); 512 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 513 return IC.replaceInstUsesWith(II, QNaN); 514 } 515 516 // f16 amdgcn.sqrt is identical to regular sqrt. 517 if (IID == Intrinsic::amdgcn_sqrt && Src->getType()->isHalfTy()) { 518 Function *NewDecl = Intrinsic::getDeclaration( 519 II.getModule(), Intrinsic::sqrt, {II.getType()}); 520 II.setCalledFunction(NewDecl); 521 return &II; 522 } 523 524 break; 525 } 526 case Intrinsic::amdgcn_log: 527 case Intrinsic::amdgcn_exp2: { 528 const bool IsLog = IID == Intrinsic::amdgcn_log; 529 const bool IsExp = IID == Intrinsic::amdgcn_exp2; 530 Value *Src = II.getArgOperand(0); 531 Type *Ty = II.getType(); 532 533 if (isa<PoisonValue>(Src)) 534 return IC.replaceInstUsesWith(II, Src); 535 536 if (IC.getSimplifyQuery().isUndefValue(Src)) 537 return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 538 539 if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 540 if (C->isInfinity()) { 541 // exp2(+inf) -> +inf 542 // log2(+inf) -> +inf 543 if (!C->isNegative()) 544 return IC.replaceInstUsesWith(II, C); 545 546 // exp2(-inf) -> 0 547 if (IsExp && C->isNegative()) 548 return IC.replaceInstUsesWith(II, ConstantFP::getZero(Ty)); 549 } 550 551 if (II.isStrictFP()) 552 break; 553 554 if (C->isNaN()) { 555 Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet()); 556 return IC.replaceInstUsesWith(II, Quieted); 557 } 558 559 // f32 instruction doesn't handle denormals, f16 does. 560 if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) { 561 Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, true) 562 : ConstantFP::get(Ty, 1.0); 563 return IC.replaceInstUsesWith(II, FoldedValue); 564 } 565 566 if (IsLog && C->isNegative()) 567 return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 568 569 // TODO: Full constant folding matching hardware behavior. 570 } 571 572 break; 573 } 574 case Intrinsic::amdgcn_frexp_mant: 575 case Intrinsic::amdgcn_frexp_exp: { 576 Value *Src = II.getArgOperand(0); 577 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 578 int Exp; 579 APFloat Significand = 580 frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 581 582 if (IID == Intrinsic::amdgcn_frexp_mant) { 583 return IC.replaceInstUsesWith( 584 II, ConstantFP::get(II.getContext(), Significand)); 585 } 586 587 // Match instruction special case behavior. 588 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 589 Exp = 0; 590 591 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 592 } 593 594 if (isa<UndefValue>(Src)) { 595 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 596 } 597 598 break; 599 } 600 case Intrinsic::amdgcn_class: { 601 Value *Src0 = II.getArgOperand(0); 602 Value *Src1 = II.getArgOperand(1); 603 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 604 if (CMask) { 605 II.setCalledOperand(Intrinsic::getDeclaration( 606 II.getModule(), Intrinsic::is_fpclass, Src0->getType())); 607 608 // Clamp any excess bits, as they're illegal for the generic intrinsic. 609 II.setArgOperand(1, ConstantInt::get(Src1->getType(), 610 CMask->getZExtValue() & fcAllFlags)); 611 return &II; 612 } 613 614 // Propagate poison. 615 if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1)) 616 return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 617 618 // llvm.amdgcn.class(_, undef) -> false 619 if (IC.getSimplifyQuery().isUndefValue(Src1)) 620 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 621 622 // llvm.amdgcn.class(undef, mask) -> mask != 0 623 if (IC.getSimplifyQuery().isUndefValue(Src0)) { 624 Value *CmpMask = IC.Builder.CreateICmpNE( 625 Src1, ConstantInt::getNullValue(Src1->getType())); 626 return IC.replaceInstUsesWith(II, CmpMask); 627 } 628 break; 629 } 630 case Intrinsic::amdgcn_cvt_pkrtz: { 631 Value *Src0 = II.getArgOperand(0); 632 Value *Src1 = II.getArgOperand(1); 633 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 634 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 635 const fltSemantics &HalfSem = 636 II.getType()->getScalarType()->getFltSemantics(); 637 bool LosesInfo; 638 APFloat Val0 = C0->getValueAPF(); 639 APFloat Val1 = C1->getValueAPF(); 640 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 641 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 642 643 Constant *Folded = 644 ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 645 ConstantFP::get(II.getContext(), Val1)}); 646 return IC.replaceInstUsesWith(II, Folded); 647 } 648 } 649 650 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 651 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 652 } 653 654 break; 655 } 656 case Intrinsic::amdgcn_cvt_pknorm_i16: 657 case Intrinsic::amdgcn_cvt_pknorm_u16: 658 case Intrinsic::amdgcn_cvt_pk_i16: 659 case Intrinsic::amdgcn_cvt_pk_u16: { 660 Value *Src0 = II.getArgOperand(0); 661 Value *Src1 = II.getArgOperand(1); 662 663 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 664 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 665 } 666 667 break; 668 } 669 case Intrinsic::amdgcn_ubfe: 670 case Intrinsic::amdgcn_sbfe: { 671 // Decompose simple cases into standard shifts. 672 Value *Src = II.getArgOperand(0); 673 if (isa<UndefValue>(Src)) { 674 return IC.replaceInstUsesWith(II, Src); 675 } 676 677 unsigned Width; 678 Type *Ty = II.getType(); 679 unsigned IntSize = Ty->getIntegerBitWidth(); 680 681 ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 682 if (CWidth) { 683 Width = CWidth->getZExtValue(); 684 if ((Width & (IntSize - 1)) == 0) { 685 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 686 } 687 688 // Hardware ignores high bits, so remove those. 689 if (Width >= IntSize) { 690 return IC.replaceOperand( 691 II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 692 } 693 } 694 695 unsigned Offset; 696 ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 697 if (COffset) { 698 Offset = COffset->getZExtValue(); 699 if (Offset >= IntSize) { 700 return IC.replaceOperand( 701 II, 1, 702 ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 703 } 704 } 705 706 bool Signed = IID == Intrinsic::amdgcn_sbfe; 707 708 if (!CWidth || !COffset) 709 break; 710 711 // The case of Width == 0 is handled above, which makes this transformation 712 // safe. If Width == 0, then the ashr and lshr instructions become poison 713 // value since the shift amount would be equal to the bit size. 714 assert(Width != 0); 715 716 // TODO: This allows folding to undef when the hardware has specific 717 // behavior? 718 if (Offset + Width < IntSize) { 719 Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 720 Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 721 : IC.Builder.CreateLShr(Shl, IntSize - Width); 722 RightShift->takeName(&II); 723 return IC.replaceInstUsesWith(II, RightShift); 724 } 725 726 Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 727 : IC.Builder.CreateLShr(Src, Offset); 728 729 RightShift->takeName(&II); 730 return IC.replaceInstUsesWith(II, RightShift); 731 } 732 case Intrinsic::amdgcn_exp: 733 case Intrinsic::amdgcn_exp_row: 734 case Intrinsic::amdgcn_exp_compr: { 735 ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 736 unsigned EnBits = En->getZExtValue(); 737 if (EnBits == 0xf) 738 break; // All inputs enabled. 739 740 bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 741 bool Changed = false; 742 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 743 if ((!IsCompr && (EnBits & (1 << I)) == 0) || 744 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 745 Value *Src = II.getArgOperand(I + 2); 746 if (!isa<UndefValue>(Src)) { 747 IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 748 Changed = true; 749 } 750 } 751 } 752 753 if (Changed) { 754 return &II; 755 } 756 757 break; 758 } 759 case Intrinsic::amdgcn_fmed3: { 760 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 761 // for the shader. 762 763 Value *Src0 = II.getArgOperand(0); 764 Value *Src1 = II.getArgOperand(1); 765 Value *Src2 = II.getArgOperand(2); 766 767 // Checking for NaN before canonicalization provides better fidelity when 768 // mapping other operations onto fmed3 since the order of operands is 769 // unchanged. 770 Value *V = nullptr; 771 if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 772 V = IC.Builder.CreateMinNum(Src1, Src2); 773 } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 774 V = IC.Builder.CreateMinNum(Src0, Src2); 775 } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 776 V = IC.Builder.CreateMaxNum(Src0, Src1); 777 } 778 779 if (V) { 780 if (auto *CI = dyn_cast<CallInst>(V)) { 781 CI->copyFastMathFlags(&II); 782 CI->takeName(&II); 783 } 784 return IC.replaceInstUsesWith(II, V); 785 } 786 787 bool Swap = false; 788 // Canonicalize constants to RHS operands. 789 // 790 // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 791 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 792 std::swap(Src0, Src1); 793 Swap = true; 794 } 795 796 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 797 std::swap(Src1, Src2); 798 Swap = true; 799 } 800 801 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 802 std::swap(Src0, Src1); 803 Swap = true; 804 } 805 806 if (Swap) { 807 II.setArgOperand(0, Src0); 808 II.setArgOperand(1, Src1); 809 II.setArgOperand(2, Src2); 810 return &II; 811 } 812 813 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 814 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 815 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 816 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 817 C2->getValueAPF()); 818 return IC.replaceInstUsesWith( 819 II, ConstantFP::get(IC.Builder.getContext(), Result)); 820 } 821 } 822 } 823 824 if (!ST->hasMed3_16()) 825 break; 826 827 Value *X, *Y, *Z; 828 829 // Repeat floating-point width reduction done for minnum/maxnum. 830 // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) 831 if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) && 832 matchFPExtFromF16(Src2, Z)) { 833 Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()}, 834 {X, Y, Z}, &II, II.getName()); 835 return new FPExtInst(NewCall, II.getType()); 836 } 837 838 break; 839 } 840 case Intrinsic::amdgcn_icmp: 841 case Intrinsic::amdgcn_fcmp: { 842 const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 843 // Guard against invalid arguments. 844 int64_t CCVal = CC->getZExtValue(); 845 bool IsInteger = IID == Intrinsic::amdgcn_icmp; 846 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 847 CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 848 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 849 CCVal > CmpInst::LAST_FCMP_PREDICATE))) 850 break; 851 852 Value *Src0 = II.getArgOperand(0); 853 Value *Src1 = II.getArgOperand(1); 854 855 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 856 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 857 Constant *CCmp = ConstantFoldCompareInstOperands( 858 (ICmpInst::Predicate)CCVal, CSrc0, CSrc1, DL); 859 if (CCmp && CCmp->isNullValue()) { 860 return IC.replaceInstUsesWith( 861 II, IC.Builder.CreateSExt(CCmp, II.getType())); 862 } 863 864 // The result of V_ICMP/V_FCMP assembly instructions (which this 865 // intrinsic exposes) is one bit per thread, masked with the EXEC 866 // register (which contains the bitmask of live threads). So a 867 // comparison that always returns true is the same as a read of the 868 // EXEC register. 869 Function *NewF = Intrinsic::getDeclaration( 870 II.getModule(), Intrinsic::read_register, II.getType()); 871 Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 872 MDNode *MD = MDNode::get(II.getContext(), MDArgs); 873 Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 874 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 875 NewCall->addFnAttr(Attribute::Convergent); 876 NewCall->takeName(&II); 877 return IC.replaceInstUsesWith(II, NewCall); 878 } 879 880 // Canonicalize constants to RHS. 881 CmpInst::Predicate SwapPred = 882 CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 883 II.setArgOperand(0, Src1); 884 II.setArgOperand(1, Src0); 885 II.setArgOperand( 886 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 887 return &II; 888 } 889 890 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 891 break; 892 893 // Canonicalize compare eq with true value to compare != 0 894 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 895 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 896 // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 897 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 898 Value *ExtSrc; 899 if (CCVal == CmpInst::ICMP_EQ && 900 ((match(Src1, PatternMatch::m_One()) && 901 match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 902 (match(Src1, PatternMatch::m_AllOnes()) && 903 match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 904 ExtSrc->getType()->isIntegerTy(1)) { 905 IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 906 IC.replaceOperand(II, 2, 907 ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 908 return &II; 909 } 910 911 CmpInst::Predicate SrcPred; 912 Value *SrcLHS; 913 Value *SrcRHS; 914 915 // Fold compare eq/ne with 0 from a compare result as the predicate to the 916 // intrinsic. The typical use is a wave vote function in the library, which 917 // will be fed from a user code condition compared with 0. Fold in the 918 // redundant compare. 919 920 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 921 // -> llvm.amdgcn.[if]cmp(a, b, pred) 922 // 923 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 924 // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 925 if (match(Src1, PatternMatch::m_Zero()) && 926 match(Src0, PatternMatch::m_ZExtOrSExt( 927 m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 928 PatternMatch::m_Value(SrcRHS))))) { 929 if (CCVal == CmpInst::ICMP_EQ) 930 SrcPred = CmpInst::getInversePredicate(SrcPred); 931 932 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 933 ? Intrinsic::amdgcn_fcmp 934 : Intrinsic::amdgcn_icmp; 935 936 Type *Ty = SrcLHS->getType(); 937 if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 938 // Promote to next legal integer type. 939 unsigned Width = CmpType->getBitWidth(); 940 unsigned NewWidth = Width; 941 942 // Don't do anything for i1 comparisons. 943 if (Width == 1) 944 break; 945 946 if (Width <= 16) 947 NewWidth = 16; 948 else if (Width <= 32) 949 NewWidth = 32; 950 else if (Width <= 64) 951 NewWidth = 64; 952 else 953 break; // Can't handle this. 954 955 if (Width != NewWidth) { 956 IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 957 if (CmpInst::isSigned(SrcPred)) { 958 SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 959 SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 960 } else { 961 SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 962 SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 963 } 964 } 965 } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 966 break; 967 968 Function *NewF = Intrinsic::getDeclaration( 969 II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 970 Value *Args[] = {SrcLHS, SrcRHS, 971 ConstantInt::get(CC->getType(), SrcPred)}; 972 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 973 NewCall->takeName(&II); 974 return IC.replaceInstUsesWith(II, NewCall); 975 } 976 977 break; 978 } 979 case Intrinsic::amdgcn_mbcnt_hi: { 980 // exec_hi is all 0, so this is just a copy. 981 if (ST->isWave32()) 982 return IC.replaceInstUsesWith(II, II.getArgOperand(1)); 983 break; 984 } 985 case Intrinsic::amdgcn_ballot: { 986 if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 987 if (Src->isZero()) { 988 // amdgcn.ballot(i1 0) is zero. 989 return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 990 } 991 } 992 if (ST->isWave32() && II.getType()->getIntegerBitWidth() == 64) { 993 // %b64 = call i64 ballot.i64(...) 994 // => 995 // %b32 = call i32 ballot.i32(...) 996 // %b64 = zext i32 %b32 to i64 997 Value *Call = IC.Builder.CreateZExt( 998 IC.Builder.CreateIntrinsic(Intrinsic::amdgcn_ballot, 999 {IC.Builder.getInt32Ty()}, 1000 {II.getArgOperand(0)}), 1001 II.getType()); 1002 Call->takeName(&II); 1003 return IC.replaceInstUsesWith(II, Call); 1004 } 1005 break; 1006 } 1007 case Intrinsic::amdgcn_wqm_vote: { 1008 // wqm_vote is identity when the argument is constant. 1009 if (!isa<Constant>(II.getArgOperand(0))) 1010 break; 1011 1012 return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 1013 } 1014 case Intrinsic::amdgcn_kill: { 1015 const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 1016 if (!C || !C->getZExtValue()) 1017 break; 1018 1019 // amdgcn.kill(i1 1) is a no-op 1020 return IC.eraseInstFromFunction(II); 1021 } 1022 case Intrinsic::amdgcn_update_dpp: { 1023 Value *Old = II.getArgOperand(0); 1024 1025 auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 1026 auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 1027 auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 1028 if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 1029 BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 1030 break; 1031 1032 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 1033 return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 1034 } 1035 case Intrinsic::amdgcn_permlane16: 1036 case Intrinsic::amdgcn_permlane16_var: 1037 case Intrinsic::amdgcn_permlanex16: 1038 case Intrinsic::amdgcn_permlanex16_var: { 1039 // Discard vdst_in if it's not going to be read. 1040 Value *VDstIn = II.getArgOperand(0); 1041 if (isa<UndefValue>(VDstIn)) 1042 break; 1043 1044 // FetchInvalid operand idx. 1045 unsigned int FiIdx = (IID == Intrinsic::amdgcn_permlane16 || 1046 IID == Intrinsic::amdgcn_permlanex16) 1047 ? 4 /* for permlane16 and permlanex16 */ 1048 : 3; /* for permlane16_var and permlanex16_var */ 1049 1050 // BoundCtrl operand idx. 1051 // For permlane16 and permlanex16 it should be 5 1052 // For Permlane16_var and permlanex16_var it should be 4 1053 unsigned int BcIdx = FiIdx + 1; 1054 1055 ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(FiIdx)); 1056 ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(BcIdx)); 1057 if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 1058 break; 1059 1060 return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 1061 } 1062 case Intrinsic::amdgcn_permlane64: 1063 // A constant value is trivially uniform. 1064 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 1065 return IC.replaceInstUsesWith(II, C); 1066 } 1067 break; 1068 case Intrinsic::amdgcn_readfirstlane: 1069 case Intrinsic::amdgcn_readlane: { 1070 // A constant value is trivially uniform. 1071 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 1072 return IC.replaceInstUsesWith(II, C); 1073 } 1074 1075 // The rest of these may not be safe if the exec may not be the same between 1076 // the def and use. 1077 Value *Src = II.getArgOperand(0); 1078 Instruction *SrcInst = dyn_cast<Instruction>(Src); 1079 if (SrcInst && SrcInst->getParent() != II.getParent()) 1080 break; 1081 1082 // readfirstlane (readfirstlane x) -> readfirstlane x 1083 // readlane (readfirstlane x), y -> readfirstlane x 1084 if (match(Src, 1085 PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 1086 return IC.replaceInstUsesWith(II, Src); 1087 } 1088 1089 if (IID == Intrinsic::amdgcn_readfirstlane) { 1090 // readfirstlane (readlane x, y) -> readlane x, y 1091 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 1092 return IC.replaceInstUsesWith(II, Src); 1093 } 1094 } else { 1095 // readlane (readlane x, y), y -> readlane x, y 1096 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 1097 PatternMatch::m_Value(), 1098 PatternMatch::m_Specific(II.getArgOperand(1))))) { 1099 return IC.replaceInstUsesWith(II, Src); 1100 } 1101 } 1102 1103 break; 1104 } 1105 case Intrinsic::amdgcn_trig_preop: { 1106 // The intrinsic is declared with name mangling, but currently the 1107 // instruction only exists for f64 1108 if (!II.getType()->isDoubleTy()) 1109 break; 1110 1111 Value *Src = II.getArgOperand(0); 1112 Value *Segment = II.getArgOperand(1); 1113 if (isa<PoisonValue>(Src) || isa<PoisonValue>(Segment)) 1114 return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 1115 1116 if (isa<UndefValue>(Src)) { 1117 auto *QNaN = ConstantFP::get( 1118 II.getType(), APFloat::getQNaN(II.getType()->getFltSemantics())); 1119 return IC.replaceInstUsesWith(II, QNaN); 1120 } 1121 1122 const ConstantFP *Csrc = dyn_cast<ConstantFP>(Src); 1123 if (!Csrc) 1124 break; 1125 1126 if (II.isStrictFP()) 1127 break; 1128 1129 const APFloat &Fsrc = Csrc->getValueAPF(); 1130 if (Fsrc.isNaN()) { 1131 auto *Quieted = ConstantFP::get(II.getType(), Fsrc.makeQuiet()); 1132 return IC.replaceInstUsesWith(II, Quieted); 1133 } 1134 1135 const ConstantInt *Cseg = dyn_cast<ConstantInt>(Segment); 1136 if (!Cseg) 1137 break; 1138 1139 unsigned Exponent = (Fsrc.bitcastToAPInt().getZExtValue() >> 52) & 0x7ff; 1140 unsigned SegmentVal = Cseg->getValue().trunc(5).getZExtValue(); 1141 unsigned Shift = SegmentVal * 53; 1142 if (Exponent > 1077) 1143 Shift += Exponent - 1077; 1144 1145 // 2.0/PI table. 1146 static const uint32_t TwoByPi[] = { 1147 0xa2f9836e, 0x4e441529, 0xfc2757d1, 0xf534ddc0, 0xdb629599, 0x3c439041, 1148 0xfe5163ab, 0xdebbc561, 0xb7246e3a, 0x424dd2e0, 0x06492eea, 0x09d1921c, 1149 0xfe1deb1c, 0xb129a73e, 0xe88235f5, 0x2ebb4484, 0xe99c7026, 0xb45f7e41, 1150 0x3991d639, 0x835339f4, 0x9c845f8b, 0xbdf9283b, 0x1ff897ff, 0xde05980f, 1151 0xef2f118b, 0x5a0a6d1f, 0x6d367ecf, 0x27cb09b7, 0x4f463f66, 0x9e5fea2d, 1152 0x7527bac7, 0xebe5f17b, 0x3d0739f7, 0x8a5292ea, 0x6bfb5fb1, 0x1f8d5d08, 1153 0x56033046}; 1154 1155 // Return 0 for outbound segment (hardware behavior). 1156 unsigned Idx = Shift >> 5; 1157 if (Idx + 2 >= std::size(TwoByPi)) { 1158 APFloat Zero = APFloat::getZero(II.getType()->getFltSemantics()); 1159 return IC.replaceInstUsesWith(II, ConstantFP::get(II.getType(), Zero)); 1160 } 1161 1162 unsigned BShift = Shift & 0x1f; 1163 uint64_t Thi = Make_64(TwoByPi[Idx], TwoByPi[Idx + 1]); 1164 uint64_t Tlo = Make_64(TwoByPi[Idx + 2], 0); 1165 if (BShift) 1166 Thi = (Thi << BShift) | (Tlo >> (64 - BShift)); 1167 Thi = Thi >> 11; 1168 APFloat Result = APFloat((double)Thi); 1169 1170 int Scale = -53 - Shift; 1171 if (Exponent >= 1968) 1172 Scale += 128; 1173 1174 Result = scalbn(Result, Scale, RoundingMode::NearestTiesToEven); 1175 return IC.replaceInstUsesWith(II, ConstantFP::get(Src->getType(), Result)); 1176 } 1177 case Intrinsic::amdgcn_fmul_legacy: { 1178 Value *Op0 = II.getArgOperand(0); 1179 Value *Op1 = II.getArgOperand(1); 1180 1181 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1182 // infinity, gives +0.0. 1183 // TODO: Move to InstSimplify? 1184 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1185 match(Op1, PatternMatch::m_AnyZeroFP())) 1186 return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType())); 1187 1188 // If we can prove we don't have one of the special cases then we can use a 1189 // normal fmul instruction instead. 1190 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1191 auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 1192 FMul->takeName(&II); 1193 return IC.replaceInstUsesWith(II, FMul); 1194 } 1195 break; 1196 } 1197 case Intrinsic::amdgcn_fma_legacy: { 1198 Value *Op0 = II.getArgOperand(0); 1199 Value *Op1 = II.getArgOperand(1); 1200 Value *Op2 = II.getArgOperand(2); 1201 1202 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1203 // infinity, gives +0.0. 1204 // TODO: Move to InstSimplify? 1205 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1206 match(Op1, PatternMatch::m_AnyZeroFP())) { 1207 // It's tempting to just return Op2 here, but that would give the wrong 1208 // result if Op2 was -0.0. 1209 auto *Zero = ConstantFP::getZero(II.getType()); 1210 auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 1211 FAdd->takeName(&II); 1212 return IC.replaceInstUsesWith(II, FAdd); 1213 } 1214 1215 // If we can prove we don't have one of the special cases then we can use a 1216 // normal fma instead. 1217 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1218 II.setCalledOperand(Intrinsic::getDeclaration( 1219 II.getModule(), Intrinsic::fma, II.getType())); 1220 return &II; 1221 } 1222 break; 1223 } 1224 case Intrinsic::amdgcn_is_shared: 1225 case Intrinsic::amdgcn_is_private: { 1226 if (isa<UndefValue>(II.getArgOperand(0))) 1227 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 1228 1229 if (isa<ConstantPointerNull>(II.getArgOperand(0))) 1230 return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 1231 break; 1232 } 1233 case Intrinsic::amdgcn_raw_buffer_store_format: 1234 case Intrinsic::amdgcn_struct_buffer_store_format: 1235 case Intrinsic::amdgcn_raw_tbuffer_store: 1236 case Intrinsic::amdgcn_struct_tbuffer_store: 1237 case Intrinsic::amdgcn_image_store_1d: 1238 case Intrinsic::amdgcn_image_store_1darray: 1239 case Intrinsic::amdgcn_image_store_2d: 1240 case Intrinsic::amdgcn_image_store_2darray: 1241 case Intrinsic::amdgcn_image_store_2darraymsaa: 1242 case Intrinsic::amdgcn_image_store_2dmsaa: 1243 case Intrinsic::amdgcn_image_store_3d: 1244 case Intrinsic::amdgcn_image_store_cube: 1245 case Intrinsic::amdgcn_image_store_mip_1d: 1246 case Intrinsic::amdgcn_image_store_mip_1darray: 1247 case Intrinsic::amdgcn_image_store_mip_2d: 1248 case Intrinsic::amdgcn_image_store_mip_2darray: 1249 case Intrinsic::amdgcn_image_store_mip_3d: 1250 case Intrinsic::amdgcn_image_store_mip_cube: { 1251 if (!isa<FixedVectorType>(II.getArgOperand(0)->getType())) 1252 break; 1253 1254 APInt DemandedElts; 1255 if (ST->hasDefaultComponentBroadcast()) 1256 DemandedElts = defaultComponentBroadcast(II.getArgOperand(0)); 1257 else if (ST->hasDefaultComponentZero()) 1258 DemandedElts = trimTrailingZerosInVector(IC, II.getArgOperand(0), &II); 1259 else 1260 break; 1261 1262 int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1; 1263 if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, 1264 false)) { 1265 return IC.eraseInstFromFunction(II); 1266 } 1267 1268 break; 1269 } 1270 } 1271 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 1272 AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 1273 return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 1274 } 1275 return std::nullopt; 1276 } 1277 1278 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1279 /// 1280 /// The result of simplifying amdgcn image and buffer store intrinsics is updating 1281 /// definitions of the intrinsics vector argument, not Uses of the result like 1282 /// image and buffer loads. 1283 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1284 /// struct returns. 1285 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 1286 IntrinsicInst &II, 1287 APInt DemandedElts, 1288 int DMaskIdx, bool IsLoad) { 1289 1290 auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType() 1291 : II.getOperand(0)->getType()); 1292 unsigned VWidth = IIVTy->getNumElements(); 1293 if (VWidth == 1) 1294 return nullptr; 1295 Type *EltTy = IIVTy->getElementType(); 1296 1297 IRBuilderBase::InsertPointGuard Guard(IC.Builder); 1298 IC.Builder.SetInsertPoint(&II); 1299 1300 // Assume the arguments are unchanged and later override them, if needed. 1301 SmallVector<Value *, 16> Args(II.args()); 1302 1303 if (DMaskIdx < 0) { 1304 // Buffer case. 1305 1306 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1307 const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); 1308 1309 // Start assuming the prefix of elements is demanded, but possibly clear 1310 // some other bits if there are trailing zeros (unused components at front) 1311 // and update offset. 1312 DemandedElts = (1 << ActiveBits) - 1; 1313 1314 if (UnusedComponentsAtFront > 0) { 1315 static const unsigned InvalidOffsetIdx = 0xf; 1316 1317 unsigned OffsetIdx; 1318 switch (II.getIntrinsicID()) { 1319 case Intrinsic::amdgcn_raw_buffer_load: 1320 case Intrinsic::amdgcn_raw_ptr_buffer_load: 1321 OffsetIdx = 1; 1322 break; 1323 case Intrinsic::amdgcn_s_buffer_load: 1324 // If resulting type is vec3, there is no point in trimming the 1325 // load with updated offset, as the vec3 would most likely be widened to 1326 // vec4 anyway during lowering. 1327 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1328 OffsetIdx = InvalidOffsetIdx; 1329 else 1330 OffsetIdx = 1; 1331 break; 1332 case Intrinsic::amdgcn_struct_buffer_load: 1333 case Intrinsic::amdgcn_struct_ptr_buffer_load: 1334 OffsetIdx = 2; 1335 break; 1336 default: 1337 // TODO: handle tbuffer* intrinsics. 1338 OffsetIdx = InvalidOffsetIdx; 1339 break; 1340 } 1341 1342 if (OffsetIdx != InvalidOffsetIdx) { 1343 // Clear demanded bits and update the offset. 1344 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1345 auto *Offset = Args[OffsetIdx]; 1346 unsigned SingleComponentSizeInBits = 1347 IC.getDataLayout().getTypeSizeInBits(EltTy); 1348 unsigned OffsetAdd = 1349 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1350 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1351 Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 1352 } 1353 } 1354 } else { 1355 // Image case. 1356 1357 ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]); 1358 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1359 1360 // dmask 0 has special semantics, do not simplify. 1361 if (DMaskVal == 0) 1362 return nullptr; 1363 1364 // Mask off values that are undefined because the dmask doesn't cover them 1365 DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1; 1366 1367 unsigned NewDMaskVal = 0; 1368 unsigned OrigLdStIdx = 0; 1369 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1370 const unsigned Bit = 1 << SrcIdx; 1371 if (!!(DMaskVal & Bit)) { 1372 if (!!DemandedElts[OrigLdStIdx]) 1373 NewDMaskVal |= Bit; 1374 OrigLdStIdx++; 1375 } 1376 } 1377 1378 if (DMaskVal != NewDMaskVal) 1379 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1380 } 1381 1382 unsigned NewNumElts = DemandedElts.popcount(); 1383 if (!NewNumElts) 1384 return PoisonValue::get(IIVTy); 1385 1386 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1387 if (DMaskIdx >= 0) 1388 II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1389 return nullptr; 1390 } 1391 1392 // Validate function argument and return types, extracting overloaded types 1393 // along the way. 1394 SmallVector<Type *, 6> OverloadTys; 1395 if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1396 return nullptr; 1397 1398 Type *NewTy = 1399 (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1400 OverloadTys[0] = NewTy; 1401 1402 if (!IsLoad) { 1403 SmallVector<int, 8> EltMask; 1404 for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) 1405 if (DemandedElts[OrigStoreIdx]) 1406 EltMask.push_back(OrigStoreIdx); 1407 1408 if (NewNumElts == 1) 1409 Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]); 1410 else 1411 Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask); 1412 } 1413 1414 Function *NewIntrin = Intrinsic::getDeclaration( 1415 II.getModule(), II.getIntrinsicID(), OverloadTys); 1416 CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1417 NewCall->takeName(&II); 1418 NewCall->copyMetadata(II); 1419 1420 if (IsLoad) { 1421 if (NewNumElts == 1) { 1422 return IC.Builder.CreateInsertElement(PoisonValue::get(IIVTy), NewCall, 1423 DemandedElts.countr_zero()); 1424 } 1425 1426 SmallVector<int, 8> EltMask; 1427 unsigned NewLoadIdx = 0; 1428 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1429 if (!!DemandedElts[OrigLoadIdx]) 1430 EltMask.push_back(NewLoadIdx++); 1431 else 1432 EltMask.push_back(NewNumElts); 1433 } 1434 1435 auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1436 1437 return Shuffle; 1438 } 1439 1440 return NewCall; 1441 } 1442 1443 std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1444 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1445 APInt &UndefElts2, APInt &UndefElts3, 1446 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1447 SimplifyAndSetOp) const { 1448 switch (II.getIntrinsicID()) { 1449 case Intrinsic::amdgcn_raw_buffer_load: 1450 case Intrinsic::amdgcn_raw_ptr_buffer_load: 1451 case Intrinsic::amdgcn_raw_buffer_load_format: 1452 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: 1453 case Intrinsic::amdgcn_raw_tbuffer_load: 1454 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: 1455 case Intrinsic::amdgcn_s_buffer_load: 1456 case Intrinsic::amdgcn_struct_buffer_load: 1457 case Intrinsic::amdgcn_struct_ptr_buffer_load: 1458 case Intrinsic::amdgcn_struct_buffer_load_format: 1459 case Intrinsic::amdgcn_struct_ptr_buffer_load_format: 1460 case Intrinsic::amdgcn_struct_tbuffer_load: 1461 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: 1462 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1463 default: { 1464 if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1465 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1466 } 1467 break; 1468 } 1469 } 1470 return std::nullopt; 1471 } 1472