1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUMachineFunction.h" 19 #include "GCNSubtarget.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 using namespace llvm; 29 30 #include "AMDGPUGenCallingConv.inc" 31 32 static cl::opt<bool> AMDGPUBypassSlowDiv( 33 "amdgpu-bypass-slow-div", 34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 35 cl::init(true)); 36 37 // Find a larger type to do a load / store of a vector with. 38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 39 unsigned StoreSize = VT.getStoreSizeInBits(); 40 if (StoreSize <= 32) 41 return EVT::getIntegerVT(Ctx, StoreSize); 42 43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 45 } 46 47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 48 EVT VT = Op.getValueType(); 49 KnownBits Known = DAG.computeKnownBits(Op); 50 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 51 } 52 53 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 54 EVT VT = Op.getValueType(); 55 56 // In order for this to be a signed 24-bit value, bit 23, must 57 // be a sign bit. 58 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 59 } 60 61 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 62 const AMDGPUSubtarget &STI) 63 : TargetLowering(TM), Subtarget(&STI) { 64 // Lower floating point store/load to integer store/load to reduce the number 65 // of patterns in tablegen. 66 setOperationAction(ISD::LOAD, MVT::f32, Promote); 67 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 68 69 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 70 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 71 72 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 73 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 74 75 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 76 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 77 78 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 79 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 80 81 setOperationAction(ISD::LOAD, MVT::v6f32, Promote); 82 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); 83 84 setOperationAction(ISD::LOAD, MVT::v7f32, Promote); 85 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); 86 87 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 88 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 89 90 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 91 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 92 93 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 94 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 95 96 setOperationAction(ISD::LOAD, MVT::i64, Promote); 97 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 98 99 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 100 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 101 102 setOperationAction(ISD::LOAD, MVT::f64, Promote); 103 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 104 105 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 106 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 107 108 setOperationAction(ISD::LOAD, MVT::v3i64, Promote); 109 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); 110 111 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 112 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 113 114 setOperationAction(ISD::LOAD, MVT::v3f64, Promote); 115 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); 116 117 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 118 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 119 120 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 121 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 122 123 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 124 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 125 126 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 127 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 128 129 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 130 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 131 132 // There are no 64-bit extloads. These should be done as a 32-bit extload and 133 // an extension to 64-bit. 134 for (MVT VT : MVT::integer_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 138 } 139 140 for (MVT VT : MVT::integer_valuetypes()) { 141 if (VT == MVT::i64) 142 continue; 143 144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 146 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 147 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 148 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 150 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 151 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 152 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 153 154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 156 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 158 } 159 160 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 164 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 166 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 169 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 170 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 172 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 173 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 174 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 175 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 176 } 177 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 182 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 185 186 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 187 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 188 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 192 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 195 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 197 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 198 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 199 200 setOperationAction(ISD::STORE, MVT::f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 205 206 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 208 209 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 211 212 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 214 215 setOperationAction(ISD::STORE, MVT::v6f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); 217 218 setOperationAction(ISD::STORE, MVT::v7f32, Promote); 219 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); 220 221 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 223 224 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 225 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 226 227 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 229 230 setOperationAction(ISD::STORE, MVT::i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 232 233 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 235 236 setOperationAction(ISD::STORE, MVT::f64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 238 239 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 241 242 setOperationAction(ISD::STORE, MVT::v3i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); 244 245 setOperationAction(ISD::STORE, MVT::v3f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); 247 248 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 249 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 250 251 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 252 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 253 254 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 255 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 256 257 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 258 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 259 260 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 261 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 262 263 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 264 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 265 266 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 267 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 268 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 269 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 270 271 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 272 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 273 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 274 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 275 276 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 277 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 278 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 279 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 280 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 281 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 283 284 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 285 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 286 287 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 288 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 289 290 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); 291 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); 292 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); 293 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); 294 295 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 296 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 297 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 298 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 299 300 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 301 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 302 303 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 304 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 305 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 306 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 307 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 308 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 309 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 310 311 setOperationAction(ISD::Constant, MVT::i32, Legal); 312 setOperationAction(ISD::Constant, MVT::i64, Legal); 313 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 314 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 315 316 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 317 setOperationAction(ISD::BRIND, MVT::Other, Expand); 318 319 // This is totally unsupported, just custom lower to produce an error. 320 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 321 322 // Library functions. These default to Expand, but we have instructions 323 // for them. 324 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 325 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 326 setOperationAction(ISD::FPOW, MVT::f32, Legal); 327 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 328 setOperationAction(ISD::FABS, MVT::f32, Legal); 329 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 330 setOperationAction(ISD::FRINT, MVT::f32, Legal); 331 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 332 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 333 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 334 335 setOperationAction(ISD::FROUND, MVT::f32, Custom); 336 setOperationAction(ISD::FROUND, MVT::f64, Custom); 337 338 setOperationAction(ISD::FLOG, MVT::f32, Custom); 339 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 340 setOperationAction(ISD::FEXP, MVT::f32, Custom); 341 342 343 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 344 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 345 346 setOperationAction(ISD::FREM, MVT::f16, Custom); 347 setOperationAction(ISD::FREM, MVT::f32, Custom); 348 setOperationAction(ISD::FREM, MVT::f64, Custom); 349 350 // Expand to fneg + fadd. 351 setOperationAction(ISD::FSUB, MVT::f64, Expand); 352 353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); 360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); 361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); 362 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); 363 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 364 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); 366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); 367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); 376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); 377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); 378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); 379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); 388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); 389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 393 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 394 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 395 396 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 397 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 398 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 399 400 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 401 for (MVT VT : ScalarIntVTs) { 402 // These should use [SU]DIVREM, so set them to expand 403 setOperationAction(ISD::SDIV, VT, Expand); 404 setOperationAction(ISD::UDIV, VT, Expand); 405 setOperationAction(ISD::SREM, VT, Expand); 406 setOperationAction(ISD::UREM, VT, Expand); 407 408 // GPU does not have divrem function for signed or unsigned. 409 setOperationAction(ISD::SDIVREM, VT, Custom); 410 setOperationAction(ISD::UDIVREM, VT, Custom); 411 412 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 413 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 414 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 415 416 setOperationAction(ISD::BSWAP, VT, Expand); 417 setOperationAction(ISD::CTTZ, VT, Expand); 418 setOperationAction(ISD::CTLZ, VT, Expand); 419 420 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 421 setOperationAction(ISD::ADDC, VT, Legal); 422 setOperationAction(ISD::SUBC, VT, Legal); 423 setOperationAction(ISD::ADDE, VT, Legal); 424 setOperationAction(ISD::SUBE, VT, Legal); 425 } 426 427 // The hardware supports 32-bit FSHR, but not FSHL. 428 setOperationAction(ISD::FSHR, MVT::i32, Legal); 429 430 // The hardware supports 32-bit ROTR, but not ROTL. 431 setOperationAction(ISD::ROTL, MVT::i32, Expand); 432 setOperationAction(ISD::ROTL, MVT::i64, Expand); 433 setOperationAction(ISD::ROTR, MVT::i64, Expand); 434 435 setOperationAction(ISD::MULHU, MVT::i16, Expand); 436 setOperationAction(ISD::MULHS, MVT::i16, Expand); 437 438 setOperationAction(ISD::MUL, MVT::i64, Expand); 439 setOperationAction(ISD::MULHU, MVT::i64, Expand); 440 setOperationAction(ISD::MULHS, MVT::i64, Expand); 441 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 442 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 443 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 444 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 445 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 446 447 setOperationAction(ISD::SMIN, MVT::i32, Legal); 448 setOperationAction(ISD::UMIN, MVT::i32, Legal); 449 setOperationAction(ISD::SMAX, MVT::i32, Legal); 450 setOperationAction(ISD::UMAX, MVT::i32, Legal); 451 452 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 453 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 454 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 455 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 456 457 static const MVT::SimpleValueType VectorIntTypes[] = { 458 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; 459 460 for (MVT VT : VectorIntTypes) { 461 // Expand the following operations for the current type by default. 462 setOperationAction(ISD::ADD, VT, Expand); 463 setOperationAction(ISD::AND, VT, Expand); 464 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 465 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 466 setOperationAction(ISD::MUL, VT, Expand); 467 setOperationAction(ISD::MULHU, VT, Expand); 468 setOperationAction(ISD::MULHS, VT, Expand); 469 setOperationAction(ISD::OR, VT, Expand); 470 setOperationAction(ISD::SHL, VT, Expand); 471 setOperationAction(ISD::SRA, VT, Expand); 472 setOperationAction(ISD::SRL, VT, Expand); 473 setOperationAction(ISD::ROTL, VT, Expand); 474 setOperationAction(ISD::ROTR, VT, Expand); 475 setOperationAction(ISD::SUB, VT, Expand); 476 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 477 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 478 setOperationAction(ISD::SDIV, VT, Expand); 479 setOperationAction(ISD::UDIV, VT, Expand); 480 setOperationAction(ISD::SREM, VT, Expand); 481 setOperationAction(ISD::UREM, VT, Expand); 482 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 483 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 484 setOperationAction(ISD::SDIVREM, VT, Expand); 485 setOperationAction(ISD::UDIVREM, VT, Expand); 486 setOperationAction(ISD::SELECT, VT, Expand); 487 setOperationAction(ISD::VSELECT, VT, Expand); 488 setOperationAction(ISD::SELECT_CC, VT, Expand); 489 setOperationAction(ISD::XOR, VT, Expand); 490 setOperationAction(ISD::BSWAP, VT, Expand); 491 setOperationAction(ISD::CTPOP, VT, Expand); 492 setOperationAction(ISD::CTTZ, VT, Expand); 493 setOperationAction(ISD::CTLZ, VT, Expand); 494 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 495 setOperationAction(ISD::SETCC, VT, Expand); 496 } 497 498 static const MVT::SimpleValueType FloatVectorTypes[] = { 499 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; 500 501 for (MVT VT : FloatVectorTypes) { 502 setOperationAction(ISD::FABS, VT, Expand); 503 setOperationAction(ISD::FMINNUM, VT, Expand); 504 setOperationAction(ISD::FMAXNUM, VT, Expand); 505 setOperationAction(ISD::FADD, VT, Expand); 506 setOperationAction(ISD::FCEIL, VT, Expand); 507 setOperationAction(ISD::FCOS, VT, Expand); 508 setOperationAction(ISD::FDIV, VT, Expand); 509 setOperationAction(ISD::FEXP2, VT, Expand); 510 setOperationAction(ISD::FEXP, VT, Expand); 511 setOperationAction(ISD::FLOG2, VT, Expand); 512 setOperationAction(ISD::FREM, VT, Expand); 513 setOperationAction(ISD::FLOG, VT, Expand); 514 setOperationAction(ISD::FLOG10, VT, Expand); 515 setOperationAction(ISD::FPOW, VT, Expand); 516 setOperationAction(ISD::FFLOOR, VT, Expand); 517 setOperationAction(ISD::FTRUNC, VT, Expand); 518 setOperationAction(ISD::FMUL, VT, Expand); 519 setOperationAction(ISD::FMA, VT, Expand); 520 setOperationAction(ISD::FRINT, VT, Expand); 521 setOperationAction(ISD::FNEARBYINT, VT, Expand); 522 setOperationAction(ISD::FSQRT, VT, Expand); 523 setOperationAction(ISD::FSIN, VT, Expand); 524 setOperationAction(ISD::FSUB, VT, Expand); 525 setOperationAction(ISD::FNEG, VT, Expand); 526 setOperationAction(ISD::VSELECT, VT, Expand); 527 setOperationAction(ISD::SELECT_CC, VT, Expand); 528 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 529 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 530 setOperationAction(ISD::SETCC, VT, Expand); 531 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 532 } 533 534 // This causes using an unrolled select operation rather than expansion with 535 // bit operations. This is in general better, but the alternative using BFI 536 // instructions may be better if the select sources are SGPRs. 537 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 538 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 539 540 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 541 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 542 543 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 544 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 545 546 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 547 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 548 549 setOperationAction(ISD::SELECT, MVT::v6f32, Promote); 550 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); 551 552 setOperationAction(ISD::SELECT, MVT::v7f32, Promote); 553 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); 554 555 // There are no libcalls of any kind. 556 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 557 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 558 559 setSchedulingPreference(Sched::RegPressure); 560 setJumpIsExpensive(true); 561 562 // FIXME: This is only partially true. If we have to do vector compares, any 563 // SGPR pair can be a condition register. If we have a uniform condition, we 564 // are better off doing SALU operations, where there is only one SCC. For now, 565 // we don't have a way of knowing during instruction selection if a condition 566 // will be uniform and we always use vector compares. Assume we are using 567 // vector compares until that is fixed. 568 setHasMultipleConditionRegisters(true); 569 570 setMinCmpXchgSizeInBits(32); 571 setSupportsUnalignedAtomics(false); 572 573 PredictableSelectIsExpensive = false; 574 575 // We want to find all load dependencies for long chains of stores to enable 576 // merging into very wide vectors. The problem is with vectors with > 4 577 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 578 // vectors are a legal type, even though we have to split the loads 579 // usually. When we can more precisely specify load legality per address 580 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 581 // smarter so that they can figure out what to do in 2 iterations without all 582 // N > 4 stores on the same chain. 583 GatherAllAliasesMaxDepth = 16; 584 585 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 586 // about these during lowering. 587 MaxStoresPerMemcpy = 0xffffffff; 588 MaxStoresPerMemmove = 0xffffffff; 589 MaxStoresPerMemset = 0xffffffff; 590 591 // The expansion for 64-bit division is enormous. 592 if (AMDGPUBypassSlowDiv) 593 addBypassSlowDiv(64, 32); 594 595 setTargetDAGCombine(ISD::BITCAST); 596 setTargetDAGCombine(ISD::SHL); 597 setTargetDAGCombine(ISD::SRA); 598 setTargetDAGCombine(ISD::SRL); 599 setTargetDAGCombine(ISD::TRUNCATE); 600 setTargetDAGCombine(ISD::MUL); 601 setTargetDAGCombine(ISD::MULHU); 602 setTargetDAGCombine(ISD::MULHS); 603 setTargetDAGCombine(ISD::SELECT); 604 setTargetDAGCombine(ISD::SELECT_CC); 605 setTargetDAGCombine(ISD::STORE); 606 setTargetDAGCombine(ISD::FADD); 607 setTargetDAGCombine(ISD::FSUB); 608 setTargetDAGCombine(ISD::FNEG); 609 setTargetDAGCombine(ISD::FABS); 610 setTargetDAGCombine(ISD::AssertZext); 611 setTargetDAGCombine(ISD::AssertSext); 612 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 613 } 614 615 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { 616 if (getTargetMachine().Options.NoSignedZerosFPMath) 617 return true; 618 619 const auto Flags = Op.getNode()->getFlags(); 620 if (Flags.hasNoSignedZeros()) 621 return true; 622 623 return false; 624 } 625 626 //===----------------------------------------------------------------------===// 627 // Target Information 628 //===----------------------------------------------------------------------===// 629 630 LLVM_READNONE 631 static bool fnegFoldsIntoOp(unsigned Opc) { 632 switch (Opc) { 633 case ISD::FADD: 634 case ISD::FSUB: 635 case ISD::FMUL: 636 case ISD::FMA: 637 case ISD::FMAD: 638 case ISD::FMINNUM: 639 case ISD::FMAXNUM: 640 case ISD::FMINNUM_IEEE: 641 case ISD::FMAXNUM_IEEE: 642 case ISD::FSIN: 643 case ISD::FTRUNC: 644 case ISD::FRINT: 645 case ISD::FNEARBYINT: 646 case ISD::FCANONICALIZE: 647 case AMDGPUISD::RCP: 648 case AMDGPUISD::RCP_LEGACY: 649 case AMDGPUISD::RCP_IFLAG: 650 case AMDGPUISD::SIN_HW: 651 case AMDGPUISD::FMUL_LEGACY: 652 case AMDGPUISD::FMIN_LEGACY: 653 case AMDGPUISD::FMAX_LEGACY: 654 case AMDGPUISD::FMED3: 655 // TODO: handle llvm.amdgcn.fma.legacy 656 return true; 657 default: 658 return false; 659 } 660 } 661 662 /// \p returns true if the operation will definitely need to use a 64-bit 663 /// encoding, and thus will use a VOP3 encoding regardless of the source 664 /// modifiers. 665 LLVM_READONLY 666 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 667 return N->getNumOperands() > 2 || VT == MVT::f64; 668 } 669 670 // Most FP instructions support source modifiers, but this could be refined 671 // slightly. 672 LLVM_READONLY 673 static bool hasSourceMods(const SDNode *N) { 674 if (isa<MemSDNode>(N)) 675 return false; 676 677 switch (N->getOpcode()) { 678 case ISD::CopyToReg: 679 case ISD::SELECT: 680 case ISD::FDIV: 681 case ISD::FREM: 682 case ISD::INLINEASM: 683 case ISD::INLINEASM_BR: 684 case AMDGPUISD::DIV_SCALE: 685 case ISD::INTRINSIC_W_CHAIN: 686 687 // TODO: Should really be looking at the users of the bitcast. These are 688 // problematic because bitcasts are used to legalize all stores to integer 689 // types. 690 case ISD::BITCAST: 691 return false; 692 case ISD::INTRINSIC_WO_CHAIN: { 693 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 694 case Intrinsic::amdgcn_interp_p1: 695 case Intrinsic::amdgcn_interp_p2: 696 case Intrinsic::amdgcn_interp_mov: 697 case Intrinsic::amdgcn_interp_p1_f16: 698 case Intrinsic::amdgcn_interp_p2_f16: 699 return false; 700 default: 701 return true; 702 } 703 } 704 default: 705 return true; 706 } 707 } 708 709 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 710 unsigned CostThreshold) { 711 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 712 // it is truly free to use a source modifier in all cases. If there are 713 // multiple users but for each one will necessitate using VOP3, there will be 714 // a code size increase. Try to avoid increasing code size unless we know it 715 // will save on the instruction count. 716 unsigned NumMayIncreaseSize = 0; 717 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 718 719 // XXX - Should this limit number of uses to check? 720 for (const SDNode *U : N->uses()) { 721 if (!hasSourceMods(U)) 722 return false; 723 724 if (!opMustUseVOP3Encoding(U, VT)) { 725 if (++NumMayIncreaseSize > CostThreshold) 726 return false; 727 } 728 } 729 730 return true; 731 } 732 733 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 734 ISD::NodeType ExtendKind) const { 735 assert(!VT.isVector() && "only scalar expected"); 736 737 // Round to the next multiple of 32-bits. 738 unsigned Size = VT.getSizeInBits(); 739 if (Size <= 32) 740 return MVT::i32; 741 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 742 } 743 744 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 745 return MVT::i32; 746 } 747 748 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 749 return true; 750 } 751 752 // The backend supports 32 and 64 bit floating point immediates. 753 // FIXME: Why are we reporting vectors of FP immediates as legal? 754 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 755 bool ForCodeSize) const { 756 EVT ScalarVT = VT.getScalarType(); 757 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 758 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 759 } 760 761 // We don't want to shrink f64 / f32 constants. 762 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 763 EVT ScalarVT = VT.getScalarType(); 764 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 765 } 766 767 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 768 ISD::LoadExtType ExtTy, 769 EVT NewVT) const { 770 // TODO: This may be worth removing. Check regression tests for diffs. 771 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 772 return false; 773 774 unsigned NewSize = NewVT.getStoreSizeInBits(); 775 776 // If we are reducing to a 32-bit load or a smaller multi-dword load, 777 // this is always better. 778 if (NewSize >= 32) 779 return true; 780 781 EVT OldVT = N->getValueType(0); 782 unsigned OldSize = OldVT.getStoreSizeInBits(); 783 784 MemSDNode *MN = cast<MemSDNode>(N); 785 unsigned AS = MN->getAddressSpace(); 786 // Do not shrink an aligned scalar load to sub-dword. 787 // Scalar engine cannot do sub-dword loads. 788 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 789 (AS == AMDGPUAS::CONSTANT_ADDRESS || 790 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 791 (isa<LoadSDNode>(N) && 792 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 793 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 794 return false; 795 796 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 797 // extloads, so doing one requires using a buffer_load. In cases where we 798 // still couldn't use a scalar load, using the wider load shouldn't really 799 // hurt anything. 800 801 // If the old size already had to be an extload, there's no harm in continuing 802 // to reduce the width. 803 return (OldSize < 32); 804 } 805 806 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 807 const SelectionDAG &DAG, 808 const MachineMemOperand &MMO) const { 809 810 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 811 812 if (LoadTy.getScalarType() == MVT::i32) 813 return false; 814 815 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 816 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 817 818 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 819 return false; 820 821 bool Fast = false; 822 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 823 CastTy, MMO, &Fast) && 824 Fast; 825 } 826 827 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 828 // profitable with the expansion for 64-bit since it's generally good to 829 // speculate things. 830 // FIXME: These should really have the size as a parameter. 831 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 832 return true; 833 } 834 835 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 836 return true; 837 } 838 839 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { 840 switch (N->getOpcode()) { 841 case ISD::EntryToken: 842 case ISD::TokenFactor: 843 return true; 844 case ISD::INTRINSIC_WO_CHAIN: { 845 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 846 switch (IntrID) { 847 case Intrinsic::amdgcn_readfirstlane: 848 case Intrinsic::amdgcn_readlane: 849 return true; 850 } 851 return false; 852 } 853 case ISD::LOAD: 854 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 855 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 856 return true; 857 return false; 858 } 859 return false; 860 } 861 862 SDValue AMDGPUTargetLowering::getNegatedExpression( 863 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 864 NegatibleCost &Cost, unsigned Depth) const { 865 866 switch (Op.getOpcode()) { 867 case ISD::FMA: 868 case ISD::FMAD: { 869 // Negating a fma is not free if it has users without source mods. 870 if (!allUsesHaveSourceMods(Op.getNode())) 871 return SDValue(); 872 break; 873 } 874 default: 875 break; 876 } 877 878 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 879 ForCodeSize, Cost, Depth); 880 } 881 882 //===---------------------------------------------------------------------===// 883 // Target Properties 884 //===---------------------------------------------------------------------===// 885 886 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 887 assert(VT.isFloatingPoint()); 888 889 // Packed operations do not have a fabs modifier. 890 return VT == MVT::f32 || VT == MVT::f64 || 891 (Subtarget->has16BitInsts() && VT == MVT::f16); 892 } 893 894 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 895 assert(VT.isFloatingPoint()); 896 // Report this based on the end legalized type. 897 VT = VT.getScalarType(); 898 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; 899 } 900 901 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 902 unsigned NumElem, 903 unsigned AS) const { 904 return true; 905 } 906 907 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 908 // There are few operations which truly have vector input operands. Any vector 909 // operation is going to involve operations on each component, and a 910 // build_vector will be a copy per element, so it always makes sense to use a 911 // build_vector input in place of the extracted element to avoid a copy into a 912 // super register. 913 // 914 // We should probably only do this if all users are extracts only, but this 915 // should be the common case. 916 return true; 917 } 918 919 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 920 // Truncate is just accessing a subregister. 921 922 unsigned SrcSize = Source.getSizeInBits(); 923 unsigned DestSize = Dest.getSizeInBits(); 924 925 return DestSize < SrcSize && DestSize % 32 == 0 ; 926 } 927 928 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 929 // Truncate is just accessing a subregister. 930 931 unsigned SrcSize = Source->getScalarSizeInBits(); 932 unsigned DestSize = Dest->getScalarSizeInBits(); 933 934 if (DestSize== 16 && Subtarget->has16BitInsts()) 935 return SrcSize >= 32; 936 937 return DestSize < SrcSize && DestSize % 32 == 0; 938 } 939 940 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 941 unsigned SrcSize = Src->getScalarSizeInBits(); 942 unsigned DestSize = Dest->getScalarSizeInBits(); 943 944 if (SrcSize == 16 && Subtarget->has16BitInsts()) 945 return DestSize >= 32; 946 947 return SrcSize == 32 && DestSize == 64; 948 } 949 950 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 951 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 952 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 953 // this will enable reducing 64-bit operations the 32-bit, which is always 954 // good. 955 956 if (Src == MVT::i16) 957 return Dest == MVT::i32 ||Dest == MVT::i64 ; 958 959 return Src == MVT::i32 && Dest == MVT::i64; 960 } 961 962 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 963 return isZExtFree(Val.getValueType(), VT2); 964 } 965 966 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 967 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 968 // limited number of native 64-bit operations. Shrinking an operation to fit 969 // in a single 32-bit register should always be helpful. As currently used, 970 // this is much less general than the name suggests, and is only used in 971 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 972 // not profitable, and may actually be harmful. 973 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 974 } 975 976 //===---------------------------------------------------------------------===// 977 // TargetLowering Callbacks 978 //===---------------------------------------------------------------------===// 979 980 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 981 bool IsVarArg) { 982 switch (CC) { 983 case CallingConv::AMDGPU_VS: 984 case CallingConv::AMDGPU_GS: 985 case CallingConv::AMDGPU_PS: 986 case CallingConv::AMDGPU_CS: 987 case CallingConv::AMDGPU_HS: 988 case CallingConv::AMDGPU_ES: 989 case CallingConv::AMDGPU_LS: 990 return CC_AMDGPU; 991 case CallingConv::C: 992 case CallingConv::Fast: 993 case CallingConv::Cold: 994 return CC_AMDGPU_Func; 995 case CallingConv::AMDGPU_Gfx: 996 return CC_SI_Gfx; 997 case CallingConv::AMDGPU_KERNEL: 998 case CallingConv::SPIR_KERNEL: 999 default: 1000 report_fatal_error("Unsupported calling convention for call"); 1001 } 1002 } 1003 1004 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 1005 bool IsVarArg) { 1006 switch (CC) { 1007 case CallingConv::AMDGPU_KERNEL: 1008 case CallingConv::SPIR_KERNEL: 1009 llvm_unreachable("kernels should not be handled here"); 1010 case CallingConv::AMDGPU_VS: 1011 case CallingConv::AMDGPU_GS: 1012 case CallingConv::AMDGPU_PS: 1013 case CallingConv::AMDGPU_CS: 1014 case CallingConv::AMDGPU_HS: 1015 case CallingConv::AMDGPU_ES: 1016 case CallingConv::AMDGPU_LS: 1017 return RetCC_SI_Shader; 1018 case CallingConv::AMDGPU_Gfx: 1019 return RetCC_SI_Gfx; 1020 case CallingConv::C: 1021 case CallingConv::Fast: 1022 case CallingConv::Cold: 1023 return RetCC_AMDGPU_Func; 1024 default: 1025 report_fatal_error("Unsupported calling convention."); 1026 } 1027 } 1028 1029 /// The SelectionDAGBuilder will automatically promote function arguments 1030 /// with illegal types. However, this does not work for the AMDGPU targets 1031 /// since the function arguments are stored in memory as these illegal types. 1032 /// In order to handle this properly we need to get the original types sizes 1033 /// from the LLVM IR Function and fixup the ISD:InputArg values before 1034 /// passing them to AnalyzeFormalArguments() 1035 1036 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 1037 /// input values across multiple registers. Each item in the Ins array 1038 /// represents a single value that will be stored in registers. Ins[x].VT is 1039 /// the value type of the value that will be stored in the register, so 1040 /// whatever SDNode we lower the argument to needs to be this type. 1041 /// 1042 /// In order to correctly lower the arguments we need to know the size of each 1043 /// argument. Since Ins[x].VT gives us the size of the register that will 1044 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 1045 /// for the orignal function argument so that we can deduce the correct memory 1046 /// type to use for Ins[x]. In most cases the correct memory type will be 1047 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 1048 /// we have a kernel argument of type v8i8, this argument will be split into 1049 /// 8 parts and each part will be represented by its own item in the Ins array. 1050 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 1051 /// the argument before it was split. From this, we deduce that the memory type 1052 /// for each individual part is i8. We pass the memory type as LocVT to the 1053 /// calling convention analysis function and the register type (Ins[x].VT) as 1054 /// the ValVT. 1055 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1056 CCState &State, 1057 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1058 const MachineFunction &MF = State.getMachineFunction(); 1059 const Function &Fn = MF.getFunction(); 1060 LLVMContext &Ctx = Fn.getParent()->getContext(); 1061 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1062 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1063 CallingConv::ID CC = Fn.getCallingConv(); 1064 1065 Align MaxAlign = Align(1); 1066 uint64_t ExplicitArgOffset = 0; 1067 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1068 1069 unsigned InIndex = 0; 1070 1071 for (const Argument &Arg : Fn.args()) { 1072 const bool IsByRef = Arg.hasByRefAttr(); 1073 Type *BaseArgTy = Arg.getType(); 1074 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; 1075 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 1076 if (!Alignment) 1077 Alignment = DL.getABITypeAlign(MemArgTy); 1078 MaxAlign = max(Alignment, MaxAlign); 1079 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); 1080 1081 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1082 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1083 1084 // We're basically throwing away everything passed into us and starting over 1085 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1086 // to us as computed in Ins. 1087 // 1088 // We also need to figure out what type legalization is trying to do to get 1089 // the correct memory offsets. 1090 1091 SmallVector<EVT, 16> ValueVTs; 1092 SmallVector<uint64_t, 16> Offsets; 1093 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1094 1095 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1096 Value != NumValues; ++Value) { 1097 uint64_t BasePartOffset = Offsets[Value]; 1098 1099 EVT ArgVT = ValueVTs[Value]; 1100 EVT MemVT = ArgVT; 1101 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1102 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1103 1104 if (NumRegs == 1) { 1105 // This argument is not split, so the IR type is the memory type. 1106 if (ArgVT.isExtended()) { 1107 // We have an extended type, like i24, so we should just use the 1108 // register type. 1109 MemVT = RegisterVT; 1110 } else { 1111 MemVT = ArgVT; 1112 } 1113 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1114 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1115 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1116 // We have a vector value which has been split into a vector with 1117 // the same scalar type, but fewer elements. This should handle 1118 // all the floating-point vector types. 1119 MemVT = RegisterVT; 1120 } else if (ArgVT.isVector() && 1121 ArgVT.getVectorNumElements() == NumRegs) { 1122 // This arg has been split so that each element is stored in a separate 1123 // register. 1124 MemVT = ArgVT.getScalarType(); 1125 } else if (ArgVT.isExtended()) { 1126 // We have an extended type, like i65. 1127 MemVT = RegisterVT; 1128 } else { 1129 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1130 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1131 if (RegisterVT.isInteger()) { 1132 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1133 } else if (RegisterVT.isVector()) { 1134 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1135 unsigned NumElements = RegisterVT.getVectorNumElements(); 1136 assert(MemoryBits % NumElements == 0); 1137 // This vector type has been split into another vector type with 1138 // a different elements size. 1139 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1140 MemoryBits / NumElements); 1141 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1142 } else { 1143 llvm_unreachable("cannot deduce memory type."); 1144 } 1145 } 1146 1147 // Convert one element vectors to scalar. 1148 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1149 MemVT = MemVT.getScalarType(); 1150 1151 // Round up vec3/vec5 argument. 1152 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1153 assert(MemVT.getVectorNumElements() == 3 || 1154 MemVT.getVectorNumElements() == 5); 1155 MemVT = MemVT.getPow2VectorType(State.getContext()); 1156 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1157 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1158 } 1159 1160 unsigned PartOffset = 0; 1161 for (unsigned i = 0; i != NumRegs; ++i) { 1162 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1163 BasePartOffset + PartOffset, 1164 MemVT.getSimpleVT(), 1165 CCValAssign::Full)); 1166 PartOffset += MemVT.getStoreSize(); 1167 } 1168 } 1169 } 1170 } 1171 1172 SDValue AMDGPUTargetLowering::LowerReturn( 1173 SDValue Chain, CallingConv::ID CallConv, 1174 bool isVarArg, 1175 const SmallVectorImpl<ISD::OutputArg> &Outs, 1176 const SmallVectorImpl<SDValue> &OutVals, 1177 const SDLoc &DL, SelectionDAG &DAG) const { 1178 // FIXME: Fails for r600 tests 1179 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1180 // "wave terminate should not have return values"); 1181 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1182 } 1183 1184 //===---------------------------------------------------------------------===// 1185 // Target specific lowering 1186 //===---------------------------------------------------------------------===// 1187 1188 /// Selects the correct CCAssignFn for a given CallingConvention value. 1189 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1190 bool IsVarArg) { 1191 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1192 } 1193 1194 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1195 bool IsVarArg) { 1196 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1197 } 1198 1199 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1200 SelectionDAG &DAG, 1201 MachineFrameInfo &MFI, 1202 int ClobberedFI) const { 1203 SmallVector<SDValue, 8> ArgChains; 1204 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1205 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1206 1207 // Include the original chain at the beginning of the list. When this is 1208 // used by target LowerCall hooks, this helps legalize find the 1209 // CALLSEQ_BEGIN node. 1210 ArgChains.push_back(Chain); 1211 1212 // Add a chain value for each stack argument corresponding 1213 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1214 UE = DAG.getEntryNode().getNode()->use_end(); 1215 U != UE; ++U) { 1216 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1217 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1218 if (FI->getIndex() < 0) { 1219 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1220 int64_t InLastByte = InFirstByte; 1221 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1222 1223 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1224 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1225 ArgChains.push_back(SDValue(L, 1)); 1226 } 1227 } 1228 } 1229 } 1230 1231 // Build a tokenfactor for all the chains. 1232 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1233 } 1234 1235 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1236 SmallVectorImpl<SDValue> &InVals, 1237 StringRef Reason) const { 1238 SDValue Callee = CLI.Callee; 1239 SelectionDAG &DAG = CLI.DAG; 1240 1241 const Function &Fn = DAG.getMachineFunction().getFunction(); 1242 1243 StringRef FuncName("<unknown>"); 1244 1245 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1246 FuncName = G->getSymbol(); 1247 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1248 FuncName = G->getGlobal()->getName(); 1249 1250 DiagnosticInfoUnsupported NoCalls( 1251 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1252 DAG.getContext()->diagnose(NoCalls); 1253 1254 if (!CLI.IsTailCall) { 1255 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1256 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1257 } 1258 1259 return DAG.getEntryNode(); 1260 } 1261 1262 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1263 SmallVectorImpl<SDValue> &InVals) const { 1264 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1265 } 1266 1267 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1268 SelectionDAG &DAG) const { 1269 const Function &Fn = DAG.getMachineFunction().getFunction(); 1270 1271 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1272 SDLoc(Op).getDebugLoc()); 1273 DAG.getContext()->diagnose(NoDynamicAlloca); 1274 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1275 return DAG.getMergeValues(Ops, SDLoc()); 1276 } 1277 1278 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1279 SelectionDAG &DAG) const { 1280 switch (Op.getOpcode()) { 1281 default: 1282 Op->print(errs(), &DAG); 1283 llvm_unreachable("Custom lowering code for this " 1284 "instruction is not implemented yet!"); 1285 break; 1286 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1287 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1288 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1289 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1290 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1291 case ISD::FREM: return LowerFREM(Op, DAG); 1292 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1293 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1294 case ISD::FRINT: return LowerFRINT(Op, DAG); 1295 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1296 case ISD::FROUND: return LowerFROUND(Op, DAG); 1297 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1298 case ISD::FLOG: 1299 return LowerFLOG(Op, DAG, numbers::ln2f); 1300 case ISD::FLOG10: 1301 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1302 case ISD::FEXP: 1303 return lowerFEXP(Op, DAG); 1304 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1305 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1306 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1307 case ISD::FP_TO_SINT: 1308 case ISD::FP_TO_UINT: 1309 return LowerFP_TO_INT(Op, DAG); 1310 case ISD::CTTZ: 1311 case ISD::CTTZ_ZERO_UNDEF: 1312 case ISD::CTLZ: 1313 case ISD::CTLZ_ZERO_UNDEF: 1314 return LowerCTLZ_CTTZ(Op, DAG); 1315 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1316 } 1317 return Op; 1318 } 1319 1320 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1321 SmallVectorImpl<SDValue> &Results, 1322 SelectionDAG &DAG) const { 1323 switch (N->getOpcode()) { 1324 case ISD::SIGN_EXTEND_INREG: 1325 // Different parts of legalization seem to interpret which type of 1326 // sign_extend_inreg is the one to check for custom lowering. The extended 1327 // from type is what really matters, but some places check for custom 1328 // lowering of the result type. This results in trying to use 1329 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1330 // nothing here and let the illegal result integer be handled normally. 1331 return; 1332 default: 1333 return; 1334 } 1335 } 1336 1337 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1338 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1339 if (!GVar || !GVar->hasInitializer()) 1340 return false; 1341 1342 return !isa<UndefValue>(GVar->getInitializer()); 1343 } 1344 1345 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1346 SDValue Op, 1347 SelectionDAG &DAG) const { 1348 1349 const DataLayout &DL = DAG.getDataLayout(); 1350 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1351 const GlobalValue *GV = G->getGlobal(); 1352 1353 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1354 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1355 if (!MFI->isModuleEntryFunction() && 1356 !GV->getName().equals("llvm.amdgcn.module.lds")) { 1357 SDLoc DL(Op); 1358 const Function &Fn = DAG.getMachineFunction().getFunction(); 1359 DiagnosticInfoUnsupported BadLDSDecl( 1360 Fn, "local memory global used by non-kernel function", 1361 DL.getDebugLoc(), DS_Warning); 1362 DAG.getContext()->diagnose(BadLDSDecl); 1363 1364 // We currently don't have a way to correctly allocate LDS objects that 1365 // aren't directly associated with a kernel. We do force inlining of 1366 // functions that use local objects. However, if these dead functions are 1367 // not eliminated, we don't want a compile time error. Just emit a warning 1368 // and a trap, since there should be no callable path here. 1369 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1370 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1371 Trap, DAG.getRoot()); 1372 DAG.setRoot(OutputChain); 1373 return DAG.getUNDEF(Op.getValueType()); 1374 } 1375 1376 // XXX: What does the value of G->getOffset() mean? 1377 assert(G->getOffset() == 0 && 1378 "Do not know what to do with an non-zero offset"); 1379 1380 // TODO: We could emit code to handle the initialization somewhere. 1381 if (!hasDefinedInitializer(GV)) { 1382 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1383 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1384 } 1385 } 1386 1387 const Function &Fn = DAG.getMachineFunction().getFunction(); 1388 DiagnosticInfoUnsupported BadInit( 1389 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1390 DAG.getContext()->diagnose(BadInit); 1391 return SDValue(); 1392 } 1393 1394 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1395 SelectionDAG &DAG) const { 1396 SmallVector<SDValue, 8> Args; 1397 1398 EVT VT = Op.getValueType(); 1399 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1400 SDLoc SL(Op); 1401 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1402 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1403 1404 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1405 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1406 } 1407 1408 for (const SDUse &U : Op->ops()) 1409 DAG.ExtractVectorElements(U.get(), Args); 1410 1411 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1412 } 1413 1414 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1415 SelectionDAG &DAG) const { 1416 1417 SmallVector<SDValue, 8> Args; 1418 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1419 EVT VT = Op.getValueType(); 1420 EVT SrcVT = Op.getOperand(0).getValueType(); 1421 1422 // For these types, we have some TableGen patterns except if the index is 1 1423 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || 1424 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && 1425 Start != 1) 1426 return Op; 1427 1428 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1429 VT.getVectorNumElements()); 1430 1431 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1432 } 1433 1434 /// Generate Min/Max node 1435 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1436 SDValue LHS, SDValue RHS, 1437 SDValue True, SDValue False, 1438 SDValue CC, 1439 DAGCombinerInfo &DCI) const { 1440 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1441 return SDValue(); 1442 1443 SelectionDAG &DAG = DCI.DAG; 1444 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1445 switch (CCOpcode) { 1446 case ISD::SETOEQ: 1447 case ISD::SETONE: 1448 case ISD::SETUNE: 1449 case ISD::SETNE: 1450 case ISD::SETUEQ: 1451 case ISD::SETEQ: 1452 case ISD::SETFALSE: 1453 case ISD::SETFALSE2: 1454 case ISD::SETTRUE: 1455 case ISD::SETTRUE2: 1456 case ISD::SETUO: 1457 case ISD::SETO: 1458 break; 1459 case ISD::SETULE: 1460 case ISD::SETULT: { 1461 if (LHS == True) 1462 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1463 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1464 } 1465 case ISD::SETOLE: 1466 case ISD::SETOLT: 1467 case ISD::SETLE: 1468 case ISD::SETLT: { 1469 // Ordered. Assume ordered for undefined. 1470 1471 // Only do this after legalization to avoid interfering with other combines 1472 // which might occur. 1473 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1474 !DCI.isCalledByLegalizer()) 1475 return SDValue(); 1476 1477 // We need to permute the operands to get the correct NaN behavior. The 1478 // selected operand is the second one based on the failing compare with NaN, 1479 // so permute it based on the compare type the hardware uses. 1480 if (LHS == True) 1481 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1482 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1483 } 1484 case ISD::SETUGE: 1485 case ISD::SETUGT: { 1486 if (LHS == True) 1487 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1488 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1489 } 1490 case ISD::SETGT: 1491 case ISD::SETGE: 1492 case ISD::SETOGE: 1493 case ISD::SETOGT: { 1494 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1495 !DCI.isCalledByLegalizer()) 1496 return SDValue(); 1497 1498 if (LHS == True) 1499 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1500 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1501 } 1502 case ISD::SETCC_INVALID: 1503 llvm_unreachable("Invalid setcc condcode!"); 1504 } 1505 return SDValue(); 1506 } 1507 1508 std::pair<SDValue, SDValue> 1509 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1510 SDLoc SL(Op); 1511 1512 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1513 1514 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1515 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1516 1517 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1518 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1519 1520 return std::make_pair(Lo, Hi); 1521 } 1522 1523 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1524 SDLoc SL(Op); 1525 1526 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1527 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1528 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1529 } 1530 1531 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1532 SDLoc SL(Op); 1533 1534 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1535 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1536 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1537 } 1538 1539 // Split a vector type into two parts. The first part is a power of two vector. 1540 // The second part is whatever is left over, and is a scalar if it would 1541 // otherwise be a 1-vector. 1542 std::pair<EVT, EVT> 1543 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1544 EVT LoVT, HiVT; 1545 EVT EltVT = VT.getVectorElementType(); 1546 unsigned NumElts = VT.getVectorNumElements(); 1547 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1548 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1549 HiVT = NumElts - LoNumElts == 1 1550 ? EltVT 1551 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1552 return std::make_pair(LoVT, HiVT); 1553 } 1554 1555 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1556 // scalar. 1557 std::pair<SDValue, SDValue> 1558 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1559 const EVT &LoVT, const EVT &HiVT, 1560 SelectionDAG &DAG) const { 1561 assert(LoVT.getVectorNumElements() + 1562 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1563 N.getValueType().getVectorNumElements() && 1564 "More vector elements requested than available!"); 1565 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1566 DAG.getVectorIdxConstant(0, DL)); 1567 SDValue Hi = DAG.getNode( 1568 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1569 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1570 return std::make_pair(Lo, Hi); 1571 } 1572 1573 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1574 SelectionDAG &DAG) const { 1575 LoadSDNode *Load = cast<LoadSDNode>(Op); 1576 EVT VT = Op.getValueType(); 1577 SDLoc SL(Op); 1578 1579 1580 // If this is a 2 element vector, we really want to scalarize and not create 1581 // weird 1 element vectors. 1582 if (VT.getVectorNumElements() == 2) { 1583 SDValue Ops[2]; 1584 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1585 return DAG.getMergeValues(Ops, SL); 1586 } 1587 1588 SDValue BasePtr = Load->getBasePtr(); 1589 EVT MemVT = Load->getMemoryVT(); 1590 1591 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1592 1593 EVT LoVT, HiVT; 1594 EVT LoMemVT, HiMemVT; 1595 SDValue Lo, Hi; 1596 1597 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1598 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1599 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1600 1601 unsigned Size = LoMemVT.getStoreSize(); 1602 unsigned BaseAlign = Load->getAlignment(); 1603 unsigned HiAlign = MinAlign(BaseAlign, Size); 1604 1605 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1606 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1607 BaseAlign, Load->getMemOperand()->getFlags()); 1608 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); 1609 SDValue HiLoad = 1610 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1611 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1612 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1613 1614 SDValue Join; 1615 if (LoVT == HiVT) { 1616 // This is the case that the vector is power of two so was evenly split. 1617 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1618 } else { 1619 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1620 DAG.getVectorIdxConstant(0, SL)); 1621 Join = DAG.getNode( 1622 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1623 VT, Join, HiLoad, 1624 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1625 } 1626 1627 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1628 LoLoad.getValue(1), HiLoad.getValue(1))}; 1629 1630 return DAG.getMergeValues(Ops, SL); 1631 } 1632 1633 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, 1634 SelectionDAG &DAG) const { 1635 LoadSDNode *Load = cast<LoadSDNode>(Op); 1636 EVT VT = Op.getValueType(); 1637 SDValue BasePtr = Load->getBasePtr(); 1638 EVT MemVT = Load->getMemoryVT(); 1639 SDLoc SL(Op); 1640 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1641 unsigned BaseAlign = Load->getAlignment(); 1642 unsigned NumElements = MemVT.getVectorNumElements(); 1643 1644 // Widen from vec3 to vec4 when the load is at least 8-byte aligned 1645 // or 16-byte fully dereferenceable. Otherwise, split the vector load. 1646 if (NumElements != 3 || 1647 (BaseAlign < 8 && 1648 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) 1649 return SplitVectorLoad(Op, DAG); 1650 1651 assert(NumElements == 3); 1652 1653 EVT WideVT = 1654 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1655 EVT WideMemVT = 1656 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1657 SDValue WideLoad = DAG.getExtLoad( 1658 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1659 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1660 return DAG.getMergeValues( 1661 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1662 DAG.getVectorIdxConstant(0, SL)), 1663 WideLoad.getValue(1)}, 1664 SL); 1665 } 1666 1667 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1668 SelectionDAG &DAG) const { 1669 StoreSDNode *Store = cast<StoreSDNode>(Op); 1670 SDValue Val = Store->getValue(); 1671 EVT VT = Val.getValueType(); 1672 1673 // If this is a 2 element vector, we really want to scalarize and not create 1674 // weird 1 element vectors. 1675 if (VT.getVectorNumElements() == 2) 1676 return scalarizeVectorStore(Store, DAG); 1677 1678 EVT MemVT = Store->getMemoryVT(); 1679 SDValue Chain = Store->getChain(); 1680 SDValue BasePtr = Store->getBasePtr(); 1681 SDLoc SL(Op); 1682 1683 EVT LoVT, HiVT; 1684 EVT LoMemVT, HiMemVT; 1685 SDValue Lo, Hi; 1686 1687 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1688 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1689 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1690 1691 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1692 1693 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1694 unsigned BaseAlign = Store->getAlignment(); 1695 unsigned Size = LoMemVT.getStoreSize(); 1696 unsigned HiAlign = MinAlign(BaseAlign, Size); 1697 1698 SDValue LoStore = 1699 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1700 Store->getMemOperand()->getFlags()); 1701 SDValue HiStore = 1702 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1703 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1704 1705 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1706 } 1707 1708 // This is a shortcut for integer division because we have fast i32<->f32 1709 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1710 // float is enough to accurately represent up to a 24-bit signed integer. 1711 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1712 bool Sign) const { 1713 SDLoc DL(Op); 1714 EVT VT = Op.getValueType(); 1715 SDValue LHS = Op.getOperand(0); 1716 SDValue RHS = Op.getOperand(1); 1717 MVT IntVT = MVT::i32; 1718 MVT FltVT = MVT::f32; 1719 1720 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1721 if (LHSSignBits < 9) 1722 return SDValue(); 1723 1724 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1725 if (RHSSignBits < 9) 1726 return SDValue(); 1727 1728 unsigned BitSize = VT.getSizeInBits(); 1729 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1730 unsigned DivBits = BitSize - SignBits; 1731 if (Sign) 1732 ++DivBits; 1733 1734 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1735 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1736 1737 SDValue jq = DAG.getConstant(1, DL, IntVT); 1738 1739 if (Sign) { 1740 // char|short jq = ia ^ ib; 1741 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1742 1743 // jq = jq >> (bitsize - 2) 1744 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1745 DAG.getConstant(BitSize - 2, DL, VT)); 1746 1747 // jq = jq | 0x1 1748 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1749 } 1750 1751 // int ia = (int)LHS; 1752 SDValue ia = LHS; 1753 1754 // int ib, (int)RHS; 1755 SDValue ib = RHS; 1756 1757 // float fa = (float)ia; 1758 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1759 1760 // float fb = (float)ib; 1761 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1762 1763 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1764 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1765 1766 // fq = trunc(fq); 1767 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1768 1769 // float fqneg = -fq; 1770 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1771 1772 MachineFunction &MF = DAG.getMachineFunction(); 1773 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1774 1775 // float fr = mad(fqneg, fb, fa); 1776 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1777 (unsigned)ISD::FMA : 1778 !MFI->getMode().allFP32Denormals() ? 1779 (unsigned)ISD::FMAD : 1780 (unsigned)AMDGPUISD::FMAD_FTZ; 1781 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1782 1783 // int iq = (int)fq; 1784 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1785 1786 // fr = fabs(fr); 1787 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1788 1789 // fb = fabs(fb); 1790 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1791 1792 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1793 1794 // int cv = fr >= fb; 1795 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1796 1797 // jq = (cv ? jq : 0); 1798 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1799 1800 // dst = iq + jq; 1801 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1802 1803 // Rem needs compensation, it's easier to recompute it 1804 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1805 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1806 1807 // Truncate to number of bits this divide really is. 1808 if (Sign) { 1809 SDValue InRegSize 1810 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1811 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1812 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1813 } else { 1814 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1815 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1816 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1817 } 1818 1819 return DAG.getMergeValues({ Div, Rem }, DL); 1820 } 1821 1822 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1823 SelectionDAG &DAG, 1824 SmallVectorImpl<SDValue> &Results) const { 1825 SDLoc DL(Op); 1826 EVT VT = Op.getValueType(); 1827 1828 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1829 1830 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1831 1832 SDValue One = DAG.getConstant(1, DL, HalfVT); 1833 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1834 1835 //HiLo split 1836 SDValue LHS = Op.getOperand(0); 1837 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1838 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1839 1840 SDValue RHS = Op.getOperand(1); 1841 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1842 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1843 1844 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1845 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1846 1847 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1848 LHS_Lo, RHS_Lo); 1849 1850 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1851 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1852 1853 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1854 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1855 return; 1856 } 1857 1858 if (isTypeLegal(MVT::i64)) { 1859 MachineFunction &MF = DAG.getMachineFunction(); 1860 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1861 1862 // Compute denominator reciprocal. 1863 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1864 (unsigned)ISD::FMA : 1865 !MFI->getMode().allFP32Denormals() ? 1866 (unsigned)ISD::FMAD : 1867 (unsigned)AMDGPUISD::FMAD_FTZ; 1868 1869 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1870 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1871 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1872 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1873 Cvt_Lo); 1874 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1875 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1876 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1877 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1878 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1879 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1880 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1881 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1882 Mul1); 1883 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1884 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1885 SDValue Rcp64 = DAG.getBitcast(VT, 1886 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1887 1888 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1889 SDValue One64 = DAG.getConstant(1, DL, VT); 1890 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1891 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1892 1893 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1894 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1895 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1896 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1897 Zero); 1898 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1899 One); 1900 1901 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1902 Mulhi1_Lo, Zero1); 1903 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1904 Mulhi1_Hi, Add1_Lo.getValue(1)); 1905 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1906 SDValue Add1 = DAG.getBitcast(VT, 1907 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1908 1909 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1910 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1911 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1912 Zero); 1913 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1914 One); 1915 1916 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1917 Mulhi2_Lo, Zero1); 1918 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1919 Mulhi2_Hi, Add1_Lo.getValue(1)); 1920 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1921 Zero, Add2_Lo.getValue(1)); 1922 SDValue Add2 = DAG.getBitcast(VT, 1923 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1924 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1925 1926 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1927 1928 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1929 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1930 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1931 Mul3_Lo, Zero1); 1932 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1933 Mul3_Hi, Sub1_Lo.getValue(1)); 1934 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1935 SDValue Sub1 = DAG.getBitcast(VT, 1936 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1937 1938 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1939 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1940 ISD::SETUGE); 1941 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1942 ISD::SETUGE); 1943 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1944 1945 // TODO: Here and below portions of the code can be enclosed into if/endif. 1946 // Currently control flow is unconditional and we have 4 selects after 1947 // potential endif to substitute PHIs. 1948 1949 // if C3 != 0 ... 1950 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1951 RHS_Lo, Zero1); 1952 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1953 RHS_Hi, Sub1_Lo.getValue(1)); 1954 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1955 Zero, Sub2_Lo.getValue(1)); 1956 SDValue Sub2 = DAG.getBitcast(VT, 1957 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1958 1959 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1960 1961 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1962 ISD::SETUGE); 1963 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1964 ISD::SETUGE); 1965 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1966 1967 // if (C6 != 0) 1968 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1969 1970 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1971 RHS_Lo, Zero1); 1972 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1973 RHS_Hi, Sub2_Lo.getValue(1)); 1974 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1975 Zero, Sub3_Lo.getValue(1)); 1976 SDValue Sub3 = DAG.getBitcast(VT, 1977 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1978 1979 // endif C6 1980 // endif C3 1981 1982 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1983 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1984 1985 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1986 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1987 1988 Results.push_back(Div); 1989 Results.push_back(Rem); 1990 1991 return; 1992 } 1993 1994 // r600 expandion. 1995 // Get Speculative values 1996 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1997 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1998 1999 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 2000 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 2001 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 2002 2003 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 2004 SDValue DIV_Lo = Zero; 2005 2006 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 2007 2008 for (unsigned i = 0; i < halfBitWidth; ++i) { 2009 const unsigned bitPos = halfBitWidth - i - 1; 2010 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 2011 // Get value of high bit 2012 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 2013 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 2014 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 2015 2016 // Shift 2017 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 2018 // Add LHS high bit 2019 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 2020 2021 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 2022 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 2023 2024 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 2025 2026 // Update REM 2027 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 2028 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 2029 } 2030 2031 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 2032 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 2033 Results.push_back(DIV); 2034 Results.push_back(REM); 2035 } 2036 2037 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 2038 SelectionDAG &DAG) const { 2039 SDLoc DL(Op); 2040 EVT VT = Op.getValueType(); 2041 2042 if (VT == MVT::i64) { 2043 SmallVector<SDValue, 2> Results; 2044 LowerUDIVREM64(Op, DAG, Results); 2045 return DAG.getMergeValues(Results, DL); 2046 } 2047 2048 if (VT == MVT::i32) { 2049 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 2050 return Res; 2051 } 2052 2053 SDValue X = Op.getOperand(0); 2054 SDValue Y = Op.getOperand(1); 2055 2056 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 2057 // algorithm used here. 2058 2059 // Initial estimate of inv(y). 2060 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 2061 2062 // One round of UNR. 2063 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 2064 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 2065 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 2066 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 2067 2068 // Quotient/remainder estimate. 2069 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 2070 SDValue R = 2071 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 2072 2073 // First quotient/remainder refinement. 2074 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2075 SDValue One = DAG.getConstant(1, DL, VT); 2076 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2077 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2078 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2079 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2080 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2081 2082 // Second quotient/remainder refinement. 2083 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2084 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2085 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2086 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2087 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2088 2089 return DAG.getMergeValues({Q, R}, DL); 2090 } 2091 2092 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2093 SelectionDAG &DAG) const { 2094 SDLoc DL(Op); 2095 EVT VT = Op.getValueType(); 2096 2097 SDValue LHS = Op.getOperand(0); 2098 SDValue RHS = Op.getOperand(1); 2099 2100 SDValue Zero = DAG.getConstant(0, DL, VT); 2101 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2102 2103 if (VT == MVT::i32) { 2104 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2105 return Res; 2106 } 2107 2108 if (VT == MVT::i64 && 2109 DAG.ComputeNumSignBits(LHS) > 32 && 2110 DAG.ComputeNumSignBits(RHS) > 32) { 2111 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2112 2113 //HiLo split 2114 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2115 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2116 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2117 LHS_Lo, RHS_Lo); 2118 SDValue Res[2] = { 2119 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2120 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2121 }; 2122 return DAG.getMergeValues(Res, DL); 2123 } 2124 2125 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2126 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2127 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2128 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2129 2130 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2131 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2132 2133 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2134 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2135 2136 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2137 SDValue Rem = Div.getValue(1); 2138 2139 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2140 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2141 2142 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2143 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2144 2145 SDValue Res[2] = { 2146 Div, 2147 Rem 2148 }; 2149 return DAG.getMergeValues(Res, DL); 2150 } 2151 2152 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) 2153 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2154 SDLoc SL(Op); 2155 EVT VT = Op.getValueType(); 2156 auto Flags = Op->getFlags(); 2157 SDValue X = Op.getOperand(0); 2158 SDValue Y = Op.getOperand(1); 2159 2160 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); 2161 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); 2162 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); 2163 // TODO: For f32 use FMAD instead if !hasFastFMA32? 2164 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); 2165 } 2166 2167 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2168 SDLoc SL(Op); 2169 SDValue Src = Op.getOperand(0); 2170 2171 // result = trunc(src) 2172 // if (src > 0.0 && src != result) 2173 // result += 1.0 2174 2175 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2176 2177 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2178 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2179 2180 EVT SetCCVT = 2181 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2182 2183 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2184 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2185 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2186 2187 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2188 // TODO: Should this propagate fast-math-flags? 2189 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2190 } 2191 2192 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2193 SelectionDAG &DAG) { 2194 const unsigned FractBits = 52; 2195 const unsigned ExpBits = 11; 2196 2197 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2198 Hi, 2199 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2200 DAG.getConstant(ExpBits, SL, MVT::i32)); 2201 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2202 DAG.getConstant(1023, SL, MVT::i32)); 2203 2204 return Exp; 2205 } 2206 2207 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2208 SDLoc SL(Op); 2209 SDValue Src = Op.getOperand(0); 2210 2211 assert(Op.getValueType() == MVT::f64); 2212 2213 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2214 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2215 2216 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2217 2218 // Extract the upper half, since this is where we will find the sign and 2219 // exponent. 2220 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2221 2222 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2223 2224 const unsigned FractBits = 52; 2225 2226 // Extract the sign bit. 2227 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2228 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2229 2230 // Extend back to 64-bits. 2231 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2232 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2233 2234 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2235 const SDValue FractMask 2236 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2237 2238 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2239 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2240 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2241 2242 EVT SetCCVT = 2243 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2244 2245 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2246 2247 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2248 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2249 2250 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2251 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2252 2253 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2254 } 2255 2256 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2257 SDLoc SL(Op); 2258 SDValue Src = Op.getOperand(0); 2259 2260 assert(Op.getValueType() == MVT::f64); 2261 2262 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2263 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2264 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2265 2266 // TODO: Should this propagate fast-math-flags? 2267 2268 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2269 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2270 2271 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2272 2273 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2274 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2275 2276 EVT SetCCVT = 2277 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2278 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2279 2280 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2281 } 2282 2283 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2284 // FNEARBYINT and FRINT are the same, except in their handling of FP 2285 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2286 // rint, so just treat them as equivalent. 2287 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2288 } 2289 2290 // XXX - May require not supporting f32 denormals? 2291 2292 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2293 // compare and vselect end up producing worse code than scalarizing the whole 2294 // operation. 2295 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2296 SDLoc SL(Op); 2297 SDValue X = Op.getOperand(0); 2298 EVT VT = Op.getValueType(); 2299 2300 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2301 2302 // TODO: Should this propagate fast-math-flags? 2303 2304 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2305 2306 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2307 2308 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2309 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2310 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2311 2312 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2313 2314 EVT SetCCVT = 2315 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2316 2317 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2318 2319 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2320 2321 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2322 } 2323 2324 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2325 SDLoc SL(Op); 2326 SDValue Src = Op.getOperand(0); 2327 2328 // result = trunc(src); 2329 // if (src < 0.0 && src != result) 2330 // result += -1.0. 2331 2332 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2333 2334 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2335 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2336 2337 EVT SetCCVT = 2338 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2339 2340 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2341 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2342 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2343 2344 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2345 // TODO: Should this propagate fast-math-flags? 2346 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2347 } 2348 2349 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2350 double Log2BaseInverted) const { 2351 EVT VT = Op.getValueType(); 2352 2353 SDLoc SL(Op); 2354 SDValue Operand = Op.getOperand(0); 2355 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2356 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2357 2358 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2359 } 2360 2361 // exp2(M_LOG2E_F * f); 2362 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2363 EVT VT = Op.getValueType(); 2364 SDLoc SL(Op); 2365 SDValue Src = Op.getOperand(0); 2366 2367 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2368 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2369 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2370 } 2371 2372 static bool isCtlzOpc(unsigned Opc) { 2373 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2374 } 2375 2376 static bool isCttzOpc(unsigned Opc) { 2377 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2378 } 2379 2380 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2381 SDLoc SL(Op); 2382 SDValue Src = Op.getOperand(0); 2383 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2384 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2385 2386 unsigned ISDOpc, NewOpc; 2387 if (isCtlzOpc(Op.getOpcode())) { 2388 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2389 NewOpc = AMDGPUISD::FFBH_U32; 2390 } else if (isCttzOpc(Op.getOpcode())) { 2391 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2392 NewOpc = AMDGPUISD::FFBL_B32; 2393 } else 2394 llvm_unreachable("Unexpected OPCode!!!"); 2395 2396 2397 if (ZeroUndef && Src.getValueType() == MVT::i32) 2398 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2399 2400 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2401 2402 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2403 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2404 2405 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2406 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2407 2408 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2409 *DAG.getContext(), MVT::i32); 2410 2411 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2412 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2413 2414 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2415 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2416 2417 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2418 SDValue Add, NewOpr; 2419 if (isCtlzOpc(Op.getOpcode())) { 2420 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2421 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2422 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2423 } else { 2424 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2425 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2426 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2427 } 2428 2429 if (!ZeroUndef) { 2430 // Test if the full 64-bit input is zero. 2431 2432 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2433 // which we probably don't want. 2434 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2435 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2436 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2437 2438 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2439 // with the same cycles, otherwise it is slower. 2440 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2441 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2442 2443 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2444 2445 // The instruction returns -1 for 0 input, but the defined intrinsic 2446 // behavior is to return the number of bits. 2447 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2448 SrcIsZero, Bits32, NewOpr); 2449 } 2450 2451 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2452 } 2453 2454 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2455 bool Signed) const { 2456 // Unsigned 2457 // cul2f(ulong u) 2458 //{ 2459 // uint lz = clz(u); 2460 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2461 // u = (u << lz) & 0x7fffffffffffffffUL; 2462 // ulong t = u & 0xffffffffffUL; 2463 // uint v = (e << 23) | (uint)(u >> 40); 2464 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2465 // return as_float(v + r); 2466 //} 2467 // Signed 2468 // cl2f(long l) 2469 //{ 2470 // long s = l >> 63; 2471 // float r = cul2f((l + s) ^ s); 2472 // return s ? -r : r; 2473 //} 2474 2475 SDLoc SL(Op); 2476 SDValue Src = Op.getOperand(0); 2477 SDValue L = Src; 2478 2479 SDValue S; 2480 if (Signed) { 2481 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2482 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2483 2484 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2485 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2486 } 2487 2488 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2489 *DAG.getContext(), MVT::f32); 2490 2491 2492 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2493 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2494 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2495 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2496 2497 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2498 SDValue E = DAG.getSelect(SL, MVT::i32, 2499 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2500 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2501 ZeroI32); 2502 2503 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2504 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2505 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2506 2507 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2508 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2509 2510 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2511 U, DAG.getConstant(40, SL, MVT::i64)); 2512 2513 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2514 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2515 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2516 2517 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2518 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2519 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2520 2521 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2522 2523 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2524 2525 SDValue R = DAG.getSelect(SL, MVT::i32, 2526 RCmp, 2527 One, 2528 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2529 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2530 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2531 2532 if (!Signed) 2533 return R; 2534 2535 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2536 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2537 } 2538 2539 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2540 bool Signed) const { 2541 SDLoc SL(Op); 2542 SDValue Src = Op.getOperand(0); 2543 2544 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2545 2546 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2547 DAG.getConstant(0, SL, MVT::i32)); 2548 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2549 DAG.getConstant(1, SL, MVT::i32)); 2550 2551 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2552 SL, MVT::f64, Hi); 2553 2554 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2555 2556 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2557 DAG.getConstant(32, SL, MVT::i32)); 2558 // TODO: Should this propagate fast-math-flags? 2559 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2560 } 2561 2562 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2563 SelectionDAG &DAG) const { 2564 // TODO: Factor out code common with LowerSINT_TO_FP. 2565 EVT DestVT = Op.getValueType(); 2566 SDValue Src = Op.getOperand(0); 2567 EVT SrcVT = Src.getValueType(); 2568 2569 if (SrcVT == MVT::i16) { 2570 if (DestVT == MVT::f16) 2571 return Op; 2572 SDLoc DL(Op); 2573 2574 // Promote src to i32 2575 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2576 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2577 } 2578 2579 assert(SrcVT == MVT::i64 && "operation should be legal"); 2580 2581 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2582 SDLoc DL(Op); 2583 2584 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2585 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2586 SDValue FPRound = 2587 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2588 2589 return FPRound; 2590 } 2591 2592 if (DestVT == MVT::f32) 2593 return LowerINT_TO_FP32(Op, DAG, false); 2594 2595 assert(DestVT == MVT::f64); 2596 return LowerINT_TO_FP64(Op, DAG, false); 2597 } 2598 2599 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2600 SelectionDAG &DAG) const { 2601 EVT DestVT = Op.getValueType(); 2602 2603 SDValue Src = Op.getOperand(0); 2604 EVT SrcVT = Src.getValueType(); 2605 2606 if (SrcVT == MVT::i16) { 2607 if (DestVT == MVT::f16) 2608 return Op; 2609 2610 SDLoc DL(Op); 2611 // Promote src to i32 2612 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2613 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2614 } 2615 2616 assert(SrcVT == MVT::i64 && "operation should be legal"); 2617 2618 // TODO: Factor out code common with LowerUINT_TO_FP. 2619 2620 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2621 SDLoc DL(Op); 2622 SDValue Src = Op.getOperand(0); 2623 2624 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2625 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2626 SDValue FPRound = 2627 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2628 2629 return FPRound; 2630 } 2631 2632 if (DestVT == MVT::f32) 2633 return LowerINT_TO_FP32(Op, DAG, true); 2634 2635 assert(DestVT == MVT::f64); 2636 return LowerINT_TO_FP64(Op, DAG, true); 2637 } 2638 2639 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, 2640 bool Signed) const { 2641 SDLoc SL(Op); 2642 2643 SDValue Src = Op.getOperand(0); 2644 EVT SrcVT = Src.getValueType(); 2645 2646 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); 2647 2648 // The basic idea of converting a floating point number into a pair of 32-bit 2649 // integers is illustrated as follows: 2650 // 2651 // tf := trunc(val); 2652 // hif := floor(tf * 2^-32); 2653 // lof := tf - hif * 2^32; // lof is always positive due to floor. 2654 // hi := fptoi(hif); 2655 // lo := fptoi(lof); 2656 // 2657 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); 2658 SDValue Sign; 2659 if (Signed && SrcVT == MVT::f32) { 2660 // However, a 32-bit floating point number has only 23 bits mantissa and 2661 // it's not enough to hold all the significant bits of `lof` if val is 2662 // negative. To avoid the loss of precision, We need to take the absolute 2663 // value after truncating and flip the result back based on the original 2664 // signedness. 2665 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, 2666 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), 2667 DAG.getConstant(31, SL, MVT::i32)); 2668 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); 2669 } 2670 2671 SDValue K0, K1; 2672 if (SrcVT == MVT::f64) { 2673 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)), 2674 SL, SrcVT); 2675 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), 2676 SL, SrcVT); 2677 } else { 2678 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL, 2679 SrcVT); 2680 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL, 2681 SrcVT); 2682 } 2683 // TODO: Should this propagate fast-math-flags? 2684 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); 2685 2686 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); 2687 2688 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); 2689 2690 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT 2691 : ISD::FP_TO_UINT, 2692 SL, MVT::i32, FloorMul); 2693 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2694 2695 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2696 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); 2697 2698 if (Signed && SrcVT == MVT::f32) { 2699 assert(Sign); 2700 // Flip the result based on the signedness, which is either all 0s or 1s. 2701 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, 2702 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); 2703 // r := xor(r, sign) - sign; 2704 Result = 2705 DAG.getNode(ISD::SUB, SL, MVT::i64, 2706 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); 2707 } 2708 2709 return Result; 2710 } 2711 2712 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2713 SDLoc DL(Op); 2714 SDValue N0 = Op.getOperand(0); 2715 2716 // Convert to target node to get known bits 2717 if (N0.getValueType() == MVT::f32) 2718 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2719 2720 if (getTargetMachine().Options.UnsafeFPMath) { 2721 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2722 return SDValue(); 2723 } 2724 2725 assert(N0.getSimpleValueType() == MVT::f64); 2726 2727 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2728 const unsigned ExpMask = 0x7ff; 2729 const unsigned ExpBiasf64 = 1023; 2730 const unsigned ExpBiasf16 = 15; 2731 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2732 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2733 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2734 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2735 DAG.getConstant(32, DL, MVT::i64)); 2736 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2737 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2738 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2739 DAG.getConstant(20, DL, MVT::i64)); 2740 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2741 DAG.getConstant(ExpMask, DL, MVT::i32)); 2742 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2743 // add the f16 bias (15) to get the biased exponent for the f16 format. 2744 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2745 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2746 2747 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2748 DAG.getConstant(8, DL, MVT::i32)); 2749 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2750 DAG.getConstant(0xffe, DL, MVT::i32)); 2751 2752 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2753 DAG.getConstant(0x1ff, DL, MVT::i32)); 2754 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2755 2756 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2757 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2758 2759 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2760 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2761 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2762 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2763 2764 // N = M | (E << 12); 2765 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2766 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2767 DAG.getConstant(12, DL, MVT::i32))); 2768 2769 // B = clamp(1-E, 0, 13); 2770 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2771 One, E); 2772 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2773 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2774 DAG.getConstant(13, DL, MVT::i32)); 2775 2776 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2777 DAG.getConstant(0x1000, DL, MVT::i32)); 2778 2779 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2780 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2781 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2782 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2783 2784 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2785 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2786 DAG.getConstant(0x7, DL, MVT::i32)); 2787 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2788 DAG.getConstant(2, DL, MVT::i32)); 2789 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2790 One, Zero, ISD::SETEQ); 2791 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2792 One, Zero, ISD::SETGT); 2793 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2794 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2795 2796 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2797 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2798 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2799 I, V, ISD::SETEQ); 2800 2801 // Extract the sign bit. 2802 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2803 DAG.getConstant(16, DL, MVT::i32)); 2804 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2805 DAG.getConstant(0x8000, DL, MVT::i32)); 2806 2807 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2808 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2809 } 2810 2811 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, 2812 SelectionDAG &DAG) const { 2813 SDValue Src = Op.getOperand(0); 2814 unsigned OpOpcode = Op.getOpcode(); 2815 EVT SrcVT = Src.getValueType(); 2816 EVT DestVT = Op.getValueType(); 2817 2818 // Will be selected natively 2819 if (SrcVT == MVT::f16 && DestVT == MVT::i16) 2820 return Op; 2821 2822 // Promote i16 to i32 2823 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { 2824 SDLoc DL(Op); 2825 2826 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2827 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); 2828 } 2829 2830 if (SrcVT == MVT::f16 || 2831 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { 2832 SDLoc DL(Op); 2833 2834 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); 2835 unsigned Ext = 2836 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2837 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); 2838 } 2839 2840 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) 2841 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); 2842 2843 return SDValue(); 2844 } 2845 2846 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2847 SelectionDAG &DAG) const { 2848 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2849 MVT VT = Op.getSimpleValueType(); 2850 MVT ScalarVT = VT.getScalarType(); 2851 2852 assert(VT.isVector()); 2853 2854 SDValue Src = Op.getOperand(0); 2855 SDLoc DL(Op); 2856 2857 // TODO: Don't scalarize on Evergreen? 2858 unsigned NElts = VT.getVectorNumElements(); 2859 SmallVector<SDValue, 8> Args; 2860 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2861 2862 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2863 for (unsigned I = 0; I < NElts; ++I) 2864 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2865 2866 return DAG.getBuildVector(VT, DL, Args); 2867 } 2868 2869 //===----------------------------------------------------------------------===// 2870 // Custom DAG optimizations 2871 //===----------------------------------------------------------------------===// 2872 2873 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2874 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2875 } 2876 2877 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2878 EVT VT = Op.getValueType(); 2879 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2880 // as unsigned 24-bit values. 2881 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2882 } 2883 2884 static SDValue simplifyMul24(SDNode *Node24, 2885 TargetLowering::DAGCombinerInfo &DCI) { 2886 SelectionDAG &DAG = DCI.DAG; 2887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2888 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2889 2890 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2891 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2892 unsigned NewOpcode = Node24->getOpcode(); 2893 if (IsIntrin) { 2894 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2895 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2896 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2897 } 2898 2899 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2900 2901 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2902 // the operands to have other uses, but will only perform simplifications that 2903 // involve bypassing some nodes for this user. 2904 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2905 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2906 if (DemandedLHS || DemandedRHS) 2907 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2908 DemandedLHS ? DemandedLHS : LHS, 2909 DemandedRHS ? DemandedRHS : RHS); 2910 2911 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2912 // operands if this node is the only user. 2913 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2914 return SDValue(Node24, 0); 2915 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2916 return SDValue(Node24, 0); 2917 2918 return SDValue(); 2919 } 2920 2921 template <typename IntTy> 2922 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2923 uint32_t Width, const SDLoc &DL) { 2924 if (Width + Offset < 32) { 2925 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2926 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2927 return DAG.getConstant(Result, DL, MVT::i32); 2928 } 2929 2930 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2931 } 2932 2933 static bool hasVolatileUser(SDNode *Val) { 2934 for (SDNode *U : Val->uses()) { 2935 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2936 if (M->isVolatile()) 2937 return true; 2938 } 2939 } 2940 2941 return false; 2942 } 2943 2944 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2945 // i32 vectors are the canonical memory type. 2946 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2947 return false; 2948 2949 if (!VT.isByteSized()) 2950 return false; 2951 2952 unsigned Size = VT.getStoreSize(); 2953 2954 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2955 return false; 2956 2957 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2958 return false; 2959 2960 return true; 2961 } 2962 2963 // Replace load of an illegal type with a store of a bitcast to a friendlier 2964 // type. 2965 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2966 DAGCombinerInfo &DCI) const { 2967 if (!DCI.isBeforeLegalize()) 2968 return SDValue(); 2969 2970 LoadSDNode *LN = cast<LoadSDNode>(N); 2971 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2972 return SDValue(); 2973 2974 SDLoc SL(N); 2975 SelectionDAG &DAG = DCI.DAG; 2976 EVT VT = LN->getMemoryVT(); 2977 2978 unsigned Size = VT.getStoreSize(); 2979 Align Alignment = LN->getAlign(); 2980 if (Alignment < Size && isTypeLegal(VT)) { 2981 bool IsFast; 2982 unsigned AS = LN->getAddressSpace(); 2983 2984 // Expand unaligned loads earlier than legalization. Due to visitation order 2985 // problems during legalization, the emitted instructions to pack and unpack 2986 // the bytes again are not eliminated in the case of an unaligned copy. 2987 if (!allowsMisalignedMemoryAccesses( 2988 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { 2989 SDValue Ops[2]; 2990 2991 if (VT.isVector()) 2992 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2993 else 2994 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2995 2996 return DAG.getMergeValues(Ops, SDLoc(N)); 2997 } 2998 2999 if (!IsFast) 3000 return SDValue(); 3001 } 3002 3003 if (!shouldCombineMemoryType(VT)) 3004 return SDValue(); 3005 3006 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3007 3008 SDValue NewLoad 3009 = DAG.getLoad(NewVT, SL, LN->getChain(), 3010 LN->getBasePtr(), LN->getMemOperand()); 3011 3012 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 3013 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 3014 return SDValue(N, 0); 3015 } 3016 3017 // Replace store of an illegal type with a store of a bitcast to a friendlier 3018 // type. 3019 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 3020 DAGCombinerInfo &DCI) const { 3021 if (!DCI.isBeforeLegalize()) 3022 return SDValue(); 3023 3024 StoreSDNode *SN = cast<StoreSDNode>(N); 3025 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 3026 return SDValue(); 3027 3028 EVT VT = SN->getMemoryVT(); 3029 unsigned Size = VT.getStoreSize(); 3030 3031 SDLoc SL(N); 3032 SelectionDAG &DAG = DCI.DAG; 3033 Align Alignment = SN->getAlign(); 3034 if (Alignment < Size && isTypeLegal(VT)) { 3035 bool IsFast; 3036 unsigned AS = SN->getAddressSpace(); 3037 3038 // Expand unaligned stores earlier than legalization. Due to visitation 3039 // order problems during legalization, the emitted instructions to pack and 3040 // unpack the bytes again are not eliminated in the case of an unaligned 3041 // copy. 3042 if (!allowsMisalignedMemoryAccesses( 3043 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { 3044 if (VT.isVector()) 3045 return scalarizeVectorStore(SN, DAG); 3046 3047 return expandUnalignedStore(SN, DAG); 3048 } 3049 3050 if (!IsFast) 3051 return SDValue(); 3052 } 3053 3054 if (!shouldCombineMemoryType(VT)) 3055 return SDValue(); 3056 3057 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 3058 SDValue Val = SN->getValue(); 3059 3060 //DCI.AddToWorklist(Val.getNode()); 3061 3062 bool OtherUses = !Val.hasOneUse(); 3063 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 3064 if (OtherUses) { 3065 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 3066 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 3067 } 3068 3069 return DAG.getStore(SN->getChain(), SL, CastVal, 3070 SN->getBasePtr(), SN->getMemOperand()); 3071 } 3072 3073 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 3074 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 3075 // issues. 3076 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 3077 DAGCombinerInfo &DCI) const { 3078 SelectionDAG &DAG = DCI.DAG; 3079 SDValue N0 = N->getOperand(0); 3080 3081 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 3082 // (vt2 (truncate (assertzext vt0:x, vt1))) 3083 if (N0.getOpcode() == ISD::TRUNCATE) { 3084 SDValue N1 = N->getOperand(1); 3085 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 3086 SDLoc SL(N); 3087 3088 SDValue Src = N0.getOperand(0); 3089 EVT SrcVT = Src.getValueType(); 3090 if (SrcVT.bitsGE(ExtVT)) { 3091 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3092 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3093 } 3094 } 3095 3096 return SDValue(); 3097 } 3098 3099 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3100 SDNode *N, DAGCombinerInfo &DCI) const { 3101 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3102 switch (IID) { 3103 case Intrinsic::amdgcn_mul_i24: 3104 case Intrinsic::amdgcn_mul_u24: 3105 return simplifyMul24(N, DCI); 3106 case Intrinsic::amdgcn_fract: 3107 case Intrinsic::amdgcn_rsq: 3108 case Intrinsic::amdgcn_rcp_legacy: 3109 case Intrinsic::amdgcn_rsq_legacy: 3110 case Intrinsic::amdgcn_rsq_clamp: 3111 case Intrinsic::amdgcn_ldexp: { 3112 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3113 SDValue Src = N->getOperand(1); 3114 return Src.isUndef() ? Src : SDValue(); 3115 } 3116 default: 3117 return SDValue(); 3118 } 3119 } 3120 3121 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3122 /// binary operation \p Opc to it with the corresponding constant operands. 3123 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3124 DAGCombinerInfo &DCI, const SDLoc &SL, 3125 unsigned Opc, SDValue LHS, 3126 uint32_t ValLo, uint32_t ValHi) const { 3127 SelectionDAG &DAG = DCI.DAG; 3128 SDValue Lo, Hi; 3129 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3130 3131 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3132 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3133 3134 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3135 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3136 3137 // Re-visit the ands. It's possible we eliminated one of them and it could 3138 // simplify the vector. 3139 DCI.AddToWorklist(Lo.getNode()); 3140 DCI.AddToWorklist(Hi.getNode()); 3141 3142 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3143 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3144 } 3145 3146 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3147 DAGCombinerInfo &DCI) const { 3148 EVT VT = N->getValueType(0); 3149 3150 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3151 if (!RHS) 3152 return SDValue(); 3153 3154 SDValue LHS = N->getOperand(0); 3155 unsigned RHSVal = RHS->getZExtValue(); 3156 if (!RHSVal) 3157 return LHS; 3158 3159 SDLoc SL(N); 3160 SelectionDAG &DAG = DCI.DAG; 3161 3162 switch (LHS->getOpcode()) { 3163 default: 3164 break; 3165 case ISD::ZERO_EXTEND: 3166 case ISD::SIGN_EXTEND: 3167 case ISD::ANY_EXTEND: { 3168 SDValue X = LHS->getOperand(0); 3169 3170 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3171 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3172 // Prefer build_vector as the canonical form if packed types are legal. 3173 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3174 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3175 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3176 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3177 } 3178 3179 // shl (ext x) => zext (shl x), if shift does not overflow int 3180 if (VT != MVT::i64) 3181 break; 3182 KnownBits Known = DAG.computeKnownBits(X); 3183 unsigned LZ = Known.countMinLeadingZeros(); 3184 if (LZ < RHSVal) 3185 break; 3186 EVT XVT = X.getValueType(); 3187 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3188 return DAG.getZExtOrTrunc(Shl, SL, VT); 3189 } 3190 } 3191 3192 if (VT != MVT::i64) 3193 return SDValue(); 3194 3195 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3196 3197 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3198 // common case, splitting this into a move and a 32-bit shift is faster and 3199 // the same code size. 3200 if (RHSVal < 32) 3201 return SDValue(); 3202 3203 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3204 3205 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3206 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3207 3208 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3209 3210 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3211 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3212 } 3213 3214 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3215 DAGCombinerInfo &DCI) const { 3216 if (N->getValueType(0) != MVT::i64) 3217 return SDValue(); 3218 3219 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3220 if (!RHS) 3221 return SDValue(); 3222 3223 SelectionDAG &DAG = DCI.DAG; 3224 SDLoc SL(N); 3225 unsigned RHSVal = RHS->getZExtValue(); 3226 3227 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3228 if (RHSVal == 32) { 3229 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3230 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3231 DAG.getConstant(31, SL, MVT::i32)); 3232 3233 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3234 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3235 } 3236 3237 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3238 if (RHSVal == 63) { 3239 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3240 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3241 DAG.getConstant(31, SL, MVT::i32)); 3242 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3243 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3244 } 3245 3246 return SDValue(); 3247 } 3248 3249 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3250 DAGCombinerInfo &DCI) const { 3251 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3252 if (!RHS) 3253 return SDValue(); 3254 3255 EVT VT = N->getValueType(0); 3256 SDValue LHS = N->getOperand(0); 3257 unsigned ShiftAmt = RHS->getZExtValue(); 3258 SelectionDAG &DAG = DCI.DAG; 3259 SDLoc SL(N); 3260 3261 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3262 // this improves the ability to match BFE patterns in isel. 3263 if (LHS.getOpcode() == ISD::AND) { 3264 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3265 if (Mask->getAPIntValue().isShiftedMask() && 3266 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3267 return DAG.getNode( 3268 ISD::AND, SL, VT, 3269 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3270 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3271 } 3272 } 3273 } 3274 3275 if (VT != MVT::i64) 3276 return SDValue(); 3277 3278 if (ShiftAmt < 32) 3279 return SDValue(); 3280 3281 // srl i64:x, C for C >= 32 3282 // => 3283 // build_pair (srl hi_32(x), C - 32), 0 3284 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3285 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3286 3287 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3288 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3289 3290 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3291 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3292 3293 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3294 3295 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3296 } 3297 3298 SDValue AMDGPUTargetLowering::performTruncateCombine( 3299 SDNode *N, DAGCombinerInfo &DCI) const { 3300 SDLoc SL(N); 3301 SelectionDAG &DAG = DCI.DAG; 3302 EVT VT = N->getValueType(0); 3303 SDValue Src = N->getOperand(0); 3304 3305 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3306 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3307 SDValue Vec = Src.getOperand(0); 3308 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3309 SDValue Elt0 = Vec.getOperand(0); 3310 EVT EltVT = Elt0.getValueType(); 3311 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { 3312 if (EltVT.isFloatingPoint()) { 3313 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3314 EltVT.changeTypeToInteger(), Elt0); 3315 } 3316 3317 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3318 } 3319 } 3320 } 3321 3322 // Equivalent of above for accessing the high element of a vector as an 3323 // integer operation. 3324 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3325 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3326 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3327 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3328 SDValue BV = stripBitcast(Src.getOperand(0)); 3329 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3330 BV.getValueType().getVectorNumElements() == 2) { 3331 SDValue SrcElt = BV.getOperand(1); 3332 EVT SrcEltVT = SrcElt.getValueType(); 3333 if (SrcEltVT.isFloatingPoint()) { 3334 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3335 SrcEltVT.changeTypeToInteger(), SrcElt); 3336 } 3337 3338 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3339 } 3340 } 3341 } 3342 } 3343 3344 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3345 // 3346 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3347 // i16 (trunc (srl (i32 (trunc x), K))) 3348 if (VT.getScalarSizeInBits() < 32) { 3349 EVT SrcVT = Src.getValueType(); 3350 if (SrcVT.getScalarSizeInBits() > 32 && 3351 (Src.getOpcode() == ISD::SRL || 3352 Src.getOpcode() == ISD::SRA || 3353 Src.getOpcode() == ISD::SHL)) { 3354 SDValue Amt = Src.getOperand(1); 3355 KnownBits Known = DAG.computeKnownBits(Amt); 3356 unsigned Size = VT.getScalarSizeInBits(); 3357 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3358 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3359 EVT MidVT = VT.isVector() ? 3360 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3361 VT.getVectorNumElements()) : MVT::i32; 3362 3363 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3364 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3365 Src.getOperand(0)); 3366 DCI.AddToWorklist(Trunc.getNode()); 3367 3368 if (Amt.getValueType() != NewShiftVT) { 3369 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3370 DCI.AddToWorklist(Amt.getNode()); 3371 } 3372 3373 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3374 Trunc, Amt); 3375 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3376 } 3377 } 3378 } 3379 3380 return SDValue(); 3381 } 3382 3383 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3384 // instructions. If we only match on the legalized i64 mul expansion, 3385 // SimplifyDemandedBits will be unable to remove them because there will be 3386 // multiple uses due to the separate mul + mulh[su]. 3387 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3388 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3389 if (Size <= 32) { 3390 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3391 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3392 } 3393 3394 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3395 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3396 3397 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3398 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3399 3400 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); 3401 } 3402 3403 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3404 DAGCombinerInfo &DCI) const { 3405 EVT VT = N->getValueType(0); 3406 3407 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3408 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3409 // unnecessarily). isDivergent() is used as an approximation of whether the 3410 // value is in an SGPR. 3411 if (!N->isDivergent()) 3412 return SDValue(); 3413 3414 unsigned Size = VT.getSizeInBits(); 3415 if (VT.isVector() || Size > 64) 3416 return SDValue(); 3417 3418 // There are i16 integer mul/mad. 3419 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3420 return SDValue(); 3421 3422 SelectionDAG &DAG = DCI.DAG; 3423 SDLoc DL(N); 3424 3425 SDValue N0 = N->getOperand(0); 3426 SDValue N1 = N->getOperand(1); 3427 3428 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3429 // in the source into any_extends if the result of the mul is truncated. Since 3430 // we can assume the high bits are whatever we want, use the underlying value 3431 // to avoid the unknown high bits from interfering. 3432 if (N0.getOpcode() == ISD::ANY_EXTEND) 3433 N0 = N0.getOperand(0); 3434 3435 if (N1.getOpcode() == ISD::ANY_EXTEND) 3436 N1 = N1.getOperand(0); 3437 3438 SDValue Mul; 3439 3440 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3441 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3442 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3443 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3444 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3445 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3446 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3447 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3448 } else { 3449 return SDValue(); 3450 } 3451 3452 // We need to use sext even for MUL_U24, because MUL_U24 is used 3453 // for signed multiply of 8 and 16-bit types. 3454 return DAG.getSExtOrTrunc(Mul, DL, VT); 3455 } 3456 3457 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3458 DAGCombinerInfo &DCI) const { 3459 EVT VT = N->getValueType(0); 3460 3461 if (!Subtarget->hasMulI24() || VT.isVector()) 3462 return SDValue(); 3463 3464 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3465 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3466 // unnecessarily). isDivergent() is used as an approximation of whether the 3467 // value is in an SGPR. 3468 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3469 // valu op anyway) 3470 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3471 return SDValue(); 3472 3473 SelectionDAG &DAG = DCI.DAG; 3474 SDLoc DL(N); 3475 3476 SDValue N0 = N->getOperand(0); 3477 SDValue N1 = N->getOperand(1); 3478 3479 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3480 return SDValue(); 3481 3482 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3483 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3484 3485 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3486 DCI.AddToWorklist(Mulhi.getNode()); 3487 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3488 } 3489 3490 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3491 DAGCombinerInfo &DCI) const { 3492 EVT VT = N->getValueType(0); 3493 3494 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3495 return SDValue(); 3496 3497 // Don't generate 24-bit multiplies on values that are in SGPRs, since 3498 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs 3499 // unnecessarily). isDivergent() is used as an approximation of whether the 3500 // value is in an SGPR. 3501 // This doesn't apply if no s_mul_hi is available (since we'll end up with a 3502 // valu op anyway) 3503 if (Subtarget->hasSMulHi() && !N->isDivergent()) 3504 return SDValue(); 3505 3506 SelectionDAG &DAG = DCI.DAG; 3507 SDLoc DL(N); 3508 3509 SDValue N0 = N->getOperand(0); 3510 SDValue N1 = N->getOperand(1); 3511 3512 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3513 return SDValue(); 3514 3515 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3516 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3517 3518 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3519 DCI.AddToWorklist(Mulhi.getNode()); 3520 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3521 } 3522 3523 static bool isNegativeOne(SDValue Val) { 3524 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3525 return C->isAllOnesValue(); 3526 return false; 3527 } 3528 3529 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3530 SDValue Op, 3531 const SDLoc &DL, 3532 unsigned Opc) const { 3533 EVT VT = Op.getValueType(); 3534 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3535 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3536 LegalVT != MVT::i16)) 3537 return SDValue(); 3538 3539 if (VT != MVT::i32) 3540 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3541 3542 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3543 if (VT != MVT::i32) 3544 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3545 3546 return FFBX; 3547 } 3548 3549 // The native instructions return -1 on 0 input. Optimize out a select that 3550 // produces -1 on 0. 3551 // 3552 // TODO: If zero is not undef, we could also do this if the output is compared 3553 // against the bitwidth. 3554 // 3555 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3556 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3557 SDValue LHS, SDValue RHS, 3558 DAGCombinerInfo &DCI) const { 3559 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3560 if (!CmpRhs || !CmpRhs->isNullValue()) 3561 return SDValue(); 3562 3563 SelectionDAG &DAG = DCI.DAG; 3564 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3565 SDValue CmpLHS = Cond.getOperand(0); 3566 3567 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3568 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3569 if (CCOpcode == ISD::SETEQ && 3570 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3571 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3572 unsigned Opc = 3573 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3574 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3575 } 3576 3577 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3578 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3579 if (CCOpcode == ISD::SETNE && 3580 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3581 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3582 unsigned Opc = 3583 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3584 3585 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3586 } 3587 3588 return SDValue(); 3589 } 3590 3591 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3592 unsigned Op, 3593 const SDLoc &SL, 3594 SDValue Cond, 3595 SDValue N1, 3596 SDValue N2) { 3597 SelectionDAG &DAG = DCI.DAG; 3598 EVT VT = N1.getValueType(); 3599 3600 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3601 N1.getOperand(0), N2.getOperand(0)); 3602 DCI.AddToWorklist(NewSelect.getNode()); 3603 return DAG.getNode(Op, SL, VT, NewSelect); 3604 } 3605 3606 // Pull a free FP operation out of a select so it may fold into uses. 3607 // 3608 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3609 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3610 // 3611 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3612 // select c, (fabs x), +k -> fabs (select c, x, k) 3613 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3614 SDValue N) { 3615 SelectionDAG &DAG = DCI.DAG; 3616 SDValue Cond = N.getOperand(0); 3617 SDValue LHS = N.getOperand(1); 3618 SDValue RHS = N.getOperand(2); 3619 3620 EVT VT = N.getValueType(); 3621 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3622 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3623 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3624 SDLoc(N), Cond, LHS, RHS); 3625 } 3626 3627 bool Inv = false; 3628 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3629 std::swap(LHS, RHS); 3630 Inv = true; 3631 } 3632 3633 // TODO: Support vector constants. 3634 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3635 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3636 SDLoc SL(N); 3637 // If one side is an fneg/fabs and the other is a constant, we can push the 3638 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3639 SDValue NewLHS = LHS.getOperand(0); 3640 SDValue NewRHS = RHS; 3641 3642 // Careful: if the neg can be folded up, don't try to pull it back down. 3643 bool ShouldFoldNeg = true; 3644 3645 if (NewLHS.hasOneUse()) { 3646 unsigned Opc = NewLHS.getOpcode(); 3647 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3648 ShouldFoldNeg = false; 3649 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3650 ShouldFoldNeg = false; 3651 } 3652 3653 if (ShouldFoldNeg) { 3654 if (LHS.getOpcode() == ISD::FNEG) 3655 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3656 else if (CRHS->isNegative()) 3657 return SDValue(); 3658 3659 if (Inv) 3660 std::swap(NewLHS, NewRHS); 3661 3662 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3663 Cond, NewLHS, NewRHS); 3664 DCI.AddToWorklist(NewSelect.getNode()); 3665 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3666 } 3667 } 3668 3669 return SDValue(); 3670 } 3671 3672 3673 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3674 DAGCombinerInfo &DCI) const { 3675 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3676 return Folded; 3677 3678 SDValue Cond = N->getOperand(0); 3679 if (Cond.getOpcode() != ISD::SETCC) 3680 return SDValue(); 3681 3682 EVT VT = N->getValueType(0); 3683 SDValue LHS = Cond.getOperand(0); 3684 SDValue RHS = Cond.getOperand(1); 3685 SDValue CC = Cond.getOperand(2); 3686 3687 SDValue True = N->getOperand(1); 3688 SDValue False = N->getOperand(2); 3689 3690 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3691 SelectionDAG &DAG = DCI.DAG; 3692 if (DAG.isConstantValueOfAnyType(True) && 3693 !DAG.isConstantValueOfAnyType(False)) { 3694 // Swap cmp + select pair to move constant to false input. 3695 // This will allow using VOPC cndmasks more often. 3696 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3697 3698 SDLoc SL(N); 3699 ISD::CondCode NewCC = 3700 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3701 3702 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3703 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3704 } 3705 3706 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3707 SDValue MinMax 3708 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3709 // Revisit this node so we can catch min3/max3/med3 patterns. 3710 //DCI.AddToWorklist(MinMax.getNode()); 3711 return MinMax; 3712 } 3713 } 3714 3715 // There's no reason to not do this if the condition has other uses. 3716 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3717 } 3718 3719 static bool isInv2Pi(const APFloat &APF) { 3720 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3721 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3722 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3723 3724 return APF.bitwiseIsEqual(KF16) || 3725 APF.bitwiseIsEqual(KF32) || 3726 APF.bitwiseIsEqual(KF64); 3727 } 3728 3729 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3730 // additional cost to negate them. 3731 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3732 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3733 if (C->isZero() && !C->isNegative()) 3734 return true; 3735 3736 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3737 return true; 3738 } 3739 3740 return false; 3741 } 3742 3743 static unsigned inverseMinMax(unsigned Opc) { 3744 switch (Opc) { 3745 case ISD::FMAXNUM: 3746 return ISD::FMINNUM; 3747 case ISD::FMINNUM: 3748 return ISD::FMAXNUM; 3749 case ISD::FMAXNUM_IEEE: 3750 return ISD::FMINNUM_IEEE; 3751 case ISD::FMINNUM_IEEE: 3752 return ISD::FMAXNUM_IEEE; 3753 case AMDGPUISD::FMAX_LEGACY: 3754 return AMDGPUISD::FMIN_LEGACY; 3755 case AMDGPUISD::FMIN_LEGACY: 3756 return AMDGPUISD::FMAX_LEGACY; 3757 default: 3758 llvm_unreachable("invalid min/max opcode"); 3759 } 3760 } 3761 3762 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3763 DAGCombinerInfo &DCI) const { 3764 SelectionDAG &DAG = DCI.DAG; 3765 SDValue N0 = N->getOperand(0); 3766 EVT VT = N->getValueType(0); 3767 3768 unsigned Opc = N0.getOpcode(); 3769 3770 // If the input has multiple uses and we can either fold the negate down, or 3771 // the other uses cannot, give up. This both prevents unprofitable 3772 // transformations and infinite loops: we won't repeatedly try to fold around 3773 // a negate that has no 'good' form. 3774 if (N0.hasOneUse()) { 3775 // This may be able to fold into the source, but at a code size cost. Don't 3776 // fold if the fold into the user is free. 3777 if (allUsesHaveSourceMods(N, 0)) 3778 return SDValue(); 3779 } else { 3780 if (fnegFoldsIntoOp(Opc) && 3781 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3782 return SDValue(); 3783 } 3784 3785 SDLoc SL(N); 3786 switch (Opc) { 3787 case ISD::FADD: { 3788 if (!mayIgnoreSignedZero(N0)) 3789 return SDValue(); 3790 3791 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3792 SDValue LHS = N0.getOperand(0); 3793 SDValue RHS = N0.getOperand(1); 3794 3795 if (LHS.getOpcode() != ISD::FNEG) 3796 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3797 else 3798 LHS = LHS.getOperand(0); 3799 3800 if (RHS.getOpcode() != ISD::FNEG) 3801 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3802 else 3803 RHS = RHS.getOperand(0); 3804 3805 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3806 if (Res.getOpcode() != ISD::FADD) 3807 return SDValue(); // Op got folded away. 3808 if (!N0.hasOneUse()) 3809 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3810 return Res; 3811 } 3812 case ISD::FMUL: 3813 case AMDGPUISD::FMUL_LEGACY: { 3814 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3815 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3816 SDValue LHS = N0.getOperand(0); 3817 SDValue RHS = N0.getOperand(1); 3818 3819 if (LHS.getOpcode() == ISD::FNEG) 3820 LHS = LHS.getOperand(0); 3821 else if (RHS.getOpcode() == ISD::FNEG) 3822 RHS = RHS.getOperand(0); 3823 else 3824 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3825 3826 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3827 if (Res.getOpcode() != Opc) 3828 return SDValue(); // Op got folded away. 3829 if (!N0.hasOneUse()) 3830 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3831 return Res; 3832 } 3833 case ISD::FMA: 3834 case ISD::FMAD: { 3835 // TODO: handle llvm.amdgcn.fma.legacy 3836 if (!mayIgnoreSignedZero(N0)) 3837 return SDValue(); 3838 3839 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3840 SDValue LHS = N0.getOperand(0); 3841 SDValue MHS = N0.getOperand(1); 3842 SDValue RHS = N0.getOperand(2); 3843 3844 if (LHS.getOpcode() == ISD::FNEG) 3845 LHS = LHS.getOperand(0); 3846 else if (MHS.getOpcode() == ISD::FNEG) 3847 MHS = MHS.getOperand(0); 3848 else 3849 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3850 3851 if (RHS.getOpcode() != ISD::FNEG) 3852 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3853 else 3854 RHS = RHS.getOperand(0); 3855 3856 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3857 if (Res.getOpcode() != Opc) 3858 return SDValue(); // Op got folded away. 3859 if (!N0.hasOneUse()) 3860 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3861 return Res; 3862 } 3863 case ISD::FMAXNUM: 3864 case ISD::FMINNUM: 3865 case ISD::FMAXNUM_IEEE: 3866 case ISD::FMINNUM_IEEE: 3867 case AMDGPUISD::FMAX_LEGACY: 3868 case AMDGPUISD::FMIN_LEGACY: { 3869 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3870 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3871 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3872 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3873 3874 SDValue LHS = N0.getOperand(0); 3875 SDValue RHS = N0.getOperand(1); 3876 3877 // 0 doesn't have a negated inline immediate. 3878 // TODO: This constant check should be generalized to other operations. 3879 if (isConstantCostlierToNegate(RHS)) 3880 return SDValue(); 3881 3882 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3883 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3884 unsigned Opposite = inverseMinMax(Opc); 3885 3886 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3887 if (Res.getOpcode() != Opposite) 3888 return SDValue(); // Op got folded away. 3889 if (!N0.hasOneUse()) 3890 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3891 return Res; 3892 } 3893 case AMDGPUISD::FMED3: { 3894 SDValue Ops[3]; 3895 for (unsigned I = 0; I < 3; ++I) 3896 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3897 3898 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3899 if (Res.getOpcode() != AMDGPUISD::FMED3) 3900 return SDValue(); // Op got folded away. 3901 3902 if (!N0.hasOneUse()) { 3903 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); 3904 DAG.ReplaceAllUsesWith(N0, Neg); 3905 3906 for (SDNode *U : Neg->uses()) 3907 DCI.AddToWorklist(U); 3908 } 3909 3910 return Res; 3911 } 3912 case ISD::FP_EXTEND: 3913 case ISD::FTRUNC: 3914 case ISD::FRINT: 3915 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3916 case ISD::FSIN: 3917 case ISD::FCANONICALIZE: 3918 case AMDGPUISD::RCP: 3919 case AMDGPUISD::RCP_LEGACY: 3920 case AMDGPUISD::RCP_IFLAG: 3921 case AMDGPUISD::SIN_HW: { 3922 SDValue CvtSrc = N0.getOperand(0); 3923 if (CvtSrc.getOpcode() == ISD::FNEG) { 3924 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3925 // (fneg (rcp (fneg x))) -> (rcp x) 3926 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3927 } 3928 3929 if (!N0.hasOneUse()) 3930 return SDValue(); 3931 3932 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3933 // (fneg (rcp x)) -> (rcp (fneg x)) 3934 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3935 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3936 } 3937 case ISD::FP_ROUND: { 3938 SDValue CvtSrc = N0.getOperand(0); 3939 3940 if (CvtSrc.getOpcode() == ISD::FNEG) { 3941 // (fneg (fp_round (fneg x))) -> (fp_round x) 3942 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3943 CvtSrc.getOperand(0), N0.getOperand(1)); 3944 } 3945 3946 if (!N0.hasOneUse()) 3947 return SDValue(); 3948 3949 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3950 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3951 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3952 } 3953 case ISD::FP16_TO_FP: { 3954 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3955 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3956 // Put the fneg back as a legal source operation that can be matched later. 3957 SDLoc SL(N); 3958 3959 SDValue Src = N0.getOperand(0); 3960 EVT SrcVT = Src.getValueType(); 3961 3962 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3963 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3964 DAG.getConstant(0x8000, SL, SrcVT)); 3965 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3966 } 3967 default: 3968 return SDValue(); 3969 } 3970 } 3971 3972 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3973 DAGCombinerInfo &DCI) const { 3974 SelectionDAG &DAG = DCI.DAG; 3975 SDValue N0 = N->getOperand(0); 3976 3977 if (!N0.hasOneUse()) 3978 return SDValue(); 3979 3980 switch (N0.getOpcode()) { 3981 case ISD::FP16_TO_FP: { 3982 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3983 SDLoc SL(N); 3984 SDValue Src = N0.getOperand(0); 3985 EVT SrcVT = Src.getValueType(); 3986 3987 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3988 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3989 DAG.getConstant(0x7fff, SL, SrcVT)); 3990 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3991 } 3992 default: 3993 return SDValue(); 3994 } 3995 } 3996 3997 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3998 DAGCombinerInfo &DCI) const { 3999 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 4000 if (!CFP) 4001 return SDValue(); 4002 4003 // XXX - Should this flush denormals? 4004 const APFloat &Val = CFP->getValueAPF(); 4005 APFloat One(Val.getSemantics(), "1.0"); 4006 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 4007 } 4008 4009 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 4010 DAGCombinerInfo &DCI) const { 4011 SelectionDAG &DAG = DCI.DAG; 4012 SDLoc DL(N); 4013 4014 switch(N->getOpcode()) { 4015 default: 4016 break; 4017 case ISD::BITCAST: { 4018 EVT DestVT = N->getValueType(0); 4019 4020 // Push casts through vector builds. This helps avoid emitting a large 4021 // number of copies when materializing floating point vector constants. 4022 // 4023 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 4024 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 4025 if (DestVT.isVector()) { 4026 SDValue Src = N->getOperand(0); 4027 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 4028 EVT SrcVT = Src.getValueType(); 4029 unsigned NElts = DestVT.getVectorNumElements(); 4030 4031 if (SrcVT.getVectorNumElements() == NElts) { 4032 EVT DestEltVT = DestVT.getVectorElementType(); 4033 4034 SmallVector<SDValue, 8> CastedElts; 4035 SDLoc SL(N); 4036 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 4037 SDValue Elt = Src.getOperand(I); 4038 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 4039 } 4040 4041 return DAG.getBuildVector(DestVT, SL, CastedElts); 4042 } 4043 } 4044 } 4045 4046 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) 4047 break; 4048 4049 // Fold bitcasts of constants. 4050 // 4051 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 4052 // TODO: Generalize and move to DAGCombiner 4053 SDValue Src = N->getOperand(0); 4054 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 4055 SDLoc SL(N); 4056 uint64_t CVal = C->getZExtValue(); 4057 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4058 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4059 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4060 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 4061 } 4062 4063 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 4064 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 4065 SDLoc SL(N); 4066 uint64_t CVal = Val.getZExtValue(); 4067 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 4068 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 4069 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 4070 4071 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 4072 } 4073 4074 break; 4075 } 4076 case ISD::SHL: { 4077 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4078 break; 4079 4080 return performShlCombine(N, DCI); 4081 } 4082 case ISD::SRL: { 4083 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4084 break; 4085 4086 return performSrlCombine(N, DCI); 4087 } 4088 case ISD::SRA: { 4089 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 4090 break; 4091 4092 return performSraCombine(N, DCI); 4093 } 4094 case ISD::TRUNCATE: 4095 return performTruncateCombine(N, DCI); 4096 case ISD::MUL: 4097 return performMulCombine(N, DCI); 4098 case ISD::MULHS: 4099 return performMulhsCombine(N, DCI); 4100 case ISD::MULHU: 4101 return performMulhuCombine(N, DCI); 4102 case AMDGPUISD::MUL_I24: 4103 case AMDGPUISD::MUL_U24: 4104 case AMDGPUISD::MULHI_I24: 4105 case AMDGPUISD::MULHI_U24: 4106 return simplifyMul24(N, DCI); 4107 case ISD::SELECT: 4108 return performSelectCombine(N, DCI); 4109 case ISD::FNEG: 4110 return performFNegCombine(N, DCI); 4111 case ISD::FABS: 4112 return performFAbsCombine(N, DCI); 4113 case AMDGPUISD::BFE_I32: 4114 case AMDGPUISD::BFE_U32: { 4115 assert(!N->getValueType(0).isVector() && 4116 "Vector handling of BFE not implemented"); 4117 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4118 if (!Width) 4119 break; 4120 4121 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4122 if (WidthVal == 0) 4123 return DAG.getConstant(0, DL, MVT::i32); 4124 4125 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4126 if (!Offset) 4127 break; 4128 4129 SDValue BitsFrom = N->getOperand(0); 4130 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4131 4132 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4133 4134 if (OffsetVal == 0) { 4135 // This is already sign / zero extended, so try to fold away extra BFEs. 4136 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4137 4138 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4139 if (OpSignBits >= SignBits) 4140 return BitsFrom; 4141 4142 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4143 if (Signed) { 4144 // This is a sign_extend_inreg. Replace it to take advantage of existing 4145 // DAG Combines. If not eliminated, we will match back to BFE during 4146 // selection. 4147 4148 // TODO: The sext_inreg of extended types ends, although we can could 4149 // handle them in a single BFE. 4150 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4151 DAG.getValueType(SmallVT)); 4152 } 4153 4154 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4155 } 4156 4157 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4158 if (Signed) { 4159 return constantFoldBFE<int32_t>(DAG, 4160 CVal->getSExtValue(), 4161 OffsetVal, 4162 WidthVal, 4163 DL); 4164 } 4165 4166 return constantFoldBFE<uint32_t>(DAG, 4167 CVal->getZExtValue(), 4168 OffsetVal, 4169 WidthVal, 4170 DL); 4171 } 4172 4173 if ((OffsetVal + WidthVal) >= 32 && 4174 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4175 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4176 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4177 BitsFrom, ShiftVal); 4178 } 4179 4180 if (BitsFrom.hasOneUse()) { 4181 APInt Demanded = APInt::getBitsSet(32, 4182 OffsetVal, 4183 OffsetVal + WidthVal); 4184 4185 KnownBits Known; 4186 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4187 !DCI.isBeforeLegalizeOps()); 4188 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4189 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4190 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4191 DCI.CommitTargetLoweringOpt(TLO); 4192 } 4193 } 4194 4195 break; 4196 } 4197 case ISD::LOAD: 4198 return performLoadCombine(N, DCI); 4199 case ISD::STORE: 4200 return performStoreCombine(N, DCI); 4201 case AMDGPUISD::RCP: 4202 case AMDGPUISD::RCP_IFLAG: 4203 return performRcpCombine(N, DCI); 4204 case ISD::AssertZext: 4205 case ISD::AssertSext: 4206 return performAssertSZExtCombine(N, DCI); 4207 case ISD::INTRINSIC_WO_CHAIN: 4208 return performIntrinsicWOChainCombine(N, DCI); 4209 } 4210 return SDValue(); 4211 } 4212 4213 //===----------------------------------------------------------------------===// 4214 // Helper functions 4215 //===----------------------------------------------------------------------===// 4216 4217 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4218 const TargetRegisterClass *RC, 4219 Register Reg, EVT VT, 4220 const SDLoc &SL, 4221 bool RawReg) const { 4222 MachineFunction &MF = DAG.getMachineFunction(); 4223 MachineRegisterInfo &MRI = MF.getRegInfo(); 4224 Register VReg; 4225 4226 if (!MRI.isLiveIn(Reg)) { 4227 VReg = MRI.createVirtualRegister(RC); 4228 MRI.addLiveIn(Reg, VReg); 4229 } else { 4230 VReg = MRI.getLiveInVirtReg(Reg); 4231 } 4232 4233 if (RawReg) 4234 return DAG.getRegister(VReg, VT); 4235 4236 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4237 } 4238 4239 // This may be called multiple times, and nothing prevents creating multiple 4240 // objects at the same offset. See if we already defined this object. 4241 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4242 int64_t Offset) { 4243 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4244 if (MFI.getObjectOffset(I) == Offset) { 4245 assert(MFI.getObjectSize(I) == Size); 4246 return I; 4247 } 4248 } 4249 4250 return MFI.CreateFixedObject(Size, Offset, true); 4251 } 4252 4253 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4254 EVT VT, 4255 const SDLoc &SL, 4256 int64_t Offset) const { 4257 MachineFunction &MF = DAG.getMachineFunction(); 4258 MachineFrameInfo &MFI = MF.getFrameInfo(); 4259 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4260 4261 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4262 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4263 4264 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), 4265 MachineMemOperand::MODereferenceable | 4266 MachineMemOperand::MOInvariant); 4267 } 4268 4269 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4270 const SDLoc &SL, 4271 SDValue Chain, 4272 SDValue ArgVal, 4273 int64_t Offset) const { 4274 MachineFunction &MF = DAG.getMachineFunction(); 4275 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4276 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 4277 4278 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4279 // Stores to the argument stack area are relative to the stack pointer. 4280 SDValue SP = 4281 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); 4282 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); 4283 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), 4284 MachineMemOperand::MODereferenceable); 4285 return Store; 4286 } 4287 4288 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4289 const TargetRegisterClass *RC, 4290 EVT VT, const SDLoc &SL, 4291 const ArgDescriptor &Arg) const { 4292 assert(Arg && "Attempting to load missing argument"); 4293 4294 SDValue V = Arg.isRegister() ? 4295 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4296 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4297 4298 if (!Arg.isMasked()) 4299 return V; 4300 4301 unsigned Mask = Arg.getMask(); 4302 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4303 V = DAG.getNode(ISD::SRL, SL, VT, V, 4304 DAG.getShiftAmountConstant(Shift, VT, SL)); 4305 return DAG.getNode(ISD::AND, SL, VT, V, 4306 DAG.getConstant(Mask >> Shift, SL, VT)); 4307 } 4308 4309 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4310 const MachineFunction &MF, const ImplicitParameter Param) const { 4311 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4312 const AMDGPUSubtarget &ST = 4313 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4314 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4315 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4316 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4317 ExplicitArgOffset; 4318 switch (Param) { 4319 case GRID_DIM: 4320 return ArgOffset; 4321 case GRID_OFFSET: 4322 return ArgOffset + 4; 4323 } 4324 llvm_unreachable("unexpected implicit parameter type"); 4325 } 4326 4327 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4328 4329 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4330 switch ((AMDGPUISD::NodeType)Opcode) { 4331 case AMDGPUISD::FIRST_NUMBER: break; 4332 // AMDIL DAG nodes 4333 NODE_NAME_CASE(UMUL); 4334 NODE_NAME_CASE(BRANCH_COND); 4335 4336 // AMDGPU DAG nodes 4337 NODE_NAME_CASE(IF) 4338 NODE_NAME_CASE(ELSE) 4339 NODE_NAME_CASE(LOOP) 4340 NODE_NAME_CASE(CALL) 4341 NODE_NAME_CASE(TC_RETURN) 4342 NODE_NAME_CASE(TRAP) 4343 NODE_NAME_CASE(RET_FLAG) 4344 NODE_NAME_CASE(RETURN_TO_EPILOG) 4345 NODE_NAME_CASE(ENDPGM) 4346 NODE_NAME_CASE(DWORDADDR) 4347 NODE_NAME_CASE(FRACT) 4348 NODE_NAME_CASE(SETCC) 4349 NODE_NAME_CASE(SETREG) 4350 NODE_NAME_CASE(DENORM_MODE) 4351 NODE_NAME_CASE(FMA_W_CHAIN) 4352 NODE_NAME_CASE(FMUL_W_CHAIN) 4353 NODE_NAME_CASE(CLAMP) 4354 NODE_NAME_CASE(COS_HW) 4355 NODE_NAME_CASE(SIN_HW) 4356 NODE_NAME_CASE(FMAX_LEGACY) 4357 NODE_NAME_CASE(FMIN_LEGACY) 4358 NODE_NAME_CASE(FMAX3) 4359 NODE_NAME_CASE(SMAX3) 4360 NODE_NAME_CASE(UMAX3) 4361 NODE_NAME_CASE(FMIN3) 4362 NODE_NAME_CASE(SMIN3) 4363 NODE_NAME_CASE(UMIN3) 4364 NODE_NAME_CASE(FMED3) 4365 NODE_NAME_CASE(SMED3) 4366 NODE_NAME_CASE(UMED3) 4367 NODE_NAME_CASE(FDOT2) 4368 NODE_NAME_CASE(URECIP) 4369 NODE_NAME_CASE(DIV_SCALE) 4370 NODE_NAME_CASE(DIV_FMAS) 4371 NODE_NAME_CASE(DIV_FIXUP) 4372 NODE_NAME_CASE(FMAD_FTZ) 4373 NODE_NAME_CASE(RCP) 4374 NODE_NAME_CASE(RSQ) 4375 NODE_NAME_CASE(RCP_LEGACY) 4376 NODE_NAME_CASE(RCP_IFLAG) 4377 NODE_NAME_CASE(FMUL_LEGACY) 4378 NODE_NAME_CASE(RSQ_CLAMP) 4379 NODE_NAME_CASE(LDEXP) 4380 NODE_NAME_CASE(FP_CLASS) 4381 NODE_NAME_CASE(DOT4) 4382 NODE_NAME_CASE(CARRY) 4383 NODE_NAME_CASE(BORROW) 4384 NODE_NAME_CASE(BFE_U32) 4385 NODE_NAME_CASE(BFE_I32) 4386 NODE_NAME_CASE(BFI) 4387 NODE_NAME_CASE(BFM) 4388 NODE_NAME_CASE(FFBH_U32) 4389 NODE_NAME_CASE(FFBH_I32) 4390 NODE_NAME_CASE(FFBL_B32) 4391 NODE_NAME_CASE(MUL_U24) 4392 NODE_NAME_CASE(MUL_I24) 4393 NODE_NAME_CASE(MULHI_U24) 4394 NODE_NAME_CASE(MULHI_I24) 4395 NODE_NAME_CASE(MAD_U24) 4396 NODE_NAME_CASE(MAD_I24) 4397 NODE_NAME_CASE(MAD_I64_I32) 4398 NODE_NAME_CASE(MAD_U64_U32) 4399 NODE_NAME_CASE(PERM) 4400 NODE_NAME_CASE(TEXTURE_FETCH) 4401 NODE_NAME_CASE(R600_EXPORT) 4402 NODE_NAME_CASE(CONST_ADDRESS) 4403 NODE_NAME_CASE(REGISTER_LOAD) 4404 NODE_NAME_CASE(REGISTER_STORE) 4405 NODE_NAME_CASE(SAMPLE) 4406 NODE_NAME_CASE(SAMPLEB) 4407 NODE_NAME_CASE(SAMPLED) 4408 NODE_NAME_CASE(SAMPLEL) 4409 NODE_NAME_CASE(CVT_F32_UBYTE0) 4410 NODE_NAME_CASE(CVT_F32_UBYTE1) 4411 NODE_NAME_CASE(CVT_F32_UBYTE2) 4412 NODE_NAME_CASE(CVT_F32_UBYTE3) 4413 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4414 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4415 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4416 NODE_NAME_CASE(CVT_PK_I16_I32) 4417 NODE_NAME_CASE(CVT_PK_U16_U32) 4418 NODE_NAME_CASE(FP_TO_FP16) 4419 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4420 NODE_NAME_CASE(CONST_DATA_PTR) 4421 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4422 NODE_NAME_CASE(LDS) 4423 NODE_NAME_CASE(DUMMY_CHAIN) 4424 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4425 NODE_NAME_CASE(LOAD_D16_HI) 4426 NODE_NAME_CASE(LOAD_D16_LO) 4427 NODE_NAME_CASE(LOAD_D16_HI_I8) 4428 NODE_NAME_CASE(LOAD_D16_HI_U8) 4429 NODE_NAME_CASE(LOAD_D16_LO_I8) 4430 NODE_NAME_CASE(LOAD_D16_LO_U8) 4431 NODE_NAME_CASE(STORE_MSKOR) 4432 NODE_NAME_CASE(LOAD_CONSTANT) 4433 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4434 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4435 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4436 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4437 NODE_NAME_CASE(DS_ORDERED_COUNT) 4438 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4439 NODE_NAME_CASE(ATOMIC_INC) 4440 NODE_NAME_CASE(ATOMIC_DEC) 4441 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4442 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4443 NODE_NAME_CASE(BUFFER_LOAD) 4444 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4445 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4446 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4447 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4448 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4449 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4450 NODE_NAME_CASE(SBUFFER_LOAD) 4451 NODE_NAME_CASE(BUFFER_STORE) 4452 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4453 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4454 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4455 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4456 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4457 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4458 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4459 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4460 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4461 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4462 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4463 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4464 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4465 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4466 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4467 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4468 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4469 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4470 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4471 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) 4472 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) 4473 4474 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4475 } 4476 return nullptr; 4477 } 4478 4479 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4480 SelectionDAG &DAG, int Enabled, 4481 int &RefinementSteps, 4482 bool &UseOneConstNR, 4483 bool Reciprocal) const { 4484 EVT VT = Operand.getValueType(); 4485 4486 if (VT == MVT::f32) { 4487 RefinementSteps = 0; 4488 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4489 } 4490 4491 // TODO: There is also f64 rsq instruction, but the documentation is less 4492 // clear on its precision. 4493 4494 return SDValue(); 4495 } 4496 4497 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4498 SelectionDAG &DAG, int Enabled, 4499 int &RefinementSteps) const { 4500 EVT VT = Operand.getValueType(); 4501 4502 if (VT == MVT::f32) { 4503 // Reciprocal, < 1 ulp error. 4504 // 4505 // This reciprocal approximation converges to < 0.5 ulp error with one 4506 // newton rhapson performed with two fused multiple adds (FMAs). 4507 4508 RefinementSteps = 0; 4509 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4510 } 4511 4512 // TODO: There is also f64 rcp instruction, but the documentation is less 4513 // clear on its precision. 4514 4515 return SDValue(); 4516 } 4517 4518 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4519 const SDValue Op, KnownBits &Known, 4520 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4521 4522 Known.resetAll(); // Don't know anything. 4523 4524 unsigned Opc = Op.getOpcode(); 4525 4526 switch (Opc) { 4527 default: 4528 break; 4529 case AMDGPUISD::CARRY: 4530 case AMDGPUISD::BORROW: { 4531 Known.Zero = APInt::getHighBitsSet(32, 31); 4532 break; 4533 } 4534 4535 case AMDGPUISD::BFE_I32: 4536 case AMDGPUISD::BFE_U32: { 4537 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4538 if (!CWidth) 4539 return; 4540 4541 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4542 4543 if (Opc == AMDGPUISD::BFE_U32) 4544 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4545 4546 break; 4547 } 4548 case AMDGPUISD::FP_TO_FP16: { 4549 unsigned BitWidth = Known.getBitWidth(); 4550 4551 // High bits are zero. 4552 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4553 break; 4554 } 4555 case AMDGPUISD::MUL_U24: 4556 case AMDGPUISD::MUL_I24: { 4557 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4558 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4559 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4560 RHSKnown.countMinTrailingZeros(); 4561 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4562 // Skip extra check if all bits are known zeros. 4563 if (TrailZ >= 32) 4564 break; 4565 4566 // Truncate to 24 bits. 4567 LHSKnown = LHSKnown.trunc(24); 4568 RHSKnown = RHSKnown.trunc(24); 4569 4570 if (Opc == AMDGPUISD::MUL_I24) { 4571 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4572 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4573 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4574 if (MaxValBits >= 32) 4575 break; 4576 bool LHSNegative = LHSKnown.isNegative(); 4577 bool LHSNonNegative = LHSKnown.isNonNegative(); 4578 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4579 bool RHSNegative = RHSKnown.isNegative(); 4580 bool RHSNonNegative = RHSKnown.isNonNegative(); 4581 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4582 4583 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4584 Known.Zero.setHighBits(32 - MaxValBits); 4585 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4586 Known.One.setHighBits(32 - MaxValBits); 4587 } else { 4588 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4589 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4590 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4591 if (MaxValBits >= 32) 4592 break; 4593 Known.Zero.setHighBits(32 - MaxValBits); 4594 } 4595 break; 4596 } 4597 case AMDGPUISD::PERM: { 4598 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4599 if (!CMask) 4600 return; 4601 4602 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4603 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4604 unsigned Sel = CMask->getZExtValue(); 4605 4606 for (unsigned I = 0; I < 32; I += 8) { 4607 unsigned SelBits = Sel & 0xff; 4608 if (SelBits < 4) { 4609 SelBits *= 8; 4610 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4611 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4612 } else if (SelBits < 7) { 4613 SelBits = (SelBits & 3) * 8; 4614 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4615 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4616 } else if (SelBits == 0x0c) { 4617 Known.Zero |= 0xFFull << I; 4618 } else if (SelBits > 0x0c) { 4619 Known.One |= 0xFFull << I; 4620 } 4621 Sel >>= 8; 4622 } 4623 break; 4624 } 4625 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4626 Known.Zero.setHighBits(24); 4627 break; 4628 } 4629 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4630 Known.Zero.setHighBits(16); 4631 break; 4632 } 4633 case AMDGPUISD::LDS: { 4634 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4635 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4636 4637 Known.Zero.setHighBits(16); 4638 Known.Zero.setLowBits(Log2(Alignment)); 4639 break; 4640 } 4641 case ISD::INTRINSIC_WO_CHAIN: { 4642 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4643 switch (IID) { 4644 case Intrinsic::amdgcn_mbcnt_lo: 4645 case Intrinsic::amdgcn_mbcnt_hi: { 4646 const GCNSubtarget &ST = 4647 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4648 // These return at most the wavefront size - 1. 4649 unsigned Size = Op.getValueType().getSizeInBits(); 4650 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4651 break; 4652 } 4653 default: 4654 break; 4655 } 4656 } 4657 } 4658 } 4659 4660 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4661 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4662 unsigned Depth) const { 4663 switch (Op.getOpcode()) { 4664 case AMDGPUISD::BFE_I32: { 4665 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4666 if (!Width) 4667 return 1; 4668 4669 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4670 if (!isNullConstant(Op.getOperand(1))) 4671 return SignBits; 4672 4673 // TODO: Could probably figure something out with non-0 offsets. 4674 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4675 return std::max(SignBits, Op0SignBits); 4676 } 4677 4678 case AMDGPUISD::BFE_U32: { 4679 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4680 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4681 } 4682 4683 case AMDGPUISD::CARRY: 4684 case AMDGPUISD::BORROW: 4685 return 31; 4686 case AMDGPUISD::BUFFER_LOAD_BYTE: 4687 return 25; 4688 case AMDGPUISD::BUFFER_LOAD_SHORT: 4689 return 17; 4690 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4691 return 24; 4692 case AMDGPUISD::BUFFER_LOAD_USHORT: 4693 return 16; 4694 case AMDGPUISD::FP_TO_FP16: 4695 return 16; 4696 default: 4697 return 1; 4698 } 4699 } 4700 4701 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4702 GISelKnownBits &Analysis, Register R, 4703 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4704 unsigned Depth) const { 4705 const MachineInstr *MI = MRI.getVRegDef(R); 4706 if (!MI) 4707 return 1; 4708 4709 // TODO: Check range metadata on MMO. 4710 switch (MI->getOpcode()) { 4711 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4712 return 25; 4713 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4714 return 17; 4715 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4716 return 24; 4717 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4718 return 16; 4719 default: 4720 return 1; 4721 } 4722 } 4723 4724 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4725 const SelectionDAG &DAG, 4726 bool SNaN, 4727 unsigned Depth) const { 4728 unsigned Opcode = Op.getOpcode(); 4729 switch (Opcode) { 4730 case AMDGPUISD::FMIN_LEGACY: 4731 case AMDGPUISD::FMAX_LEGACY: { 4732 if (SNaN) 4733 return true; 4734 4735 // TODO: Can check no nans on one of the operands for each one, but which 4736 // one? 4737 return false; 4738 } 4739 case AMDGPUISD::FMUL_LEGACY: 4740 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4741 if (SNaN) 4742 return true; 4743 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4744 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4745 } 4746 case AMDGPUISD::FMED3: 4747 case AMDGPUISD::FMIN3: 4748 case AMDGPUISD::FMAX3: 4749 case AMDGPUISD::FMAD_FTZ: { 4750 if (SNaN) 4751 return true; 4752 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4753 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4754 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4755 } 4756 case AMDGPUISD::CVT_F32_UBYTE0: 4757 case AMDGPUISD::CVT_F32_UBYTE1: 4758 case AMDGPUISD::CVT_F32_UBYTE2: 4759 case AMDGPUISD::CVT_F32_UBYTE3: 4760 return true; 4761 4762 case AMDGPUISD::RCP: 4763 case AMDGPUISD::RSQ: 4764 case AMDGPUISD::RCP_LEGACY: 4765 case AMDGPUISD::RSQ_CLAMP: { 4766 if (SNaN) 4767 return true; 4768 4769 // TODO: Need is known positive check. 4770 return false; 4771 } 4772 case AMDGPUISD::LDEXP: 4773 case AMDGPUISD::FRACT: { 4774 if (SNaN) 4775 return true; 4776 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4777 } 4778 case AMDGPUISD::DIV_SCALE: 4779 case AMDGPUISD::DIV_FMAS: 4780 case AMDGPUISD::DIV_FIXUP: 4781 // TODO: Refine on operands. 4782 return SNaN; 4783 case AMDGPUISD::SIN_HW: 4784 case AMDGPUISD::COS_HW: { 4785 // TODO: Need check for infinity 4786 return SNaN; 4787 } 4788 case ISD::INTRINSIC_WO_CHAIN: { 4789 unsigned IntrinsicID 4790 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4791 // TODO: Handle more intrinsics 4792 switch (IntrinsicID) { 4793 case Intrinsic::amdgcn_cubeid: 4794 return true; 4795 4796 case Intrinsic::amdgcn_frexp_mant: { 4797 if (SNaN) 4798 return true; 4799 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4800 } 4801 case Intrinsic::amdgcn_cvt_pkrtz: { 4802 if (SNaN) 4803 return true; 4804 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4805 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4806 } 4807 case Intrinsic::amdgcn_rcp: 4808 case Intrinsic::amdgcn_rsq: 4809 case Intrinsic::amdgcn_rcp_legacy: 4810 case Intrinsic::amdgcn_rsq_legacy: 4811 case Intrinsic::amdgcn_rsq_clamp: { 4812 if (SNaN) 4813 return true; 4814 4815 // TODO: Need is known positive check. 4816 return false; 4817 } 4818 case Intrinsic::amdgcn_trig_preop: 4819 case Intrinsic::amdgcn_fdot2: 4820 // TODO: Refine on operand 4821 return SNaN; 4822 case Intrinsic::amdgcn_fma_legacy: 4823 if (SNaN) 4824 return true; 4825 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4826 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && 4827 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); 4828 default: 4829 return false; 4830 } 4831 } 4832 default: 4833 return false; 4834 } 4835 } 4836 4837 TargetLowering::AtomicExpansionKind 4838 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4839 switch (RMW->getOperation()) { 4840 case AtomicRMWInst::Nand: 4841 case AtomicRMWInst::FAdd: 4842 case AtomicRMWInst::FSub: 4843 return AtomicExpansionKind::CmpXChg; 4844 default: 4845 return AtomicExpansionKind::None; 4846 } 4847 } 4848 4849 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal( 4850 unsigned Opc, LLT Ty1, LLT Ty2) const { 4851 return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)); 4852 } 4853