1e8d8bef9SDimitry Andric //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // \file 10e8d8bef9SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the 11e8d8bef9SDimitry Andric // AMDGPU target machine. It uses the target's detailed information to provide 12e8d8bef9SDimitry Andric // more precise answers to certain TTI queries, while letting the target 13e8d8bef9SDimitry Andric // independent and default TTI implementations handle the rest. 14e8d8bef9SDimitry Andric // 15e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 16e8d8bef9SDimitry Andric 17e8d8bef9SDimitry Andric #include "AMDGPUInstrInfo.h" 18e8d8bef9SDimitry Andric #include "AMDGPUTargetTransformInfo.h" 19e8d8bef9SDimitry Andric #include "GCNSubtarget.h" 20bdd1243dSDimitry Andric #include "llvm/ADT/FloatingPointMode.h" 21e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 22e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h" 23bdd1243dSDimitry Andric #include <optional> 24e8d8bef9SDimitry Andric 25e8d8bef9SDimitry Andric using namespace llvm; 2606c3fb27SDimitry Andric using namespace llvm::PatternMatch; 27e8d8bef9SDimitry Andric 28e8d8bef9SDimitry Andric #define DEBUG_TYPE "AMDGPUtti" 29e8d8bef9SDimitry Andric 30e8d8bef9SDimitry Andric namespace { 31e8d8bef9SDimitry Andric 32e8d8bef9SDimitry Andric struct AMDGPUImageDMaskIntrinsic { 33e8d8bef9SDimitry Andric unsigned Intr; 34e8d8bef9SDimitry Andric }; 35e8d8bef9SDimitry Andric 36e8d8bef9SDimitry Andric #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 37e8d8bef9SDimitry Andric #include "InstCombineTables.inc" 38e8d8bef9SDimitry Andric 39e8d8bef9SDimitry Andric } // end anonymous namespace 40e8d8bef9SDimitry Andric 41e8d8bef9SDimitry Andric // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 42e8d8bef9SDimitry Andric // 43e8d8bef9SDimitry Andric // A single NaN input is folded to minnum, so we rely on that folding for 44e8d8bef9SDimitry Andric // handling NaNs. 45e8d8bef9SDimitry Andric static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 46e8d8bef9SDimitry Andric const APFloat &Src2) { 47e8d8bef9SDimitry Andric APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 48e8d8bef9SDimitry Andric 49e8d8bef9SDimitry Andric APFloat::cmpResult Cmp0 = Max3.compare(Src0); 50e8d8bef9SDimitry Andric assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 51e8d8bef9SDimitry Andric if (Cmp0 == APFloat::cmpEqual) 52e8d8bef9SDimitry Andric return maxnum(Src1, Src2); 53e8d8bef9SDimitry Andric 54e8d8bef9SDimitry Andric APFloat::cmpResult Cmp1 = Max3.compare(Src1); 55e8d8bef9SDimitry Andric assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 56e8d8bef9SDimitry Andric if (Cmp1 == APFloat::cmpEqual) 57e8d8bef9SDimitry Andric return maxnum(Src0, Src2); 58e8d8bef9SDimitry Andric 59e8d8bef9SDimitry Andric return maxnum(Src0, Src1); 60e8d8bef9SDimitry Andric } 61e8d8bef9SDimitry Andric 62e8d8bef9SDimitry Andric // Check if a value can be converted to a 16-bit value without losing 63e8d8bef9SDimitry Andric // precision. 6404eeddc0SDimitry Andric // The value is expected to be either a float (IsFloat = true) or an unsigned 6504eeddc0SDimitry Andric // integer (IsFloat = false). 6604eeddc0SDimitry Andric static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { 67e8d8bef9SDimitry Andric Type *VTy = V.getType(); 68e8d8bef9SDimitry Andric if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { 69e8d8bef9SDimitry Andric // The value is already 16-bit, so we don't want to convert to 16-bit again! 70e8d8bef9SDimitry Andric return false; 71e8d8bef9SDimitry Andric } 7204eeddc0SDimitry Andric if (IsFloat) { 73e8d8bef9SDimitry Andric if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) { 7404eeddc0SDimitry Andric // We need to check that if we cast the index down to a half, we do not 7504eeddc0SDimitry Andric // lose precision. 76e8d8bef9SDimitry Andric APFloat FloatValue(ConstFloat->getValueAPF()); 77e8d8bef9SDimitry Andric bool LosesInfo = true; 7804eeddc0SDimitry Andric FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, 7904eeddc0SDimitry Andric &LosesInfo); 80e8d8bef9SDimitry Andric return !LosesInfo; 81e8d8bef9SDimitry Andric } 8204eeddc0SDimitry Andric } else { 8304eeddc0SDimitry Andric if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) { 8404eeddc0SDimitry Andric // We need to check that if we cast the index down to an i16, we do not 8504eeddc0SDimitry Andric // lose precision. 8604eeddc0SDimitry Andric APInt IntValue(ConstInt->getValue()); 8704eeddc0SDimitry Andric return IntValue.getActiveBits() <= 16; 8804eeddc0SDimitry Andric } 8904eeddc0SDimitry Andric } 9004eeddc0SDimitry Andric 91e8d8bef9SDimitry Andric Value *CastSrc; 9204eeddc0SDimitry Andric bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) 9304eeddc0SDimitry Andric : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); 9404eeddc0SDimitry Andric if (IsExt) { 95e8d8bef9SDimitry Andric Type *CastSrcTy = CastSrc->getType(); 96e8d8bef9SDimitry Andric if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) 97e8d8bef9SDimitry Andric return true; 98e8d8bef9SDimitry Andric } 99e8d8bef9SDimitry Andric 100e8d8bef9SDimitry Andric return false; 101e8d8bef9SDimitry Andric } 102e8d8bef9SDimitry Andric 103e8d8bef9SDimitry Andric // Convert a value to 16-bit. 104e8d8bef9SDimitry Andric static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { 105e8d8bef9SDimitry Andric Type *VTy = V.getType(); 106e8d8bef9SDimitry Andric if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V)) 107e8d8bef9SDimitry Andric return cast<Instruction>(&V)->getOperand(0); 108e8d8bef9SDimitry Andric if (VTy->isIntegerTy()) 109e8d8bef9SDimitry Andric return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); 110e8d8bef9SDimitry Andric if (VTy->isFloatingPointTy()) 111e8d8bef9SDimitry Andric return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); 112e8d8bef9SDimitry Andric 113e8d8bef9SDimitry Andric llvm_unreachable("Should never be called!"); 114e8d8bef9SDimitry Andric } 115e8d8bef9SDimitry Andric 11681ad6265SDimitry Andric /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with 11781ad6265SDimitry Andric /// modified arguments (based on OldIntr) and replaces InstToReplace with 11881ad6265SDimitry Andric /// this newly created intrinsic call. 119bdd1243dSDimitry Andric static std::optional<Instruction *> modifyIntrinsicCall( 12081ad6265SDimitry Andric IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, 12181ad6265SDimitry Andric InstCombiner &IC, 12204eeddc0SDimitry Andric std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> 12304eeddc0SDimitry Andric Func) { 12404eeddc0SDimitry Andric SmallVector<Type *, 4> ArgTys; 12581ad6265SDimitry Andric if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys)) 126bdd1243dSDimitry Andric return std::nullopt; 12704eeddc0SDimitry Andric 12881ad6265SDimitry Andric SmallVector<Value *, 8> Args(OldIntr.args()); 12904eeddc0SDimitry Andric 13004eeddc0SDimitry Andric // Modify arguments and types 13104eeddc0SDimitry Andric Func(Args, ArgTys); 13204eeddc0SDimitry Andric 13381ad6265SDimitry Andric Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys); 13404eeddc0SDimitry Andric 13504eeddc0SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(I, Args); 13681ad6265SDimitry Andric NewCall->takeName(&OldIntr); 13781ad6265SDimitry Andric NewCall->copyMetadata(OldIntr); 13804eeddc0SDimitry Andric if (isa<FPMathOperator>(NewCall)) 13981ad6265SDimitry Andric NewCall->copyFastMathFlags(&OldIntr); 14004eeddc0SDimitry Andric 14104eeddc0SDimitry Andric // Erase and replace uses 14281ad6265SDimitry Andric if (!InstToReplace.getType()->isVoidTy()) 14381ad6265SDimitry Andric IC.replaceInstUsesWith(InstToReplace, NewCall); 14481ad6265SDimitry Andric 14581ad6265SDimitry Andric bool RemoveOldIntr = &OldIntr != &InstToReplace; 14681ad6265SDimitry Andric 14781ad6265SDimitry Andric auto RetValue = IC.eraseInstFromFunction(InstToReplace); 14881ad6265SDimitry Andric if (RemoveOldIntr) 14981ad6265SDimitry Andric IC.eraseInstFromFunction(OldIntr); 15081ad6265SDimitry Andric 15181ad6265SDimitry Andric return RetValue; 15204eeddc0SDimitry Andric } 15304eeddc0SDimitry Andric 154bdd1243dSDimitry Andric static std::optional<Instruction *> 155e8d8bef9SDimitry Andric simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, 156e8d8bef9SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, 157e8d8bef9SDimitry Andric IntrinsicInst &II, InstCombiner &IC) { 15804eeddc0SDimitry Andric // Optimize _L to _LZ when _L is zero 15904eeddc0SDimitry Andric if (const auto *LZMappingInfo = 16004eeddc0SDimitry Andric AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { 16104eeddc0SDimitry Andric if (auto *ConstantLod = 16204eeddc0SDimitry Andric dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) { 16304eeddc0SDimitry Andric if (ConstantLod->isZero() || ConstantLod->isNegative()) { 16404eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 16504eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, 16604eeddc0SDimitry Andric ImageDimIntr->Dim); 16704eeddc0SDimitry Andric return modifyIntrinsicCall( 16881ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 16904eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->LodIndex); 17004eeddc0SDimitry Andric }); 17104eeddc0SDimitry Andric } 17204eeddc0SDimitry Andric } 17304eeddc0SDimitry Andric } 17404eeddc0SDimitry Andric 17504eeddc0SDimitry Andric // Optimize _mip away, when 'lod' is zero 17604eeddc0SDimitry Andric if (const auto *MIPMappingInfo = 17704eeddc0SDimitry Andric AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { 17804eeddc0SDimitry Andric if (auto *ConstantMip = 17904eeddc0SDimitry Andric dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) { 18004eeddc0SDimitry Andric if (ConstantMip->isZero()) { 18104eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 18204eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, 18304eeddc0SDimitry Andric ImageDimIntr->Dim); 18404eeddc0SDimitry Andric return modifyIntrinsicCall( 18581ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 18604eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->MipIndex); 18704eeddc0SDimitry Andric }); 18804eeddc0SDimitry Andric } 18904eeddc0SDimitry Andric } 19004eeddc0SDimitry Andric } 19104eeddc0SDimitry Andric 19204eeddc0SDimitry Andric // Optimize _bias away when 'bias' is zero 19304eeddc0SDimitry Andric if (const auto *BiasMappingInfo = 19404eeddc0SDimitry Andric AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { 19504eeddc0SDimitry Andric if (auto *ConstantBias = 19604eeddc0SDimitry Andric dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) { 19704eeddc0SDimitry Andric if (ConstantBias->isZero()) { 19804eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 19904eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, 20004eeddc0SDimitry Andric ImageDimIntr->Dim); 20104eeddc0SDimitry Andric return modifyIntrinsicCall( 20281ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 20304eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->BiasIndex); 20404eeddc0SDimitry Andric ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); 20504eeddc0SDimitry Andric }); 20604eeddc0SDimitry Andric } 20704eeddc0SDimitry Andric } 20804eeddc0SDimitry Andric } 20904eeddc0SDimitry Andric 21004eeddc0SDimitry Andric // Optimize _offset away when 'offset' is zero 21104eeddc0SDimitry Andric if (const auto *OffsetMappingInfo = 21204eeddc0SDimitry Andric AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { 21304eeddc0SDimitry Andric if (auto *ConstantOffset = 21404eeddc0SDimitry Andric dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) { 21504eeddc0SDimitry Andric if (ConstantOffset->isZero()) { 21604eeddc0SDimitry Andric const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = 21704eeddc0SDimitry Andric AMDGPU::getImageDimIntrinsicByBaseOpcode( 21804eeddc0SDimitry Andric OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); 21904eeddc0SDimitry Andric return modifyIntrinsicCall( 22081ad6265SDimitry Andric II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { 22104eeddc0SDimitry Andric Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); 22204eeddc0SDimitry Andric }); 22304eeddc0SDimitry Andric } 22404eeddc0SDimitry Andric } 22504eeddc0SDimitry Andric } 22604eeddc0SDimitry Andric 22781ad6265SDimitry Andric // Try to use D16 22881ad6265SDimitry Andric if (ST->hasD16Images()) { 22981ad6265SDimitry Andric 23081ad6265SDimitry Andric const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 23181ad6265SDimitry Andric AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode); 23281ad6265SDimitry Andric 23381ad6265SDimitry Andric if (BaseOpcode->HasD16) { 23481ad6265SDimitry Andric 23581ad6265SDimitry Andric // If the only use of image intrinsic is a fptrunc (with conversion to 23681ad6265SDimitry Andric // half) then both fptrunc and image intrinsic will be replaced with image 23781ad6265SDimitry Andric // intrinsic with D16 flag. 23881ad6265SDimitry Andric if (II.hasOneUse()) { 23981ad6265SDimitry Andric Instruction *User = II.user_back(); 24081ad6265SDimitry Andric 24181ad6265SDimitry Andric if (User->getOpcode() == Instruction::FPTrunc && 24281ad6265SDimitry Andric User->getType()->getScalarType()->isHalfTy()) { 24381ad6265SDimitry Andric 24481ad6265SDimitry Andric return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC, 24581ad6265SDimitry Andric [&](auto &Args, auto &ArgTys) { 24681ad6265SDimitry Andric // Change return type of image intrinsic. 24781ad6265SDimitry Andric // Set it to return type of fptrunc. 24881ad6265SDimitry Andric ArgTys[0] = User->getType(); 24981ad6265SDimitry Andric }); 25081ad6265SDimitry Andric } 25181ad6265SDimitry Andric } 25281ad6265SDimitry Andric } 25381ad6265SDimitry Andric } 25481ad6265SDimitry Andric 25504eeddc0SDimitry Andric // Try to use A16 or G16 256e8d8bef9SDimitry Andric if (!ST->hasA16() && !ST->hasG16()) 257bdd1243dSDimitry Andric return std::nullopt; 258e8d8bef9SDimitry Andric 25904eeddc0SDimitry Andric // Address is interpreted as float if the instruction has a sampler or as 26004eeddc0SDimitry Andric // unsigned int if there is no sampler. 26104eeddc0SDimitry Andric bool HasSampler = 26204eeddc0SDimitry Andric AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; 263e8d8bef9SDimitry Andric bool FloatCoord = false; 264e8d8bef9SDimitry Andric // true means derivatives can be converted to 16 bit, coordinates not 265e8d8bef9SDimitry Andric bool OnlyDerivatives = false; 266e8d8bef9SDimitry Andric 267e8d8bef9SDimitry Andric for (unsigned OperandIndex = ImageDimIntr->GradientStart; 268e8d8bef9SDimitry Andric OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { 269e8d8bef9SDimitry Andric Value *Coord = II.getOperand(OperandIndex); 270e8d8bef9SDimitry Andric // If the values are not derived from 16-bit values, we cannot optimize. 27104eeddc0SDimitry Andric if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { 272e8d8bef9SDimitry Andric if (OperandIndex < ImageDimIntr->CoordStart || 273e8d8bef9SDimitry Andric ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { 274bdd1243dSDimitry Andric return std::nullopt; 275e8d8bef9SDimitry Andric } 276e8d8bef9SDimitry Andric // All gradients can be converted, so convert only them 277e8d8bef9SDimitry Andric OnlyDerivatives = true; 278e8d8bef9SDimitry Andric break; 279e8d8bef9SDimitry Andric } 280e8d8bef9SDimitry Andric 281e8d8bef9SDimitry Andric assert(OperandIndex == ImageDimIntr->GradientStart || 282e8d8bef9SDimitry Andric FloatCoord == Coord->getType()->isFloatingPointTy()); 283e8d8bef9SDimitry Andric FloatCoord = Coord->getType()->isFloatingPointTy(); 284e8d8bef9SDimitry Andric } 285e8d8bef9SDimitry Andric 28604eeddc0SDimitry Andric if (!OnlyDerivatives && !ST->hasA16()) 287e8d8bef9SDimitry Andric OnlyDerivatives = true; // Only supports G16 28804eeddc0SDimitry Andric 28904eeddc0SDimitry Andric // Check if there is a bias parameter and if it can be converted to f16 29004eeddc0SDimitry Andric if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 29104eeddc0SDimitry Andric Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 29204eeddc0SDimitry Andric assert(HasSampler && 29304eeddc0SDimitry Andric "Only image instructions with a sampler can have a bias"); 29404eeddc0SDimitry Andric if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) 29504eeddc0SDimitry Andric OnlyDerivatives = true; 296e8d8bef9SDimitry Andric } 297e8d8bef9SDimitry Andric 29804eeddc0SDimitry Andric if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == 29904eeddc0SDimitry Andric ImageDimIntr->CoordStart)) 300bdd1243dSDimitry Andric return std::nullopt; 30104eeddc0SDimitry Andric 302e8d8bef9SDimitry Andric Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) 303e8d8bef9SDimitry Andric : Type::getInt16Ty(II.getContext()); 304e8d8bef9SDimitry Andric 30504eeddc0SDimitry Andric return modifyIntrinsicCall( 30681ad6265SDimitry Andric II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { 307e8d8bef9SDimitry Andric ArgTys[ImageDimIntr->GradientTyArg] = CoordType; 30804eeddc0SDimitry Andric if (!OnlyDerivatives) { 309e8d8bef9SDimitry Andric ArgTys[ImageDimIntr->CoordTyArg] = CoordType; 310e8d8bef9SDimitry Andric 31104eeddc0SDimitry Andric // Change the bias type 31204eeddc0SDimitry Andric if (ImageDimIntr->NumBiasArgs != 0) 31304eeddc0SDimitry Andric ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); 31404eeddc0SDimitry Andric } 315e8d8bef9SDimitry Andric 316e8d8bef9SDimitry Andric unsigned EndIndex = 317e8d8bef9SDimitry Andric OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; 318e8d8bef9SDimitry Andric for (unsigned OperandIndex = ImageDimIntr->GradientStart; 319e8d8bef9SDimitry Andric OperandIndex < EndIndex; OperandIndex++) { 320e8d8bef9SDimitry Andric Args[OperandIndex] = 321e8d8bef9SDimitry Andric convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); 322e8d8bef9SDimitry Andric } 323e8d8bef9SDimitry Andric 32404eeddc0SDimitry Andric // Convert the bias 32504eeddc0SDimitry Andric if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { 32604eeddc0SDimitry Andric Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); 32704eeddc0SDimitry Andric Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); 32804eeddc0SDimitry Andric } 32904eeddc0SDimitry Andric }); 330e8d8bef9SDimitry Andric } 331e8d8bef9SDimitry Andric 33206c3fb27SDimitry Andric bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, 33306c3fb27SDimitry Andric const Value *Op0, const Value *Op1, 334e8d8bef9SDimitry Andric InstCombiner &IC) const { 335e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 336e8d8bef9SDimitry Andric // infinity, gives +0.0. If we can prove we don't have one of the special 337e8d8bef9SDimitry Andric // cases then we can use a normal multiply instead. 338e8d8bef9SDimitry Andric // TODO: Create and use isKnownFiniteNonZero instead of just matching 339e8d8bef9SDimitry Andric // constants here. 340e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_FiniteNonZero()) || 341e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_FiniteNonZero())) { 342e8d8bef9SDimitry Andric // One operand is not zero or infinity or NaN. 343e8d8bef9SDimitry Andric return true; 344e8d8bef9SDimitry Andric } 34506c3fb27SDimitry Andric 346e8d8bef9SDimitry Andric auto *TLI = &IC.getTargetLibraryInfo(); 34706c3fb27SDimitry Andric if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0, 34806c3fb27SDimitry Andric &IC.getAssumptionCache(), &I, 34906c3fb27SDimitry Andric &IC.getDominatorTree()) && 35006c3fb27SDimitry Andric isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0, 35106c3fb27SDimitry Andric &IC.getAssumptionCache(), &I, 35206c3fb27SDimitry Andric &IC.getDominatorTree())) { 353e8d8bef9SDimitry Andric // Neither operand is infinity or NaN. 354e8d8bef9SDimitry Andric return true; 355e8d8bef9SDimitry Andric } 356e8d8bef9SDimitry Andric return false; 357e8d8bef9SDimitry Andric } 358e8d8bef9SDimitry Andric 35906c3fb27SDimitry Andric /// Match an fpext from half to float, or a constant we can convert. 36006c3fb27SDimitry Andric static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) { 36106c3fb27SDimitry Andric if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc))))) 36206c3fb27SDimitry Andric return FPExtSrc->getType()->isHalfTy(); 36306c3fb27SDimitry Andric 36406c3fb27SDimitry Andric ConstantFP *CFP; 36506c3fb27SDimitry Andric if (match(Arg, m_ConstantFP(CFP))) { 36606c3fb27SDimitry Andric bool LosesInfo; 36706c3fb27SDimitry Andric APFloat Val(CFP->getValueAPF()); 36806c3fb27SDimitry Andric Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); 36906c3fb27SDimitry Andric if (LosesInfo) 37006c3fb27SDimitry Andric return false; 37106c3fb27SDimitry Andric 37206c3fb27SDimitry Andric FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val); 37306c3fb27SDimitry Andric return true; 37406c3fb27SDimitry Andric } 37506c3fb27SDimitry Andric 37606c3fb27SDimitry Andric return false; 37706c3fb27SDimitry Andric } 37806c3fb27SDimitry Andric 37906c3fb27SDimitry Andric // Trim all zero components from the end of the vector \p UseV and return 38006c3fb27SDimitry Andric // an appropriate bitset with known elements. 38106c3fb27SDimitry Andric static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, 38206c3fb27SDimitry Andric Instruction *I) { 38306c3fb27SDimitry Andric auto *VTy = cast<FixedVectorType>(UseV->getType()); 38406c3fb27SDimitry Andric unsigned VWidth = VTy->getNumElements(); 38506c3fb27SDimitry Andric APInt DemandedElts = APInt::getAllOnes(VWidth); 38606c3fb27SDimitry Andric 38706c3fb27SDimitry Andric for (int i = VWidth - 1; i > 0; --i) { 38806c3fb27SDimitry Andric auto *Elt = findScalarElement(UseV, i); 38906c3fb27SDimitry Andric if (!Elt) 39006c3fb27SDimitry Andric break; 39106c3fb27SDimitry Andric 39206c3fb27SDimitry Andric if (auto *ConstElt = dyn_cast<Constant>(Elt)) { 39306c3fb27SDimitry Andric if (!ConstElt->isNullValue() && !isa<UndefValue>(Elt)) 39406c3fb27SDimitry Andric break; 39506c3fb27SDimitry Andric } else { 39606c3fb27SDimitry Andric break; 39706c3fb27SDimitry Andric } 39806c3fb27SDimitry Andric 39906c3fb27SDimitry Andric DemandedElts.clearBit(i); 40006c3fb27SDimitry Andric } 40106c3fb27SDimitry Andric 40206c3fb27SDimitry Andric return DemandedElts; 40306c3fb27SDimitry Andric } 40406c3fb27SDimitry Andric 405*7a6dacacSDimitry Andric // Trim elements of the end of the vector \p V, if they are 406*7a6dacacSDimitry Andric // equal to the first element of the vector. 407*7a6dacacSDimitry Andric static APInt defaultComponentBroadcast(Value *V) { 408*7a6dacacSDimitry Andric auto *VTy = cast<FixedVectorType>(V->getType()); 409*7a6dacacSDimitry Andric unsigned VWidth = VTy->getNumElements(); 410*7a6dacacSDimitry Andric APInt DemandedElts = APInt::getAllOnes(VWidth); 411*7a6dacacSDimitry Andric Value *FirstComponent = findScalarElement(V, 0); 412*7a6dacacSDimitry Andric 413*7a6dacacSDimitry Andric SmallVector<int> ShuffleMask; 414*7a6dacacSDimitry Andric if (auto *SVI = dyn_cast<ShuffleVectorInst>(V)) 415*7a6dacacSDimitry Andric SVI->getShuffleMask(ShuffleMask); 416*7a6dacacSDimitry Andric 417*7a6dacacSDimitry Andric for (int I = VWidth - 1; I > 0; --I) { 418*7a6dacacSDimitry Andric if (ShuffleMask.empty()) { 419*7a6dacacSDimitry Andric auto *Elt = findScalarElement(V, I); 420*7a6dacacSDimitry Andric if (!Elt || (Elt != FirstComponent && !isa<UndefValue>(Elt))) 421*7a6dacacSDimitry Andric break; 422*7a6dacacSDimitry Andric } else { 423*7a6dacacSDimitry Andric // Detect identical elements in the shufflevector result, even though 424*7a6dacacSDimitry Andric // findScalarElement cannot tell us what that element is. 425*7a6dacacSDimitry Andric if (ShuffleMask[I] != ShuffleMask[0] && ShuffleMask[I] != PoisonMaskElem) 426*7a6dacacSDimitry Andric break; 427*7a6dacacSDimitry Andric } 428*7a6dacacSDimitry Andric DemandedElts.clearBit(I); 429*7a6dacacSDimitry Andric } 430*7a6dacacSDimitry Andric 431*7a6dacacSDimitry Andric return DemandedElts; 432*7a6dacacSDimitry Andric } 433*7a6dacacSDimitry Andric 43406c3fb27SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 43506c3fb27SDimitry Andric IntrinsicInst &II, 43606c3fb27SDimitry Andric APInt DemandedElts, 43706c3fb27SDimitry Andric int DMaskIdx = -1, 43806c3fb27SDimitry Andric bool IsLoad = true); 43906c3fb27SDimitry Andric 4405f757f3fSDimitry Andric /// Return true if it's legal to contract llvm.amdgcn.rcp(llvm.sqrt) 4415f757f3fSDimitry Andric static bool canContractSqrtToRsq(const FPMathOperator *SqrtOp) { 4425f757f3fSDimitry Andric return (SqrtOp->getType()->isFloatTy() && 4435f757f3fSDimitry Andric (SqrtOp->hasApproxFunc() || SqrtOp->getFPAccuracy() >= 1.0f)) || 4445f757f3fSDimitry Andric SqrtOp->getType()->isHalfTy(); 4455f757f3fSDimitry Andric } 4465f757f3fSDimitry Andric 447bdd1243dSDimitry Andric std::optional<Instruction *> 448e8d8bef9SDimitry Andric GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 449e8d8bef9SDimitry Andric Intrinsic::ID IID = II.getIntrinsicID(); 450e8d8bef9SDimitry Andric switch (IID) { 451e8d8bef9SDimitry Andric case Intrinsic::amdgcn_rcp: { 452e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 453e8d8bef9SDimitry Andric 454e8d8bef9SDimitry Andric // TODO: Move to ConstantFolding/InstSimplify? 455e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 456e8d8bef9SDimitry Andric Type *Ty = II.getType(); 457e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 458e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 459e8d8bef9SDimitry Andric } 460e8d8bef9SDimitry Andric 461e8d8bef9SDimitry Andric if (II.isStrictFP()) 462e8d8bef9SDimitry Andric break; 463e8d8bef9SDimitry Andric 464e8d8bef9SDimitry Andric if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 465e8d8bef9SDimitry Andric const APFloat &ArgVal = C->getValueAPF(); 466e8d8bef9SDimitry Andric APFloat Val(ArgVal.getSemantics(), 1); 467e8d8bef9SDimitry Andric Val.divide(ArgVal, APFloat::rmNearestTiesToEven); 468e8d8bef9SDimitry Andric 469e8d8bef9SDimitry Andric // This is more precise than the instruction may give. 470e8d8bef9SDimitry Andric // 471e8d8bef9SDimitry Andric // TODO: The instruction always flushes denormal results (except for f16), 472e8d8bef9SDimitry Andric // should this also? 473e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); 474e8d8bef9SDimitry Andric } 475e8d8bef9SDimitry Andric 4765f757f3fSDimitry Andric FastMathFlags FMF = cast<FPMathOperator>(II).getFastMathFlags(); 4775f757f3fSDimitry Andric if (!FMF.allowContract()) 4785f757f3fSDimitry Andric break; 4795f757f3fSDimitry Andric auto *SrcCI = dyn_cast<IntrinsicInst>(Src); 4805f757f3fSDimitry Andric if (!SrcCI) 4815f757f3fSDimitry Andric break; 4825f757f3fSDimitry Andric 4835f757f3fSDimitry Andric auto IID = SrcCI->getIntrinsicID(); 4845f757f3fSDimitry Andric // llvm.amdgcn.rcp(llvm.amdgcn.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable 4855f757f3fSDimitry Andric // 4865f757f3fSDimitry Andric // llvm.amdgcn.rcp(llvm.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable and 4875f757f3fSDimitry Andric // relaxed. 4885f757f3fSDimitry Andric if (IID == Intrinsic::amdgcn_sqrt || IID == Intrinsic::sqrt) { 4895f757f3fSDimitry Andric const FPMathOperator *SqrtOp = cast<FPMathOperator>(SrcCI); 4905f757f3fSDimitry Andric FastMathFlags InnerFMF = SqrtOp->getFastMathFlags(); 4915f757f3fSDimitry Andric if (!InnerFMF.allowContract() || !SrcCI->hasOneUse()) 4925f757f3fSDimitry Andric break; 4935f757f3fSDimitry Andric 4945f757f3fSDimitry Andric if (IID == Intrinsic::sqrt && !canContractSqrtToRsq(SqrtOp)) 4955f757f3fSDimitry Andric break; 4965f757f3fSDimitry Andric 4975f757f3fSDimitry Andric Function *NewDecl = Intrinsic::getDeclaration( 4985f757f3fSDimitry Andric SrcCI->getModule(), Intrinsic::amdgcn_rsq, {SrcCI->getType()}); 4995f757f3fSDimitry Andric 5005f757f3fSDimitry Andric InnerFMF |= FMF; 5015f757f3fSDimitry Andric II.setFastMathFlags(InnerFMF); 5025f757f3fSDimitry Andric 5035f757f3fSDimitry Andric II.setCalledFunction(NewDecl); 5045f757f3fSDimitry Andric return IC.replaceOperand(II, 0, SrcCI->getArgOperand(0)); 5055f757f3fSDimitry Andric } 5065f757f3fSDimitry Andric 507e8d8bef9SDimitry Andric break; 508e8d8bef9SDimitry Andric } 509bdd1243dSDimitry Andric case Intrinsic::amdgcn_sqrt: 510e8d8bef9SDimitry Andric case Intrinsic::amdgcn_rsq: { 511e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 512e8d8bef9SDimitry Andric 513e8d8bef9SDimitry Andric // TODO: Move to ConstantFolding/InstSimplify? 514e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 515e8d8bef9SDimitry Andric Type *Ty = II.getType(); 516e8d8bef9SDimitry Andric auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); 517e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, QNaN); 518e8d8bef9SDimitry Andric } 519e8d8bef9SDimitry Andric 5205f757f3fSDimitry Andric // f16 amdgcn.sqrt is identical to regular sqrt. 5215f757f3fSDimitry Andric if (IID == Intrinsic::amdgcn_sqrt && Src->getType()->isHalfTy()) { 5225f757f3fSDimitry Andric Function *NewDecl = Intrinsic::getDeclaration( 5235f757f3fSDimitry Andric II.getModule(), Intrinsic::sqrt, {II.getType()}); 5245f757f3fSDimitry Andric II.setCalledFunction(NewDecl); 5255f757f3fSDimitry Andric return &II; 5265f757f3fSDimitry Andric } 5275f757f3fSDimitry Andric 528e8d8bef9SDimitry Andric break; 529e8d8bef9SDimitry Andric } 53006c3fb27SDimitry Andric case Intrinsic::amdgcn_log: 53106c3fb27SDimitry Andric case Intrinsic::amdgcn_exp2: { 53206c3fb27SDimitry Andric const bool IsLog = IID == Intrinsic::amdgcn_log; 53306c3fb27SDimitry Andric const bool IsExp = IID == Intrinsic::amdgcn_exp2; 53406c3fb27SDimitry Andric Value *Src = II.getArgOperand(0); 53506c3fb27SDimitry Andric Type *Ty = II.getType(); 53606c3fb27SDimitry Andric 53706c3fb27SDimitry Andric if (isa<PoisonValue>(Src)) 53806c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, Src); 53906c3fb27SDimitry Andric 54006c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src)) 54106c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 54206c3fb27SDimitry Andric 54306c3fb27SDimitry Andric if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 54406c3fb27SDimitry Andric if (C->isInfinity()) { 54506c3fb27SDimitry Andric // exp2(+inf) -> +inf 54606c3fb27SDimitry Andric // log2(+inf) -> +inf 54706c3fb27SDimitry Andric if (!C->isNegative()) 54806c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, C); 54906c3fb27SDimitry Andric 55006c3fb27SDimitry Andric // exp2(-inf) -> 0 55106c3fb27SDimitry Andric if (IsExp && C->isNegative()) 55206c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getZero(Ty)); 55306c3fb27SDimitry Andric } 55406c3fb27SDimitry Andric 55506c3fb27SDimitry Andric if (II.isStrictFP()) 55606c3fb27SDimitry Andric break; 55706c3fb27SDimitry Andric 55806c3fb27SDimitry Andric if (C->isNaN()) { 55906c3fb27SDimitry Andric Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet()); 56006c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, Quieted); 56106c3fb27SDimitry Andric } 56206c3fb27SDimitry Andric 56306c3fb27SDimitry Andric // f32 instruction doesn't handle denormals, f16 does. 56406c3fb27SDimitry Andric if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) { 56506c3fb27SDimitry Andric Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, true) 56606c3fb27SDimitry Andric : ConstantFP::get(Ty, 1.0); 56706c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, FoldedValue); 56806c3fb27SDimitry Andric } 56906c3fb27SDimitry Andric 57006c3fb27SDimitry Andric if (IsLog && C->isNegative()) 57106c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty)); 57206c3fb27SDimitry Andric 57306c3fb27SDimitry Andric // TODO: Full constant folding matching hardware behavior. 57406c3fb27SDimitry Andric } 57506c3fb27SDimitry Andric 57606c3fb27SDimitry Andric break; 57706c3fb27SDimitry Andric } 578e8d8bef9SDimitry Andric case Intrinsic::amdgcn_frexp_mant: 579e8d8bef9SDimitry Andric case Intrinsic::amdgcn_frexp_exp: { 580e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 581e8d8bef9SDimitry Andric if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 582e8d8bef9SDimitry Andric int Exp; 583e8d8bef9SDimitry Andric APFloat Significand = 584e8d8bef9SDimitry Andric frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); 585e8d8bef9SDimitry Andric 586e8d8bef9SDimitry Andric if (IID == Intrinsic::amdgcn_frexp_mant) { 587e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 588e8d8bef9SDimitry Andric II, ConstantFP::get(II.getContext(), Significand)); 589e8d8bef9SDimitry Andric } 590e8d8bef9SDimitry Andric 591e8d8bef9SDimitry Andric // Match instruction special case behavior. 592e8d8bef9SDimitry Andric if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 593e8d8bef9SDimitry Andric Exp = 0; 594e8d8bef9SDimitry Andric 595e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); 596e8d8bef9SDimitry Andric } 597e8d8bef9SDimitry Andric 598e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 599e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 600e8d8bef9SDimitry Andric } 601e8d8bef9SDimitry Andric 602e8d8bef9SDimitry Andric break; 603e8d8bef9SDimitry Andric } 604e8d8bef9SDimitry Andric case Intrinsic::amdgcn_class: { 605e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 606e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 607e8d8bef9SDimitry Andric const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 60806c3fb27SDimitry Andric if (CMask) { 60906c3fb27SDimitry Andric II.setCalledOperand(Intrinsic::getDeclaration( 61006c3fb27SDimitry Andric II.getModule(), Intrinsic::is_fpclass, Src0->getType())); 61106c3fb27SDimitry Andric 61206c3fb27SDimitry Andric // Clamp any excess bits, as they're illegal for the generic intrinsic. 61306c3fb27SDimitry Andric II.setArgOperand(1, ConstantInt::get(Src1->getType(), 61406c3fb27SDimitry Andric CMask->getZExtValue() & fcAllFlags)); 61506c3fb27SDimitry Andric return &II; 616e8d8bef9SDimitry Andric } 617e8d8bef9SDimitry Andric 61806c3fb27SDimitry Andric // Propagate poison. 61906c3fb27SDimitry Andric if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1)) 62006c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType())); 621e8d8bef9SDimitry Andric 62206c3fb27SDimitry Andric // llvm.amdgcn.class(_, undef) -> false 62306c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src1)) 624e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); 62506c3fb27SDimitry Andric 62606c3fb27SDimitry Andric // llvm.amdgcn.class(undef, mask) -> mask != 0 62706c3fb27SDimitry Andric if (IC.getSimplifyQuery().isUndefValue(Src0)) { 62806c3fb27SDimitry Andric Value *CmpMask = IC.Builder.CreateICmpNE( 62906c3fb27SDimitry Andric Src1, ConstantInt::getNullValue(Src1->getType())); 63006c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, CmpMask); 631e8d8bef9SDimitry Andric } 632e8d8bef9SDimitry Andric break; 633e8d8bef9SDimitry Andric } 634e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pkrtz: { 635e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 636e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 637e8d8bef9SDimitry Andric if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 638e8d8bef9SDimitry Andric if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 639e8d8bef9SDimitry Andric const fltSemantics &HalfSem = 640e8d8bef9SDimitry Andric II.getType()->getScalarType()->getFltSemantics(); 641e8d8bef9SDimitry Andric bool LosesInfo; 642e8d8bef9SDimitry Andric APFloat Val0 = C0->getValueAPF(); 643e8d8bef9SDimitry Andric APFloat Val1 = C1->getValueAPF(); 644e8d8bef9SDimitry Andric Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 645e8d8bef9SDimitry Andric Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 646e8d8bef9SDimitry Andric 647e8d8bef9SDimitry Andric Constant *Folded = 648e8d8bef9SDimitry Andric ConstantVector::get({ConstantFP::get(II.getContext(), Val0), 649e8d8bef9SDimitry Andric ConstantFP::get(II.getContext(), Val1)}); 650e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Folded); 651e8d8bef9SDimitry Andric } 652e8d8bef9SDimitry Andric } 653e8d8bef9SDimitry Andric 654e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 655e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 656e8d8bef9SDimitry Andric } 657e8d8bef9SDimitry Andric 658e8d8bef9SDimitry Andric break; 659e8d8bef9SDimitry Andric } 660e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pknorm_i16: 661e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pknorm_u16: 662e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pk_i16: 663e8d8bef9SDimitry Andric case Intrinsic::amdgcn_cvt_pk_u16: { 664e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 665e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 666e8d8bef9SDimitry Andric 667e8d8bef9SDimitry Andric if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) { 668e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 669e8d8bef9SDimitry Andric } 670e8d8bef9SDimitry Andric 671e8d8bef9SDimitry Andric break; 672e8d8bef9SDimitry Andric } 673e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ubfe: 674e8d8bef9SDimitry Andric case Intrinsic::amdgcn_sbfe: { 675e8d8bef9SDimitry Andric // Decompose simple cases into standard shifts. 676e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 677e8d8bef9SDimitry Andric if (isa<UndefValue>(Src)) { 678e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 679e8d8bef9SDimitry Andric } 680e8d8bef9SDimitry Andric 681e8d8bef9SDimitry Andric unsigned Width; 682e8d8bef9SDimitry Andric Type *Ty = II.getType(); 683e8d8bef9SDimitry Andric unsigned IntSize = Ty->getIntegerBitWidth(); 684e8d8bef9SDimitry Andric 685e8d8bef9SDimitry Andric ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2)); 686e8d8bef9SDimitry Andric if (CWidth) { 687e8d8bef9SDimitry Andric Width = CWidth->getZExtValue(); 688e8d8bef9SDimitry Andric if ((Width & (IntSize - 1)) == 0) { 689e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); 690e8d8bef9SDimitry Andric } 691e8d8bef9SDimitry Andric 692e8d8bef9SDimitry Andric // Hardware ignores high bits, so remove those. 693e8d8bef9SDimitry Andric if (Width >= IntSize) { 694e8d8bef9SDimitry Andric return IC.replaceOperand( 695e8d8bef9SDimitry Andric II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); 696e8d8bef9SDimitry Andric } 697e8d8bef9SDimitry Andric } 698e8d8bef9SDimitry Andric 699e8d8bef9SDimitry Andric unsigned Offset; 700e8d8bef9SDimitry Andric ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1)); 701e8d8bef9SDimitry Andric if (COffset) { 702e8d8bef9SDimitry Andric Offset = COffset->getZExtValue(); 703e8d8bef9SDimitry Andric if (Offset >= IntSize) { 704e8d8bef9SDimitry Andric return IC.replaceOperand( 705e8d8bef9SDimitry Andric II, 1, 706e8d8bef9SDimitry Andric ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); 707e8d8bef9SDimitry Andric } 708e8d8bef9SDimitry Andric } 709e8d8bef9SDimitry Andric 710e8d8bef9SDimitry Andric bool Signed = IID == Intrinsic::amdgcn_sbfe; 711e8d8bef9SDimitry Andric 712e8d8bef9SDimitry Andric if (!CWidth || !COffset) 713e8d8bef9SDimitry Andric break; 714e8d8bef9SDimitry Andric 715349cc55cSDimitry Andric // The case of Width == 0 is handled above, which makes this transformation 716e8d8bef9SDimitry Andric // safe. If Width == 0, then the ashr and lshr instructions become poison 717e8d8bef9SDimitry Andric // value since the shift amount would be equal to the bit size. 718e8d8bef9SDimitry Andric assert(Width != 0); 719e8d8bef9SDimitry Andric 720e8d8bef9SDimitry Andric // TODO: This allows folding to undef when the hardware has specific 721e8d8bef9SDimitry Andric // behavior? 722e8d8bef9SDimitry Andric if (Offset + Width < IntSize) { 723e8d8bef9SDimitry Andric Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); 724e8d8bef9SDimitry Andric Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) 725e8d8bef9SDimitry Andric : IC.Builder.CreateLShr(Shl, IntSize - Width); 726e8d8bef9SDimitry Andric RightShift->takeName(&II); 727e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, RightShift); 728e8d8bef9SDimitry Andric } 729e8d8bef9SDimitry Andric 730e8d8bef9SDimitry Andric Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) 731e8d8bef9SDimitry Andric : IC.Builder.CreateLShr(Src, Offset); 732e8d8bef9SDimitry Andric 733e8d8bef9SDimitry Andric RightShift->takeName(&II); 734e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, RightShift); 735e8d8bef9SDimitry Andric } 736e8d8bef9SDimitry Andric case Intrinsic::amdgcn_exp: 73781ad6265SDimitry Andric case Intrinsic::amdgcn_exp_row: 738e8d8bef9SDimitry Andric case Intrinsic::amdgcn_exp_compr: { 739e8d8bef9SDimitry Andric ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1)); 740e8d8bef9SDimitry Andric unsigned EnBits = En->getZExtValue(); 741e8d8bef9SDimitry Andric if (EnBits == 0xf) 742e8d8bef9SDimitry Andric break; // All inputs enabled. 743e8d8bef9SDimitry Andric 744e8d8bef9SDimitry Andric bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 745e8d8bef9SDimitry Andric bool Changed = false; 746e8d8bef9SDimitry Andric for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 747e8d8bef9SDimitry Andric if ((!IsCompr && (EnBits & (1 << I)) == 0) || 748e8d8bef9SDimitry Andric (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 749e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(I + 2); 750e8d8bef9SDimitry Andric if (!isa<UndefValue>(Src)) { 751e8d8bef9SDimitry Andric IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); 752e8d8bef9SDimitry Andric Changed = true; 753e8d8bef9SDimitry Andric } 754e8d8bef9SDimitry Andric } 755e8d8bef9SDimitry Andric } 756e8d8bef9SDimitry Andric 757e8d8bef9SDimitry Andric if (Changed) { 758e8d8bef9SDimitry Andric return &II; 759e8d8bef9SDimitry Andric } 760e8d8bef9SDimitry Andric 761e8d8bef9SDimitry Andric break; 762e8d8bef9SDimitry Andric } 763e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fmed3: { 764e8d8bef9SDimitry Andric // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 765e8d8bef9SDimitry Andric // for the shader. 766e8d8bef9SDimitry Andric 767e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 768e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 769e8d8bef9SDimitry Andric Value *Src2 = II.getArgOperand(2); 770e8d8bef9SDimitry Andric 771e8d8bef9SDimitry Andric // Checking for NaN before canonicalization provides better fidelity when 772e8d8bef9SDimitry Andric // mapping other operations onto fmed3 since the order of operands is 773e8d8bef9SDimitry Andric // unchanged. 774e8d8bef9SDimitry Andric CallInst *NewCall = nullptr; 775e8d8bef9SDimitry Andric if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) { 776e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMinNum(Src1, Src2); 777e8d8bef9SDimitry Andric } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) { 778e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMinNum(Src0, Src2); 779e8d8bef9SDimitry Andric } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) { 780e8d8bef9SDimitry Andric NewCall = IC.Builder.CreateMaxNum(Src0, Src1); 781e8d8bef9SDimitry Andric } 782e8d8bef9SDimitry Andric 783e8d8bef9SDimitry Andric if (NewCall) { 784e8d8bef9SDimitry Andric NewCall->copyFastMathFlags(&II); 785e8d8bef9SDimitry Andric NewCall->takeName(&II); 786e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 787e8d8bef9SDimitry Andric } 788e8d8bef9SDimitry Andric 789e8d8bef9SDimitry Andric bool Swap = false; 790e8d8bef9SDimitry Andric // Canonicalize constants to RHS operands. 791e8d8bef9SDimitry Andric // 792e8d8bef9SDimitry Andric // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 793e8d8bef9SDimitry Andric if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 794e8d8bef9SDimitry Andric std::swap(Src0, Src1); 795e8d8bef9SDimitry Andric Swap = true; 796e8d8bef9SDimitry Andric } 797e8d8bef9SDimitry Andric 798e8d8bef9SDimitry Andric if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 799e8d8bef9SDimitry Andric std::swap(Src1, Src2); 800e8d8bef9SDimitry Andric Swap = true; 801e8d8bef9SDimitry Andric } 802e8d8bef9SDimitry Andric 803e8d8bef9SDimitry Andric if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 804e8d8bef9SDimitry Andric std::swap(Src0, Src1); 805e8d8bef9SDimitry Andric Swap = true; 806e8d8bef9SDimitry Andric } 807e8d8bef9SDimitry Andric 808e8d8bef9SDimitry Andric if (Swap) { 809e8d8bef9SDimitry Andric II.setArgOperand(0, Src0); 810e8d8bef9SDimitry Andric II.setArgOperand(1, Src1); 811e8d8bef9SDimitry Andric II.setArgOperand(2, Src2); 812e8d8bef9SDimitry Andric return &II; 813e8d8bef9SDimitry Andric } 814e8d8bef9SDimitry Andric 815e8d8bef9SDimitry Andric if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 816e8d8bef9SDimitry Andric if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 817e8d8bef9SDimitry Andric if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 818e8d8bef9SDimitry Andric APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 819e8d8bef9SDimitry Andric C2->getValueAPF()); 820e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 821e8d8bef9SDimitry Andric II, ConstantFP::get(IC.Builder.getContext(), Result)); 822e8d8bef9SDimitry Andric } 823e8d8bef9SDimitry Andric } 824e8d8bef9SDimitry Andric } 825e8d8bef9SDimitry Andric 82606c3fb27SDimitry Andric if (!ST->hasMed3_16()) 82706c3fb27SDimitry Andric break; 82806c3fb27SDimitry Andric 82906c3fb27SDimitry Andric Value *X, *Y, *Z; 83006c3fb27SDimitry Andric 83106c3fb27SDimitry Andric // Repeat floating-point width reduction done for minnum/maxnum. 83206c3fb27SDimitry Andric // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) 83306c3fb27SDimitry Andric if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) && 83406c3fb27SDimitry Andric matchFPExtFromF16(Src2, Z)) { 83506c3fb27SDimitry Andric Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()}, 83606c3fb27SDimitry Andric {X, Y, Z}, &II, II.getName()); 83706c3fb27SDimitry Andric return new FPExtInst(NewCall, II.getType()); 83806c3fb27SDimitry Andric } 83906c3fb27SDimitry Andric 840e8d8bef9SDimitry Andric break; 841e8d8bef9SDimitry Andric } 842e8d8bef9SDimitry Andric case Intrinsic::amdgcn_icmp: 843e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fcmp: { 844e8d8bef9SDimitry Andric const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2)); 845e8d8bef9SDimitry Andric // Guard against invalid arguments. 846e8d8bef9SDimitry Andric int64_t CCVal = CC->getZExtValue(); 847e8d8bef9SDimitry Andric bool IsInteger = IID == Intrinsic::amdgcn_icmp; 848e8d8bef9SDimitry Andric if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 849e8d8bef9SDimitry Andric CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 850e8d8bef9SDimitry Andric (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 851e8d8bef9SDimitry Andric CCVal > CmpInst::LAST_FCMP_PREDICATE))) 852e8d8bef9SDimitry Andric break; 853e8d8bef9SDimitry Andric 854e8d8bef9SDimitry Andric Value *Src0 = II.getArgOperand(0); 855e8d8bef9SDimitry Andric Value *Src1 = II.getArgOperand(1); 856e8d8bef9SDimitry Andric 857e8d8bef9SDimitry Andric if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 858e8d8bef9SDimitry Andric if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 859e8d8bef9SDimitry Andric Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 860e8d8bef9SDimitry Andric if (CCmp->isNullValue()) { 861e8d8bef9SDimitry Andric return IC.replaceInstUsesWith( 8625f757f3fSDimitry Andric II, IC.Builder.CreateSExt(CCmp, II.getType())); 863e8d8bef9SDimitry Andric } 864e8d8bef9SDimitry Andric 865e8d8bef9SDimitry Andric // The result of V_ICMP/V_FCMP assembly instructions (which this 866e8d8bef9SDimitry Andric // intrinsic exposes) is one bit per thread, masked with the EXEC 867e8d8bef9SDimitry Andric // register (which contains the bitmask of live threads). So a 868e8d8bef9SDimitry Andric // comparison that always returns true is the same as a read of the 869e8d8bef9SDimitry Andric // EXEC register. 870e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 871e8d8bef9SDimitry Andric II.getModule(), Intrinsic::read_register, II.getType()); 872e8d8bef9SDimitry Andric Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; 873e8d8bef9SDimitry Andric MDNode *MD = MDNode::get(II.getContext(), MDArgs); 874e8d8bef9SDimitry Andric Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; 875e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 876349cc55cSDimitry Andric NewCall->addFnAttr(Attribute::Convergent); 877e8d8bef9SDimitry Andric NewCall->takeName(&II); 878e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 879e8d8bef9SDimitry Andric } 880e8d8bef9SDimitry Andric 881e8d8bef9SDimitry Andric // Canonicalize constants to RHS. 882e8d8bef9SDimitry Andric CmpInst::Predicate SwapPred = 883e8d8bef9SDimitry Andric CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 884e8d8bef9SDimitry Andric II.setArgOperand(0, Src1); 885e8d8bef9SDimitry Andric II.setArgOperand(1, Src0); 886e8d8bef9SDimitry Andric II.setArgOperand( 887e8d8bef9SDimitry Andric 2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred))); 888e8d8bef9SDimitry Andric return &II; 889e8d8bef9SDimitry Andric } 890e8d8bef9SDimitry Andric 891e8d8bef9SDimitry Andric if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 892e8d8bef9SDimitry Andric break; 893e8d8bef9SDimitry Andric 894e8d8bef9SDimitry Andric // Canonicalize compare eq with true value to compare != 0 895e8d8bef9SDimitry Andric // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 896e8d8bef9SDimitry Andric // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 897e8d8bef9SDimitry Andric // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 898e8d8bef9SDimitry Andric // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 899e8d8bef9SDimitry Andric Value *ExtSrc; 900e8d8bef9SDimitry Andric if (CCVal == CmpInst::ICMP_EQ && 901e8d8bef9SDimitry Andric ((match(Src1, PatternMatch::m_One()) && 902e8d8bef9SDimitry Andric match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || 903e8d8bef9SDimitry Andric (match(Src1, PatternMatch::m_AllOnes()) && 904e8d8bef9SDimitry Andric match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && 905e8d8bef9SDimitry Andric ExtSrc->getType()->isIntegerTy(1)) { 906e8d8bef9SDimitry Andric IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); 907e8d8bef9SDimitry Andric IC.replaceOperand(II, 2, 908e8d8bef9SDimitry Andric ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 909e8d8bef9SDimitry Andric return &II; 910e8d8bef9SDimitry Andric } 911e8d8bef9SDimitry Andric 912e8d8bef9SDimitry Andric CmpInst::Predicate SrcPred; 913e8d8bef9SDimitry Andric Value *SrcLHS; 914e8d8bef9SDimitry Andric Value *SrcRHS; 915e8d8bef9SDimitry Andric 916e8d8bef9SDimitry Andric // Fold compare eq/ne with 0 from a compare result as the predicate to the 917e8d8bef9SDimitry Andric // intrinsic. The typical use is a wave vote function in the library, which 918e8d8bef9SDimitry Andric // will be fed from a user code condition compared with 0. Fold in the 919e8d8bef9SDimitry Andric // redundant compare. 920e8d8bef9SDimitry Andric 921e8d8bef9SDimitry Andric // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 922e8d8bef9SDimitry Andric // -> llvm.amdgcn.[if]cmp(a, b, pred) 923e8d8bef9SDimitry Andric // 924e8d8bef9SDimitry Andric // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 925e8d8bef9SDimitry Andric // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 926e8d8bef9SDimitry Andric if (match(Src1, PatternMatch::m_Zero()) && 927e8d8bef9SDimitry Andric match(Src0, PatternMatch::m_ZExtOrSExt( 928e8d8bef9SDimitry Andric m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), 929e8d8bef9SDimitry Andric PatternMatch::m_Value(SrcRHS))))) { 930e8d8bef9SDimitry Andric if (CCVal == CmpInst::ICMP_EQ) 931e8d8bef9SDimitry Andric SrcPred = CmpInst::getInversePredicate(SrcPred); 932e8d8bef9SDimitry Andric 933e8d8bef9SDimitry Andric Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) 934e8d8bef9SDimitry Andric ? Intrinsic::amdgcn_fcmp 935e8d8bef9SDimitry Andric : Intrinsic::amdgcn_icmp; 936e8d8bef9SDimitry Andric 937e8d8bef9SDimitry Andric Type *Ty = SrcLHS->getType(); 938e8d8bef9SDimitry Andric if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 939e8d8bef9SDimitry Andric // Promote to next legal integer type. 940e8d8bef9SDimitry Andric unsigned Width = CmpType->getBitWidth(); 941e8d8bef9SDimitry Andric unsigned NewWidth = Width; 942e8d8bef9SDimitry Andric 943e8d8bef9SDimitry Andric // Don't do anything for i1 comparisons. 944e8d8bef9SDimitry Andric if (Width == 1) 945e8d8bef9SDimitry Andric break; 946e8d8bef9SDimitry Andric 947e8d8bef9SDimitry Andric if (Width <= 16) 948e8d8bef9SDimitry Andric NewWidth = 16; 949e8d8bef9SDimitry Andric else if (Width <= 32) 950e8d8bef9SDimitry Andric NewWidth = 32; 951e8d8bef9SDimitry Andric else if (Width <= 64) 952e8d8bef9SDimitry Andric NewWidth = 64; 953e8d8bef9SDimitry Andric else if (Width > 64) 954e8d8bef9SDimitry Andric break; // Can't handle this. 955e8d8bef9SDimitry Andric 956e8d8bef9SDimitry Andric if (Width != NewWidth) { 957e8d8bef9SDimitry Andric IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); 958e8d8bef9SDimitry Andric if (CmpInst::isSigned(SrcPred)) { 959e8d8bef9SDimitry Andric SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); 960e8d8bef9SDimitry Andric SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); 961e8d8bef9SDimitry Andric } else { 962e8d8bef9SDimitry Andric SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); 963e8d8bef9SDimitry Andric SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); 964e8d8bef9SDimitry Andric } 965e8d8bef9SDimitry Andric } 966e8d8bef9SDimitry Andric } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 967e8d8bef9SDimitry Andric break; 968e8d8bef9SDimitry Andric 969e8d8bef9SDimitry Andric Function *NewF = Intrinsic::getDeclaration( 970e8d8bef9SDimitry Andric II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); 971e8d8bef9SDimitry Andric Value *Args[] = {SrcLHS, SrcRHS, 972e8d8bef9SDimitry Andric ConstantInt::get(CC->getType(), SrcPred)}; 973e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); 974e8d8bef9SDimitry Andric NewCall->takeName(&II); 975e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, NewCall); 976e8d8bef9SDimitry Andric } 977e8d8bef9SDimitry Andric 978e8d8bef9SDimitry Andric break; 979e8d8bef9SDimitry Andric } 98006c3fb27SDimitry Andric case Intrinsic::amdgcn_mbcnt_hi: { 98106c3fb27SDimitry Andric // exec_hi is all 0, so this is just a copy. 98206c3fb27SDimitry Andric if (ST->isWave32()) 98306c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, II.getArgOperand(1)); 98406c3fb27SDimitry Andric break; 98506c3fb27SDimitry Andric } 986e8d8bef9SDimitry Andric case Intrinsic::amdgcn_ballot: { 987e8d8bef9SDimitry Andric if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) { 988e8d8bef9SDimitry Andric if (Src->isZero()) { 989e8d8bef9SDimitry Andric // amdgcn.ballot(i1 0) is zero. 990e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); 991e8d8bef9SDimitry Andric } 992e8d8bef9SDimitry Andric } 993e8d8bef9SDimitry Andric break; 994e8d8bef9SDimitry Andric } 995e8d8bef9SDimitry Andric case Intrinsic::amdgcn_wqm_vote: { 996e8d8bef9SDimitry Andric // wqm_vote is identity when the argument is constant. 997e8d8bef9SDimitry Andric if (!isa<Constant>(II.getArgOperand(0))) 998e8d8bef9SDimitry Andric break; 999e8d8bef9SDimitry Andric 1000e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, II.getArgOperand(0)); 1001e8d8bef9SDimitry Andric } 1002e8d8bef9SDimitry Andric case Intrinsic::amdgcn_kill: { 1003e8d8bef9SDimitry Andric const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0)); 1004e8d8bef9SDimitry Andric if (!C || !C->getZExtValue()) 1005e8d8bef9SDimitry Andric break; 1006e8d8bef9SDimitry Andric 1007e8d8bef9SDimitry Andric // amdgcn.kill(i1 1) is a no-op 1008e8d8bef9SDimitry Andric return IC.eraseInstFromFunction(II); 1009e8d8bef9SDimitry Andric } 1010e8d8bef9SDimitry Andric case Intrinsic::amdgcn_update_dpp: { 1011e8d8bef9SDimitry Andric Value *Old = II.getArgOperand(0); 1012e8d8bef9SDimitry Andric 1013e8d8bef9SDimitry Andric auto *BC = cast<ConstantInt>(II.getArgOperand(5)); 1014e8d8bef9SDimitry Andric auto *RM = cast<ConstantInt>(II.getArgOperand(3)); 1015e8d8bef9SDimitry Andric auto *BM = cast<ConstantInt>(II.getArgOperand(4)); 1016e8d8bef9SDimitry Andric if (BC->isZeroValue() || RM->getZExtValue() != 0xF || 1017e8d8bef9SDimitry Andric BM->getZExtValue() != 0xF || isa<UndefValue>(Old)) 1018e8d8bef9SDimitry Andric break; 1019e8d8bef9SDimitry Andric 1020e8d8bef9SDimitry Andric // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 1021e8d8bef9SDimitry Andric return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); 1022e8d8bef9SDimitry Andric } 1023e8d8bef9SDimitry Andric case Intrinsic::amdgcn_permlane16: 10245f757f3fSDimitry Andric case Intrinsic::amdgcn_permlane16_var: 10255f757f3fSDimitry Andric case Intrinsic::amdgcn_permlanex16: 10265f757f3fSDimitry Andric case Intrinsic::amdgcn_permlanex16_var: { 1027e8d8bef9SDimitry Andric // Discard vdst_in if it's not going to be read. 1028e8d8bef9SDimitry Andric Value *VDstIn = II.getArgOperand(0); 1029e8d8bef9SDimitry Andric if (isa<UndefValue>(VDstIn)) 1030e8d8bef9SDimitry Andric break; 1031e8d8bef9SDimitry Andric 10325f757f3fSDimitry Andric // FetchInvalid operand idx. 10335f757f3fSDimitry Andric unsigned int FiIdx = (IID == Intrinsic::amdgcn_permlane16 || 10345f757f3fSDimitry Andric IID == Intrinsic::amdgcn_permlanex16) 10355f757f3fSDimitry Andric ? 4 /* for permlane16 and permlanex16 */ 10365f757f3fSDimitry Andric : 3; /* for permlane16_var and permlanex16_var */ 10375f757f3fSDimitry Andric 10385f757f3fSDimitry Andric // BoundCtrl operand idx. 10395f757f3fSDimitry Andric // For permlane16 and permlanex16 it should be 5 10405f757f3fSDimitry Andric // For Permlane16_var and permlanex16_var it should be 4 10415f757f3fSDimitry Andric unsigned int BcIdx = FiIdx + 1; 10425f757f3fSDimitry Andric 10435f757f3fSDimitry Andric ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(FiIdx)); 10445f757f3fSDimitry Andric ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(BcIdx)); 1045e8d8bef9SDimitry Andric if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) 1046e8d8bef9SDimitry Andric break; 1047e8d8bef9SDimitry Andric 1048e8d8bef9SDimitry Andric return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); 1049e8d8bef9SDimitry Andric } 105081ad6265SDimitry Andric case Intrinsic::amdgcn_permlane64: 105181ad6265SDimitry Andric // A constant value is trivially uniform. 105281ad6265SDimitry Andric if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 105381ad6265SDimitry Andric return IC.replaceInstUsesWith(II, C); 105481ad6265SDimitry Andric } 105581ad6265SDimitry Andric break; 1056e8d8bef9SDimitry Andric case Intrinsic::amdgcn_readfirstlane: 1057e8d8bef9SDimitry Andric case Intrinsic::amdgcn_readlane: { 1058e8d8bef9SDimitry Andric // A constant value is trivially uniform. 1059e8d8bef9SDimitry Andric if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) { 1060e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, C); 1061e8d8bef9SDimitry Andric } 1062e8d8bef9SDimitry Andric 1063e8d8bef9SDimitry Andric // The rest of these may not be safe if the exec may not be the same between 1064e8d8bef9SDimitry Andric // the def and use. 1065e8d8bef9SDimitry Andric Value *Src = II.getArgOperand(0); 1066e8d8bef9SDimitry Andric Instruction *SrcInst = dyn_cast<Instruction>(Src); 1067e8d8bef9SDimitry Andric if (SrcInst && SrcInst->getParent() != II.getParent()) 1068e8d8bef9SDimitry Andric break; 1069e8d8bef9SDimitry Andric 1070e8d8bef9SDimitry Andric // readfirstlane (readfirstlane x) -> readfirstlane x 1071e8d8bef9SDimitry Andric // readlane (readfirstlane x), y -> readfirstlane x 1072e8d8bef9SDimitry Andric if (match(Src, 1073e8d8bef9SDimitry Andric PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) { 1074e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 1075e8d8bef9SDimitry Andric } 1076e8d8bef9SDimitry Andric 1077e8d8bef9SDimitry Andric if (IID == Intrinsic::amdgcn_readfirstlane) { 1078e8d8bef9SDimitry Andric // readfirstlane (readlane x, y) -> readlane x, y 1079e8d8bef9SDimitry Andric if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) { 1080e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 1081e8d8bef9SDimitry Andric } 1082e8d8bef9SDimitry Andric } else { 1083e8d8bef9SDimitry Andric // readlane (readlane x, y), y -> readlane x, y 1084e8d8bef9SDimitry Andric if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>( 1085e8d8bef9SDimitry Andric PatternMatch::m_Value(), 1086e8d8bef9SDimitry Andric PatternMatch::m_Specific(II.getArgOperand(1))))) { 1087e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, Src); 1088e8d8bef9SDimitry Andric } 1089e8d8bef9SDimitry Andric } 1090e8d8bef9SDimitry Andric 1091e8d8bef9SDimitry Andric break; 1092e8d8bef9SDimitry Andric } 1093e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fmul_legacy: { 1094e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 1095e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 1096e8d8bef9SDimitry Andric 1097e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1098e8d8bef9SDimitry Andric // infinity, gives +0.0. 1099e8d8bef9SDimitry Andric // TODO: Move to InstSimplify? 1100e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1101e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_AnyZeroFP())) 110206c3fb27SDimitry Andric return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType())); 1103e8d8bef9SDimitry Andric 1104e8d8bef9SDimitry Andric // If we can prove we don't have one of the special cases then we can use a 1105e8d8bef9SDimitry Andric // normal fmul instruction instead. 110606c3fb27SDimitry Andric if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1107e8d8bef9SDimitry Andric auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); 1108e8d8bef9SDimitry Andric FMul->takeName(&II); 1109e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FMul); 1110e8d8bef9SDimitry Andric } 1111e8d8bef9SDimitry Andric break; 1112e8d8bef9SDimitry Andric } 1113e8d8bef9SDimitry Andric case Intrinsic::amdgcn_fma_legacy: { 1114e8d8bef9SDimitry Andric Value *Op0 = II.getArgOperand(0); 1115e8d8bef9SDimitry Andric Value *Op1 = II.getArgOperand(1); 1116e8d8bef9SDimitry Andric Value *Op2 = II.getArgOperand(2); 1117e8d8bef9SDimitry Andric 1118e8d8bef9SDimitry Andric // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or 1119e8d8bef9SDimitry Andric // infinity, gives +0.0. 1120e8d8bef9SDimitry Andric // TODO: Move to InstSimplify? 1121e8d8bef9SDimitry Andric if (match(Op0, PatternMatch::m_AnyZeroFP()) || 1122e8d8bef9SDimitry Andric match(Op1, PatternMatch::m_AnyZeroFP())) { 1123e8d8bef9SDimitry Andric // It's tempting to just return Op2 here, but that would give the wrong 1124e8d8bef9SDimitry Andric // result if Op2 was -0.0. 112506c3fb27SDimitry Andric auto *Zero = ConstantFP::getZero(II.getType()); 1126e8d8bef9SDimitry Andric auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); 1127e8d8bef9SDimitry Andric FAdd->takeName(&II); 1128e8d8bef9SDimitry Andric return IC.replaceInstUsesWith(II, FAdd); 1129e8d8bef9SDimitry Andric } 1130e8d8bef9SDimitry Andric 1131e8d8bef9SDimitry Andric // If we can prove we don't have one of the special cases then we can use a 1132e8d8bef9SDimitry Andric // normal fma instead. 113306c3fb27SDimitry Andric if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) { 1134e8d8bef9SDimitry Andric II.setCalledOperand(Intrinsic::getDeclaration( 1135e8d8bef9SDimitry Andric II.getModule(), Intrinsic::fma, II.getType())); 1136e8d8bef9SDimitry Andric return &II; 1137e8d8bef9SDimitry Andric } 1138e8d8bef9SDimitry Andric break; 1139e8d8bef9SDimitry Andric } 11400eae32dcSDimitry Andric case Intrinsic::amdgcn_is_shared: 11410eae32dcSDimitry Andric case Intrinsic::amdgcn_is_private: { 11420eae32dcSDimitry Andric if (isa<UndefValue>(II.getArgOperand(0))) 11430eae32dcSDimitry Andric return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); 11440eae32dcSDimitry Andric 11450eae32dcSDimitry Andric if (isa<ConstantPointerNull>(II.getArgOperand(0))) 11460eae32dcSDimitry Andric return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); 11470eae32dcSDimitry Andric break; 11480eae32dcSDimitry Andric } 114906c3fb27SDimitry Andric case Intrinsic::amdgcn_buffer_store_format: 115006c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_buffer_store_format: 115106c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_buffer_store_format: 115206c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_tbuffer_store: 115306c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_tbuffer_store: 115406c3fb27SDimitry Andric case Intrinsic::amdgcn_tbuffer_store: 115506c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_1d: 115606c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_1darray: 115706c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2d: 115806c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2darray: 115906c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2darraymsaa: 116006c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_2dmsaa: 116106c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_3d: 116206c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_cube: 116306c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_1d: 116406c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_1darray: 116506c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_2d: 116606c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_2darray: 116706c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_3d: 116806c3fb27SDimitry Andric case Intrinsic::amdgcn_image_store_mip_cube: { 116906c3fb27SDimitry Andric if (!isa<FixedVectorType>(II.getArgOperand(0)->getType())) 117006c3fb27SDimitry Andric break; 117106c3fb27SDimitry Andric 1172*7a6dacacSDimitry Andric APInt DemandedElts; 1173*7a6dacacSDimitry Andric if (ST->hasDefaultComponentBroadcast()) 1174*7a6dacacSDimitry Andric DemandedElts = defaultComponentBroadcast(II.getArgOperand(0)); 1175*7a6dacacSDimitry Andric else if (ST->hasDefaultComponentZero()) 1176*7a6dacacSDimitry Andric DemandedElts = trimTrailingZerosInVector(IC, II.getArgOperand(0), &II); 1177*7a6dacacSDimitry Andric else 1178*7a6dacacSDimitry Andric break; 117906c3fb27SDimitry Andric 118006c3fb27SDimitry Andric int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1; 118106c3fb27SDimitry Andric if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, 118206c3fb27SDimitry Andric false)) { 118306c3fb27SDimitry Andric return IC.eraseInstFromFunction(II); 118406c3fb27SDimitry Andric } 118506c3fb27SDimitry Andric 118606c3fb27SDimitry Andric break; 118706c3fb27SDimitry Andric } 118806c3fb27SDimitry Andric } 1189e8d8bef9SDimitry Andric if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = 1190e8d8bef9SDimitry Andric AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { 1191e8d8bef9SDimitry Andric return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); 1192e8d8bef9SDimitry Andric } 1193bdd1243dSDimitry Andric return std::nullopt; 1194e8d8bef9SDimitry Andric } 1195e8d8bef9SDimitry Andric 1196e8d8bef9SDimitry Andric /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1197e8d8bef9SDimitry Andric /// 119806c3fb27SDimitry Andric /// The result of simplifying amdgcn image and buffer store intrinsics is updating 119906c3fb27SDimitry Andric /// definitions of the intrinsics vector argument, not Uses of the result like 120006c3fb27SDimitry Andric /// image and buffer loads. 1201e8d8bef9SDimitry Andric /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1202e8d8bef9SDimitry Andric /// struct returns. 1203e8d8bef9SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, 1204e8d8bef9SDimitry Andric IntrinsicInst &II, 1205e8d8bef9SDimitry Andric APInt DemandedElts, 120606c3fb27SDimitry Andric int DMaskIdx, bool IsLoad) { 1207e8d8bef9SDimitry Andric 120806c3fb27SDimitry Andric auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType() 120906c3fb27SDimitry Andric : II.getOperand(0)->getType()); 1210e8d8bef9SDimitry Andric unsigned VWidth = IIVTy->getNumElements(); 1211e8d8bef9SDimitry Andric if (VWidth == 1) 1212e8d8bef9SDimitry Andric return nullptr; 1213bdd1243dSDimitry Andric Type *EltTy = IIVTy->getElementType(); 1214e8d8bef9SDimitry Andric 1215e8d8bef9SDimitry Andric IRBuilderBase::InsertPointGuard Guard(IC.Builder); 1216e8d8bef9SDimitry Andric IC.Builder.SetInsertPoint(&II); 1217e8d8bef9SDimitry Andric 1218e8d8bef9SDimitry Andric // Assume the arguments are unchanged and later override them, if needed. 1219e8d8bef9SDimitry Andric SmallVector<Value *, 16> Args(II.args()); 1220e8d8bef9SDimitry Andric 1221e8d8bef9SDimitry Andric if (DMaskIdx < 0) { 1222e8d8bef9SDimitry Andric // Buffer case. 1223e8d8bef9SDimitry Andric 1224e8d8bef9SDimitry Andric const unsigned ActiveBits = DemandedElts.getActiveBits(); 122506c3fb27SDimitry Andric const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); 1226e8d8bef9SDimitry Andric 1227e8d8bef9SDimitry Andric // Start assuming the prefix of elements is demanded, but possibly clear 1228e8d8bef9SDimitry Andric // some other bits if there are trailing zeros (unused components at front) 1229e8d8bef9SDimitry Andric // and update offset. 1230e8d8bef9SDimitry Andric DemandedElts = (1 << ActiveBits) - 1; 1231e8d8bef9SDimitry Andric 1232e8d8bef9SDimitry Andric if (UnusedComponentsAtFront > 0) { 1233e8d8bef9SDimitry Andric static const unsigned InvalidOffsetIdx = 0xf; 1234e8d8bef9SDimitry Andric 1235e8d8bef9SDimitry Andric unsigned OffsetIdx; 1236e8d8bef9SDimitry Andric switch (II.getIntrinsicID()) { 1237e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load: 123806c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load: 1239e8d8bef9SDimitry Andric OffsetIdx = 1; 1240e8d8bef9SDimitry Andric break; 1241e8d8bef9SDimitry Andric case Intrinsic::amdgcn_s_buffer_load: 1242e8d8bef9SDimitry Andric // If resulting type is vec3, there is no point in trimming the 1243e8d8bef9SDimitry Andric // load with updated offset, as the vec3 would most likely be widened to 1244e8d8bef9SDimitry Andric // vec4 anyway during lowering. 1245e8d8bef9SDimitry Andric if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1246e8d8bef9SDimitry Andric OffsetIdx = InvalidOffsetIdx; 1247e8d8bef9SDimitry Andric else 1248e8d8bef9SDimitry Andric OffsetIdx = 1; 1249e8d8bef9SDimitry Andric break; 1250e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load: 125106c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load: 1252e8d8bef9SDimitry Andric OffsetIdx = 2; 1253e8d8bef9SDimitry Andric break; 1254e8d8bef9SDimitry Andric default: 1255e8d8bef9SDimitry Andric // TODO: handle tbuffer* intrinsics. 1256e8d8bef9SDimitry Andric OffsetIdx = InvalidOffsetIdx; 1257e8d8bef9SDimitry Andric break; 1258e8d8bef9SDimitry Andric } 1259e8d8bef9SDimitry Andric 1260e8d8bef9SDimitry Andric if (OffsetIdx != InvalidOffsetIdx) { 1261e8d8bef9SDimitry Andric // Clear demanded bits and update the offset. 1262e8d8bef9SDimitry Andric DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1263bdd1243dSDimitry Andric auto *Offset = Args[OffsetIdx]; 1264e8d8bef9SDimitry Andric unsigned SingleComponentSizeInBits = 1265bdd1243dSDimitry Andric IC.getDataLayout().getTypeSizeInBits(EltTy); 1266e8d8bef9SDimitry Andric unsigned OffsetAdd = 1267e8d8bef9SDimitry Andric UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1268e8d8bef9SDimitry Andric auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1269e8d8bef9SDimitry Andric Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); 1270e8d8bef9SDimitry Andric } 1271e8d8bef9SDimitry Andric } 1272e8d8bef9SDimitry Andric } else { 1273e8d8bef9SDimitry Andric // Image case. 1274e8d8bef9SDimitry Andric 1275bdd1243dSDimitry Andric ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]); 1276e8d8bef9SDimitry Andric unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1277e8d8bef9SDimitry Andric 1278cb14a3feSDimitry Andric // dmask 0 has special semantics, do not simplify. 1279cb14a3feSDimitry Andric if (DMaskVal == 0) 1280cb14a3feSDimitry Andric return nullptr; 1281cb14a3feSDimitry Andric 1282e8d8bef9SDimitry Andric // Mask off values that are undefined because the dmask doesn't cover them 1283bdd1243dSDimitry Andric DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1; 1284e8d8bef9SDimitry Andric 1285e8d8bef9SDimitry Andric unsigned NewDMaskVal = 0; 128606c3fb27SDimitry Andric unsigned OrigLdStIdx = 0; 1287e8d8bef9SDimitry Andric for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1288e8d8bef9SDimitry Andric const unsigned Bit = 1 << SrcIdx; 1289e8d8bef9SDimitry Andric if (!!(DMaskVal & Bit)) { 129006c3fb27SDimitry Andric if (!!DemandedElts[OrigLdStIdx]) 1291e8d8bef9SDimitry Andric NewDMaskVal |= Bit; 129206c3fb27SDimitry Andric OrigLdStIdx++; 1293e8d8bef9SDimitry Andric } 1294e8d8bef9SDimitry Andric } 1295e8d8bef9SDimitry Andric 1296e8d8bef9SDimitry Andric if (DMaskVal != NewDMaskVal) 1297e8d8bef9SDimitry Andric Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1298e8d8bef9SDimitry Andric } 1299e8d8bef9SDimitry Andric 130006c3fb27SDimitry Andric unsigned NewNumElts = DemandedElts.popcount(); 1301e8d8bef9SDimitry Andric if (!NewNumElts) 1302cb14a3feSDimitry Andric return PoisonValue::get(IIVTy); 1303e8d8bef9SDimitry Andric 1304e8d8bef9SDimitry Andric if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1305e8d8bef9SDimitry Andric if (DMaskIdx >= 0) 1306e8d8bef9SDimitry Andric II.setArgOperand(DMaskIdx, Args[DMaskIdx]); 1307e8d8bef9SDimitry Andric return nullptr; 1308e8d8bef9SDimitry Andric } 1309e8d8bef9SDimitry Andric 1310e8d8bef9SDimitry Andric // Validate function argument and return types, extracting overloaded types 1311e8d8bef9SDimitry Andric // along the way. 1312e8d8bef9SDimitry Andric SmallVector<Type *, 6> OverloadTys; 1313e8d8bef9SDimitry Andric if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) 1314e8d8bef9SDimitry Andric return nullptr; 1315e8d8bef9SDimitry Andric 1316e8d8bef9SDimitry Andric Type *NewTy = 1317e8d8bef9SDimitry Andric (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); 1318e8d8bef9SDimitry Andric OverloadTys[0] = NewTy; 1319e8d8bef9SDimitry Andric 132006c3fb27SDimitry Andric if (!IsLoad) { 132106c3fb27SDimitry Andric SmallVector<int, 8> EltMask; 132206c3fb27SDimitry Andric for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) 132306c3fb27SDimitry Andric if (DemandedElts[OrigStoreIdx]) 132406c3fb27SDimitry Andric EltMask.push_back(OrigStoreIdx); 132506c3fb27SDimitry Andric 132606c3fb27SDimitry Andric if (NewNumElts == 1) 132706c3fb27SDimitry Andric Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]); 132806c3fb27SDimitry Andric else 132906c3fb27SDimitry Andric Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask); 133006c3fb27SDimitry Andric } 133106c3fb27SDimitry Andric 1332bdd1243dSDimitry Andric Function *NewIntrin = Intrinsic::getDeclaration( 1333bdd1243dSDimitry Andric II.getModule(), II.getIntrinsicID(), OverloadTys); 1334e8d8bef9SDimitry Andric CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); 1335e8d8bef9SDimitry Andric NewCall->takeName(&II); 1336e8d8bef9SDimitry Andric NewCall->copyMetadata(II); 1337e8d8bef9SDimitry Andric 133806c3fb27SDimitry Andric if (IsLoad) { 1339e8d8bef9SDimitry Andric if (NewNumElts == 1) { 1340cb14a3feSDimitry Andric return IC.Builder.CreateInsertElement(PoisonValue::get(IIVTy), NewCall, 134106c3fb27SDimitry Andric DemandedElts.countr_zero()); 1342e8d8bef9SDimitry Andric } 1343e8d8bef9SDimitry Andric 1344e8d8bef9SDimitry Andric SmallVector<int, 8> EltMask; 1345e8d8bef9SDimitry Andric unsigned NewLoadIdx = 0; 1346e8d8bef9SDimitry Andric for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1347e8d8bef9SDimitry Andric if (!!DemandedElts[OrigLoadIdx]) 1348e8d8bef9SDimitry Andric EltMask.push_back(NewLoadIdx++); 1349e8d8bef9SDimitry Andric else 1350e8d8bef9SDimitry Andric EltMask.push_back(NewNumElts); 1351e8d8bef9SDimitry Andric } 1352e8d8bef9SDimitry Andric 135306c3fb27SDimitry Andric auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); 1354e8d8bef9SDimitry Andric 1355e8d8bef9SDimitry Andric return Shuffle; 1356e8d8bef9SDimitry Andric } 1357e8d8bef9SDimitry Andric 135806c3fb27SDimitry Andric return NewCall; 135906c3fb27SDimitry Andric } 136006c3fb27SDimitry Andric 1361bdd1243dSDimitry Andric std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( 1362e8d8bef9SDimitry Andric InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 1363e8d8bef9SDimitry Andric APInt &UndefElts2, APInt &UndefElts3, 1364e8d8bef9SDimitry Andric std::function<void(Instruction *, unsigned, APInt, APInt &)> 1365e8d8bef9SDimitry Andric SimplifyAndSetOp) const { 1366e8d8bef9SDimitry Andric switch (II.getIntrinsicID()) { 1367e8d8bef9SDimitry Andric case Intrinsic::amdgcn_buffer_load: 1368e8d8bef9SDimitry Andric case Intrinsic::amdgcn_buffer_load_format: 1369e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load: 137006c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load: 1371e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_buffer_load_format: 137206c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_load_format: 1373e8d8bef9SDimitry Andric case Intrinsic::amdgcn_raw_tbuffer_load: 137406c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_tbuffer_load: 1375e8d8bef9SDimitry Andric case Intrinsic::amdgcn_s_buffer_load: 1376e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load: 137706c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load: 1378e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_buffer_load_format: 137906c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_load_format: 1380e8d8bef9SDimitry Andric case Intrinsic::amdgcn_struct_tbuffer_load: 138106c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_tbuffer_load: 1382e8d8bef9SDimitry Andric case Intrinsic::amdgcn_tbuffer_load: 1383e8d8bef9SDimitry Andric return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); 1384e8d8bef9SDimitry Andric default: { 1385e8d8bef9SDimitry Andric if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { 1386e8d8bef9SDimitry Andric return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); 1387e8d8bef9SDimitry Andric } 1388e8d8bef9SDimitry Andric break; 1389e8d8bef9SDimitry Andric } 1390e8d8bef9SDimitry Andric } 1391bdd1243dSDimitry Andric return std::nullopt; 1392e8d8bef9SDimitry Andric } 1393