xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUInstCombineIntrinsic.cpp (revision bdd1243df58e60e85101c09001d9812a789b6bc4)
1e8d8bef9SDimitry Andric //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric //
9e8d8bef9SDimitry Andric // \file
10e8d8bef9SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the
11e8d8bef9SDimitry Andric // AMDGPU target machine. It uses the target's detailed information to provide
12e8d8bef9SDimitry Andric // more precise answers to certain TTI queries, while letting the target
13e8d8bef9SDimitry Andric // independent and default TTI implementations handle the rest.
14e8d8bef9SDimitry Andric //
15e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
16e8d8bef9SDimitry Andric 
17e8d8bef9SDimitry Andric #include "AMDGPUInstrInfo.h"
18e8d8bef9SDimitry Andric #include "AMDGPUTargetTransformInfo.h"
19e8d8bef9SDimitry Andric #include "GCNSubtarget.h"
20*bdd1243dSDimitry Andric #include "llvm/ADT/FloatingPointMode.h"
21e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
22e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h"
23*bdd1243dSDimitry Andric #include <optional>
24e8d8bef9SDimitry Andric 
25e8d8bef9SDimitry Andric using namespace llvm;
26e8d8bef9SDimitry Andric 
27e8d8bef9SDimitry Andric #define DEBUG_TYPE "AMDGPUtti"
28e8d8bef9SDimitry Andric 
29e8d8bef9SDimitry Andric namespace {
30e8d8bef9SDimitry Andric 
31e8d8bef9SDimitry Andric struct AMDGPUImageDMaskIntrinsic {
32e8d8bef9SDimitry Andric   unsigned Intr;
33e8d8bef9SDimitry Andric };
34e8d8bef9SDimitry Andric 
35e8d8bef9SDimitry Andric #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
36e8d8bef9SDimitry Andric #include "InstCombineTables.inc"
37e8d8bef9SDimitry Andric 
38e8d8bef9SDimitry Andric } // end anonymous namespace
39e8d8bef9SDimitry Andric 
40e8d8bef9SDimitry Andric // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
41e8d8bef9SDimitry Andric //
42e8d8bef9SDimitry Andric // A single NaN input is folded to minnum, so we rely on that folding for
43e8d8bef9SDimitry Andric // handling NaNs.
44e8d8bef9SDimitry Andric static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
45e8d8bef9SDimitry Andric                            const APFloat &Src2) {
46e8d8bef9SDimitry Andric   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
47e8d8bef9SDimitry Andric 
48e8d8bef9SDimitry Andric   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
49e8d8bef9SDimitry Andric   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
50e8d8bef9SDimitry Andric   if (Cmp0 == APFloat::cmpEqual)
51e8d8bef9SDimitry Andric     return maxnum(Src1, Src2);
52e8d8bef9SDimitry Andric 
53e8d8bef9SDimitry Andric   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
54e8d8bef9SDimitry Andric   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
55e8d8bef9SDimitry Andric   if (Cmp1 == APFloat::cmpEqual)
56e8d8bef9SDimitry Andric     return maxnum(Src0, Src2);
57e8d8bef9SDimitry Andric 
58e8d8bef9SDimitry Andric   return maxnum(Src0, Src1);
59e8d8bef9SDimitry Andric }
60e8d8bef9SDimitry Andric 
61e8d8bef9SDimitry Andric // Check if a value can be converted to a 16-bit value without losing
62e8d8bef9SDimitry Andric // precision.
6304eeddc0SDimitry Andric // The value is expected to be either a float (IsFloat = true) or an unsigned
6404eeddc0SDimitry Andric // integer (IsFloat = false).
6504eeddc0SDimitry Andric static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) {
66e8d8bef9SDimitry Andric   Type *VTy = V.getType();
67e8d8bef9SDimitry Andric   if (VTy->isHalfTy() || VTy->isIntegerTy(16)) {
68e8d8bef9SDimitry Andric     // The value is already 16-bit, so we don't want to convert to 16-bit again!
69e8d8bef9SDimitry Andric     return false;
70e8d8bef9SDimitry Andric   }
7104eeddc0SDimitry Andric   if (IsFloat) {
72e8d8bef9SDimitry Andric     if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) {
7304eeddc0SDimitry Andric       // We need to check that if we cast the index down to a half, we do not
7404eeddc0SDimitry Andric       // lose precision.
75e8d8bef9SDimitry Andric       APFloat FloatValue(ConstFloat->getValueAPF());
76e8d8bef9SDimitry Andric       bool LosesInfo = true;
7704eeddc0SDimitry Andric       FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero,
7804eeddc0SDimitry Andric                          &LosesInfo);
79e8d8bef9SDimitry Andric       return !LosesInfo;
80e8d8bef9SDimitry Andric     }
8104eeddc0SDimitry Andric   } else {
8204eeddc0SDimitry Andric     if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) {
8304eeddc0SDimitry Andric       // We need to check that if we cast the index down to an i16, we do not
8404eeddc0SDimitry Andric       // lose precision.
8504eeddc0SDimitry Andric       APInt IntValue(ConstInt->getValue());
8604eeddc0SDimitry Andric       return IntValue.getActiveBits() <= 16;
8704eeddc0SDimitry Andric     }
8804eeddc0SDimitry Andric   }
8904eeddc0SDimitry Andric 
90e8d8bef9SDimitry Andric   Value *CastSrc;
9104eeddc0SDimitry Andric   bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc)))
9204eeddc0SDimitry Andric                        : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc)));
9304eeddc0SDimitry Andric   if (IsExt) {
94e8d8bef9SDimitry Andric     Type *CastSrcTy = CastSrc->getType();
95e8d8bef9SDimitry Andric     if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16))
96e8d8bef9SDimitry Andric       return true;
97e8d8bef9SDimitry Andric   }
98e8d8bef9SDimitry Andric 
99e8d8bef9SDimitry Andric   return false;
100e8d8bef9SDimitry Andric }
101e8d8bef9SDimitry Andric 
102e8d8bef9SDimitry Andric // Convert a value to 16-bit.
103e8d8bef9SDimitry Andric static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) {
104e8d8bef9SDimitry Andric   Type *VTy = V.getType();
105e8d8bef9SDimitry Andric   if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V))
106e8d8bef9SDimitry Andric     return cast<Instruction>(&V)->getOperand(0);
107e8d8bef9SDimitry Andric   if (VTy->isIntegerTy())
108e8d8bef9SDimitry Andric     return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false);
109e8d8bef9SDimitry Andric   if (VTy->isFloatingPointTy())
110e8d8bef9SDimitry Andric     return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext()));
111e8d8bef9SDimitry Andric 
112e8d8bef9SDimitry Andric   llvm_unreachable("Should never be called!");
113e8d8bef9SDimitry Andric }
114e8d8bef9SDimitry Andric 
11581ad6265SDimitry Andric /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with
11681ad6265SDimitry Andric /// modified arguments (based on OldIntr) and replaces InstToReplace with
11781ad6265SDimitry Andric /// this newly created intrinsic call.
118*bdd1243dSDimitry Andric static std::optional<Instruction *> modifyIntrinsicCall(
11981ad6265SDimitry Andric     IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr,
12081ad6265SDimitry Andric     InstCombiner &IC,
12104eeddc0SDimitry Andric     std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)>
12204eeddc0SDimitry Andric         Func) {
12304eeddc0SDimitry Andric   SmallVector<Type *, 4> ArgTys;
12481ad6265SDimitry Andric   if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys))
125*bdd1243dSDimitry Andric     return std::nullopt;
12604eeddc0SDimitry Andric 
12781ad6265SDimitry Andric   SmallVector<Value *, 8> Args(OldIntr.args());
12804eeddc0SDimitry Andric 
12904eeddc0SDimitry Andric   // Modify arguments and types
13004eeddc0SDimitry Andric   Func(Args, ArgTys);
13104eeddc0SDimitry Andric 
13281ad6265SDimitry Andric   Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys);
13304eeddc0SDimitry Andric 
13404eeddc0SDimitry Andric   CallInst *NewCall = IC.Builder.CreateCall(I, Args);
13581ad6265SDimitry Andric   NewCall->takeName(&OldIntr);
13681ad6265SDimitry Andric   NewCall->copyMetadata(OldIntr);
13704eeddc0SDimitry Andric   if (isa<FPMathOperator>(NewCall))
13881ad6265SDimitry Andric     NewCall->copyFastMathFlags(&OldIntr);
13904eeddc0SDimitry Andric 
14004eeddc0SDimitry Andric   // Erase and replace uses
14181ad6265SDimitry Andric   if (!InstToReplace.getType()->isVoidTy())
14281ad6265SDimitry Andric     IC.replaceInstUsesWith(InstToReplace, NewCall);
14381ad6265SDimitry Andric 
14481ad6265SDimitry Andric   bool RemoveOldIntr = &OldIntr != &InstToReplace;
14581ad6265SDimitry Andric 
14681ad6265SDimitry Andric   auto RetValue = IC.eraseInstFromFunction(InstToReplace);
14781ad6265SDimitry Andric   if (RemoveOldIntr)
14881ad6265SDimitry Andric     IC.eraseInstFromFunction(OldIntr);
14981ad6265SDimitry Andric 
15081ad6265SDimitry Andric   return RetValue;
15104eeddc0SDimitry Andric }
15204eeddc0SDimitry Andric 
153*bdd1243dSDimitry Andric static std::optional<Instruction *>
154e8d8bef9SDimitry Andric simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST,
155e8d8bef9SDimitry Andric                              const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr,
156e8d8bef9SDimitry Andric                              IntrinsicInst &II, InstCombiner &IC) {
15704eeddc0SDimitry Andric   // Optimize _L to _LZ when _L is zero
15804eeddc0SDimitry Andric   if (const auto *LZMappingInfo =
15904eeddc0SDimitry Andric           AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) {
16004eeddc0SDimitry Andric     if (auto *ConstantLod =
16104eeddc0SDimitry Andric             dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) {
16204eeddc0SDimitry Andric       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
16304eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
16404eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ,
16504eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
16604eeddc0SDimitry Andric         return modifyIntrinsicCall(
16781ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
16804eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->LodIndex);
16904eeddc0SDimitry Andric             });
17004eeddc0SDimitry Andric       }
17104eeddc0SDimitry Andric     }
17204eeddc0SDimitry Andric   }
17304eeddc0SDimitry Andric 
17404eeddc0SDimitry Andric   // Optimize _mip away, when 'lod' is zero
17504eeddc0SDimitry Andric   if (const auto *MIPMappingInfo =
17604eeddc0SDimitry Andric           AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) {
17704eeddc0SDimitry Andric     if (auto *ConstantMip =
17804eeddc0SDimitry Andric             dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) {
17904eeddc0SDimitry Andric       if (ConstantMip->isZero()) {
18004eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
18104eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP,
18204eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
18304eeddc0SDimitry Andric         return modifyIntrinsicCall(
18481ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
18504eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->MipIndex);
18604eeddc0SDimitry Andric             });
18704eeddc0SDimitry Andric       }
18804eeddc0SDimitry Andric     }
18904eeddc0SDimitry Andric   }
19004eeddc0SDimitry Andric 
19104eeddc0SDimitry Andric   // Optimize _bias away when 'bias' is zero
19204eeddc0SDimitry Andric   if (const auto *BiasMappingInfo =
19304eeddc0SDimitry Andric           AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) {
19404eeddc0SDimitry Andric     if (auto *ConstantBias =
19504eeddc0SDimitry Andric             dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) {
19604eeddc0SDimitry Andric       if (ConstantBias->isZero()) {
19704eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
19804eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias,
19904eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
20004eeddc0SDimitry Andric         return modifyIntrinsicCall(
20181ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
20204eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->BiasIndex);
20304eeddc0SDimitry Andric               ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg);
20404eeddc0SDimitry Andric             });
20504eeddc0SDimitry Andric       }
20604eeddc0SDimitry Andric     }
20704eeddc0SDimitry Andric   }
20804eeddc0SDimitry Andric 
20904eeddc0SDimitry Andric   // Optimize _offset away when 'offset' is zero
21004eeddc0SDimitry Andric   if (const auto *OffsetMappingInfo =
21104eeddc0SDimitry Andric           AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) {
21204eeddc0SDimitry Andric     if (auto *ConstantOffset =
21304eeddc0SDimitry Andric             dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) {
21404eeddc0SDimitry Andric       if (ConstantOffset->isZero()) {
21504eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
21604eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(
21704eeddc0SDimitry Andric                 OffsetMappingInfo->NoOffset, ImageDimIntr->Dim);
21804eeddc0SDimitry Andric         return modifyIntrinsicCall(
21981ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
22004eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->OffsetIndex);
22104eeddc0SDimitry Andric             });
22204eeddc0SDimitry Andric       }
22304eeddc0SDimitry Andric     }
22404eeddc0SDimitry Andric   }
22504eeddc0SDimitry Andric 
22681ad6265SDimitry Andric   // Try to use D16
22781ad6265SDimitry Andric   if (ST->hasD16Images()) {
22881ad6265SDimitry Andric 
22981ad6265SDimitry Andric     const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
23081ad6265SDimitry Andric         AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode);
23181ad6265SDimitry Andric 
23281ad6265SDimitry Andric     if (BaseOpcode->HasD16) {
23381ad6265SDimitry Andric 
23481ad6265SDimitry Andric       // If the only use of image intrinsic is a fptrunc (with conversion to
23581ad6265SDimitry Andric       // half) then both fptrunc and image intrinsic will be replaced with image
23681ad6265SDimitry Andric       // intrinsic with D16 flag.
23781ad6265SDimitry Andric       if (II.hasOneUse()) {
23881ad6265SDimitry Andric         Instruction *User = II.user_back();
23981ad6265SDimitry Andric 
24081ad6265SDimitry Andric         if (User->getOpcode() == Instruction::FPTrunc &&
24181ad6265SDimitry Andric             User->getType()->getScalarType()->isHalfTy()) {
24281ad6265SDimitry Andric 
24381ad6265SDimitry Andric           return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC,
24481ad6265SDimitry Andric                                      [&](auto &Args, auto &ArgTys) {
24581ad6265SDimitry Andric                                        // Change return type of image intrinsic.
24681ad6265SDimitry Andric                                        // Set it to return type of fptrunc.
24781ad6265SDimitry Andric                                        ArgTys[0] = User->getType();
24881ad6265SDimitry Andric                                      });
24981ad6265SDimitry Andric         }
25081ad6265SDimitry Andric       }
25181ad6265SDimitry Andric     }
25281ad6265SDimitry Andric   }
25381ad6265SDimitry Andric 
25404eeddc0SDimitry Andric   // Try to use A16 or G16
255e8d8bef9SDimitry Andric   if (!ST->hasA16() && !ST->hasG16())
256*bdd1243dSDimitry Andric     return std::nullopt;
257e8d8bef9SDimitry Andric 
25804eeddc0SDimitry Andric   // Address is interpreted as float if the instruction has a sampler or as
25904eeddc0SDimitry Andric   // unsigned int if there is no sampler.
26004eeddc0SDimitry Andric   bool HasSampler =
26104eeddc0SDimitry Andric       AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler;
262e8d8bef9SDimitry Andric   bool FloatCoord = false;
263e8d8bef9SDimitry Andric   // true means derivatives can be converted to 16 bit, coordinates not
264e8d8bef9SDimitry Andric   bool OnlyDerivatives = false;
265e8d8bef9SDimitry Andric 
266e8d8bef9SDimitry Andric   for (unsigned OperandIndex = ImageDimIntr->GradientStart;
267e8d8bef9SDimitry Andric        OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) {
268e8d8bef9SDimitry Andric     Value *Coord = II.getOperand(OperandIndex);
269e8d8bef9SDimitry Andric     // If the values are not derived from 16-bit values, we cannot optimize.
27004eeddc0SDimitry Andric     if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) {
271e8d8bef9SDimitry Andric       if (OperandIndex < ImageDimIntr->CoordStart ||
272e8d8bef9SDimitry Andric           ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) {
273*bdd1243dSDimitry Andric         return std::nullopt;
274e8d8bef9SDimitry Andric       }
275e8d8bef9SDimitry Andric       // All gradients can be converted, so convert only them
276e8d8bef9SDimitry Andric       OnlyDerivatives = true;
277e8d8bef9SDimitry Andric       break;
278e8d8bef9SDimitry Andric     }
279e8d8bef9SDimitry Andric 
280e8d8bef9SDimitry Andric     assert(OperandIndex == ImageDimIntr->GradientStart ||
281e8d8bef9SDimitry Andric            FloatCoord == Coord->getType()->isFloatingPointTy());
282e8d8bef9SDimitry Andric     FloatCoord = Coord->getType()->isFloatingPointTy();
283e8d8bef9SDimitry Andric   }
284e8d8bef9SDimitry Andric 
28504eeddc0SDimitry Andric   if (!OnlyDerivatives && !ST->hasA16())
286e8d8bef9SDimitry Andric     OnlyDerivatives = true; // Only supports G16
28704eeddc0SDimitry Andric 
28804eeddc0SDimitry Andric   // Check if there is a bias parameter and if it can be converted to f16
28904eeddc0SDimitry Andric   if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) {
29004eeddc0SDimitry Andric     Value *Bias = II.getOperand(ImageDimIntr->BiasIndex);
29104eeddc0SDimitry Andric     assert(HasSampler &&
29204eeddc0SDimitry Andric            "Only image instructions with a sampler can have a bias");
29304eeddc0SDimitry Andric     if (!canSafelyConvertTo16Bit(*Bias, HasSampler))
29404eeddc0SDimitry Andric       OnlyDerivatives = true;
295e8d8bef9SDimitry Andric   }
296e8d8bef9SDimitry Andric 
29704eeddc0SDimitry Andric   if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart ==
29804eeddc0SDimitry Andric                                                ImageDimIntr->CoordStart))
299*bdd1243dSDimitry Andric     return std::nullopt;
30004eeddc0SDimitry Andric 
301e8d8bef9SDimitry Andric   Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext())
302e8d8bef9SDimitry Andric                                : Type::getInt16Ty(II.getContext());
303e8d8bef9SDimitry Andric 
30404eeddc0SDimitry Andric   return modifyIntrinsicCall(
30581ad6265SDimitry Andric       II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) {
306e8d8bef9SDimitry Andric         ArgTys[ImageDimIntr->GradientTyArg] = CoordType;
30704eeddc0SDimitry Andric         if (!OnlyDerivatives) {
308e8d8bef9SDimitry Andric           ArgTys[ImageDimIntr->CoordTyArg] = CoordType;
309e8d8bef9SDimitry Andric 
31004eeddc0SDimitry Andric           // Change the bias type
31104eeddc0SDimitry Andric           if (ImageDimIntr->NumBiasArgs != 0)
31204eeddc0SDimitry Andric             ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext());
31304eeddc0SDimitry Andric         }
314e8d8bef9SDimitry Andric 
315e8d8bef9SDimitry Andric         unsigned EndIndex =
316e8d8bef9SDimitry Andric             OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd;
317e8d8bef9SDimitry Andric         for (unsigned OperandIndex = ImageDimIntr->GradientStart;
318e8d8bef9SDimitry Andric              OperandIndex < EndIndex; OperandIndex++) {
319e8d8bef9SDimitry Andric           Args[OperandIndex] =
320e8d8bef9SDimitry Andric               convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder);
321e8d8bef9SDimitry Andric         }
322e8d8bef9SDimitry Andric 
32304eeddc0SDimitry Andric         // Convert the bias
32404eeddc0SDimitry Andric         if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) {
32504eeddc0SDimitry Andric           Value *Bias = II.getOperand(ImageDimIntr->BiasIndex);
32604eeddc0SDimitry Andric           Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder);
32704eeddc0SDimitry Andric         }
32804eeddc0SDimitry Andric       });
329e8d8bef9SDimitry Andric }
330e8d8bef9SDimitry Andric 
331e8d8bef9SDimitry Andric bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Value *Op0, const Value *Op1,
332e8d8bef9SDimitry Andric                                            InstCombiner &IC) const {
333e8d8bef9SDimitry Andric   // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
334e8d8bef9SDimitry Andric   // infinity, gives +0.0. If we can prove we don't have one of the special
335e8d8bef9SDimitry Andric   // cases then we can use a normal multiply instead.
336e8d8bef9SDimitry Andric   // TODO: Create and use isKnownFiniteNonZero instead of just matching
337e8d8bef9SDimitry Andric   // constants here.
338e8d8bef9SDimitry Andric   if (match(Op0, PatternMatch::m_FiniteNonZero()) ||
339e8d8bef9SDimitry Andric       match(Op1, PatternMatch::m_FiniteNonZero())) {
340e8d8bef9SDimitry Andric     // One operand is not zero or infinity or NaN.
341e8d8bef9SDimitry Andric     return true;
342e8d8bef9SDimitry Andric   }
343e8d8bef9SDimitry Andric   auto *TLI = &IC.getTargetLibraryInfo();
344e8d8bef9SDimitry Andric   if (isKnownNeverInfinity(Op0, TLI) && isKnownNeverNaN(Op0, TLI) &&
345e8d8bef9SDimitry Andric       isKnownNeverInfinity(Op1, TLI) && isKnownNeverNaN(Op1, TLI)) {
346e8d8bef9SDimitry Andric     // Neither operand is infinity or NaN.
347e8d8bef9SDimitry Andric     return true;
348e8d8bef9SDimitry Andric   }
349e8d8bef9SDimitry Andric   return false;
350e8d8bef9SDimitry Andric }
351e8d8bef9SDimitry Andric 
352*bdd1243dSDimitry Andric std::optional<Instruction *>
353e8d8bef9SDimitry Andric GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
354e8d8bef9SDimitry Andric   Intrinsic::ID IID = II.getIntrinsicID();
355e8d8bef9SDimitry Andric   switch (IID) {
356e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_rcp: {
357e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
358e8d8bef9SDimitry Andric 
359e8d8bef9SDimitry Andric     // TODO: Move to ConstantFolding/InstSimplify?
360e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
361e8d8bef9SDimitry Andric       Type *Ty = II.getType();
362e8d8bef9SDimitry Andric       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
363e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, QNaN);
364e8d8bef9SDimitry Andric     }
365e8d8bef9SDimitry Andric 
366e8d8bef9SDimitry Andric     if (II.isStrictFP())
367e8d8bef9SDimitry Andric       break;
368e8d8bef9SDimitry Andric 
369e8d8bef9SDimitry Andric     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
370e8d8bef9SDimitry Andric       const APFloat &ArgVal = C->getValueAPF();
371e8d8bef9SDimitry Andric       APFloat Val(ArgVal.getSemantics(), 1);
372e8d8bef9SDimitry Andric       Val.divide(ArgVal, APFloat::rmNearestTiesToEven);
373e8d8bef9SDimitry Andric 
374e8d8bef9SDimitry Andric       // This is more precise than the instruction may give.
375e8d8bef9SDimitry Andric       //
376e8d8bef9SDimitry Andric       // TODO: The instruction always flushes denormal results (except for f16),
377e8d8bef9SDimitry Andric       // should this also?
378e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val));
379e8d8bef9SDimitry Andric     }
380e8d8bef9SDimitry Andric 
381e8d8bef9SDimitry Andric     break;
382e8d8bef9SDimitry Andric   }
383*bdd1243dSDimitry Andric   case Intrinsic::amdgcn_sqrt:
384e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_rsq: {
385e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
386e8d8bef9SDimitry Andric 
387e8d8bef9SDimitry Andric     // TODO: Move to ConstantFolding/InstSimplify?
388e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
389e8d8bef9SDimitry Andric       Type *Ty = II.getType();
390e8d8bef9SDimitry Andric       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
391e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, QNaN);
392e8d8bef9SDimitry Andric     }
393e8d8bef9SDimitry Andric 
394e8d8bef9SDimitry Andric     break;
395e8d8bef9SDimitry Andric   }
396e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_frexp_mant:
397e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_frexp_exp: {
398e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
399e8d8bef9SDimitry Andric     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
400e8d8bef9SDimitry Andric       int Exp;
401e8d8bef9SDimitry Andric       APFloat Significand =
402e8d8bef9SDimitry Andric           frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven);
403e8d8bef9SDimitry Andric 
404e8d8bef9SDimitry Andric       if (IID == Intrinsic::amdgcn_frexp_mant) {
405e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(
406e8d8bef9SDimitry Andric             II, ConstantFP::get(II.getContext(), Significand));
407e8d8bef9SDimitry Andric       }
408e8d8bef9SDimitry Andric 
409e8d8bef9SDimitry Andric       // Match instruction special case behavior.
410e8d8bef9SDimitry Andric       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
411e8d8bef9SDimitry Andric         Exp = 0;
412e8d8bef9SDimitry Andric 
413e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp));
414e8d8bef9SDimitry Andric     }
415e8d8bef9SDimitry Andric 
416e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
417e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
418e8d8bef9SDimitry Andric     }
419e8d8bef9SDimitry Andric 
420e8d8bef9SDimitry Andric     break;
421e8d8bef9SDimitry Andric   }
422e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_class: {
423e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
424e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
425e8d8bef9SDimitry Andric     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
426e8d8bef9SDimitry Andric     if (!CMask) {
427e8d8bef9SDimitry Andric       if (isa<UndefValue>(Src0)) {
428e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
429e8d8bef9SDimitry Andric       }
430e8d8bef9SDimitry Andric 
431e8d8bef9SDimitry Andric       if (isa<UndefValue>(Src1)) {
432e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II,
433e8d8bef9SDimitry Andric                                       ConstantInt::get(II.getType(), false));
434e8d8bef9SDimitry Andric       }
435e8d8bef9SDimitry Andric       break;
436e8d8bef9SDimitry Andric     }
437e8d8bef9SDimitry Andric 
438e8d8bef9SDimitry Andric     uint32_t Mask = CMask->getZExtValue();
439e8d8bef9SDimitry Andric 
440e8d8bef9SDimitry Andric     // If all tests are made, it doesn't matter what the value is.
441*bdd1243dSDimitry Andric     if ((Mask & fcAllFlags) == fcAllFlags) {
442e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
443e8d8bef9SDimitry Andric     }
444e8d8bef9SDimitry Andric 
445*bdd1243dSDimitry Andric     if ((Mask & fcAllFlags) == 0) {
446e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false));
447e8d8bef9SDimitry Andric     }
448e8d8bef9SDimitry Andric 
449*bdd1243dSDimitry Andric     if (Mask == fcNan && !II.isStrictFP()) {
450e8d8bef9SDimitry Andric       // Equivalent of isnan. Replace with standard fcmp.
451e8d8bef9SDimitry Andric       Value *FCmp = IC.Builder.CreateFCmpUNO(Src0, Src0);
452e8d8bef9SDimitry Andric       FCmp->takeName(&II);
453e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, FCmp);
454e8d8bef9SDimitry Andric     }
455e8d8bef9SDimitry Andric 
456*bdd1243dSDimitry Andric     if (Mask == fcZero && !II.isStrictFP()) {
457e8d8bef9SDimitry Andric       // Equivalent of == 0.
458e8d8bef9SDimitry Andric       Value *FCmp =
459e8d8bef9SDimitry Andric           IC.Builder.CreateFCmpOEQ(Src0, ConstantFP::get(Src0->getType(), 0.0));
460e8d8bef9SDimitry Andric 
461e8d8bef9SDimitry Andric       FCmp->takeName(&II);
462e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, FCmp);
463e8d8bef9SDimitry Andric     }
464e8d8bef9SDimitry Andric 
465e8d8bef9SDimitry Andric     // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
466*bdd1243dSDimitry Andric     if ((Mask & fcNan) && isKnownNeverNaN(Src0, &IC.getTargetLibraryInfo())) {
467e8d8bef9SDimitry Andric       return IC.replaceOperand(
468*bdd1243dSDimitry Andric           II, 1, ConstantInt::get(Src1->getType(), Mask & ~fcNan));
469e8d8bef9SDimitry Andric     }
470e8d8bef9SDimitry Andric 
471e8d8bef9SDimitry Andric     const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
472e8d8bef9SDimitry Andric     if (!CVal) {
473e8d8bef9SDimitry Andric       if (isa<UndefValue>(Src0)) {
474e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
475e8d8bef9SDimitry Andric       }
476e8d8bef9SDimitry Andric 
477e8d8bef9SDimitry Andric       // Clamp mask to used bits
478*bdd1243dSDimitry Andric       if ((Mask & fcAllFlags) != Mask) {
479e8d8bef9SDimitry Andric         CallInst *NewCall = IC.Builder.CreateCall(
480e8d8bef9SDimitry Andric             II.getCalledFunction(),
481*bdd1243dSDimitry Andric             {Src0, ConstantInt::get(Src1->getType(), Mask & fcAllFlags)});
482e8d8bef9SDimitry Andric 
483e8d8bef9SDimitry Andric         NewCall->takeName(&II);
484e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, NewCall);
485e8d8bef9SDimitry Andric       }
486e8d8bef9SDimitry Andric 
487e8d8bef9SDimitry Andric       break;
488e8d8bef9SDimitry Andric     }
489e8d8bef9SDimitry Andric 
490e8d8bef9SDimitry Andric     const APFloat &Val = CVal->getValueAPF();
491e8d8bef9SDimitry Andric 
492e8d8bef9SDimitry Andric     bool Result =
493*bdd1243dSDimitry Andric         ((Mask & fcSNan) && Val.isNaN() && Val.isSignaling()) ||
494*bdd1243dSDimitry Andric         ((Mask & fcQNan) && Val.isNaN() && !Val.isSignaling()) ||
495*bdd1243dSDimitry Andric         ((Mask & fcNegInf) && Val.isInfinity() && Val.isNegative()) ||
496*bdd1243dSDimitry Andric         ((Mask & fcNegNormal) && Val.isNormal() && Val.isNegative()) ||
497*bdd1243dSDimitry Andric         ((Mask & fcNegSubnormal) && Val.isDenormal() && Val.isNegative()) ||
498*bdd1243dSDimitry Andric         ((Mask & fcNegZero) && Val.isZero() && Val.isNegative()) ||
499*bdd1243dSDimitry Andric         ((Mask & fcPosZero) && Val.isZero() && !Val.isNegative()) ||
500*bdd1243dSDimitry Andric         ((Mask & fcPosSubnormal) && Val.isDenormal() && !Val.isNegative()) ||
501*bdd1243dSDimitry Andric         ((Mask & fcPosNormal) && Val.isNormal() && !Val.isNegative()) ||
502*bdd1243dSDimitry Andric         ((Mask & fcPosInf) && Val.isInfinity() && !Val.isNegative());
503e8d8bef9SDimitry Andric 
504e8d8bef9SDimitry Andric     return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Result));
505e8d8bef9SDimitry Andric   }
506e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pkrtz: {
507e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
508e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
509e8d8bef9SDimitry Andric     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
510e8d8bef9SDimitry Andric       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
511e8d8bef9SDimitry Andric         const fltSemantics &HalfSem =
512e8d8bef9SDimitry Andric             II.getType()->getScalarType()->getFltSemantics();
513e8d8bef9SDimitry Andric         bool LosesInfo;
514e8d8bef9SDimitry Andric         APFloat Val0 = C0->getValueAPF();
515e8d8bef9SDimitry Andric         APFloat Val1 = C1->getValueAPF();
516e8d8bef9SDimitry Andric         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
517e8d8bef9SDimitry Andric         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
518e8d8bef9SDimitry Andric 
519e8d8bef9SDimitry Andric         Constant *Folded =
520e8d8bef9SDimitry Andric             ConstantVector::get({ConstantFP::get(II.getContext(), Val0),
521e8d8bef9SDimitry Andric                                  ConstantFP::get(II.getContext(), Val1)});
522e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Folded);
523e8d8bef9SDimitry Andric       }
524e8d8bef9SDimitry Andric     }
525e8d8bef9SDimitry Andric 
526e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) {
527e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
528e8d8bef9SDimitry Andric     }
529e8d8bef9SDimitry Andric 
530e8d8bef9SDimitry Andric     break;
531e8d8bef9SDimitry Andric   }
532e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pknorm_i16:
533e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pknorm_u16:
534e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pk_i16:
535e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pk_u16: {
536e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
537e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
538e8d8bef9SDimitry Andric 
539e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) {
540e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
541e8d8bef9SDimitry Andric     }
542e8d8bef9SDimitry Andric 
543e8d8bef9SDimitry Andric     break;
544e8d8bef9SDimitry Andric   }
545e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_ubfe:
546e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_sbfe: {
547e8d8bef9SDimitry Andric     // Decompose simple cases into standard shifts.
548e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
549e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
550e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Src);
551e8d8bef9SDimitry Andric     }
552e8d8bef9SDimitry Andric 
553e8d8bef9SDimitry Andric     unsigned Width;
554e8d8bef9SDimitry Andric     Type *Ty = II.getType();
555e8d8bef9SDimitry Andric     unsigned IntSize = Ty->getIntegerBitWidth();
556e8d8bef9SDimitry Andric 
557e8d8bef9SDimitry Andric     ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2));
558e8d8bef9SDimitry Andric     if (CWidth) {
559e8d8bef9SDimitry Andric       Width = CWidth->getZExtValue();
560e8d8bef9SDimitry Andric       if ((Width & (IntSize - 1)) == 0) {
561e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty));
562e8d8bef9SDimitry Andric       }
563e8d8bef9SDimitry Andric 
564e8d8bef9SDimitry Andric       // Hardware ignores high bits, so remove those.
565e8d8bef9SDimitry Andric       if (Width >= IntSize) {
566e8d8bef9SDimitry Andric         return IC.replaceOperand(
567e8d8bef9SDimitry Andric             II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1)));
568e8d8bef9SDimitry Andric       }
569e8d8bef9SDimitry Andric     }
570e8d8bef9SDimitry Andric 
571e8d8bef9SDimitry Andric     unsigned Offset;
572e8d8bef9SDimitry Andric     ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1));
573e8d8bef9SDimitry Andric     if (COffset) {
574e8d8bef9SDimitry Andric       Offset = COffset->getZExtValue();
575e8d8bef9SDimitry Andric       if (Offset >= IntSize) {
576e8d8bef9SDimitry Andric         return IC.replaceOperand(
577e8d8bef9SDimitry Andric             II, 1,
578e8d8bef9SDimitry Andric             ConstantInt::get(COffset->getType(), Offset & (IntSize - 1)));
579e8d8bef9SDimitry Andric       }
580e8d8bef9SDimitry Andric     }
581e8d8bef9SDimitry Andric 
582e8d8bef9SDimitry Andric     bool Signed = IID == Intrinsic::amdgcn_sbfe;
583e8d8bef9SDimitry Andric 
584e8d8bef9SDimitry Andric     if (!CWidth || !COffset)
585e8d8bef9SDimitry Andric       break;
586e8d8bef9SDimitry Andric 
587349cc55cSDimitry Andric     // The case of Width == 0 is handled above, which makes this transformation
588e8d8bef9SDimitry Andric     // safe.  If Width == 0, then the ashr and lshr instructions become poison
589e8d8bef9SDimitry Andric     // value since the shift amount would be equal to the bit size.
590e8d8bef9SDimitry Andric     assert(Width != 0);
591e8d8bef9SDimitry Andric 
592e8d8bef9SDimitry Andric     // TODO: This allows folding to undef when the hardware has specific
593e8d8bef9SDimitry Andric     // behavior?
594e8d8bef9SDimitry Andric     if (Offset + Width < IntSize) {
595e8d8bef9SDimitry Andric       Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width);
596e8d8bef9SDimitry Andric       Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width)
597e8d8bef9SDimitry Andric                                  : IC.Builder.CreateLShr(Shl, IntSize - Width);
598e8d8bef9SDimitry Andric       RightShift->takeName(&II);
599e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, RightShift);
600e8d8bef9SDimitry Andric     }
601e8d8bef9SDimitry Andric 
602e8d8bef9SDimitry Andric     Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset)
603e8d8bef9SDimitry Andric                                : IC.Builder.CreateLShr(Src, Offset);
604e8d8bef9SDimitry Andric 
605e8d8bef9SDimitry Andric     RightShift->takeName(&II);
606e8d8bef9SDimitry Andric     return IC.replaceInstUsesWith(II, RightShift);
607e8d8bef9SDimitry Andric   }
608e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_exp:
60981ad6265SDimitry Andric   case Intrinsic::amdgcn_exp_row:
610e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_exp_compr: {
611e8d8bef9SDimitry Andric     ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1));
612e8d8bef9SDimitry Andric     unsigned EnBits = En->getZExtValue();
613e8d8bef9SDimitry Andric     if (EnBits == 0xf)
614e8d8bef9SDimitry Andric       break; // All inputs enabled.
615e8d8bef9SDimitry Andric 
616e8d8bef9SDimitry Andric     bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
617e8d8bef9SDimitry Andric     bool Changed = false;
618e8d8bef9SDimitry Andric     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
619e8d8bef9SDimitry Andric       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
620e8d8bef9SDimitry Andric           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
621e8d8bef9SDimitry Andric         Value *Src = II.getArgOperand(I + 2);
622e8d8bef9SDimitry Andric         if (!isa<UndefValue>(Src)) {
623e8d8bef9SDimitry Andric           IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType()));
624e8d8bef9SDimitry Andric           Changed = true;
625e8d8bef9SDimitry Andric         }
626e8d8bef9SDimitry Andric       }
627e8d8bef9SDimitry Andric     }
628e8d8bef9SDimitry Andric 
629e8d8bef9SDimitry Andric     if (Changed) {
630e8d8bef9SDimitry Andric       return &II;
631e8d8bef9SDimitry Andric     }
632e8d8bef9SDimitry Andric 
633e8d8bef9SDimitry Andric     break;
634e8d8bef9SDimitry Andric   }
635e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fmed3: {
636e8d8bef9SDimitry Andric     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
637e8d8bef9SDimitry Andric     // for the shader.
638e8d8bef9SDimitry Andric 
639e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
640e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
641e8d8bef9SDimitry Andric     Value *Src2 = II.getArgOperand(2);
642e8d8bef9SDimitry Andric 
643e8d8bef9SDimitry Andric     // Checking for NaN before canonicalization provides better fidelity when
644e8d8bef9SDimitry Andric     // mapping other operations onto fmed3 since the order of operands is
645e8d8bef9SDimitry Andric     // unchanged.
646e8d8bef9SDimitry Andric     CallInst *NewCall = nullptr;
647e8d8bef9SDimitry Andric     if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) {
648e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMinNum(Src1, Src2);
649e8d8bef9SDimitry Andric     } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) {
650e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMinNum(Src0, Src2);
651e8d8bef9SDimitry Andric     } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) {
652e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMaxNum(Src0, Src1);
653e8d8bef9SDimitry Andric     }
654e8d8bef9SDimitry Andric 
655e8d8bef9SDimitry Andric     if (NewCall) {
656e8d8bef9SDimitry Andric       NewCall->copyFastMathFlags(&II);
657e8d8bef9SDimitry Andric       NewCall->takeName(&II);
658e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, NewCall);
659e8d8bef9SDimitry Andric     }
660e8d8bef9SDimitry Andric 
661e8d8bef9SDimitry Andric     bool Swap = false;
662e8d8bef9SDimitry Andric     // Canonicalize constants to RHS operands.
663e8d8bef9SDimitry Andric     //
664e8d8bef9SDimitry Andric     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
665e8d8bef9SDimitry Andric     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
666e8d8bef9SDimitry Andric       std::swap(Src0, Src1);
667e8d8bef9SDimitry Andric       Swap = true;
668e8d8bef9SDimitry Andric     }
669e8d8bef9SDimitry Andric 
670e8d8bef9SDimitry Andric     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
671e8d8bef9SDimitry Andric       std::swap(Src1, Src2);
672e8d8bef9SDimitry Andric       Swap = true;
673e8d8bef9SDimitry Andric     }
674e8d8bef9SDimitry Andric 
675e8d8bef9SDimitry Andric     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
676e8d8bef9SDimitry Andric       std::swap(Src0, Src1);
677e8d8bef9SDimitry Andric       Swap = true;
678e8d8bef9SDimitry Andric     }
679e8d8bef9SDimitry Andric 
680e8d8bef9SDimitry Andric     if (Swap) {
681e8d8bef9SDimitry Andric       II.setArgOperand(0, Src0);
682e8d8bef9SDimitry Andric       II.setArgOperand(1, Src1);
683e8d8bef9SDimitry Andric       II.setArgOperand(2, Src2);
684e8d8bef9SDimitry Andric       return &II;
685e8d8bef9SDimitry Andric     }
686e8d8bef9SDimitry Andric 
687e8d8bef9SDimitry Andric     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
688e8d8bef9SDimitry Andric       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
689e8d8bef9SDimitry Andric         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
690e8d8bef9SDimitry Andric           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
691e8d8bef9SDimitry Andric                                        C2->getValueAPF());
692e8d8bef9SDimitry Andric           return IC.replaceInstUsesWith(
693e8d8bef9SDimitry Andric               II, ConstantFP::get(IC.Builder.getContext(), Result));
694e8d8bef9SDimitry Andric         }
695e8d8bef9SDimitry Andric       }
696e8d8bef9SDimitry Andric     }
697e8d8bef9SDimitry Andric 
698e8d8bef9SDimitry Andric     break;
699e8d8bef9SDimitry Andric   }
700e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_icmp:
701e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fcmp: {
702e8d8bef9SDimitry Andric     const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2));
703e8d8bef9SDimitry Andric     // Guard against invalid arguments.
704e8d8bef9SDimitry Andric     int64_t CCVal = CC->getZExtValue();
705e8d8bef9SDimitry Andric     bool IsInteger = IID == Intrinsic::amdgcn_icmp;
706e8d8bef9SDimitry Andric     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
707e8d8bef9SDimitry Andric                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
708e8d8bef9SDimitry Andric         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
709e8d8bef9SDimitry Andric                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
710e8d8bef9SDimitry Andric       break;
711e8d8bef9SDimitry Andric 
712e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
713e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
714e8d8bef9SDimitry Andric 
715e8d8bef9SDimitry Andric     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
716e8d8bef9SDimitry Andric       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
717e8d8bef9SDimitry Andric         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
718e8d8bef9SDimitry Andric         if (CCmp->isNullValue()) {
719e8d8bef9SDimitry Andric           return IC.replaceInstUsesWith(
720e8d8bef9SDimitry Andric               II, ConstantExpr::getSExt(CCmp, II.getType()));
721e8d8bef9SDimitry Andric         }
722e8d8bef9SDimitry Andric 
723e8d8bef9SDimitry Andric         // The result of V_ICMP/V_FCMP assembly instructions (which this
724e8d8bef9SDimitry Andric         // intrinsic exposes) is one bit per thread, masked with the EXEC
725e8d8bef9SDimitry Andric         // register (which contains the bitmask of live threads). So a
726e8d8bef9SDimitry Andric         // comparison that always returns true is the same as a read of the
727e8d8bef9SDimitry Andric         // EXEC register.
728e8d8bef9SDimitry Andric         Function *NewF = Intrinsic::getDeclaration(
729e8d8bef9SDimitry Andric             II.getModule(), Intrinsic::read_register, II.getType());
730e8d8bef9SDimitry Andric         Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")};
731e8d8bef9SDimitry Andric         MDNode *MD = MDNode::get(II.getContext(), MDArgs);
732e8d8bef9SDimitry Andric         Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)};
733e8d8bef9SDimitry Andric         CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
734349cc55cSDimitry Andric         NewCall->addFnAttr(Attribute::Convergent);
735e8d8bef9SDimitry Andric         NewCall->takeName(&II);
736e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, NewCall);
737e8d8bef9SDimitry Andric       }
738e8d8bef9SDimitry Andric 
739e8d8bef9SDimitry Andric       // Canonicalize constants to RHS.
740e8d8bef9SDimitry Andric       CmpInst::Predicate SwapPred =
741e8d8bef9SDimitry Andric           CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
742e8d8bef9SDimitry Andric       II.setArgOperand(0, Src1);
743e8d8bef9SDimitry Andric       II.setArgOperand(1, Src0);
744e8d8bef9SDimitry Andric       II.setArgOperand(
745e8d8bef9SDimitry Andric           2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred)));
746e8d8bef9SDimitry Andric       return &II;
747e8d8bef9SDimitry Andric     }
748e8d8bef9SDimitry Andric 
749e8d8bef9SDimitry Andric     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
750e8d8bef9SDimitry Andric       break;
751e8d8bef9SDimitry Andric 
752e8d8bef9SDimitry Andric     // Canonicalize compare eq with true value to compare != 0
753e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
754e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
755e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
756e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
757e8d8bef9SDimitry Andric     Value *ExtSrc;
758e8d8bef9SDimitry Andric     if (CCVal == CmpInst::ICMP_EQ &&
759e8d8bef9SDimitry Andric         ((match(Src1, PatternMatch::m_One()) &&
760e8d8bef9SDimitry Andric           match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) ||
761e8d8bef9SDimitry Andric          (match(Src1, PatternMatch::m_AllOnes()) &&
762e8d8bef9SDimitry Andric           match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) &&
763e8d8bef9SDimitry Andric         ExtSrc->getType()->isIntegerTy(1)) {
764e8d8bef9SDimitry Andric       IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType()));
765e8d8bef9SDimitry Andric       IC.replaceOperand(II, 2,
766e8d8bef9SDimitry Andric                         ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
767e8d8bef9SDimitry Andric       return &II;
768e8d8bef9SDimitry Andric     }
769e8d8bef9SDimitry Andric 
770e8d8bef9SDimitry Andric     CmpInst::Predicate SrcPred;
771e8d8bef9SDimitry Andric     Value *SrcLHS;
772e8d8bef9SDimitry Andric     Value *SrcRHS;
773e8d8bef9SDimitry Andric 
774e8d8bef9SDimitry Andric     // Fold compare eq/ne with 0 from a compare result as the predicate to the
775e8d8bef9SDimitry Andric     // intrinsic. The typical use is a wave vote function in the library, which
776e8d8bef9SDimitry Andric     // will be fed from a user code condition compared with 0. Fold in the
777e8d8bef9SDimitry Andric     // redundant compare.
778e8d8bef9SDimitry Andric 
779e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
780e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
781e8d8bef9SDimitry Andric     //
782e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
783e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
784e8d8bef9SDimitry Andric     if (match(Src1, PatternMatch::m_Zero()) &&
785e8d8bef9SDimitry Andric         match(Src0, PatternMatch::m_ZExtOrSExt(
786e8d8bef9SDimitry Andric                         m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS),
787e8d8bef9SDimitry Andric                               PatternMatch::m_Value(SrcRHS))))) {
788e8d8bef9SDimitry Andric       if (CCVal == CmpInst::ICMP_EQ)
789e8d8bef9SDimitry Andric         SrcPred = CmpInst::getInversePredicate(SrcPred);
790e8d8bef9SDimitry Andric 
791e8d8bef9SDimitry Andric       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred)
792e8d8bef9SDimitry Andric                                  ? Intrinsic::amdgcn_fcmp
793e8d8bef9SDimitry Andric                                  : Intrinsic::amdgcn_icmp;
794e8d8bef9SDimitry Andric 
795e8d8bef9SDimitry Andric       Type *Ty = SrcLHS->getType();
796e8d8bef9SDimitry Andric       if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
797e8d8bef9SDimitry Andric         // Promote to next legal integer type.
798e8d8bef9SDimitry Andric         unsigned Width = CmpType->getBitWidth();
799e8d8bef9SDimitry Andric         unsigned NewWidth = Width;
800e8d8bef9SDimitry Andric 
801e8d8bef9SDimitry Andric         // Don't do anything for i1 comparisons.
802e8d8bef9SDimitry Andric         if (Width == 1)
803e8d8bef9SDimitry Andric           break;
804e8d8bef9SDimitry Andric 
805e8d8bef9SDimitry Andric         if (Width <= 16)
806e8d8bef9SDimitry Andric           NewWidth = 16;
807e8d8bef9SDimitry Andric         else if (Width <= 32)
808e8d8bef9SDimitry Andric           NewWidth = 32;
809e8d8bef9SDimitry Andric         else if (Width <= 64)
810e8d8bef9SDimitry Andric           NewWidth = 64;
811e8d8bef9SDimitry Andric         else if (Width > 64)
812e8d8bef9SDimitry Andric           break; // Can't handle this.
813e8d8bef9SDimitry Andric 
814e8d8bef9SDimitry Andric         if (Width != NewWidth) {
815e8d8bef9SDimitry Andric           IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth);
816e8d8bef9SDimitry Andric           if (CmpInst::isSigned(SrcPred)) {
817e8d8bef9SDimitry Andric             SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy);
818e8d8bef9SDimitry Andric             SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy);
819e8d8bef9SDimitry Andric           } else {
820e8d8bef9SDimitry Andric             SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy);
821e8d8bef9SDimitry Andric             SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy);
822e8d8bef9SDimitry Andric           }
823e8d8bef9SDimitry Andric         }
824e8d8bef9SDimitry Andric       } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
825e8d8bef9SDimitry Andric         break;
826e8d8bef9SDimitry Andric 
827e8d8bef9SDimitry Andric       Function *NewF = Intrinsic::getDeclaration(
828e8d8bef9SDimitry Andric           II.getModule(), NewIID, {II.getType(), SrcLHS->getType()});
829e8d8bef9SDimitry Andric       Value *Args[] = {SrcLHS, SrcRHS,
830e8d8bef9SDimitry Andric                        ConstantInt::get(CC->getType(), SrcPred)};
831e8d8bef9SDimitry Andric       CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
832e8d8bef9SDimitry Andric       NewCall->takeName(&II);
833e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, NewCall);
834e8d8bef9SDimitry Andric     }
835e8d8bef9SDimitry Andric 
836e8d8bef9SDimitry Andric     break;
837e8d8bef9SDimitry Andric   }
838e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_ballot: {
839e8d8bef9SDimitry Andric     if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
840e8d8bef9SDimitry Andric       if (Src->isZero()) {
841e8d8bef9SDimitry Andric         // amdgcn.ballot(i1 0) is zero.
842e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType()));
843e8d8bef9SDimitry Andric       }
844e8d8bef9SDimitry Andric 
845e8d8bef9SDimitry Andric       if (Src->isOne()) {
846e8d8bef9SDimitry Andric         // amdgcn.ballot(i1 1) is exec.
847e8d8bef9SDimitry Andric         const char *RegName = "exec";
848e8d8bef9SDimitry Andric         if (II.getType()->isIntegerTy(32))
849e8d8bef9SDimitry Andric           RegName = "exec_lo";
850e8d8bef9SDimitry Andric         else if (!II.getType()->isIntegerTy(64))
851e8d8bef9SDimitry Andric           break;
852e8d8bef9SDimitry Andric 
853e8d8bef9SDimitry Andric         Function *NewF = Intrinsic::getDeclaration(
854e8d8bef9SDimitry Andric             II.getModule(), Intrinsic::read_register, II.getType());
855e8d8bef9SDimitry Andric         Metadata *MDArgs[] = {MDString::get(II.getContext(), RegName)};
856e8d8bef9SDimitry Andric         MDNode *MD = MDNode::get(II.getContext(), MDArgs);
857e8d8bef9SDimitry Andric         Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)};
858e8d8bef9SDimitry Andric         CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
859349cc55cSDimitry Andric         NewCall->addFnAttr(Attribute::Convergent);
860e8d8bef9SDimitry Andric         NewCall->takeName(&II);
861e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, NewCall);
862e8d8bef9SDimitry Andric       }
863e8d8bef9SDimitry Andric     }
864e8d8bef9SDimitry Andric     break;
865e8d8bef9SDimitry Andric   }
866e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_wqm_vote: {
867e8d8bef9SDimitry Andric     // wqm_vote is identity when the argument is constant.
868e8d8bef9SDimitry Andric     if (!isa<Constant>(II.getArgOperand(0)))
869e8d8bef9SDimitry Andric       break;
870e8d8bef9SDimitry Andric 
871e8d8bef9SDimitry Andric     return IC.replaceInstUsesWith(II, II.getArgOperand(0));
872e8d8bef9SDimitry Andric   }
873e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_kill: {
874e8d8bef9SDimitry Andric     const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0));
875e8d8bef9SDimitry Andric     if (!C || !C->getZExtValue())
876e8d8bef9SDimitry Andric       break;
877e8d8bef9SDimitry Andric 
878e8d8bef9SDimitry Andric     // amdgcn.kill(i1 1) is a no-op
879e8d8bef9SDimitry Andric     return IC.eraseInstFromFunction(II);
880e8d8bef9SDimitry Andric   }
881e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_update_dpp: {
882e8d8bef9SDimitry Andric     Value *Old = II.getArgOperand(0);
883e8d8bef9SDimitry Andric 
884e8d8bef9SDimitry Andric     auto *BC = cast<ConstantInt>(II.getArgOperand(5));
885e8d8bef9SDimitry Andric     auto *RM = cast<ConstantInt>(II.getArgOperand(3));
886e8d8bef9SDimitry Andric     auto *BM = cast<ConstantInt>(II.getArgOperand(4));
887e8d8bef9SDimitry Andric     if (BC->isZeroValue() || RM->getZExtValue() != 0xF ||
888e8d8bef9SDimitry Andric         BM->getZExtValue() != 0xF || isa<UndefValue>(Old))
889e8d8bef9SDimitry Andric       break;
890e8d8bef9SDimitry Andric 
891e8d8bef9SDimitry Andric     // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
892e8d8bef9SDimitry Andric     return IC.replaceOperand(II, 0, UndefValue::get(Old->getType()));
893e8d8bef9SDimitry Andric   }
894e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_permlane16:
895e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_permlanex16: {
896e8d8bef9SDimitry Andric     // Discard vdst_in if it's not going to be read.
897e8d8bef9SDimitry Andric     Value *VDstIn = II.getArgOperand(0);
898e8d8bef9SDimitry Andric     if (isa<UndefValue>(VDstIn))
899e8d8bef9SDimitry Andric       break;
900e8d8bef9SDimitry Andric 
901e8d8bef9SDimitry Andric     ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(4));
902e8d8bef9SDimitry Andric     ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(5));
903e8d8bef9SDimitry Andric     if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue())
904e8d8bef9SDimitry Andric       break;
905e8d8bef9SDimitry Andric 
906e8d8bef9SDimitry Andric     return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType()));
907e8d8bef9SDimitry Andric   }
90881ad6265SDimitry Andric   case Intrinsic::amdgcn_permlane64:
90981ad6265SDimitry Andric     // A constant value is trivially uniform.
91081ad6265SDimitry Andric     if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) {
91181ad6265SDimitry Andric       return IC.replaceInstUsesWith(II, C);
91281ad6265SDimitry Andric     }
91381ad6265SDimitry Andric     break;
914e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_readfirstlane:
915e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_readlane: {
916e8d8bef9SDimitry Andric     // A constant value is trivially uniform.
917e8d8bef9SDimitry Andric     if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) {
918e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, C);
919e8d8bef9SDimitry Andric     }
920e8d8bef9SDimitry Andric 
921e8d8bef9SDimitry Andric     // The rest of these may not be safe if the exec may not be the same between
922e8d8bef9SDimitry Andric     // the def and use.
923e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
924e8d8bef9SDimitry Andric     Instruction *SrcInst = dyn_cast<Instruction>(Src);
925e8d8bef9SDimitry Andric     if (SrcInst && SrcInst->getParent() != II.getParent())
926e8d8bef9SDimitry Andric       break;
927e8d8bef9SDimitry Andric 
928e8d8bef9SDimitry Andric     // readfirstlane (readfirstlane x) -> readfirstlane x
929e8d8bef9SDimitry Andric     // readlane (readfirstlane x), y -> readfirstlane x
930e8d8bef9SDimitry Andric     if (match(Src,
931e8d8bef9SDimitry Andric               PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) {
932e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Src);
933e8d8bef9SDimitry Andric     }
934e8d8bef9SDimitry Andric 
935e8d8bef9SDimitry Andric     if (IID == Intrinsic::amdgcn_readfirstlane) {
936e8d8bef9SDimitry Andric       // readfirstlane (readlane x, y) -> readlane x, y
937e8d8bef9SDimitry Andric       if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) {
938e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Src);
939e8d8bef9SDimitry Andric       }
940e8d8bef9SDimitry Andric     } else {
941e8d8bef9SDimitry Andric       // readlane (readlane x, y), y -> readlane x, y
942e8d8bef9SDimitry Andric       if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>(
943e8d8bef9SDimitry Andric                          PatternMatch::m_Value(),
944e8d8bef9SDimitry Andric                          PatternMatch::m_Specific(II.getArgOperand(1))))) {
945e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Src);
946e8d8bef9SDimitry Andric       }
947e8d8bef9SDimitry Andric     }
948e8d8bef9SDimitry Andric 
949e8d8bef9SDimitry Andric     break;
950e8d8bef9SDimitry Andric   }
951e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_ldexp: {
952e8d8bef9SDimitry Andric     // FIXME: This doesn't introduce new instructions and belongs in
953e8d8bef9SDimitry Andric     // InstructionSimplify.
954e8d8bef9SDimitry Andric     Type *Ty = II.getType();
955e8d8bef9SDimitry Andric     Value *Op0 = II.getArgOperand(0);
956e8d8bef9SDimitry Andric     Value *Op1 = II.getArgOperand(1);
957e8d8bef9SDimitry Andric 
958e8d8bef9SDimitry Andric     // Folding undef to qnan is safe regardless of the FP mode.
959e8d8bef9SDimitry Andric     if (isa<UndefValue>(Op0)) {
960e8d8bef9SDimitry Andric       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
961e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, QNaN);
962e8d8bef9SDimitry Andric     }
963e8d8bef9SDimitry Andric 
964e8d8bef9SDimitry Andric     const APFloat *C = nullptr;
965e8d8bef9SDimitry Andric     match(Op0, PatternMatch::m_APFloat(C));
966e8d8bef9SDimitry Andric 
967e8d8bef9SDimitry Andric     // FIXME: Should flush denorms depending on FP mode, but that's ignored
968e8d8bef9SDimitry Andric     // everywhere else.
969e8d8bef9SDimitry Andric     //
970e8d8bef9SDimitry Andric     // These cases should be safe, even with strictfp.
971e8d8bef9SDimitry Andric     // ldexp(0.0, x) -> 0.0
972e8d8bef9SDimitry Andric     // ldexp(-0.0, x) -> -0.0
973e8d8bef9SDimitry Andric     // ldexp(inf, x) -> inf
974e8d8bef9SDimitry Andric     // ldexp(-inf, x) -> -inf
975e8d8bef9SDimitry Andric     if (C && (C->isZero() || C->isInfinity())) {
976e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Op0);
977e8d8bef9SDimitry Andric     }
978e8d8bef9SDimitry Andric 
979e8d8bef9SDimitry Andric     // With strictfp, be more careful about possibly needing to flush denormals
980e8d8bef9SDimitry Andric     // or not, and snan behavior depends on ieee_mode.
981e8d8bef9SDimitry Andric     if (II.isStrictFP())
982e8d8bef9SDimitry Andric       break;
983e8d8bef9SDimitry Andric 
984e8d8bef9SDimitry Andric     if (C && C->isNaN()) {
985e8d8bef9SDimitry Andric       // FIXME: We just need to make the nan quiet here, but that's unavailable
986e8d8bef9SDimitry Andric       // on APFloat, only IEEEfloat
987e8d8bef9SDimitry Andric       auto *Quieted =
988e8d8bef9SDimitry Andric           ConstantFP::get(Ty, scalbn(*C, 0, APFloat::rmNearestTiesToEven));
989e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Quieted);
990e8d8bef9SDimitry Andric     }
991e8d8bef9SDimitry Andric 
992e8d8bef9SDimitry Andric     // ldexp(x, 0) -> x
993e8d8bef9SDimitry Andric     // ldexp(x, undef) -> x
994e8d8bef9SDimitry Andric     if (isa<UndefValue>(Op1) || match(Op1, PatternMatch::m_ZeroInt())) {
995e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Op0);
996e8d8bef9SDimitry Andric     }
997e8d8bef9SDimitry Andric 
998e8d8bef9SDimitry Andric     break;
999e8d8bef9SDimitry Andric   }
1000e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fmul_legacy: {
1001e8d8bef9SDimitry Andric     Value *Op0 = II.getArgOperand(0);
1002e8d8bef9SDimitry Andric     Value *Op1 = II.getArgOperand(1);
1003e8d8bef9SDimitry Andric 
1004e8d8bef9SDimitry Andric     // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
1005e8d8bef9SDimitry Andric     // infinity, gives +0.0.
1006e8d8bef9SDimitry Andric     // TODO: Move to InstSimplify?
1007e8d8bef9SDimitry Andric     if (match(Op0, PatternMatch::m_AnyZeroFP()) ||
1008e8d8bef9SDimitry Andric         match(Op1, PatternMatch::m_AnyZeroFP()))
1009e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::getNullValue(II.getType()));
1010e8d8bef9SDimitry Andric 
1011e8d8bef9SDimitry Andric     // If we can prove we don't have one of the special cases then we can use a
1012e8d8bef9SDimitry Andric     // normal fmul instruction instead.
1013e8d8bef9SDimitry Andric     if (canSimplifyLegacyMulToMul(Op0, Op1, IC)) {
1014e8d8bef9SDimitry Andric       auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II);
1015e8d8bef9SDimitry Andric       FMul->takeName(&II);
1016e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, FMul);
1017e8d8bef9SDimitry Andric     }
1018e8d8bef9SDimitry Andric     break;
1019e8d8bef9SDimitry Andric   }
1020e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fma_legacy: {
1021e8d8bef9SDimitry Andric     Value *Op0 = II.getArgOperand(0);
1022e8d8bef9SDimitry Andric     Value *Op1 = II.getArgOperand(1);
1023e8d8bef9SDimitry Andric     Value *Op2 = II.getArgOperand(2);
1024e8d8bef9SDimitry Andric 
1025e8d8bef9SDimitry Andric     // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
1026e8d8bef9SDimitry Andric     // infinity, gives +0.0.
1027e8d8bef9SDimitry Andric     // TODO: Move to InstSimplify?
1028e8d8bef9SDimitry Andric     if (match(Op0, PatternMatch::m_AnyZeroFP()) ||
1029e8d8bef9SDimitry Andric         match(Op1, PatternMatch::m_AnyZeroFP())) {
1030e8d8bef9SDimitry Andric       // It's tempting to just return Op2 here, but that would give the wrong
1031e8d8bef9SDimitry Andric       // result if Op2 was -0.0.
1032e8d8bef9SDimitry Andric       auto *Zero = ConstantFP::getNullValue(II.getType());
1033e8d8bef9SDimitry Andric       auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II);
1034e8d8bef9SDimitry Andric       FAdd->takeName(&II);
1035e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, FAdd);
1036e8d8bef9SDimitry Andric     }
1037e8d8bef9SDimitry Andric 
1038e8d8bef9SDimitry Andric     // If we can prove we don't have one of the special cases then we can use a
1039e8d8bef9SDimitry Andric     // normal fma instead.
1040e8d8bef9SDimitry Andric     if (canSimplifyLegacyMulToMul(Op0, Op1, IC)) {
1041e8d8bef9SDimitry Andric       II.setCalledOperand(Intrinsic::getDeclaration(
1042e8d8bef9SDimitry Andric           II.getModule(), Intrinsic::fma, II.getType()));
1043e8d8bef9SDimitry Andric       return &II;
1044e8d8bef9SDimitry Andric     }
1045e8d8bef9SDimitry Andric     break;
1046e8d8bef9SDimitry Andric   }
10470eae32dcSDimitry Andric   case Intrinsic::amdgcn_is_shared:
10480eae32dcSDimitry Andric   case Intrinsic::amdgcn_is_private: {
10490eae32dcSDimitry Andric     if (isa<UndefValue>(II.getArgOperand(0)))
10500eae32dcSDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
10510eae32dcSDimitry Andric 
10520eae32dcSDimitry Andric     if (isa<ConstantPointerNull>(II.getArgOperand(0)))
10530eae32dcSDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType()));
10540eae32dcSDimitry Andric     break;
10550eae32dcSDimitry Andric   }
1056e8d8bef9SDimitry Andric   default: {
1057e8d8bef9SDimitry Andric     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
1058e8d8bef9SDimitry Andric             AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) {
1059e8d8bef9SDimitry Andric       return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC);
1060e8d8bef9SDimitry Andric     }
1061e8d8bef9SDimitry Andric   }
1062e8d8bef9SDimitry Andric   }
1063*bdd1243dSDimitry Andric   return std::nullopt;
1064e8d8bef9SDimitry Andric }
1065e8d8bef9SDimitry Andric 
1066e8d8bef9SDimitry Andric /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
1067e8d8bef9SDimitry Andric ///
1068e8d8bef9SDimitry Andric /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
1069e8d8bef9SDimitry Andric ///       struct returns.
1070e8d8bef9SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC,
1071e8d8bef9SDimitry Andric                                                     IntrinsicInst &II,
1072e8d8bef9SDimitry Andric                                                     APInt DemandedElts,
1073e8d8bef9SDimitry Andric                                                     int DMaskIdx = -1) {
1074e8d8bef9SDimitry Andric 
1075e8d8bef9SDimitry Andric   auto *IIVTy = cast<FixedVectorType>(II.getType());
1076e8d8bef9SDimitry Andric   unsigned VWidth = IIVTy->getNumElements();
1077e8d8bef9SDimitry Andric   if (VWidth == 1)
1078e8d8bef9SDimitry Andric     return nullptr;
1079*bdd1243dSDimitry Andric   Type *EltTy = IIVTy->getElementType();
1080e8d8bef9SDimitry Andric 
1081e8d8bef9SDimitry Andric   IRBuilderBase::InsertPointGuard Guard(IC.Builder);
1082e8d8bef9SDimitry Andric   IC.Builder.SetInsertPoint(&II);
1083e8d8bef9SDimitry Andric 
1084e8d8bef9SDimitry Andric   // Assume the arguments are unchanged and later override them, if needed.
1085e8d8bef9SDimitry Andric   SmallVector<Value *, 16> Args(II.args());
1086e8d8bef9SDimitry Andric 
1087e8d8bef9SDimitry Andric   if (DMaskIdx < 0) {
1088e8d8bef9SDimitry Andric     // Buffer case.
1089e8d8bef9SDimitry Andric 
1090e8d8bef9SDimitry Andric     const unsigned ActiveBits = DemandedElts.getActiveBits();
1091e8d8bef9SDimitry Andric     const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros();
1092e8d8bef9SDimitry Andric 
1093e8d8bef9SDimitry Andric     // Start assuming the prefix of elements is demanded, but possibly clear
1094e8d8bef9SDimitry Andric     // some other bits if there are trailing zeros (unused components at front)
1095e8d8bef9SDimitry Andric     // and update offset.
1096e8d8bef9SDimitry Andric     DemandedElts = (1 << ActiveBits) - 1;
1097e8d8bef9SDimitry Andric 
1098e8d8bef9SDimitry Andric     if (UnusedComponentsAtFront > 0) {
1099e8d8bef9SDimitry Andric       static const unsigned InvalidOffsetIdx = 0xf;
1100e8d8bef9SDimitry Andric 
1101e8d8bef9SDimitry Andric       unsigned OffsetIdx;
1102e8d8bef9SDimitry Andric       switch (II.getIntrinsicID()) {
1103e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_raw_buffer_load:
1104e8d8bef9SDimitry Andric         OffsetIdx = 1;
1105e8d8bef9SDimitry Andric         break;
1106e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_s_buffer_load:
1107e8d8bef9SDimitry Andric         // If resulting type is vec3, there is no point in trimming the
1108e8d8bef9SDimitry Andric         // load with updated offset, as the vec3 would most likely be widened to
1109e8d8bef9SDimitry Andric         // vec4 anyway during lowering.
1110e8d8bef9SDimitry Andric         if (ActiveBits == 4 && UnusedComponentsAtFront == 1)
1111e8d8bef9SDimitry Andric           OffsetIdx = InvalidOffsetIdx;
1112e8d8bef9SDimitry Andric         else
1113e8d8bef9SDimitry Andric           OffsetIdx = 1;
1114e8d8bef9SDimitry Andric         break;
1115e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_struct_buffer_load:
1116e8d8bef9SDimitry Andric         OffsetIdx = 2;
1117e8d8bef9SDimitry Andric         break;
1118e8d8bef9SDimitry Andric       default:
1119e8d8bef9SDimitry Andric         // TODO: handle tbuffer* intrinsics.
1120e8d8bef9SDimitry Andric         OffsetIdx = InvalidOffsetIdx;
1121e8d8bef9SDimitry Andric         break;
1122e8d8bef9SDimitry Andric       }
1123e8d8bef9SDimitry Andric 
1124e8d8bef9SDimitry Andric       if (OffsetIdx != InvalidOffsetIdx) {
1125e8d8bef9SDimitry Andric         // Clear demanded bits and update the offset.
1126e8d8bef9SDimitry Andric         DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1);
1127*bdd1243dSDimitry Andric         auto *Offset = Args[OffsetIdx];
1128e8d8bef9SDimitry Andric         unsigned SingleComponentSizeInBits =
1129*bdd1243dSDimitry Andric             IC.getDataLayout().getTypeSizeInBits(EltTy);
1130e8d8bef9SDimitry Andric         unsigned OffsetAdd =
1131e8d8bef9SDimitry Andric             UnusedComponentsAtFront * SingleComponentSizeInBits / 8;
1132e8d8bef9SDimitry Andric         auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd);
1133e8d8bef9SDimitry Andric         Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal);
1134e8d8bef9SDimitry Andric       }
1135e8d8bef9SDimitry Andric     }
1136e8d8bef9SDimitry Andric   } else {
1137e8d8bef9SDimitry Andric     // Image case.
1138e8d8bef9SDimitry Andric 
1139*bdd1243dSDimitry Andric     ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]);
1140e8d8bef9SDimitry Andric     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1141e8d8bef9SDimitry Andric 
1142e8d8bef9SDimitry Andric     // Mask off values that are undefined because the dmask doesn't cover them
1143*bdd1243dSDimitry Andric     DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1;
1144e8d8bef9SDimitry Andric 
1145e8d8bef9SDimitry Andric     unsigned NewDMaskVal = 0;
1146e8d8bef9SDimitry Andric     unsigned OrigLoadIdx = 0;
1147e8d8bef9SDimitry Andric     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
1148e8d8bef9SDimitry Andric       const unsigned Bit = 1 << SrcIdx;
1149e8d8bef9SDimitry Andric       if (!!(DMaskVal & Bit)) {
1150e8d8bef9SDimitry Andric         if (!!DemandedElts[OrigLoadIdx])
1151e8d8bef9SDimitry Andric           NewDMaskVal |= Bit;
1152e8d8bef9SDimitry Andric         OrigLoadIdx++;
1153e8d8bef9SDimitry Andric       }
1154e8d8bef9SDimitry Andric     }
1155e8d8bef9SDimitry Andric 
1156e8d8bef9SDimitry Andric     if (DMaskVal != NewDMaskVal)
1157e8d8bef9SDimitry Andric       Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal);
1158e8d8bef9SDimitry Andric   }
1159e8d8bef9SDimitry Andric 
1160e8d8bef9SDimitry Andric   unsigned NewNumElts = DemandedElts.countPopulation();
1161e8d8bef9SDimitry Andric   if (!NewNumElts)
1162*bdd1243dSDimitry Andric     return UndefValue::get(IIVTy);
1163e8d8bef9SDimitry Andric 
1164e8d8bef9SDimitry Andric   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1165e8d8bef9SDimitry Andric     if (DMaskIdx >= 0)
1166e8d8bef9SDimitry Andric       II.setArgOperand(DMaskIdx, Args[DMaskIdx]);
1167e8d8bef9SDimitry Andric     return nullptr;
1168e8d8bef9SDimitry Andric   }
1169e8d8bef9SDimitry Andric 
1170e8d8bef9SDimitry Andric   // Validate function argument and return types, extracting overloaded types
1171e8d8bef9SDimitry Andric   // along the way.
1172e8d8bef9SDimitry Andric   SmallVector<Type *, 6> OverloadTys;
1173e8d8bef9SDimitry Andric   if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys))
1174e8d8bef9SDimitry Andric     return nullptr;
1175e8d8bef9SDimitry Andric 
1176e8d8bef9SDimitry Andric   Type *NewTy =
1177e8d8bef9SDimitry Andric       (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts);
1178e8d8bef9SDimitry Andric   OverloadTys[0] = NewTy;
1179e8d8bef9SDimitry Andric 
1180*bdd1243dSDimitry Andric   Function *NewIntrin = Intrinsic::getDeclaration(
1181*bdd1243dSDimitry Andric       II.getModule(), II.getIntrinsicID(), OverloadTys);
1182e8d8bef9SDimitry Andric   CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args);
1183e8d8bef9SDimitry Andric   NewCall->takeName(&II);
1184e8d8bef9SDimitry Andric   NewCall->copyMetadata(II);
1185e8d8bef9SDimitry Andric 
1186e8d8bef9SDimitry Andric   if (NewNumElts == 1) {
1187*bdd1243dSDimitry Andric     return IC.Builder.CreateInsertElement(UndefValue::get(IIVTy), NewCall,
1188e8d8bef9SDimitry Andric                                           DemandedElts.countTrailingZeros());
1189e8d8bef9SDimitry Andric   }
1190e8d8bef9SDimitry Andric 
1191e8d8bef9SDimitry Andric   SmallVector<int, 8> EltMask;
1192e8d8bef9SDimitry Andric   unsigned NewLoadIdx = 0;
1193e8d8bef9SDimitry Andric   for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1194e8d8bef9SDimitry Andric     if (!!DemandedElts[OrigLoadIdx])
1195e8d8bef9SDimitry Andric       EltMask.push_back(NewLoadIdx++);
1196e8d8bef9SDimitry Andric     else
1197e8d8bef9SDimitry Andric       EltMask.push_back(NewNumElts);
1198e8d8bef9SDimitry Andric   }
1199e8d8bef9SDimitry Andric 
1200e8d8bef9SDimitry Andric   Value *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask);
1201e8d8bef9SDimitry Andric 
1202e8d8bef9SDimitry Andric   return Shuffle;
1203e8d8bef9SDimitry Andric }
1204e8d8bef9SDimitry Andric 
1205*bdd1243dSDimitry Andric std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic(
1206e8d8bef9SDimitry Andric     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1207e8d8bef9SDimitry Andric     APInt &UndefElts2, APInt &UndefElts3,
1208e8d8bef9SDimitry Andric     std::function<void(Instruction *, unsigned, APInt, APInt &)>
1209e8d8bef9SDimitry Andric         SimplifyAndSetOp) const {
1210e8d8bef9SDimitry Andric   switch (II.getIntrinsicID()) {
1211e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_buffer_load:
1212e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_buffer_load_format:
1213e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_buffer_load:
1214e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_buffer_load_format:
1215e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_tbuffer_load:
1216e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_s_buffer_load:
1217e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_buffer_load:
1218e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_buffer_load_format:
1219e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_tbuffer_load:
1220e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_tbuffer_load:
1221e8d8bef9SDimitry Andric     return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts);
1222e8d8bef9SDimitry Andric   default: {
1223e8d8bef9SDimitry Andric     if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) {
1224e8d8bef9SDimitry Andric       return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0);
1225e8d8bef9SDimitry Andric     }
1226e8d8bef9SDimitry Andric     break;
1227e8d8bef9SDimitry Andric   }
1228e8d8bef9SDimitry Andric   }
1229*bdd1243dSDimitry Andric   return std::nullopt;
1230e8d8bef9SDimitry Andric }
1231