1 //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "GCNSubtarget.h" 20 #include "llvm/ADT/FloatingPointMode.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/Transforms/InstCombine/InstCombiner.h" 23 #include <optional> 24 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "AMDGPUtti" 29 30 namespace { 31 32 struct AMDGPUImageDMaskIntrinsic { 33 unsigned Intr; 34 }; 35 36 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 37 #include "InstCombineTables.inc" 38 39 } // end anonymous namespace 40 41 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 42 // 43 // A single NaN input is folded to minnum, so we rely on that folding for 44 // handling NaNs. 45 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 46 const APFloat &Src2) { 47 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 48 49 APFloat::cmpResult Cmp0 = Max3.compare(Src0); 50 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 51 if (Cmp0 == APFloat::cmpEqual) 52 return maxnum(Src1, Src2); 53 54 APFloat::cmpResult Cmp1 = Max3.compare(Src1); 55 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 56 if (Cmp1 == APFloat::cmpEqual) 57 return maxnum(Src0, Src2); 58 59 return maxnum(Src0, Src1); 60 } 61 62 // Check if a value can be converted to a 16-bit value without losing 63 // precision. 64 // The value is expected to be either a float (IsFloat = true) or an unsigned 65 // integer (IsFloat = false). 66 static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { 67 Type *VTy = V.getType(); 68 if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 69 // The value is already 16-bit, so we don't want to convert to 16-bit again! 70 return false; 71 } 72 if (IsFloat) { 73 if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 74 // We need to check that if we cast the index down to a half, we do not 75 // lose precision. 76 APFloat FloatValue(ConstFloat->getValueAPF()); 77 bool LosesInfo = true; 78 FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, 79 &LosesInfo); 80 return !LosesInfo; 81 } 82 } else { 83 if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) { 84 // We need to check that if we cast the index down to an i16, we do not 85 // lose precision. 86 APInt IntValue(ConstInt->getValue()); 87 return IntValue.getActiveBits() <= 16; 88 } 89 } 90 91 Value *CastSrc; 92 bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) 93 : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); 94 if (IsExt) { 95 Type *CastSrcTy = CastSrc->getType(); 96 if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 97 return true; 98 } 99 100 return false; 101 } 102 103 // Convert a value to 16-bit. 104 static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 105 Type *VTy = V.getType(); 106 if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 107 return cast<Instruction>(&V)->getOperand(0); 108 if (VTy->isIntegerTy()) 109 return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 110 if (VTy->isFloatingPointTy()) 111 return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 112 113 llvm_unreachable("Should never be called!"); 114 } 115 116 /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with 117 /// modified arguments (based on OldIntr) and replaces InstToReplace with 118 /// this newly created intrinsic call. 119 static std::optional<Instruction *> modifyIntrinsicCall( 120 IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, 121 InstCombiner &IC, 122 std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> 123 Func) { 124 SmallVector<Type *, 4> ArgTys; 125 if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys)) 126 return std::nullopt; 127 128 SmallVector<Value *, 8> Args(OldIntr.args()); 129 130 // Modify arguments and types 131 Func(Args, ArgTys); 132 133 Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys); 134 135 CallInst *NewCall = IC.Builder.CreateCall(I, Args); 136 NewCall->takeName(&OldIntr); 137 NewCall->copyMetadata(OldIntr); 138 if (isa<FPMathOperator>(NewCall)) 139 NewCall->copyFastMathFlags(&OldIntr); 140 141 // Erase and replace uses 142 if (!InstToReplace.getType()->isVoidTy()) 143 IC.replaceInstUsesWith(InstToReplace, NewCall); 144 145 bool RemoveOldIntr = &OldIntr != &InstToReplace; 146 147 auto RetValue = IC.eraseInstFromFunction(InstToReplace); 148 if (RemoveOldIntr) 149 IC.eraseInstFromFunction(OldIntr); 150 151 return RetValue; 152 } 153 154 static std::optional<Instruction *> 155 simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 156 const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 157 IntrinsicInst &II, InstCombiner &IC) { 158 // Optimize _L to _LZ when _L is zero 159 if (const auto *LZMappingInfo = 160 AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 161 if (auto *ConstantLod = 162 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) { 163 if (ConstantLod->isZero() || ConstantLod->isNegative()) { 164 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 165 AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, 166 ImageDimIntr->Dim); 167 return modifyIntrinsicCall( 168 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 169 Args.erase(Args.begin() + ImageDimIntr->LodIndex); 170 }); 171 } 172 } 173 } 174 175 // Optimize _mip away, when 'lod' is zero 176 if (const auto *MIPMappingInfo = 177 AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 178 if (auto *ConstantMip = 179 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) { 180 if (ConstantMip->isZero()) { 181 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 182 AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, 183 ImageDimIntr->Dim); 184 return modifyIntrinsicCall( 185 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 186 Args.erase(Args.begin() + ImageDimIntr->MipIndex); 187 }); 188 } 189 } 190 } 191 192 // Optimize _bias away when 'bias' is zero 193 if (const auto *BiasMappingInfo = 194 AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { 195 if (auto *ConstantBias = 196 dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) { 197 if (ConstantBias->isZero()) { 198 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 199 AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, 200 ImageDimIntr->Dim); 201 return modifyIntrinsicCall( 202 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 203 Args.erase(Args.begin() + ImageDimIntr->BiasIndex); 204 ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); 205 }); 206 } 207 } 208 } 209 210 // Optimize _offset away when 'offset' is zero 211 if (const auto *OffsetMappingInfo = 212 AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { 213 if (auto *ConstantOffset = 214 dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) { 215 if (ConstantOffset->isZero()) { 216 const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 217 AMDGPU::getImageDimIntrinsicByBaseOpcode( 218 OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); 219 return modifyIntrinsicCall( 220 II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 221 Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); 222 }); 223 } 224 } 225 } 226 227 // Try to use D16 228 if (ST->hasD16Images()) { 229 230 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 231 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 232 233 if (BaseOpcode->HasD16) { 234 235 // If the only use of image intrinsic is a fptrunc (with conversion to 236 // half) then both fptrunc and image intrinsic will be replaced with image 237 // intrinsic with D16 flag. 238 if (II.hasOneUse()) { 239 Instruction *User = II.user_back(); 240 241 if (User->getOpcode() == Instruction::FPTrunc && 242 User->getType()->getScalarType()->isHalfTy()) { 243 244 return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC, 245 [&](auto &Args, auto &ArgTys) { 246 // Change return type of image intrinsic. 247 // Set it to return type of fptrunc. 248 ArgTys[0] = User->getType(); 249 }); 250 } 251 } 252 } 253 } 254 255 // Try to use A16 or G16 256 if (!ST->hasA16() && !ST->hasG16()) 257 return std::nullopt; 258 259 // Address is interpreted as float if the instruction has a sampler or as 260 // unsigned int if there is no sampler. 261 bool HasSampler = 262 AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; 263 bool FloatCoord = false; 264 // true means derivatives can be converted to 16 bit, coordinates not 265 bool OnlyDerivatives = false; 266 267 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 268 OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 269 Value *Coord = II.getOperand(OperandIndex); 270 // If the values are not derived from 16-bit values, we cannot optimize. 271 if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { 272 if (OperandIndex < ImageDimIntr->CoordStart || 273 ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 274 return std::nullopt; 275 } 276 // All gradients can be converted, so convert only them 277 OnlyDerivatives = true; 278 break; 279 } 280 281 assert(OperandIndex == ImageDimIntr->GradientStart || 282 FloatCoord == Coord->getType()->isFloatingPointTy()); 283 FloatCoord = Coord->getType()->isFloatingPointTy(); 284 } 285 286 if (!OnlyDerivatives && !ST->hasA16()) 287 OnlyDerivatives = true; // Only supports G16 288 289 // Check if there is a bias parameter and if it can be converted to f16 290 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 291 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 292 assert(HasSampler && 293 "Only image instructions with a sampler can have a bias"); 294 if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) 295 OnlyDerivatives = true; 296 } 297 298 if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == 299 ImageDimIntr->CoordStart)) 300 return std::nullopt; 301 302 Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 303 : Type::getInt16Ty(II.getContext()); 304 305 return modifyIntrinsicCall( 306 II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { 307 ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 308 if (!OnlyDerivatives) { 309 ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 310 311 // Change the bias type 312 if (ImageDimIntr->NumBiasArgs != 0) 313 ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); 314 } 315 316 unsigned EndIndex = 317 OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 318 for (unsigned OperandIndex = ImageDimIntr->GradientStart; 319 OperandIndex < EndIndex; OperandIndex++) { 320 Args[OperandIndex] = 321 convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 322 } 323 324 // Convert the bias 325 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 326 Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 327 Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); 328 } 329 }); 330 } 331 332 bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, 333 const Value *Op0, const Value *Op1, 334 InstCombiner &IC) const { 335 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 336 // infinity, gives +0.0. If we can prove we don't have one of the special 337 // cases then we can use a normal multiply instead. 338 // TODO: Create and use isKnownFiniteNonZero instead of just matching 339 // constants here. 340 if (match(Op0, PatternMatch::m_FiniteNonZero()) || 341 match(Op1, PatternMatch::m_FiniteNonZero())) { 342 // One operand is not zero or infinity or NaN. 343 return true; 344 } 345 346 auto *TLI = &IC.getTargetLibraryInfo(); 347 if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0, 348 &IC.getAssumptionCache(), &I, 349 &IC.getDominatorTree()) && 350 isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0, 351 &IC.getAssumptionCache(), &I, 352 &IC.getDominatorTree())) { 353 // Neither operand is infinity or NaN. 354 return true; 355 } 356 return false; 357 } 358 359 /// Match an fpext from half to float, or a constant we can convert. 360 static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { 361 if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc))))) 362 return FPExtSrc->getType()->isHalfTy(); 363 364 ConstantFP *CFP; 365 if (match(Arg, m_ConstantFP(CFP))) { 366 bool LosesInfo; 367 APFloat Val(CFP->getValueAPF()); 368 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 369 if (LosesInfo) 370 return false; 371 372 FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val); 373 return true; 374 } 375 376 return false; 377 } 378 379 // Trim all zero components from the end of the vector \p UseV and return 380 // an appropriate bitset with known elements. 381 static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, 382 Instruction *I) { 383 auto *VTy = cast<FixedVectorType>(UseV->getType()); 384 unsigned VWidth = VTy->getNumElements(); 385 APInt DemandedElts = APInt::getAllOnes(VWidth); 386 387 for (int i = VWidth - 1; i > 0; --i) { 388 auto *Elt = findScalarElement(UseV, i); 389 if (!Elt) 390 break; 391 392 if (auto *ConstElt = dyn_cast<Constant>(Elt)) { 393 if (!ConstElt->isNullValue() && !isa<UndefValue>(Elt)) 394 break; 395 } else { 396 break; 397 } 398 399 DemandedElts.clearBit(i); 400 } 401 402 return DemandedElts; 403 } 404 405 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 406 IntrinsicInst &II, 407 APInt DemandedElts, 408 int DMaskIdx = -1, 409 bool IsLoad = true); 410 411 /// Return true if it's legal to contract llvm.amdgcn.rcp(llvm.sqrt) 412 static bool canContractSqrtToRsq(const FPMathOperator *SqrtOp) { 413 return (SqrtOp->getType()->isFloatTy() && 414 (SqrtOp->hasApproxFunc() || SqrtOp->getFPAccuracy() >= 1.0f)) || 415 SqrtOp->getType()->isHalfTy(); 416 } 417 418 std::optional<Instruction *> 419 GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 420 Intrinsic::ID IID = II.getIntrinsicID(); 421 switch (IID) { 422 case Intrinsic::amdgcn_rcp: { 423 Value *Src = II.getArgOperand(0); 424 425 // TODO: Move to ConstantFolding/InstSimplify? 426 if (isa<UndefValue>(Src)) { 427 Type *Ty = II.getType(); 428 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 429 return IC.replaceInstUsesWith(II, QNaN); 430 } 431 432 if (II.isStrictFP()) 433 break; 434 435 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 436 const APFloat &ArgVal = C->getValueAPF(); 437 APFloat Val(ArgVal.getSemantics(), 1); 438 Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 439 440 // This is more precise than the instruction may give. 441 // 442 // TODO: The instruction always flushes denormal results (except for f16), 443 // should this also? 444 return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 445 } 446 447 FastMathFlags FMF = cast<FPMathOperator>(II).getFastMathFlags(); 448 if (!FMF.allowContract()) 449 break; 450 auto *SrcCI = dyn_cast<IntrinsicInst>(Src); 451 if (!SrcCI) 452 break; 453 454 auto IID = SrcCI->getIntrinsicID(); 455 // llvm.amdgcn.rcp(llvm.amdgcn.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable 456 // 457 // llvm.amdgcn.rcp(llvm.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable and 458 // relaxed. 459 if (IID == Intrinsic::amdgcn_sqrt || IID == Intrinsic::sqrt) { 460 const FPMathOperator *SqrtOp = cast<FPMathOperator>(SrcCI); 461 FastMathFlags InnerFMF = SqrtOp->getFastMathFlags(); 462 if (!InnerFMF.allowContract() || !SrcCI->hasOneUse()) 463 break; 464 465 if (IID == Intrinsic::sqrt && !canContractSqrtToRsq(SqrtOp)) 466 break; 467 468 Function *NewDecl = Intrinsic::getDeclaration( 469 SrcCI->getModule(), Intrinsic::amdgcn_rsq, {SrcCI->getType()}); 470 471 InnerFMF |= FMF; 472 II.setFastMathFlags(InnerFMF); 473 474 II.setCalledFunction(NewDecl); 475 return IC.replaceOperand(II, 0, SrcCI->getArgOperand(0)); 476 } 477 478 break; 479 } 480 case Intrinsic::amdgcn_sqrt: 481 case Intrinsic::amdgcn_rsq: { 482 Value *Src = II.getArgOperand(0); 483 484 // TODO: Move to ConstantFolding/InstSimplify? 485 if (isa<UndefValue>(Src)) { 486 Type *Ty = II.getType(); 487 auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 488 return IC.replaceInstUsesWith(II, QNaN); 489 } 490 491 // f16 amdgcn.sqrt is identical to regular sqrt. 492 if (IID == Intrinsic::amdgcn_sqrt && Src->getType()->isHalfTy()) { 493 Function *NewDecl = Intrinsic::getDeclaration( 494 II.getModule(), Intrinsic::sqrt, {II.getType()}); 495 II.setCalledFunction(NewDecl); 496 return &II; 497 } 498 499 break; 500 } 501 case Intrinsic::amdgcn_log: 502 case Intrinsic::amdgcn_exp2: { 503 const bool IsLog = IID == Intrinsic::amdgcn_log; 504 const bool IsExp = IID == Intrinsic::amdgcn_exp2; 505 Value *Src = II.getArgOperand(0); 506 Type *Ty = II.getType(); 507 508 if (isa<PoisonValue>(Src)) 509 return IC.replaceInstUsesWith(II, Src); 510 511 if (IC.getSimplifyQuery().isUndefValue(Src)) 512 return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 513 514 if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 515 if (C->isInfinity()) { 516 // exp2(+inf) -> +inf 517 // log2(+inf) -> +inf 518 if (!C->isNegative()) 519 return IC.replaceInstUsesWith(II, C); 520 521 // exp2(-inf) -> 0 522 if (IsExp && C->isNegative()) 523 return IC.replaceInstUsesWith(II, ConstantFP::getZero(Ty)); 524 } 525 526 if (II.isStrictFP()) 527 break; 528 529 if (C->isNaN()) { 530 Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet()); 531 return IC.replaceInstUsesWith(II, Quieted); 532 } 533 534 // f32 instruction doesn't handle denormals, f16 does. 535 if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) { 536 Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, true) 537 : ConstantFP::get(Ty, 1.0); 538 return IC.replaceInstUsesWith(II, FoldedValue); 539 } 540 541 if (IsLog && C->isNegative()) 542 return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 543 544 // TODO: Full constant folding matching hardware behavior. 545 } 546 547 break; 548 } 549 case Intrinsic::amdgcn_frexp_mant: 550 case Intrinsic::amdgcn_frexp_exp: { 551 Value *Src = II.getArgOperand(0); 552 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 553 int Exp; 554 APFloat Significand = 555 frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 556 557 if (IID == Intrinsic::amdgcn_frexp_mant) { 558 return IC.replaceInstUsesWith( 559 II, ConstantFP::get(II.getContext(), Significand)); 560 } 561 562 // Match instruction special case behavior. 563 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 564 Exp = 0; 565 566 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 567 } 568 569 if (isa<UndefValue>(Src)) { 570 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 571 } 572 573 break; 574 } 575 case Intrinsic::amdgcn_class: { 576 Value *Src0 = II.getArgOperand(0); 577 Value *Src1 = II.getArgOperand(1); 578 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 579 if (CMask) { 580 II.setCalledOperand(Intrinsic::getDeclaration( 581 II.getModule(), Intrinsic::is_fpclass, Src0->getType())); 582 583 // Clamp any excess bits, as they're illegal for the generic intrinsic. 584 II.setArgOperand(1, ConstantInt::get(Src1->getType(), 585 CMask->getZExtValue() & fcAllFlags)); 586 return &II; 587 } 588 589 // Propagate poison. 590 if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1)) 591 return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 592 593 // llvm.amdgcn.class(_, undef) -> false 594 if (IC.getSimplifyQuery().isUndefValue(Src1)) 595 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 596 597 // llvm.amdgcn.class(undef, mask) -> mask != 0 598 if (IC.getSimplifyQuery().isUndefValue(Src0)) { 599 Value *CmpMask = IC.Builder.CreateICmpNE( 600 Src1, ConstantInt::getNullValue(Src1->getType())); 601 return IC.replaceInstUsesWith(II, CmpMask); 602 } 603 break; 604 } 605 case Intrinsic::amdgcn_cvt_pkrtz: { 606 Value *Src0 = II.getArgOperand(0); 607 Value *Src1 = II.getArgOperand(1); 608 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 609 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 610 const fltSemantics &HalfSem = 611 II.getType()->getScalarType()->getFltSemantics(); 612 bool LosesInfo; 613 APFloat Val0 = C0->getValueAPF(); 614 APFloat Val1 = C1->getValueAPF(); 615 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 616 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 617 618 Constant *Folded = 619 ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 620 ConstantFP::get(II.getContext(), Val1)}); 621 return IC.replaceInstUsesWith(II, Folded); 622 } 623 } 624 625 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 626 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 627 } 628 629 break; 630 } 631 case Intrinsic::amdgcn_cvt_pknorm_i16: 632 case Intrinsic::amdgcn_cvt_pknorm_u16: 633 case Intrinsic::amdgcn_cvt_pk_i16: 634 case Intrinsic::amdgcn_cvt_pk_u16: { 635 Value *Src0 = II.getArgOperand(0); 636 Value *Src1 = II.getArgOperand(1); 637 638 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 639 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 640 } 641 642 break; 643 } 644 case Intrinsic::amdgcn_ubfe: 645 case Intrinsic::amdgcn_sbfe: { 646 // Decompose simple cases into standard shifts. 647 Value *Src = II.getArgOperand(0); 648 if (isa<UndefValue>(Src)) { 649 return IC.replaceInstUsesWith(II, Src); 650 } 651 652 unsigned Width; 653 Type *Ty = II.getType(); 654 unsigned IntSize = Ty->getIntegerBitWidth(); 655 656 ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 657 if (CWidth) { 658 Width = CWidth->getZExtValue(); 659 if ((Width & (IntSize - 1)) == 0) { 660 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 661 } 662 663 // Hardware ignores high bits, so remove those. 664 if (Width >= IntSize) { 665 return IC.replaceOperand( 666 II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 667 } 668 } 669 670 unsigned Offset; 671 ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 672 if (COffset) { 673 Offset = COffset->getZExtValue(); 674 if (Offset >= IntSize) { 675 return IC.replaceOperand( 676 II, 1, 677 ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 678 } 679 } 680 681 bool Signed = IID == Intrinsic::amdgcn_sbfe; 682 683 if (!CWidth || !COffset) 684 break; 685 686 // The case of Width == 0 is handled above, which makes this transformation 687 // safe. If Width == 0, then the ashr and lshr instructions become poison 688 // value since the shift amount would be equal to the bit size. 689 assert(Width != 0); 690 691 // TODO: This allows folding to undef when the hardware has specific 692 // behavior? 693 if (Offset + Width < IntSize) { 694 Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 695 Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 696 : IC.Builder.CreateLShr(Shl, IntSize - Width); 697 RightShift->takeName(&II); 698 return IC.replaceInstUsesWith(II, RightShift); 699 } 700 701 Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 702 : IC.Builder.CreateLShr(Src, Offset); 703 704 RightShift->takeName(&II); 705 return IC.replaceInstUsesWith(II, RightShift); 706 } 707 case Intrinsic::amdgcn_exp: 708 case Intrinsic::amdgcn_exp_row: 709 case Intrinsic::amdgcn_exp_compr: { 710 ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 711 unsigned EnBits = En->getZExtValue(); 712 if (EnBits == 0xf) 713 break; // All inputs enabled. 714 715 bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 716 bool Changed = false; 717 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 718 if ((!IsCompr && (EnBits & (1 << I)) == 0) || 719 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 720 Value *Src = II.getArgOperand(I + 2); 721 if (!isa<UndefValue>(Src)) { 722 IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 723 Changed = true; 724 } 725 } 726 } 727 728 if (Changed) { 729 return &II; 730 } 731 732 break; 733 } 734 case Intrinsic::amdgcn_fmed3: { 735 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 736 // for the shader. 737 738 Value *Src0 = II.getArgOperand(0); 739 Value *Src1 = II.getArgOperand(1); 740 Value *Src2 = II.getArgOperand(2); 741 742 // Checking for NaN before canonicalization provides better fidelity when 743 // mapping other operations onto fmed3 since the order of operands is 744 // unchanged. 745 CallInst *NewCall = nullptr; 746 if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 747 NewCall = IC.Builder.CreateMinNum(Src1, Src2); 748 } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 749 NewCall = IC.Builder.CreateMinNum(Src0, Src2); 750 } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 751 NewCall = IC.Builder.CreateMaxNum(Src0, Src1); 752 } 753 754 if (NewCall) { 755 NewCall->copyFastMathFlags(&II); 756 NewCall->takeName(&II); 757 return IC.replaceInstUsesWith(II, NewCall); 758 } 759 760 bool Swap = false; 761 // Canonicalize constants to RHS operands. 762 // 763 // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 764 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 765 std::swap(Src0, Src1); 766 Swap = true; 767 } 768 769 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 770 std::swap(Src1, Src2); 771 Swap = true; 772 } 773 774 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 775 std::swap(Src0, Src1); 776 Swap = true; 777 } 778 779 if (Swap) { 780 II.setArgOperand(0, Src0); 781 II.setArgOperand(1, Src1); 782 II.setArgOperand(2, Src2); 783 return &II; 784 } 785 786 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 787 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 788 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 789 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 790 C2->getValueAPF()); 791 return IC.replaceInstUsesWith( 792 II, ConstantFP::get(IC.Builder.getContext(), Result)); 793 } 794 } 795 } 796 797 if (!ST->hasMed3_16()) 798 break; 799 800 Value *X, *Y, *Z; 801 802 // Repeat floating-point width reduction done for minnum/maxnum. 803 // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) 804 if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) && 805 matchFPExtFromF16(Src2, Z)) { 806 Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()}, 807 {X, Y, Z}, &II, II.getName()); 808 return new FPExtInst(NewCall, II.getType()); 809 } 810 811 break; 812 } 813 case Intrinsic::amdgcn_icmp: 814 case Intrinsic::amdgcn_fcmp: { 815 const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 816 // Guard against invalid arguments. 817 int64_t CCVal = CC->getZExtValue(); 818 bool IsInteger = IID == Intrinsic::amdgcn_icmp; 819 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 820 CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 821 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 822 CCVal > CmpInst::LAST_FCMP_PREDICATE))) 823 break; 824 825 Value *Src0 = II.getArgOperand(0); 826 Value *Src1 = II.getArgOperand(1); 827 828 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 829 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 830 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 831 if (CCmp->isNullValue()) { 832 return IC.replaceInstUsesWith( 833 II, IC.Builder.CreateSExt(CCmp, II.getType())); 834 } 835 836 // The result of V_ICMP/V_FCMP assembly instructions (which this 837 // intrinsic exposes) is one bit per thread, masked with the EXEC 838 // register (which contains the bitmask of live threads). So a 839 // comparison that always returns true is the same as a read of the 840 // EXEC register. 841 Function *NewF = Intrinsic::getDeclaration( 842 II.getModule(), Intrinsic::read_register, II.getType()); 843 Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 844 MDNode *MD = MDNode::get(II.getContext(), MDArgs); 845 Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 846 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 847 NewCall->addFnAttr(Attribute::Convergent); 848 NewCall->takeName(&II); 849 return IC.replaceInstUsesWith(II, NewCall); 850 } 851 852 // Canonicalize constants to RHS. 853 CmpInst::Predicate SwapPred = 854 CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 855 II.setArgOperand(0, Src1); 856 II.setArgOperand(1, Src0); 857 II.setArgOperand( 858 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 859 return &II; 860 } 861 862 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 863 break; 864 865 // Canonicalize compare eq with true value to compare != 0 866 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 867 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 868 // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 869 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 870 Value *ExtSrc; 871 if (CCVal == CmpInst::ICMP_EQ && 872 ((match(Src1, PatternMatch::m_One()) && 873 match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 874 (match(Src1, PatternMatch::m_AllOnes()) && 875 match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 876 ExtSrc->getType()->isIntegerTy(1)) { 877 IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 878 IC.replaceOperand(II, 2, 879 ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 880 return &II; 881 } 882 883 CmpInst::Predicate SrcPred; 884 Value *SrcLHS; 885 Value *SrcRHS; 886 887 // Fold compare eq/ne with 0 from a compare result as the predicate to the 888 // intrinsic. The typical use is a wave vote function in the library, which 889 // will be fed from a user code condition compared with 0. Fold in the 890 // redundant compare. 891 892 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 893 // -> llvm.amdgcn.[if]cmp(a, b, pred) 894 // 895 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 896 // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 897 if (match(Src1, PatternMatch::m_Zero()) && 898 match(Src0, PatternMatch::m_ZExtOrSExt( 899 m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 900 PatternMatch::m_Value(SrcRHS))))) { 901 if (CCVal == CmpInst::ICMP_EQ) 902 SrcPred = CmpInst::getInversePredicate(SrcPred); 903 904 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 905 ? Intrinsic::amdgcn_fcmp 906 : Intrinsic::amdgcn_icmp; 907 908 Type *Ty = SrcLHS->getType(); 909 if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 910 // Promote to next legal integer type. 911 unsigned Width = CmpType->getBitWidth(); 912 unsigned NewWidth = Width; 913 914 // Don't do anything for i1 comparisons. 915 if (Width == 1) 916 break; 917 918 if (Width <= 16) 919 NewWidth = 16; 920 else if (Width <= 32) 921 NewWidth = 32; 922 else if (Width <= 64) 923 NewWidth = 64; 924 else if (Width > 64) 925 break; // Can't handle this. 926 927 if (Width != NewWidth) { 928 IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 929 if (CmpInst::isSigned(SrcPred)) { 930 SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 931 SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 932 } else { 933 SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 934 SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 935 } 936 } 937 } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 938 break; 939 940 Function *NewF = Intrinsic::getDeclaration( 941 II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 942 Value *Args[] = {SrcLHS, SrcRHS, 943 ConstantInt::get(CC->getType(), SrcPred)}; 944 CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 945 NewCall->takeName(&II); 946 return IC.replaceInstUsesWith(II, NewCall); 947 } 948 949 break; 950 } 951 case Intrinsic::amdgcn_mbcnt_hi: { 952 // exec_hi is all 0, so this is just a copy. 953 if (ST->isWave32()) 954 return IC.replaceInstUsesWith(II, II.getArgOperand(1)); 955 break; 956 } 957 case Intrinsic::amdgcn_ballot: { 958 if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 959 if (Src->isZero()) { 960 // amdgcn.ballot(i1 0) is zero. 961 return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 962 } 963 } 964 break; 965 } 966 case Intrinsic::amdgcn_wqm_vote: { 967 // wqm_vote is identity when the argument is constant. 968 if (!isa<Constant>(II.getArgOperand(0))) 969 break; 970 971 return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 972 } 973 case Intrinsic::amdgcn_kill: { 974 const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 975 if (!C || !C->getZExtValue()) 976 break; 977 978 // amdgcn.kill(i1 1) is a no-op 979 return IC.eraseInstFromFunction(II); 980 } 981 case Intrinsic::amdgcn_update_dpp: { 982 Value *Old = II.getArgOperand(0); 983 984 auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 985 auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 986 auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 987 if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 988 BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 989 break; 990 991 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 992 return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 993 } 994 case Intrinsic::amdgcn_permlane16: 995 case Intrinsic::amdgcn_permlane16_var: 996 case Intrinsic::amdgcn_permlanex16: 997 case Intrinsic::amdgcn_permlanex16_var: { 998 // Discard vdst_in if it's not going to be read. 999 Value *VDstIn = II.getArgOperand(0); 1000 if (isa<UndefValue>(VDstIn)) 1001 break; 1002 1003 // FetchInvalid operand idx. 1004 unsigned int FiIdx = (IID == Intrinsic::amdgcn_permlane16 || 1005 IID == Intrinsic::amdgcn_permlanex16) 1006 ? 4 /* for permlane16 and permlanex16 */ 1007 : 3; /* for permlane16_var and permlanex16_var */ 1008 1009 // BoundCtrl operand idx. 1010 // For permlane16 and permlanex16 it should be 5 1011 // For Permlane16_var and permlanex16_var it should be 4 1012 unsigned int BcIdx = FiIdx + 1; 1013 1014 ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(FiIdx)); 1015 ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(BcIdx)); 1016 if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 1017 break; 1018 1019 return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 1020 } 1021 case Intrinsic::amdgcn_permlane64: 1022 // A constant value is trivially uniform. 1023 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 1024 return IC.replaceInstUsesWith(II, C); 1025 } 1026 break; 1027 case Intrinsic::amdgcn_readfirstlane: 1028 case Intrinsic::amdgcn_readlane: { 1029 // A constant value is trivially uniform. 1030 if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 1031 return IC.replaceInstUsesWith(II, C); 1032 } 1033 1034 // The rest of these may not be safe if the exec may not be the same between 1035 // the def and use. 1036 Value *Src = II.getArgOperand(0); 1037 Instruction *SrcInst = dyn_cast<Instruction>(Src); 1038 if (SrcInst && SrcInst->getParent() != II.getParent()) 1039 break; 1040 1041 // readfirstlane (readfirstlane x) -> readfirstlane x 1042 // readlane (readfirstlane x), y -> readfirstlane x 1043 if (match(Src, 1044 PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 1045 return IC.replaceInstUsesWith(II, Src); 1046 } 1047 1048 if (IID == Intrinsic::amdgcn_readfirstlane) { 1049 // readfirstlane (readlane x, y) -> readlane x, y 1050 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 1051 return IC.replaceInstUsesWith(II, Src); 1052 } 1053 } else { 1054 // readlane (readlane x, y), y -> readlane x, y 1055 if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 1056 PatternMatch::m_Value(), 1057 PatternMatch::m_Specific(II.getArgOperand(1))))) { 1058 return IC.replaceInstUsesWith(II, Src); 1059 } 1060 } 1061 1062 break; 1063 } 1064 case Intrinsic::amdgcn_fmul_legacy: { 1065 Value *Op0 = II.getArgOperand(0); 1066 Value *Op1 = II.getArgOperand(1); 1067 1068 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1069 // infinity, gives +0.0. 1070 // TODO: Move to InstSimplify? 1071 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1072 match(Op1, PatternMatch::m_AnyZeroFP())) 1073 return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType())); 1074 1075 // If we can prove we don't have one of the special cases then we can use a 1076 // normal fmul instruction instead. 1077 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1078 auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 1079 FMul->takeName(&II); 1080 return IC.replaceInstUsesWith(II, FMul); 1081 } 1082 break; 1083 } 1084 case Intrinsic::amdgcn_fma_legacy: { 1085 Value *Op0 = II.getArgOperand(0); 1086 Value *Op1 = II.getArgOperand(1); 1087 Value *Op2 = II.getArgOperand(2); 1088 1089 // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1090 // infinity, gives +0.0. 1091 // TODO: Move to InstSimplify? 1092 if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1093 match(Op1, PatternMatch::m_AnyZeroFP())) { 1094 // It's tempting to just return Op2 here, but that would give the wrong 1095 // result if Op2 was -0.0. 1096 auto *Zero = ConstantFP::getZero(II.getType()); 1097 auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 1098 FAdd->takeName(&II); 1099 return IC.replaceInstUsesWith(II, FAdd); 1100 } 1101 1102 // If we can prove we don't have one of the special cases then we can use a 1103 // normal fma instead. 1104 if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1105 II.setCalledOperand(Intrinsic::getDeclaration( 1106 II.getModule(), Intrinsic::fma, II.getType())); 1107 return &II; 1108 } 1109 break; 1110 } 1111 case Intrinsic::amdgcn_is_shared: 1112 case Intrinsic::amdgcn_is_private: { 1113 if (isa<UndefValue>(II.getArgOperand(0))) 1114 return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 1115 1116 if (isa<ConstantPointerNull>(II.getArgOperand(0))) 1117 return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 1118 break; 1119 } 1120 case Intrinsic::amdgcn_buffer_store_format: 1121 case Intrinsic::amdgcn_raw_buffer_store_format: 1122 case Intrinsic::amdgcn_struct_buffer_store_format: 1123 case Intrinsic::amdgcn_raw_tbuffer_store: 1124 case Intrinsic::amdgcn_struct_tbuffer_store: 1125 case Intrinsic::amdgcn_tbuffer_store: 1126 case Intrinsic::amdgcn_image_store_1d: 1127 case Intrinsic::amdgcn_image_store_1darray: 1128 case Intrinsic::amdgcn_image_store_2d: 1129 case Intrinsic::amdgcn_image_store_2darray: 1130 case Intrinsic::amdgcn_image_store_2darraymsaa: 1131 case Intrinsic::amdgcn_image_store_2dmsaa: 1132 case Intrinsic::amdgcn_image_store_3d: 1133 case Intrinsic::amdgcn_image_store_cube: 1134 case Intrinsic::amdgcn_image_store_mip_1d: 1135 case Intrinsic::amdgcn_image_store_mip_1darray: 1136 case Intrinsic::amdgcn_image_store_mip_2d: 1137 case Intrinsic::amdgcn_image_store_mip_2darray: 1138 case Intrinsic::amdgcn_image_store_mip_3d: 1139 case Intrinsic::amdgcn_image_store_mip_cube: { 1140 if (!isa<FixedVectorType>(II.getArgOperand(0)->getType())) 1141 break; 1142 1143 APInt DemandedElts = 1144 trimTrailingZerosInVector(IC, II.getArgOperand(0), &II); 1145 1146 int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1; 1147 if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, 1148 false)) { 1149 return IC.eraseInstFromFunction(II); 1150 } 1151 1152 break; 1153 } 1154 } 1155 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 1156 AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 1157 return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 1158 } 1159 return std::nullopt; 1160 } 1161 1162 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1163 /// 1164 /// The result of simplifying amdgcn image and buffer store intrinsics is updating 1165 /// definitions of the intrinsics vector argument, not Uses of the result like 1166 /// image and buffer loads. 1167 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1168 /// struct returns. 1169 static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 1170 IntrinsicInst &II, 1171 APInt DemandedElts, 1172 int DMaskIdx, bool IsLoad) { 1173 1174 auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType() 1175 : II.getOperand(0)->getType()); 1176 unsigned VWidth = IIVTy->getNumElements(); 1177 if (VWidth == 1) 1178 return nullptr; 1179 Type *EltTy = IIVTy->getElementType(); 1180 1181 IRBuilderBase::InsertPointGuard Guard(IC.Builder); 1182 IC.Builder.SetInsertPoint(&II); 1183 1184 // Assume the arguments are unchanged and later override them, if needed. 1185 SmallVector<Value *, 16> Args(II.args()); 1186 1187 if (DMaskIdx < 0) { 1188 // Buffer case. 1189 1190 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1191 const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); 1192 1193 // Start assuming the prefix of elements is demanded, but possibly clear 1194 // some other bits if there are trailing zeros (unused components at front) 1195 // and update offset. 1196 DemandedElts = (1 << ActiveBits) - 1; 1197 1198 if (UnusedComponentsAtFront > 0) { 1199 static const unsigned InvalidOffsetIdx = 0xf; 1200 1201 unsigned OffsetIdx; 1202 switch (II.getIntrinsicID()) { 1203 case Intrinsic::amdgcn_raw_buffer_load: 1204 case Intrinsic::amdgcn_raw_ptr_buffer_load: 1205 OffsetIdx = 1; 1206 break; 1207 case Intrinsic::amdgcn_s_buffer_load: 1208 // If resulting type is vec3, there is no point in trimming the 1209 // load with updated offset, as the vec3 would most likely be widened to 1210 // vec4 anyway during lowering. 1211 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1212 OffsetIdx = InvalidOffsetIdx; 1213 else 1214 OffsetIdx = 1; 1215 break; 1216 case Intrinsic::amdgcn_struct_buffer_load: 1217 case Intrinsic::amdgcn_struct_ptr_buffer_load: 1218 OffsetIdx = 2; 1219 break; 1220 default: 1221 // TODO: handle tbuffer* intrinsics. 1222 OffsetIdx = InvalidOffsetIdx; 1223 break; 1224 } 1225 1226 if (OffsetIdx != InvalidOffsetIdx) { 1227 // Clear demanded bits and update the offset. 1228 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1229 auto *Offset = Args[OffsetIdx]; 1230 unsigned SingleComponentSizeInBits = 1231 IC.getDataLayout().getTypeSizeInBits(EltTy); 1232 unsigned OffsetAdd = 1233 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1234 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1235 Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 1236 } 1237 } 1238 } else { 1239 // Image case. 1240 1241 ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]); 1242 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1243 1244 // dmask 0 has special semantics, do not simplify. 1245 if (DMaskVal == 0) 1246 return nullptr; 1247 1248 // Mask off values that are undefined because the dmask doesn't cover them 1249 DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1; 1250 1251 unsigned NewDMaskVal = 0; 1252 unsigned OrigLdStIdx = 0; 1253 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1254 const unsigned Bit = 1 << SrcIdx; 1255 if (!!(DMaskVal & Bit)) { 1256 if (!!DemandedElts[OrigLdStIdx]) 1257 NewDMaskVal |= Bit; 1258 OrigLdStIdx++; 1259 } 1260 } 1261 1262 if (DMaskVal != NewDMaskVal) 1263 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1264 } 1265 1266 unsigned NewNumElts = DemandedElts.popcount(); 1267 if (!NewNumElts) 1268 return PoisonValue::get(IIVTy); 1269 1270 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1271 if (DMaskIdx >= 0) 1272 II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1273 return nullptr; 1274 } 1275 1276 // Validate function argument and return types, extracting overloaded types 1277 // along the way. 1278 SmallVector<Type *, 6> OverloadTys; 1279 if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1280 return nullptr; 1281 1282 Type *NewTy = 1283 (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1284 OverloadTys[0] = NewTy; 1285 1286 if (!IsLoad) { 1287 SmallVector<int, 8> EltMask; 1288 for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) 1289 if (DemandedElts[OrigStoreIdx]) 1290 EltMask.push_back(OrigStoreIdx); 1291 1292 if (NewNumElts == 1) 1293 Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]); 1294 else 1295 Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask); 1296 } 1297 1298 Function *NewIntrin = Intrinsic::getDeclaration( 1299 II.getModule(), II.getIntrinsicID(), OverloadTys); 1300 CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1301 NewCall->takeName(&II); 1302 NewCall->copyMetadata(II); 1303 1304 if (IsLoad) { 1305 if (NewNumElts == 1) { 1306 return IC.Builder.CreateInsertElement(PoisonValue::get(IIVTy), NewCall, 1307 DemandedElts.countr_zero()); 1308 } 1309 1310 SmallVector<int, 8> EltMask; 1311 unsigned NewLoadIdx = 0; 1312 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1313 if (!!DemandedElts[OrigLoadIdx]) 1314 EltMask.push_back(NewLoadIdx++); 1315 else 1316 EltMask.push_back(NewNumElts); 1317 } 1318 1319 auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1320 1321 return Shuffle; 1322 } 1323 1324 return NewCall; 1325 } 1326 1327 std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1328 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1329 APInt &UndefElts2, APInt &UndefElts3, 1330 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1331 SimplifyAndSetOp) const { 1332 switch (II.getIntrinsicID()) { 1333 case Intrinsic::amdgcn_buffer_load: 1334 case Intrinsic::amdgcn_buffer_load_format: 1335 case Intrinsic::amdgcn_raw_buffer_load: 1336 case Intrinsic::amdgcn_raw_ptr_buffer_load: 1337 case Intrinsic::amdgcn_raw_buffer_load_format: 1338 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: 1339 case Intrinsic::amdgcn_raw_tbuffer_load: 1340 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: 1341 case Intrinsic::amdgcn_s_buffer_load: 1342 case Intrinsic::amdgcn_struct_buffer_load: 1343 case Intrinsic::amdgcn_struct_ptr_buffer_load: 1344 case Intrinsic::amdgcn_struct_buffer_load_format: 1345 case Intrinsic::amdgcn_struct_ptr_buffer_load_format: 1346 case Intrinsic::amdgcn_struct_tbuffer_load: 1347 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: 1348 case Intrinsic::amdgcn_tbuffer_load: 1349 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1350 default: { 1351 if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1352 return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1353 } 1354 break; 1355 } 1356 } 1357 return std::nullopt; 1358 } 1359