1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "Utils/AMDGPUBaseInfo.h" 22 #include "R600MachineFunctionInfo.h" 23 #include "SIInstrInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/MathExtras.h" 36 using namespace llvm; 37 38 #include "AMDGPUGenCallingConv.inc" 39 40 static cl::opt<bool> AMDGPUBypassSlowDiv( 41 "amdgpu-bypass-slow-div", 42 cl::desc("Skip 64-bit divide for dynamic 32-bit values"), 43 cl::init(true)); 44 45 // Find a larger type to do a load / store of a vector with. 46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 47 unsigned StoreSize = VT.getStoreSizeInBits(); 48 if (StoreSize <= 32) 49 return EVT::getIntegerVT(Ctx, StoreSize); 50 51 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 52 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 53 } 54 55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 56 EVT VT = Op.getValueType(); 57 KnownBits Known = DAG.computeKnownBits(Op); 58 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 59 } 60 61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 62 EVT VT = Op.getValueType(); 63 64 // In order for this to be a signed 24-bit value, bit 23, must 65 // be a sign bit. 66 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 67 } 68 69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 70 const AMDGPUSubtarget &STI) 71 : TargetLowering(TM), Subtarget(&STI) { 72 // Lower floating point store/load to integer store/load to reduce the number 73 // of patterns in tablegen. 74 setOperationAction(ISD::LOAD, MVT::f32, Promote); 75 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 76 77 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 78 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 79 80 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 81 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 82 83 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 84 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 85 86 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 87 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 88 89 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 90 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 91 92 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 93 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 94 95 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 96 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 97 98 setOperationAction(ISD::LOAD, MVT::i64, Promote); 99 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 100 101 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 102 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 103 104 setOperationAction(ISD::LOAD, MVT::f64, Promote); 105 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 106 107 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 108 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 109 110 setOperationAction(ISD::LOAD, MVT::v4i64, Promote); 111 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); 112 113 setOperationAction(ISD::LOAD, MVT::v4f64, Promote); 114 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); 115 116 setOperationAction(ISD::LOAD, MVT::v8i64, Promote); 117 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); 118 119 setOperationAction(ISD::LOAD, MVT::v8f64, Promote); 120 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); 121 122 setOperationAction(ISD::LOAD, MVT::v16i64, Promote); 123 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); 124 125 setOperationAction(ISD::LOAD, MVT::v16f64, Promote); 126 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); 127 128 // There are no 64-bit extloads. These should be done as a 32-bit extload and 129 // an extension to 64-bit. 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 133 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 134 } 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 if (VT == MVT::i64) 138 continue; 139 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 143 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 144 145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 148 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 149 150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 153 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 154 } 155 156 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 159 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 160 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 161 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 163 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 164 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 165 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 168 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 171 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 172 } 173 174 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 181 182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 185 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); 187 188 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 190 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 191 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); 193 194 setOperationAction(ISD::STORE, MVT::f32, Promote); 195 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 196 197 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 199 200 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 201 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 202 203 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 205 206 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 207 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 208 209 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 210 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 211 212 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 213 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 214 215 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 216 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 217 218 setOperationAction(ISD::STORE, MVT::i64, Promote); 219 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 220 221 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 222 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 223 224 setOperationAction(ISD::STORE, MVT::f64, Promote); 225 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 226 227 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 228 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 229 230 setOperationAction(ISD::STORE, MVT::v4i64, Promote); 231 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); 232 233 setOperationAction(ISD::STORE, MVT::v4f64, Promote); 234 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); 235 236 setOperationAction(ISD::STORE, MVT::v8i64, Promote); 237 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); 238 239 setOperationAction(ISD::STORE, MVT::v8f64, Promote); 240 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); 241 242 setOperationAction(ISD::STORE, MVT::v16i64, Promote); 243 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); 244 245 setOperationAction(ISD::STORE, MVT::v16f64, Promote); 246 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); 247 248 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 249 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 250 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 251 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 252 253 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 254 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 255 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 256 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 257 258 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 259 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 260 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 261 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 262 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 263 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 264 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 265 266 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 267 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 268 269 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 270 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 271 272 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); 273 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); 274 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 275 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 276 277 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 278 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 279 280 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); 281 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); 282 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 283 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); 284 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 285 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); 286 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); 287 288 setOperationAction(ISD::Constant, MVT::i32, Legal); 289 setOperationAction(ISD::Constant, MVT::i64, Legal); 290 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 291 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 292 293 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 294 setOperationAction(ISD::BRIND, MVT::Other, Expand); 295 296 // This is totally unsupported, just custom lower to produce an error. 297 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 298 299 // Library functions. These default to Expand, but we have instructions 300 // for them. 301 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 302 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 303 setOperationAction(ISD::FPOW, MVT::f32, Legal); 304 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 305 setOperationAction(ISD::FABS, MVT::f32, Legal); 306 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 307 setOperationAction(ISD::FRINT, MVT::f32, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 309 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 310 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 311 312 setOperationAction(ISD::FROUND, MVT::f32, Custom); 313 setOperationAction(ISD::FROUND, MVT::f64, Custom); 314 315 setOperationAction(ISD::FLOG, MVT::f32, Custom); 316 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 317 setOperationAction(ISD::FEXP, MVT::f32, Custom); 318 319 320 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 321 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 322 323 setOperationAction(ISD::FREM, MVT::f32, Custom); 324 setOperationAction(ISD::FREM, MVT::f64, Custom); 325 326 // Expand to fneg + fadd. 327 setOperationAction(ISD::FSUB, MVT::f64, Expand); 328 329 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 330 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 331 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 332 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 333 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 334 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 335 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 336 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 337 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 338 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 339 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 340 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 341 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 342 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 343 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 344 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 345 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 346 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 347 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 348 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 349 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 350 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 351 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); 352 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); 353 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); 354 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); 355 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); 356 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); 357 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); 358 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); 359 360 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 361 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 362 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 363 364 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 365 for (MVT VT : ScalarIntVTs) { 366 // These should use [SU]DIVREM, so set them to expand 367 setOperationAction(ISD::SDIV, VT, Expand); 368 setOperationAction(ISD::UDIV, VT, Expand); 369 setOperationAction(ISD::SREM, VT, Expand); 370 setOperationAction(ISD::UREM, VT, Expand); 371 372 // GPU does not have divrem function for signed or unsigned. 373 setOperationAction(ISD::SDIVREM, VT, Custom); 374 setOperationAction(ISD::UDIVREM, VT, Custom); 375 376 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 377 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 378 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 379 380 setOperationAction(ISD::BSWAP, VT, Expand); 381 setOperationAction(ISD::CTTZ, VT, Expand); 382 setOperationAction(ISD::CTLZ, VT, Expand); 383 384 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 385 setOperationAction(ISD::ADDC, VT, Legal); 386 setOperationAction(ISD::SUBC, VT, Legal); 387 setOperationAction(ISD::ADDE, VT, Legal); 388 setOperationAction(ISD::SUBE, VT, Legal); 389 } 390 391 // The hardware supports 32-bit FSHR, but not FSHL. 392 setOperationAction(ISD::FSHR, MVT::i32, Legal); 393 394 // The hardware supports 32-bit ROTR, but not ROTL. 395 setOperationAction(ISD::ROTL, MVT::i32, Expand); 396 setOperationAction(ISD::ROTL, MVT::i64, Expand); 397 setOperationAction(ISD::ROTR, MVT::i64, Expand); 398 399 setOperationAction(ISD::MUL, MVT::i64, Expand); 400 setOperationAction(ISD::MULHU, MVT::i64, Expand); 401 setOperationAction(ISD::MULHS, MVT::i64, Expand); 402 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 403 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 404 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 405 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 406 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 407 408 setOperationAction(ISD::SMIN, MVT::i32, Legal); 409 setOperationAction(ISD::UMIN, MVT::i32, Legal); 410 setOperationAction(ISD::SMAX, MVT::i32, Legal); 411 setOperationAction(ISD::UMAX, MVT::i32, Legal); 412 413 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 414 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 415 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 416 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 417 418 static const MVT::SimpleValueType VectorIntTypes[] = { 419 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 420 }; 421 422 for (MVT VT : VectorIntTypes) { 423 // Expand the following operations for the current type by default. 424 setOperationAction(ISD::ADD, VT, Expand); 425 setOperationAction(ISD::AND, VT, Expand); 426 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 427 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 428 setOperationAction(ISD::MUL, VT, Expand); 429 setOperationAction(ISD::MULHU, VT, Expand); 430 setOperationAction(ISD::MULHS, VT, Expand); 431 setOperationAction(ISD::OR, VT, Expand); 432 setOperationAction(ISD::SHL, VT, Expand); 433 setOperationAction(ISD::SRA, VT, Expand); 434 setOperationAction(ISD::SRL, VT, Expand); 435 setOperationAction(ISD::ROTL, VT, Expand); 436 setOperationAction(ISD::ROTR, VT, Expand); 437 setOperationAction(ISD::SUB, VT, Expand); 438 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 439 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 440 setOperationAction(ISD::SDIV, VT, Expand); 441 setOperationAction(ISD::UDIV, VT, Expand); 442 setOperationAction(ISD::SREM, VT, Expand); 443 setOperationAction(ISD::UREM, VT, Expand); 444 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 445 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 446 setOperationAction(ISD::SDIVREM, VT, Expand); 447 setOperationAction(ISD::UDIVREM, VT, Expand); 448 setOperationAction(ISD::SELECT, VT, Expand); 449 setOperationAction(ISD::VSELECT, VT, Expand); 450 setOperationAction(ISD::SELECT_CC, VT, Expand); 451 setOperationAction(ISD::XOR, VT, Expand); 452 setOperationAction(ISD::BSWAP, VT, Expand); 453 setOperationAction(ISD::CTPOP, VT, Expand); 454 setOperationAction(ISD::CTTZ, VT, Expand); 455 setOperationAction(ISD::CTLZ, VT, Expand); 456 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 457 setOperationAction(ISD::SETCC, VT, Expand); 458 } 459 460 static const MVT::SimpleValueType FloatVectorTypes[] = { 461 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 462 }; 463 464 for (MVT VT : FloatVectorTypes) { 465 setOperationAction(ISD::FABS, VT, Expand); 466 setOperationAction(ISD::FMINNUM, VT, Expand); 467 setOperationAction(ISD::FMAXNUM, VT, Expand); 468 setOperationAction(ISD::FADD, VT, Expand); 469 setOperationAction(ISD::FCEIL, VT, Expand); 470 setOperationAction(ISD::FCOS, VT, Expand); 471 setOperationAction(ISD::FDIV, VT, Expand); 472 setOperationAction(ISD::FEXP2, VT, Expand); 473 setOperationAction(ISD::FEXP, VT, Expand); 474 setOperationAction(ISD::FLOG2, VT, Expand); 475 setOperationAction(ISD::FREM, VT, Expand); 476 setOperationAction(ISD::FLOG, VT, Expand); 477 setOperationAction(ISD::FLOG10, VT, Expand); 478 setOperationAction(ISD::FPOW, VT, Expand); 479 setOperationAction(ISD::FFLOOR, VT, Expand); 480 setOperationAction(ISD::FTRUNC, VT, Expand); 481 setOperationAction(ISD::FMUL, VT, Expand); 482 setOperationAction(ISD::FMA, VT, Expand); 483 setOperationAction(ISD::FRINT, VT, Expand); 484 setOperationAction(ISD::FNEARBYINT, VT, Expand); 485 setOperationAction(ISD::FSQRT, VT, Expand); 486 setOperationAction(ISD::FSIN, VT, Expand); 487 setOperationAction(ISD::FSUB, VT, Expand); 488 setOperationAction(ISD::FNEG, VT, Expand); 489 setOperationAction(ISD::VSELECT, VT, Expand); 490 setOperationAction(ISD::SELECT_CC, VT, Expand); 491 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 492 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 493 setOperationAction(ISD::SETCC, VT, Expand); 494 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 495 } 496 497 // This causes using an unrolled select operation rather than expansion with 498 // bit operations. This is in general better, but the alternative using BFI 499 // instructions may be better if the select sources are SGPRs. 500 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 501 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 502 503 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 504 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 505 506 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 507 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 508 509 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 510 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 511 512 // There are no libcalls of any kind. 513 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 514 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 515 516 setSchedulingPreference(Sched::RegPressure); 517 setJumpIsExpensive(true); 518 519 // FIXME: This is only partially true. If we have to do vector compares, any 520 // SGPR pair can be a condition register. If we have a uniform condition, we 521 // are better off doing SALU operations, where there is only one SCC. For now, 522 // we don't have a way of knowing during instruction selection if a condition 523 // will be uniform and we always use vector compares. Assume we are using 524 // vector compares until that is fixed. 525 setHasMultipleConditionRegisters(true); 526 527 setMinCmpXchgSizeInBits(32); 528 setSupportsUnalignedAtomics(false); 529 530 PredictableSelectIsExpensive = false; 531 532 // We want to find all load dependencies for long chains of stores to enable 533 // merging into very wide vectors. The problem is with vectors with > 4 534 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 535 // vectors are a legal type, even though we have to split the loads 536 // usually. When we can more precisely specify load legality per address 537 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 538 // smarter so that they can figure out what to do in 2 iterations without all 539 // N > 4 stores on the same chain. 540 GatherAllAliasesMaxDepth = 16; 541 542 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 543 // about these during lowering. 544 MaxStoresPerMemcpy = 0xffffffff; 545 MaxStoresPerMemmove = 0xffffffff; 546 MaxStoresPerMemset = 0xffffffff; 547 548 // The expansion for 64-bit division is enormous. 549 if (AMDGPUBypassSlowDiv) 550 addBypassSlowDiv(64, 32); 551 552 setTargetDAGCombine(ISD::BITCAST); 553 setTargetDAGCombine(ISD::SHL); 554 setTargetDAGCombine(ISD::SRA); 555 setTargetDAGCombine(ISD::SRL); 556 setTargetDAGCombine(ISD::TRUNCATE); 557 setTargetDAGCombine(ISD::MUL); 558 setTargetDAGCombine(ISD::MULHU); 559 setTargetDAGCombine(ISD::MULHS); 560 setTargetDAGCombine(ISD::SELECT); 561 setTargetDAGCombine(ISD::SELECT_CC); 562 setTargetDAGCombine(ISD::STORE); 563 setTargetDAGCombine(ISD::FADD); 564 setTargetDAGCombine(ISD::FSUB); 565 setTargetDAGCombine(ISD::FNEG); 566 setTargetDAGCombine(ISD::FABS); 567 setTargetDAGCombine(ISD::AssertZext); 568 setTargetDAGCombine(ISD::AssertSext); 569 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Target Information 574 //===----------------------------------------------------------------------===// 575 576 LLVM_READNONE 577 static bool fnegFoldsIntoOp(unsigned Opc) { 578 switch (Opc) { 579 case ISD::FADD: 580 case ISD::FSUB: 581 case ISD::FMUL: 582 case ISD::FMA: 583 case ISD::FMAD: 584 case ISD::FMINNUM: 585 case ISD::FMAXNUM: 586 case ISD::FMINNUM_IEEE: 587 case ISD::FMAXNUM_IEEE: 588 case ISD::FSIN: 589 case ISD::FTRUNC: 590 case ISD::FRINT: 591 case ISD::FNEARBYINT: 592 case ISD::FCANONICALIZE: 593 case AMDGPUISD::RCP: 594 case AMDGPUISD::RCP_LEGACY: 595 case AMDGPUISD::RCP_IFLAG: 596 case AMDGPUISD::SIN_HW: 597 case AMDGPUISD::FMUL_LEGACY: 598 case AMDGPUISD::FMIN_LEGACY: 599 case AMDGPUISD::FMAX_LEGACY: 600 case AMDGPUISD::FMED3: 601 return true; 602 default: 603 return false; 604 } 605 } 606 607 /// \p returns true if the operation will definitely need to use a 64-bit 608 /// encoding, and thus will use a VOP3 encoding regardless of the source 609 /// modifiers. 610 LLVM_READONLY 611 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 612 return N->getNumOperands() > 2 || VT == MVT::f64; 613 } 614 615 // Most FP instructions support source modifiers, but this could be refined 616 // slightly. 617 LLVM_READONLY 618 static bool hasSourceMods(const SDNode *N) { 619 if (isa<MemSDNode>(N)) 620 return false; 621 622 switch (N->getOpcode()) { 623 case ISD::CopyToReg: 624 case ISD::SELECT: 625 case ISD::FDIV: 626 case ISD::FREM: 627 case ISD::INLINEASM: 628 case ISD::INLINEASM_BR: 629 case AMDGPUISD::DIV_SCALE: 630 case ISD::INTRINSIC_W_CHAIN: 631 632 // TODO: Should really be looking at the users of the bitcast. These are 633 // problematic because bitcasts are used to legalize all stores to integer 634 // types. 635 case ISD::BITCAST: 636 return false; 637 case ISD::INTRINSIC_WO_CHAIN: { 638 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 639 case Intrinsic::amdgcn_interp_p1: 640 case Intrinsic::amdgcn_interp_p2: 641 case Intrinsic::amdgcn_interp_mov: 642 case Intrinsic::amdgcn_interp_p1_f16: 643 case Intrinsic::amdgcn_interp_p2_f16: 644 return false; 645 default: 646 return true; 647 } 648 } 649 default: 650 return true; 651 } 652 } 653 654 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 655 unsigned CostThreshold) { 656 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 657 // it is truly free to use a source modifier in all cases. If there are 658 // multiple users but for each one will necessitate using VOP3, there will be 659 // a code size increase. Try to avoid increasing code size unless we know it 660 // will save on the instruction count. 661 unsigned NumMayIncreaseSize = 0; 662 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 663 664 // XXX - Should this limit number of uses to check? 665 for (const SDNode *U : N->uses()) { 666 if (!hasSourceMods(U)) 667 return false; 668 669 if (!opMustUseVOP3Encoding(U, VT)) { 670 if (++NumMayIncreaseSize > CostThreshold) 671 return false; 672 } 673 } 674 675 return true; 676 } 677 678 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, 679 ISD::NodeType ExtendKind) const { 680 assert(!VT.isVector() && "only scalar expected"); 681 682 // Round to the next multiple of 32-bits. 683 unsigned Size = VT.getSizeInBits(); 684 if (Size <= 32) 685 return MVT::i32; 686 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); 687 } 688 689 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 690 return MVT::i32; 691 } 692 693 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 694 return true; 695 } 696 697 // The backend supports 32 and 64 bit floating point immediates. 698 // FIXME: Why are we reporting vectors of FP immediates as legal? 699 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 700 bool ForCodeSize) const { 701 EVT ScalarVT = VT.getScalarType(); 702 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 703 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 704 } 705 706 // We don't want to shrink f64 / f32 constants. 707 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 708 EVT ScalarVT = VT.getScalarType(); 709 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 710 } 711 712 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 713 ISD::LoadExtType ExtTy, 714 EVT NewVT) const { 715 // TODO: This may be worth removing. Check regression tests for diffs. 716 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 717 return false; 718 719 unsigned NewSize = NewVT.getStoreSizeInBits(); 720 721 // If we are reducing to a 32-bit load or a smaller multi-dword load, 722 // this is always better. 723 if (NewSize >= 32) 724 return true; 725 726 EVT OldVT = N->getValueType(0); 727 unsigned OldSize = OldVT.getStoreSizeInBits(); 728 729 MemSDNode *MN = cast<MemSDNode>(N); 730 unsigned AS = MN->getAddressSpace(); 731 // Do not shrink an aligned scalar load to sub-dword. 732 // Scalar engine cannot do sub-dword loads. 733 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 734 (AS == AMDGPUAS::CONSTANT_ADDRESS || 735 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 736 (isa<LoadSDNode>(N) && 737 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 738 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 739 return false; 740 741 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 742 // extloads, so doing one requires using a buffer_load. In cases where we 743 // still couldn't use a scalar load, using the wider load shouldn't really 744 // hurt anything. 745 746 // If the old size already had to be an extload, there's no harm in continuing 747 // to reduce the width. 748 return (OldSize < 32); 749 } 750 751 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 752 const SelectionDAG &DAG, 753 const MachineMemOperand &MMO) const { 754 755 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 756 757 if (LoadTy.getScalarType() == MVT::i32) 758 return false; 759 760 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 761 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 762 763 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 764 return false; 765 766 bool Fast = false; 767 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 768 CastTy, MMO, &Fast) && 769 Fast; 770 } 771 772 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 773 // profitable with the expansion for 64-bit since it's generally good to 774 // speculate things. 775 // FIXME: These should really have the size as a parameter. 776 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 777 return true; 778 } 779 780 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 781 return true; 782 } 783 784 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 785 switch (N->getOpcode()) { 786 default: 787 return false; 788 case ISD::EntryToken: 789 case ISD::TokenFactor: 790 return true; 791 case ISD::INTRINSIC_WO_CHAIN: 792 { 793 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 794 switch (IntrID) { 795 default: 796 return false; 797 case Intrinsic::amdgcn_readfirstlane: 798 case Intrinsic::amdgcn_readlane: 799 return true; 800 } 801 } 802 break; 803 case ISD::LOAD: 804 { 805 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 806 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 807 return true; 808 return false; 809 } 810 break; 811 } 812 } 813 814 SDValue AMDGPUTargetLowering::getNegatedExpression( 815 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, 816 NegatibleCost &Cost, unsigned Depth) const { 817 818 switch (Op.getOpcode()) { 819 case ISD::FMA: 820 case ISD::FMAD: { 821 // Negating a fma is not free if it has users without source mods. 822 if (!allUsesHaveSourceMods(Op.getNode())) 823 return SDValue(); 824 break; 825 } 826 default: 827 break; 828 } 829 830 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, 831 ForCodeSize, Cost, Depth); 832 } 833 834 //===---------------------------------------------------------------------===// 835 // Target Properties 836 //===---------------------------------------------------------------------===// 837 838 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 839 assert(VT.isFloatingPoint()); 840 841 // Packed operations do not have a fabs modifier. 842 return VT == MVT::f32 || VT == MVT::f64 || 843 (Subtarget->has16BitInsts() && VT == MVT::f16); 844 } 845 846 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 847 assert(VT.isFloatingPoint()); 848 return VT == MVT::f32 || VT == MVT::f64 || 849 (Subtarget->has16BitInsts() && VT == MVT::f16) || 850 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 851 } 852 853 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 854 unsigned NumElem, 855 unsigned AS) const { 856 return true; 857 } 858 859 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 860 // There are few operations which truly have vector input operands. Any vector 861 // operation is going to involve operations on each component, and a 862 // build_vector will be a copy per element, so it always makes sense to use a 863 // build_vector input in place of the extracted element to avoid a copy into a 864 // super register. 865 // 866 // We should probably only do this if all users are extracts only, but this 867 // should be the common case. 868 return true; 869 } 870 871 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 872 // Truncate is just accessing a subregister. 873 874 unsigned SrcSize = Source.getSizeInBits(); 875 unsigned DestSize = Dest.getSizeInBits(); 876 877 return DestSize < SrcSize && DestSize % 32 == 0 ; 878 } 879 880 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 881 // Truncate is just accessing a subregister. 882 883 unsigned SrcSize = Source->getScalarSizeInBits(); 884 unsigned DestSize = Dest->getScalarSizeInBits(); 885 886 if (DestSize== 16 && Subtarget->has16BitInsts()) 887 return SrcSize >= 32; 888 889 return DestSize < SrcSize && DestSize % 32 == 0; 890 } 891 892 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 893 unsigned SrcSize = Src->getScalarSizeInBits(); 894 unsigned DestSize = Dest->getScalarSizeInBits(); 895 896 if (SrcSize == 16 && Subtarget->has16BitInsts()) 897 return DestSize >= 32; 898 899 return SrcSize == 32 && DestSize == 64; 900 } 901 902 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 903 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 904 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 905 // this will enable reducing 64-bit operations the 32-bit, which is always 906 // good. 907 908 if (Src == MVT::i16) 909 return Dest == MVT::i32 ||Dest == MVT::i64 ; 910 911 return Src == MVT::i32 && Dest == MVT::i64; 912 } 913 914 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 915 return isZExtFree(Val.getValueType(), VT2); 916 } 917 918 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 919 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 920 // limited number of native 64-bit operations. Shrinking an operation to fit 921 // in a single 32-bit register should always be helpful. As currently used, 922 // this is much less general than the name suggests, and is only used in 923 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 924 // not profitable, and may actually be harmful. 925 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 926 } 927 928 //===---------------------------------------------------------------------===// 929 // TargetLowering Callbacks 930 //===---------------------------------------------------------------------===// 931 932 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 933 bool IsVarArg) { 934 switch (CC) { 935 case CallingConv::AMDGPU_VS: 936 case CallingConv::AMDGPU_GS: 937 case CallingConv::AMDGPU_PS: 938 case CallingConv::AMDGPU_CS: 939 case CallingConv::AMDGPU_HS: 940 case CallingConv::AMDGPU_ES: 941 case CallingConv::AMDGPU_LS: 942 return CC_AMDGPU; 943 case CallingConv::C: 944 case CallingConv::Fast: 945 case CallingConv::Cold: 946 return CC_AMDGPU_Func; 947 case CallingConv::AMDGPU_KERNEL: 948 case CallingConv::SPIR_KERNEL: 949 default: 950 report_fatal_error("Unsupported calling convention for call"); 951 } 952 } 953 954 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 955 bool IsVarArg) { 956 switch (CC) { 957 case CallingConv::AMDGPU_KERNEL: 958 case CallingConv::SPIR_KERNEL: 959 llvm_unreachable("kernels should not be handled here"); 960 case CallingConv::AMDGPU_VS: 961 case CallingConv::AMDGPU_GS: 962 case CallingConv::AMDGPU_PS: 963 case CallingConv::AMDGPU_CS: 964 case CallingConv::AMDGPU_HS: 965 case CallingConv::AMDGPU_ES: 966 case CallingConv::AMDGPU_LS: 967 return RetCC_SI_Shader; 968 case CallingConv::C: 969 case CallingConv::Fast: 970 case CallingConv::Cold: 971 return RetCC_AMDGPU_Func; 972 default: 973 report_fatal_error("Unsupported calling convention."); 974 } 975 } 976 977 /// The SelectionDAGBuilder will automatically promote function arguments 978 /// with illegal types. However, this does not work for the AMDGPU targets 979 /// since the function arguments are stored in memory as these illegal types. 980 /// In order to handle this properly we need to get the original types sizes 981 /// from the LLVM IR Function and fixup the ISD:InputArg values before 982 /// passing them to AnalyzeFormalArguments() 983 984 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 985 /// input values across multiple registers. Each item in the Ins array 986 /// represents a single value that will be stored in registers. Ins[x].VT is 987 /// the value type of the value that will be stored in the register, so 988 /// whatever SDNode we lower the argument to needs to be this type. 989 /// 990 /// In order to correctly lower the arguments we need to know the size of each 991 /// argument. Since Ins[x].VT gives us the size of the register that will 992 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 993 /// for the orignal function argument so that we can deduce the correct memory 994 /// type to use for Ins[x]. In most cases the correct memory type will be 995 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 996 /// we have a kernel argument of type v8i8, this argument will be split into 997 /// 8 parts and each part will be represented by its own item in the Ins array. 998 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 999 /// the argument before it was split. From this, we deduce that the memory type 1000 /// for each individual part is i8. We pass the memory type as LocVT to the 1001 /// calling convention analysis function and the register type (Ins[x].VT) as 1002 /// the ValVT. 1003 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 1004 CCState &State, 1005 const SmallVectorImpl<ISD::InputArg> &Ins) const { 1006 const MachineFunction &MF = State.getMachineFunction(); 1007 const Function &Fn = MF.getFunction(); 1008 LLVMContext &Ctx = Fn.getParent()->getContext(); 1009 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 1010 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 1011 CallingConv::ID CC = Fn.getCallingConv(); 1012 1013 Align MaxAlign = Align(1); 1014 uint64_t ExplicitArgOffset = 0; 1015 const DataLayout &DL = Fn.getParent()->getDataLayout(); 1016 1017 unsigned InIndex = 0; 1018 1019 for (const Argument &Arg : Fn.args()) { 1020 Type *BaseArgTy = Arg.getType(); 1021 Align Alignment = DL.getABITypeAlign(BaseArgTy); 1022 MaxAlign = std::max(Alignment, MaxAlign); 1023 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 1024 1025 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; 1026 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; 1027 1028 // We're basically throwing away everything passed into us and starting over 1029 // to get accurate in-memory offsets. The "PartOffset" is completely useless 1030 // to us as computed in Ins. 1031 // 1032 // We also need to figure out what type legalization is trying to do to get 1033 // the correct memory offsets. 1034 1035 SmallVector<EVT, 16> ValueVTs; 1036 SmallVector<uint64_t, 16> Offsets; 1037 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 1038 1039 for (unsigned Value = 0, NumValues = ValueVTs.size(); 1040 Value != NumValues; ++Value) { 1041 uint64_t BasePartOffset = Offsets[Value]; 1042 1043 EVT ArgVT = ValueVTs[Value]; 1044 EVT MemVT = ArgVT; 1045 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 1046 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 1047 1048 if (NumRegs == 1) { 1049 // This argument is not split, so the IR type is the memory type. 1050 if (ArgVT.isExtended()) { 1051 // We have an extended type, like i24, so we should just use the 1052 // register type. 1053 MemVT = RegisterVT; 1054 } else { 1055 MemVT = ArgVT; 1056 } 1057 } else if (ArgVT.isVector() && RegisterVT.isVector() && 1058 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 1059 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 1060 // We have a vector value which has been split into a vector with 1061 // the same scalar type, but fewer elements. This should handle 1062 // all the floating-point vector types. 1063 MemVT = RegisterVT; 1064 } else if (ArgVT.isVector() && 1065 ArgVT.getVectorNumElements() == NumRegs) { 1066 // This arg has been split so that each element is stored in a separate 1067 // register. 1068 MemVT = ArgVT.getScalarType(); 1069 } else if (ArgVT.isExtended()) { 1070 // We have an extended type, like i65. 1071 MemVT = RegisterVT; 1072 } else { 1073 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 1074 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 1075 if (RegisterVT.isInteger()) { 1076 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 1077 } else if (RegisterVT.isVector()) { 1078 assert(!RegisterVT.getScalarType().isFloatingPoint()); 1079 unsigned NumElements = RegisterVT.getVectorNumElements(); 1080 assert(MemoryBits % NumElements == 0); 1081 // This vector type has been split into another vector type with 1082 // a different elements size. 1083 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 1084 MemoryBits / NumElements); 1085 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 1086 } else { 1087 llvm_unreachable("cannot deduce memory type."); 1088 } 1089 } 1090 1091 // Convert one element vectors to scalar. 1092 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 1093 MemVT = MemVT.getScalarType(); 1094 1095 // Round up vec3/vec5 argument. 1096 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1097 assert(MemVT.getVectorNumElements() == 3 || 1098 MemVT.getVectorNumElements() == 5); 1099 MemVT = MemVT.getPow2VectorType(State.getContext()); 1100 } else if (!MemVT.isSimple() && !MemVT.isVector()) { 1101 MemVT = MemVT.getRoundIntegerType(State.getContext()); 1102 } 1103 1104 unsigned PartOffset = 0; 1105 for (unsigned i = 0; i != NumRegs; ++i) { 1106 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1107 BasePartOffset + PartOffset, 1108 MemVT.getSimpleVT(), 1109 CCValAssign::Full)); 1110 PartOffset += MemVT.getStoreSize(); 1111 } 1112 } 1113 } 1114 } 1115 1116 SDValue AMDGPUTargetLowering::LowerReturn( 1117 SDValue Chain, CallingConv::ID CallConv, 1118 bool isVarArg, 1119 const SmallVectorImpl<ISD::OutputArg> &Outs, 1120 const SmallVectorImpl<SDValue> &OutVals, 1121 const SDLoc &DL, SelectionDAG &DAG) const { 1122 // FIXME: Fails for r600 tests 1123 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1124 // "wave terminate should not have return values"); 1125 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1126 } 1127 1128 //===---------------------------------------------------------------------===// 1129 // Target specific lowering 1130 //===---------------------------------------------------------------------===// 1131 1132 /// Selects the correct CCAssignFn for a given CallingConvention value. 1133 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1134 bool IsVarArg) { 1135 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1136 } 1137 1138 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1139 bool IsVarArg) { 1140 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1141 } 1142 1143 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1144 SelectionDAG &DAG, 1145 MachineFrameInfo &MFI, 1146 int ClobberedFI) const { 1147 SmallVector<SDValue, 8> ArgChains; 1148 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1149 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1150 1151 // Include the original chain at the beginning of the list. When this is 1152 // used by target LowerCall hooks, this helps legalize find the 1153 // CALLSEQ_BEGIN node. 1154 ArgChains.push_back(Chain); 1155 1156 // Add a chain value for each stack argument corresponding 1157 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1158 UE = DAG.getEntryNode().getNode()->use_end(); 1159 U != UE; ++U) { 1160 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1161 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1162 if (FI->getIndex() < 0) { 1163 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1164 int64_t InLastByte = InFirstByte; 1165 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1166 1167 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1168 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1169 ArgChains.push_back(SDValue(L, 1)); 1170 } 1171 } 1172 } 1173 } 1174 1175 // Build a tokenfactor for all the chains. 1176 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1177 } 1178 1179 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1180 SmallVectorImpl<SDValue> &InVals, 1181 StringRef Reason) const { 1182 SDValue Callee = CLI.Callee; 1183 SelectionDAG &DAG = CLI.DAG; 1184 1185 const Function &Fn = DAG.getMachineFunction().getFunction(); 1186 1187 StringRef FuncName("<unknown>"); 1188 1189 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1190 FuncName = G->getSymbol(); 1191 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1192 FuncName = G->getGlobal()->getName(); 1193 1194 DiagnosticInfoUnsupported NoCalls( 1195 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1196 DAG.getContext()->diagnose(NoCalls); 1197 1198 if (!CLI.IsTailCall) { 1199 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1200 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1201 } 1202 1203 return DAG.getEntryNode(); 1204 } 1205 1206 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1207 SmallVectorImpl<SDValue> &InVals) const { 1208 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1209 } 1210 1211 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1212 SelectionDAG &DAG) const { 1213 const Function &Fn = DAG.getMachineFunction().getFunction(); 1214 1215 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1216 SDLoc(Op).getDebugLoc()); 1217 DAG.getContext()->diagnose(NoDynamicAlloca); 1218 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1219 return DAG.getMergeValues(Ops, SDLoc()); 1220 } 1221 1222 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1223 SelectionDAG &DAG) const { 1224 switch (Op.getOpcode()) { 1225 default: 1226 Op->print(errs(), &DAG); 1227 llvm_unreachable("Custom lowering code for this" 1228 "instruction is not implemented yet!"); 1229 break; 1230 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1231 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1232 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1233 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1234 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1235 case ISD::FREM: return LowerFREM(Op, DAG); 1236 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1237 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1238 case ISD::FRINT: return LowerFRINT(Op, DAG); 1239 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1240 case ISD::FROUND: return LowerFROUND(Op, DAG); 1241 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1242 case ISD::FLOG: 1243 return LowerFLOG(Op, DAG, numbers::ln2f); 1244 case ISD::FLOG10: 1245 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1246 case ISD::FEXP: 1247 return lowerFEXP(Op, DAG); 1248 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1249 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1250 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1251 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1252 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1253 case ISD::CTTZ: 1254 case ISD::CTTZ_ZERO_UNDEF: 1255 case ISD::CTLZ: 1256 case ISD::CTLZ_ZERO_UNDEF: 1257 return LowerCTLZ_CTTZ(Op, DAG); 1258 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1259 } 1260 return Op; 1261 } 1262 1263 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1264 SmallVectorImpl<SDValue> &Results, 1265 SelectionDAG &DAG) const { 1266 switch (N->getOpcode()) { 1267 case ISD::SIGN_EXTEND_INREG: 1268 // Different parts of legalization seem to interpret which type of 1269 // sign_extend_inreg is the one to check for custom lowering. The extended 1270 // from type is what really matters, but some places check for custom 1271 // lowering of the result type. This results in trying to use 1272 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1273 // nothing here and let the illegal result integer be handled normally. 1274 return; 1275 default: 1276 return; 1277 } 1278 } 1279 1280 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1281 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1282 if (!GVar || !GVar->hasInitializer()) 1283 return false; 1284 1285 return !isa<UndefValue>(GVar->getInitializer()); 1286 } 1287 1288 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1289 SDValue Op, 1290 SelectionDAG &DAG) const { 1291 1292 const DataLayout &DL = DAG.getDataLayout(); 1293 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1294 const GlobalValue *GV = G->getGlobal(); 1295 1296 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1297 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1298 if (!MFI->isEntryFunction()) { 1299 SDLoc DL(Op); 1300 const Function &Fn = DAG.getMachineFunction().getFunction(); 1301 DiagnosticInfoUnsupported BadLDSDecl( 1302 Fn, "local memory global used by non-kernel function", 1303 DL.getDebugLoc(), DS_Warning); 1304 DAG.getContext()->diagnose(BadLDSDecl); 1305 1306 // We currently don't have a way to correctly allocate LDS objects that 1307 // aren't directly associated with a kernel. We do force inlining of 1308 // functions that use local objects. However, if these dead functions are 1309 // not eliminated, we don't want a compile time error. Just emit a warning 1310 // and a trap, since there should be no callable path here. 1311 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); 1312 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1313 Trap, DAG.getRoot()); 1314 DAG.setRoot(OutputChain); 1315 return DAG.getUNDEF(Op.getValueType()); 1316 } 1317 1318 // XXX: What does the value of G->getOffset() mean? 1319 assert(G->getOffset() == 0 && 1320 "Do not know what to do with an non-zero offset"); 1321 1322 // TODO: We could emit code to handle the initialization somewhere. 1323 if (!hasDefinedInitializer(GV)) { 1324 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); 1325 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1326 } 1327 } 1328 1329 const Function &Fn = DAG.getMachineFunction().getFunction(); 1330 DiagnosticInfoUnsupported BadInit( 1331 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1332 DAG.getContext()->diagnose(BadInit); 1333 return SDValue(); 1334 } 1335 1336 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1337 SelectionDAG &DAG) const { 1338 SmallVector<SDValue, 8> Args; 1339 1340 EVT VT = Op.getValueType(); 1341 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1342 SDLoc SL(Op); 1343 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1344 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1345 1346 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1347 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1348 } 1349 1350 for (const SDUse &U : Op->ops()) 1351 DAG.ExtractVectorElements(U.get(), Args); 1352 1353 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1354 } 1355 1356 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1357 SelectionDAG &DAG) const { 1358 1359 SmallVector<SDValue, 8> Args; 1360 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1361 EVT VT = Op.getValueType(); 1362 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1363 VT.getVectorNumElements()); 1364 1365 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1366 } 1367 1368 /// Generate Min/Max node 1369 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1370 SDValue LHS, SDValue RHS, 1371 SDValue True, SDValue False, 1372 SDValue CC, 1373 DAGCombinerInfo &DCI) const { 1374 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1375 return SDValue(); 1376 1377 SelectionDAG &DAG = DCI.DAG; 1378 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1379 switch (CCOpcode) { 1380 case ISD::SETOEQ: 1381 case ISD::SETONE: 1382 case ISD::SETUNE: 1383 case ISD::SETNE: 1384 case ISD::SETUEQ: 1385 case ISD::SETEQ: 1386 case ISD::SETFALSE: 1387 case ISD::SETFALSE2: 1388 case ISD::SETTRUE: 1389 case ISD::SETTRUE2: 1390 case ISD::SETUO: 1391 case ISD::SETO: 1392 break; 1393 case ISD::SETULE: 1394 case ISD::SETULT: { 1395 if (LHS == True) 1396 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1397 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1398 } 1399 case ISD::SETOLE: 1400 case ISD::SETOLT: 1401 case ISD::SETLE: 1402 case ISD::SETLT: { 1403 // Ordered. Assume ordered for undefined. 1404 1405 // Only do this after legalization to avoid interfering with other combines 1406 // which might occur. 1407 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1408 !DCI.isCalledByLegalizer()) 1409 return SDValue(); 1410 1411 // We need to permute the operands to get the correct NaN behavior. The 1412 // selected operand is the second one based on the failing compare with NaN, 1413 // so permute it based on the compare type the hardware uses. 1414 if (LHS == True) 1415 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1416 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1417 } 1418 case ISD::SETUGE: 1419 case ISD::SETUGT: { 1420 if (LHS == True) 1421 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1422 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1423 } 1424 case ISD::SETGT: 1425 case ISD::SETGE: 1426 case ISD::SETOGE: 1427 case ISD::SETOGT: { 1428 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1429 !DCI.isCalledByLegalizer()) 1430 return SDValue(); 1431 1432 if (LHS == True) 1433 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1434 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1435 } 1436 case ISD::SETCC_INVALID: 1437 llvm_unreachable("Invalid setcc condcode!"); 1438 } 1439 return SDValue(); 1440 } 1441 1442 std::pair<SDValue, SDValue> 1443 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1444 SDLoc SL(Op); 1445 1446 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1447 1448 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1449 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1450 1451 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1452 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1453 1454 return std::make_pair(Lo, Hi); 1455 } 1456 1457 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1458 SDLoc SL(Op); 1459 1460 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1461 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1462 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1463 } 1464 1465 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1466 SDLoc SL(Op); 1467 1468 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1469 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1470 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1471 } 1472 1473 // Split a vector type into two parts. The first part is a power of two vector. 1474 // The second part is whatever is left over, and is a scalar if it would 1475 // otherwise be a 1-vector. 1476 std::pair<EVT, EVT> 1477 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1478 EVT LoVT, HiVT; 1479 EVT EltVT = VT.getVectorElementType(); 1480 unsigned NumElts = VT.getVectorNumElements(); 1481 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1482 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1483 HiVT = NumElts - LoNumElts == 1 1484 ? EltVT 1485 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1486 return std::make_pair(LoVT, HiVT); 1487 } 1488 1489 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1490 // scalar. 1491 std::pair<SDValue, SDValue> 1492 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1493 const EVT &LoVT, const EVT &HiVT, 1494 SelectionDAG &DAG) const { 1495 assert(LoVT.getVectorNumElements() + 1496 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1497 N.getValueType().getVectorNumElements() && 1498 "More vector elements requested than available!"); 1499 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1500 DAG.getVectorIdxConstant(0, DL)); 1501 SDValue Hi = DAG.getNode( 1502 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1503 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 1504 return std::make_pair(Lo, Hi); 1505 } 1506 1507 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1508 SelectionDAG &DAG) const { 1509 LoadSDNode *Load = cast<LoadSDNode>(Op); 1510 EVT VT = Op.getValueType(); 1511 SDLoc SL(Op); 1512 1513 1514 // If this is a 2 element vector, we really want to scalarize and not create 1515 // weird 1 element vectors. 1516 if (VT.getVectorNumElements() == 2) { 1517 SDValue Ops[2]; 1518 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1519 return DAG.getMergeValues(Ops, SL); 1520 } 1521 1522 SDValue BasePtr = Load->getBasePtr(); 1523 EVT MemVT = Load->getMemoryVT(); 1524 1525 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1526 1527 EVT LoVT, HiVT; 1528 EVT LoMemVT, HiMemVT; 1529 SDValue Lo, Hi; 1530 1531 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1532 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1533 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1534 1535 unsigned Size = LoMemVT.getStoreSize(); 1536 unsigned BaseAlign = Load->getAlignment(); 1537 unsigned HiAlign = MinAlign(BaseAlign, Size); 1538 1539 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1540 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1541 BaseAlign, Load->getMemOperand()->getFlags()); 1542 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1543 SDValue HiLoad = 1544 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1545 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1546 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1547 1548 SDValue Join; 1549 if (LoVT == HiVT) { 1550 // This is the case that the vector is power of two so was evenly split. 1551 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1552 } else { 1553 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1554 DAG.getVectorIdxConstant(0, SL)); 1555 Join = DAG.getNode( 1556 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, 1557 VT, Join, HiLoad, 1558 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); 1559 } 1560 1561 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1562 LoLoad.getValue(1), HiLoad.getValue(1))}; 1563 1564 return DAG.getMergeValues(Ops, SL); 1565 } 1566 1567 // Widen a vector load from vec3 to vec4. 1568 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1569 SelectionDAG &DAG) const { 1570 LoadSDNode *Load = cast<LoadSDNode>(Op); 1571 EVT VT = Op.getValueType(); 1572 assert(VT.getVectorNumElements() == 3); 1573 SDValue BasePtr = Load->getBasePtr(); 1574 EVT MemVT = Load->getMemoryVT(); 1575 SDLoc SL(Op); 1576 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1577 unsigned BaseAlign = Load->getAlignment(); 1578 1579 EVT WideVT = 1580 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1581 EVT WideMemVT = 1582 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1583 SDValue WideLoad = DAG.getExtLoad( 1584 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1585 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1586 return DAG.getMergeValues( 1587 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1588 DAG.getVectorIdxConstant(0, SL)), 1589 WideLoad.getValue(1)}, 1590 SL); 1591 } 1592 1593 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1594 SelectionDAG &DAG) const { 1595 StoreSDNode *Store = cast<StoreSDNode>(Op); 1596 SDValue Val = Store->getValue(); 1597 EVT VT = Val.getValueType(); 1598 1599 // If this is a 2 element vector, we really want to scalarize and not create 1600 // weird 1 element vectors. 1601 if (VT.getVectorNumElements() == 2) 1602 return scalarizeVectorStore(Store, DAG); 1603 1604 EVT MemVT = Store->getMemoryVT(); 1605 SDValue Chain = Store->getChain(); 1606 SDValue BasePtr = Store->getBasePtr(); 1607 SDLoc SL(Op); 1608 1609 EVT LoVT, HiVT; 1610 EVT LoMemVT, HiMemVT; 1611 SDValue Lo, Hi; 1612 1613 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1614 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1615 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1616 1617 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1618 1619 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1620 unsigned BaseAlign = Store->getAlignment(); 1621 unsigned Size = LoMemVT.getStoreSize(); 1622 unsigned HiAlign = MinAlign(BaseAlign, Size); 1623 1624 SDValue LoStore = 1625 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1626 Store->getMemOperand()->getFlags()); 1627 SDValue HiStore = 1628 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1629 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1630 1631 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1632 } 1633 1634 // This is a shortcut for integer division because we have fast i32<->f32 1635 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1636 // float is enough to accurately represent up to a 24-bit signed integer. 1637 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1638 bool Sign) const { 1639 SDLoc DL(Op); 1640 EVT VT = Op.getValueType(); 1641 SDValue LHS = Op.getOperand(0); 1642 SDValue RHS = Op.getOperand(1); 1643 MVT IntVT = MVT::i32; 1644 MVT FltVT = MVT::f32; 1645 1646 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1647 if (LHSSignBits < 9) 1648 return SDValue(); 1649 1650 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1651 if (RHSSignBits < 9) 1652 return SDValue(); 1653 1654 unsigned BitSize = VT.getSizeInBits(); 1655 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1656 unsigned DivBits = BitSize - SignBits; 1657 if (Sign) 1658 ++DivBits; 1659 1660 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1661 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1662 1663 SDValue jq = DAG.getConstant(1, DL, IntVT); 1664 1665 if (Sign) { 1666 // char|short jq = ia ^ ib; 1667 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1668 1669 // jq = jq >> (bitsize - 2) 1670 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1671 DAG.getConstant(BitSize - 2, DL, VT)); 1672 1673 // jq = jq | 0x1 1674 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1675 } 1676 1677 // int ia = (int)LHS; 1678 SDValue ia = LHS; 1679 1680 // int ib, (int)RHS; 1681 SDValue ib = RHS; 1682 1683 // float fa = (float)ia; 1684 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1685 1686 // float fb = (float)ib; 1687 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1688 1689 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1690 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1691 1692 // fq = trunc(fq); 1693 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1694 1695 // float fqneg = -fq; 1696 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1697 1698 MachineFunction &MF = DAG.getMachineFunction(); 1699 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1700 1701 // float fr = mad(fqneg, fb, fa); 1702 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? 1703 (unsigned)ISD::FMA : 1704 !MFI->getMode().allFP32Denormals() ? 1705 (unsigned)ISD::FMAD : 1706 (unsigned)AMDGPUISD::FMAD_FTZ; 1707 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1708 1709 // int iq = (int)fq; 1710 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1711 1712 // fr = fabs(fr); 1713 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1714 1715 // fb = fabs(fb); 1716 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1717 1718 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1719 1720 // int cv = fr >= fb; 1721 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1722 1723 // jq = (cv ? jq : 0); 1724 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1725 1726 // dst = iq + jq; 1727 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1728 1729 // Rem needs compensation, it's easier to recompute it 1730 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1731 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1732 1733 // Truncate to number of bits this divide really is. 1734 if (Sign) { 1735 SDValue InRegSize 1736 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1737 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1738 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1739 } else { 1740 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1741 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1742 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1743 } 1744 1745 return DAG.getMergeValues({ Div, Rem }, DL); 1746 } 1747 1748 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1749 SelectionDAG &DAG, 1750 SmallVectorImpl<SDValue> &Results) const { 1751 SDLoc DL(Op); 1752 EVT VT = Op.getValueType(); 1753 1754 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1755 1756 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1757 1758 SDValue One = DAG.getConstant(1, DL, HalfVT); 1759 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1760 1761 //HiLo split 1762 SDValue LHS = Op.getOperand(0); 1763 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1764 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1765 1766 SDValue RHS = Op.getOperand(1); 1767 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1768 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1769 1770 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1771 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1772 1773 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1774 LHS_Lo, RHS_Lo); 1775 1776 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1777 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1778 1779 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1780 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1781 return; 1782 } 1783 1784 if (isTypeLegal(MVT::i64)) { 1785 MachineFunction &MF = DAG.getMachineFunction(); 1786 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1787 1788 // Compute denominator reciprocal. 1789 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? 1790 (unsigned)ISD::FMA : 1791 !MFI->getMode().allFP32Denormals() ? 1792 (unsigned)ISD::FMAD : 1793 (unsigned)AMDGPUISD::FMAD_FTZ; 1794 1795 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1796 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1797 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1798 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1799 Cvt_Lo); 1800 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1801 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1802 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1803 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1804 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1805 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1806 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1807 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1808 Mul1); 1809 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1810 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1811 SDValue Rcp64 = DAG.getBitcast(VT, 1812 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1813 1814 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1815 SDValue One64 = DAG.getConstant(1, DL, VT); 1816 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1817 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1818 1819 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1820 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1821 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1822 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1823 Zero); 1824 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1825 One); 1826 1827 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1828 Mulhi1_Lo, Zero1); 1829 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1830 Mulhi1_Hi, Add1_Lo.getValue(1)); 1831 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1832 SDValue Add1 = DAG.getBitcast(VT, 1833 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1834 1835 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1836 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1837 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1838 Zero); 1839 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1840 One); 1841 1842 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1843 Mulhi2_Lo, Zero1); 1844 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1845 Mulhi2_Hi, Add1_Lo.getValue(1)); 1846 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1847 Zero, Add2_Lo.getValue(1)); 1848 SDValue Add2 = DAG.getBitcast(VT, 1849 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1850 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1851 1852 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1853 1854 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1855 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1856 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1857 Mul3_Lo, Zero1); 1858 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1859 Mul3_Hi, Sub1_Lo.getValue(1)); 1860 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1861 SDValue Sub1 = DAG.getBitcast(VT, 1862 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1863 1864 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1865 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1866 ISD::SETUGE); 1867 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1868 ISD::SETUGE); 1869 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1870 1871 // TODO: Here and below portions of the code can be enclosed into if/endif. 1872 // Currently control flow is unconditional and we have 4 selects after 1873 // potential endif to substitute PHIs. 1874 1875 // if C3 != 0 ... 1876 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1877 RHS_Lo, Zero1); 1878 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1879 RHS_Hi, Sub1_Lo.getValue(1)); 1880 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1881 Zero, Sub2_Lo.getValue(1)); 1882 SDValue Sub2 = DAG.getBitcast(VT, 1883 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1884 1885 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1886 1887 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1888 ISD::SETUGE); 1889 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1890 ISD::SETUGE); 1891 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1892 1893 // if (C6 != 0) 1894 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1895 1896 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1897 RHS_Lo, Zero1); 1898 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1899 RHS_Hi, Sub2_Lo.getValue(1)); 1900 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1901 Zero, Sub3_Lo.getValue(1)); 1902 SDValue Sub3 = DAG.getBitcast(VT, 1903 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1904 1905 // endif C6 1906 // endif C3 1907 1908 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1909 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1910 1911 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1912 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1913 1914 Results.push_back(Div); 1915 Results.push_back(Rem); 1916 1917 return; 1918 } 1919 1920 // r600 expandion. 1921 // Get Speculative values 1922 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1923 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1924 1925 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1926 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1927 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1928 1929 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1930 SDValue DIV_Lo = Zero; 1931 1932 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1933 1934 for (unsigned i = 0; i < halfBitWidth; ++i) { 1935 const unsigned bitPos = halfBitWidth - i - 1; 1936 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1937 // Get value of high bit 1938 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1939 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1940 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1941 1942 // Shift 1943 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1944 // Add LHS high bit 1945 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1946 1947 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1948 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1949 1950 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1951 1952 // Update REM 1953 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1954 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1955 } 1956 1957 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1958 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1959 Results.push_back(DIV); 1960 Results.push_back(REM); 1961 } 1962 1963 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1964 SelectionDAG &DAG) const { 1965 SDLoc DL(Op); 1966 EVT VT = Op.getValueType(); 1967 1968 if (VT == MVT::i64) { 1969 SmallVector<SDValue, 2> Results; 1970 LowerUDIVREM64(Op, DAG, Results); 1971 return DAG.getMergeValues(Results, DL); 1972 } 1973 1974 if (VT == MVT::i32) { 1975 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1976 return Res; 1977 } 1978 1979 SDValue X = Op.getOperand(0); 1980 SDValue Y = Op.getOperand(1); 1981 1982 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the 1983 // algorithm used here. 1984 1985 // Initial estimate of inv(y). 1986 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); 1987 1988 // One round of UNR. 1989 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); 1990 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); 1991 Z = DAG.getNode(ISD::ADD, DL, VT, Z, 1992 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); 1993 1994 // Quotient/remainder estimate. 1995 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); 1996 SDValue R = 1997 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); 1998 1999 // First quotient/remainder refinement. 2000 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2001 SDValue One = DAG.getConstant(1, DL, VT); 2002 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2003 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2004 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2005 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2006 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2007 2008 // Second quotient/remainder refinement. 2009 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); 2010 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2011 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); 2012 R = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2013 DAG.getNode(ISD::SUB, DL, VT, R, Y), R); 2014 2015 return DAG.getMergeValues({Q, R}, DL); 2016 } 2017 2018 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 2019 SelectionDAG &DAG) const { 2020 SDLoc DL(Op); 2021 EVT VT = Op.getValueType(); 2022 2023 SDValue LHS = Op.getOperand(0); 2024 SDValue RHS = Op.getOperand(1); 2025 2026 SDValue Zero = DAG.getConstant(0, DL, VT); 2027 SDValue NegOne = DAG.getConstant(-1, DL, VT); 2028 2029 if (VT == MVT::i32) { 2030 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 2031 return Res; 2032 } 2033 2034 if (VT == MVT::i64 && 2035 DAG.ComputeNumSignBits(LHS) > 32 && 2036 DAG.ComputeNumSignBits(RHS) > 32) { 2037 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 2038 2039 //HiLo split 2040 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 2041 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 2042 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 2043 LHS_Lo, RHS_Lo); 2044 SDValue Res[2] = { 2045 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 2046 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 2047 }; 2048 return DAG.getMergeValues(Res, DL); 2049 } 2050 2051 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 2052 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 2053 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 2054 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2055 2056 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2057 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2058 2059 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2060 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2061 2062 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2063 SDValue Rem = Div.getValue(1); 2064 2065 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2066 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2067 2068 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2069 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2070 2071 SDValue Res[2] = { 2072 Div, 2073 Rem 2074 }; 2075 return DAG.getMergeValues(Res, DL); 2076 } 2077 2078 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2079 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2080 SDLoc SL(Op); 2081 EVT VT = Op.getValueType(); 2082 SDValue X = Op.getOperand(0); 2083 SDValue Y = Op.getOperand(1); 2084 2085 // TODO: Should this propagate fast-math-flags? 2086 2087 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2088 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2089 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2090 2091 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2092 } 2093 2094 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2095 SDLoc SL(Op); 2096 SDValue Src = Op.getOperand(0); 2097 2098 // result = trunc(src) 2099 // if (src > 0.0 && src != result) 2100 // result += 1.0 2101 2102 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2103 2104 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2105 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2106 2107 EVT SetCCVT = 2108 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2109 2110 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2111 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2112 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2113 2114 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2115 // TODO: Should this propagate fast-math-flags? 2116 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2117 } 2118 2119 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2120 SelectionDAG &DAG) { 2121 const unsigned FractBits = 52; 2122 const unsigned ExpBits = 11; 2123 2124 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2125 Hi, 2126 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2127 DAG.getConstant(ExpBits, SL, MVT::i32)); 2128 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2129 DAG.getConstant(1023, SL, MVT::i32)); 2130 2131 return Exp; 2132 } 2133 2134 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2135 SDLoc SL(Op); 2136 SDValue Src = Op.getOperand(0); 2137 2138 assert(Op.getValueType() == MVT::f64); 2139 2140 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2141 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2142 2143 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2144 2145 // Extract the upper half, since this is where we will find the sign and 2146 // exponent. 2147 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2148 2149 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2150 2151 const unsigned FractBits = 52; 2152 2153 // Extract the sign bit. 2154 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2155 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2156 2157 // Extend back to 64-bits. 2158 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2159 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2160 2161 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2162 const SDValue FractMask 2163 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2164 2165 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2166 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2167 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2168 2169 EVT SetCCVT = 2170 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2171 2172 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2173 2174 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2175 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2176 2177 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2178 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2179 2180 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2181 } 2182 2183 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2184 SDLoc SL(Op); 2185 SDValue Src = Op.getOperand(0); 2186 2187 assert(Op.getValueType() == MVT::f64); 2188 2189 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2190 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2191 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2192 2193 // TODO: Should this propagate fast-math-flags? 2194 2195 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2196 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2197 2198 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2199 2200 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2201 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2202 2203 EVT SetCCVT = 2204 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2205 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2206 2207 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2208 } 2209 2210 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2211 // FNEARBYINT and FRINT are the same, except in their handling of FP 2212 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2213 // rint, so just treat them as equivalent. 2214 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2215 } 2216 2217 // XXX - May require not supporting f32 denormals? 2218 2219 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2220 // compare and vselect end up producing worse code than scalarizing the whole 2221 // operation. 2222 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2223 SDLoc SL(Op); 2224 SDValue X = Op.getOperand(0); 2225 EVT VT = Op.getValueType(); 2226 2227 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2228 2229 // TODO: Should this propagate fast-math-flags? 2230 2231 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2232 2233 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2234 2235 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2236 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2237 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2238 2239 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2240 2241 EVT SetCCVT = 2242 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2243 2244 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2245 2246 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2247 2248 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2249 } 2250 2251 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2252 SDLoc SL(Op); 2253 SDValue Src = Op.getOperand(0); 2254 2255 // result = trunc(src); 2256 // if (src < 0.0 && src != result) 2257 // result += -1.0. 2258 2259 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2260 2261 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2262 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2263 2264 EVT SetCCVT = 2265 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2266 2267 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2268 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2269 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2270 2271 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2272 // TODO: Should this propagate fast-math-flags? 2273 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2274 } 2275 2276 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2277 double Log2BaseInverted) const { 2278 EVT VT = Op.getValueType(); 2279 2280 SDLoc SL(Op); 2281 SDValue Operand = Op.getOperand(0); 2282 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2283 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2284 2285 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2286 } 2287 2288 // exp2(M_LOG2E_F * f); 2289 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2290 EVT VT = Op.getValueType(); 2291 SDLoc SL(Op); 2292 SDValue Src = Op.getOperand(0); 2293 2294 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2295 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2296 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2297 } 2298 2299 static bool isCtlzOpc(unsigned Opc) { 2300 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2301 } 2302 2303 static bool isCttzOpc(unsigned Opc) { 2304 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2305 } 2306 2307 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2308 SDLoc SL(Op); 2309 SDValue Src = Op.getOperand(0); 2310 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2311 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2312 2313 unsigned ISDOpc, NewOpc; 2314 if (isCtlzOpc(Op.getOpcode())) { 2315 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2316 NewOpc = AMDGPUISD::FFBH_U32; 2317 } else if (isCttzOpc(Op.getOpcode())) { 2318 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2319 NewOpc = AMDGPUISD::FFBL_B32; 2320 } else 2321 llvm_unreachable("Unexpected OPCode!!!"); 2322 2323 2324 if (ZeroUndef && Src.getValueType() == MVT::i32) 2325 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2326 2327 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2328 2329 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2330 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2331 2332 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2333 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2334 2335 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2336 *DAG.getContext(), MVT::i32); 2337 2338 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2339 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2340 2341 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2342 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2343 2344 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2345 SDValue Add, NewOpr; 2346 if (isCtlzOpc(Op.getOpcode())) { 2347 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2348 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2349 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2350 } else { 2351 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2352 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2353 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2354 } 2355 2356 if (!ZeroUndef) { 2357 // Test if the full 64-bit input is zero. 2358 2359 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2360 // which we probably don't want. 2361 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2362 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2363 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2364 2365 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2366 // with the same cycles, otherwise it is slower. 2367 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2368 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2369 2370 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2371 2372 // The instruction returns -1 for 0 input, but the defined intrinsic 2373 // behavior is to return the number of bits. 2374 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2375 SrcIsZero, Bits32, NewOpr); 2376 } 2377 2378 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2379 } 2380 2381 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2382 bool Signed) const { 2383 // Unsigned 2384 // cul2f(ulong u) 2385 //{ 2386 // uint lz = clz(u); 2387 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2388 // u = (u << lz) & 0x7fffffffffffffffUL; 2389 // ulong t = u & 0xffffffffffUL; 2390 // uint v = (e << 23) | (uint)(u >> 40); 2391 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2392 // return as_float(v + r); 2393 //} 2394 // Signed 2395 // cl2f(long l) 2396 //{ 2397 // long s = l >> 63; 2398 // float r = cul2f((l + s) ^ s); 2399 // return s ? -r : r; 2400 //} 2401 2402 SDLoc SL(Op); 2403 SDValue Src = Op.getOperand(0); 2404 SDValue L = Src; 2405 2406 SDValue S; 2407 if (Signed) { 2408 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2409 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2410 2411 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2412 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2413 } 2414 2415 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2416 *DAG.getContext(), MVT::f32); 2417 2418 2419 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2420 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2421 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2422 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2423 2424 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2425 SDValue E = DAG.getSelect(SL, MVT::i32, 2426 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2427 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2428 ZeroI32); 2429 2430 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2431 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2432 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2433 2434 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2435 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2436 2437 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2438 U, DAG.getConstant(40, SL, MVT::i64)); 2439 2440 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2441 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2442 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2443 2444 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2445 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2446 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2447 2448 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2449 2450 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2451 2452 SDValue R = DAG.getSelect(SL, MVT::i32, 2453 RCmp, 2454 One, 2455 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2456 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2457 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2458 2459 if (!Signed) 2460 return R; 2461 2462 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2463 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2464 } 2465 2466 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2467 bool Signed) const { 2468 SDLoc SL(Op); 2469 SDValue Src = Op.getOperand(0); 2470 2471 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2472 2473 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2474 DAG.getConstant(0, SL, MVT::i32)); 2475 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2476 DAG.getConstant(1, SL, MVT::i32)); 2477 2478 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2479 SL, MVT::f64, Hi); 2480 2481 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2482 2483 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2484 DAG.getConstant(32, SL, MVT::i32)); 2485 // TODO: Should this propagate fast-math-flags? 2486 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2487 } 2488 2489 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2490 SelectionDAG &DAG) const { 2491 // TODO: Factor out code common with LowerSINT_TO_FP. 2492 EVT DestVT = Op.getValueType(); 2493 SDValue Src = Op.getOperand(0); 2494 EVT SrcVT = Src.getValueType(); 2495 2496 if (SrcVT == MVT::i16) { 2497 if (DestVT == MVT::f16) 2498 return Op; 2499 SDLoc DL(Op); 2500 2501 // Promote src to i32 2502 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2503 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2504 } 2505 2506 assert(SrcVT == MVT::i64 && "operation should be legal"); 2507 2508 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2509 SDLoc DL(Op); 2510 2511 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2512 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2513 SDValue FPRound = 2514 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2515 2516 return FPRound; 2517 } 2518 2519 if (DestVT == MVT::f32) 2520 return LowerINT_TO_FP32(Op, DAG, false); 2521 2522 assert(DestVT == MVT::f64); 2523 return LowerINT_TO_FP64(Op, DAG, false); 2524 } 2525 2526 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2527 SelectionDAG &DAG) const { 2528 EVT DestVT = Op.getValueType(); 2529 2530 SDValue Src = Op.getOperand(0); 2531 EVT SrcVT = Src.getValueType(); 2532 2533 if (SrcVT == MVT::i16) { 2534 if (DestVT == MVT::f16) 2535 return Op; 2536 2537 SDLoc DL(Op); 2538 // Promote src to i32 2539 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2540 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2541 } 2542 2543 assert(SrcVT == MVT::i64 && "operation should be legal"); 2544 2545 // TODO: Factor out code common with LowerUINT_TO_FP. 2546 2547 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2548 SDLoc DL(Op); 2549 SDValue Src = Op.getOperand(0); 2550 2551 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2552 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2553 SDValue FPRound = 2554 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2555 2556 return FPRound; 2557 } 2558 2559 if (DestVT == MVT::f32) 2560 return LowerINT_TO_FP32(Op, DAG, true); 2561 2562 assert(DestVT == MVT::f64); 2563 return LowerINT_TO_FP64(Op, DAG, true); 2564 } 2565 2566 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2567 bool Signed) const { 2568 SDLoc SL(Op); 2569 2570 SDValue Src = Op.getOperand(0); 2571 2572 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2573 2574 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2575 MVT::f64); 2576 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2577 MVT::f64); 2578 // TODO: Should this propagate fast-math-flags? 2579 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2580 2581 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2582 2583 2584 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2585 2586 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2587 MVT::i32, FloorMul); 2588 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2589 2590 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2591 2592 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2593 } 2594 2595 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2596 SDLoc DL(Op); 2597 SDValue N0 = Op.getOperand(0); 2598 2599 // Convert to target node to get known bits 2600 if (N0.getValueType() == MVT::f32) 2601 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2602 2603 if (getTargetMachine().Options.UnsafeFPMath) { 2604 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2605 return SDValue(); 2606 } 2607 2608 assert(N0.getSimpleValueType() == MVT::f64); 2609 2610 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2611 const unsigned ExpMask = 0x7ff; 2612 const unsigned ExpBiasf64 = 1023; 2613 const unsigned ExpBiasf16 = 15; 2614 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2615 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2616 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2617 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2618 DAG.getConstant(32, DL, MVT::i64)); 2619 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2620 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2621 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2622 DAG.getConstant(20, DL, MVT::i64)); 2623 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2624 DAG.getConstant(ExpMask, DL, MVT::i32)); 2625 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2626 // add the f16 bias (15) to get the biased exponent for the f16 format. 2627 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2628 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2629 2630 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2631 DAG.getConstant(8, DL, MVT::i32)); 2632 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2633 DAG.getConstant(0xffe, DL, MVT::i32)); 2634 2635 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2636 DAG.getConstant(0x1ff, DL, MVT::i32)); 2637 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2638 2639 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2640 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2641 2642 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2643 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2644 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2645 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2646 2647 // N = M | (E << 12); 2648 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2649 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2650 DAG.getConstant(12, DL, MVT::i32))); 2651 2652 // B = clamp(1-E, 0, 13); 2653 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2654 One, E); 2655 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2656 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2657 DAG.getConstant(13, DL, MVT::i32)); 2658 2659 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2660 DAG.getConstant(0x1000, DL, MVT::i32)); 2661 2662 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2663 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2664 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2665 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2666 2667 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2668 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2669 DAG.getConstant(0x7, DL, MVT::i32)); 2670 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2671 DAG.getConstant(2, DL, MVT::i32)); 2672 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2673 One, Zero, ISD::SETEQ); 2674 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2675 One, Zero, ISD::SETGT); 2676 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2677 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2678 2679 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2680 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2681 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2682 I, V, ISD::SETEQ); 2683 2684 // Extract the sign bit. 2685 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2686 DAG.getConstant(16, DL, MVT::i32)); 2687 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2688 DAG.getConstant(0x8000, DL, MVT::i32)); 2689 2690 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2691 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2692 } 2693 2694 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2695 SelectionDAG &DAG) const { 2696 SDValue Src = Op.getOperand(0); 2697 2698 // TODO: Factor out code common with LowerFP_TO_UINT. 2699 2700 EVT SrcVT = Src.getValueType(); 2701 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2702 SDLoc DL(Op); 2703 2704 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2705 SDValue FpToInt32 = 2706 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2707 2708 return FpToInt32; 2709 } 2710 2711 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2712 return LowerFP64_TO_INT(Op, DAG, true); 2713 2714 return SDValue(); 2715 } 2716 2717 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2718 SelectionDAG &DAG) const { 2719 SDValue Src = Op.getOperand(0); 2720 2721 // TODO: Factor out code common with LowerFP_TO_SINT. 2722 2723 EVT SrcVT = Src.getValueType(); 2724 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2725 SDLoc DL(Op); 2726 2727 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2728 SDValue FpToInt32 = 2729 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2730 2731 return FpToInt32; 2732 } 2733 2734 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2735 return LowerFP64_TO_INT(Op, DAG, false); 2736 2737 return SDValue(); 2738 } 2739 2740 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2741 SelectionDAG &DAG) const { 2742 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2743 MVT VT = Op.getSimpleValueType(); 2744 MVT ScalarVT = VT.getScalarType(); 2745 2746 assert(VT.isVector()); 2747 2748 SDValue Src = Op.getOperand(0); 2749 SDLoc DL(Op); 2750 2751 // TODO: Don't scalarize on Evergreen? 2752 unsigned NElts = VT.getVectorNumElements(); 2753 SmallVector<SDValue, 8> Args; 2754 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2755 2756 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2757 for (unsigned I = 0; I < NElts; ++I) 2758 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2759 2760 return DAG.getBuildVector(VT, DL, Args); 2761 } 2762 2763 //===----------------------------------------------------------------------===// 2764 // Custom DAG optimizations 2765 //===----------------------------------------------------------------------===// 2766 2767 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2768 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2769 } 2770 2771 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2772 EVT VT = Op.getValueType(); 2773 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2774 // as unsigned 24-bit values. 2775 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2776 } 2777 2778 static SDValue simplifyI24(SDNode *Node24, 2779 TargetLowering::DAGCombinerInfo &DCI) { 2780 SelectionDAG &DAG = DCI.DAG; 2781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2782 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2783 2784 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2785 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2786 unsigned NewOpcode = Node24->getOpcode(); 2787 if (IsIntrin) { 2788 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2789 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2790 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2791 } 2792 2793 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2794 2795 // First try to simplify using SimplifyMultipleUseDemandedBits which allows 2796 // the operands to have other uses, but will only perform simplifications that 2797 // involve bypassing some nodes for this user. 2798 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); 2799 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); 2800 if (DemandedLHS || DemandedRHS) 2801 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2802 DemandedLHS ? DemandedLHS : LHS, 2803 DemandedRHS ? DemandedRHS : RHS); 2804 2805 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2806 // operands if this node is the only user. 2807 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2808 return SDValue(Node24, 0); 2809 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2810 return SDValue(Node24, 0); 2811 2812 return SDValue(); 2813 } 2814 2815 template <typename IntTy> 2816 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2817 uint32_t Width, const SDLoc &DL) { 2818 if (Width + Offset < 32) { 2819 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2820 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2821 return DAG.getConstant(Result, DL, MVT::i32); 2822 } 2823 2824 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2825 } 2826 2827 static bool hasVolatileUser(SDNode *Val) { 2828 for (SDNode *U : Val->uses()) { 2829 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2830 if (M->isVolatile()) 2831 return true; 2832 } 2833 } 2834 2835 return false; 2836 } 2837 2838 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2839 // i32 vectors are the canonical memory type. 2840 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2841 return false; 2842 2843 if (!VT.isByteSized()) 2844 return false; 2845 2846 unsigned Size = VT.getStoreSize(); 2847 2848 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2849 return false; 2850 2851 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2852 return false; 2853 2854 return true; 2855 } 2856 2857 // Replace load of an illegal type with a store of a bitcast to a friendlier 2858 // type. 2859 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2860 DAGCombinerInfo &DCI) const { 2861 if (!DCI.isBeforeLegalize()) 2862 return SDValue(); 2863 2864 LoadSDNode *LN = cast<LoadSDNode>(N); 2865 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2866 return SDValue(); 2867 2868 SDLoc SL(N); 2869 SelectionDAG &DAG = DCI.DAG; 2870 EVT VT = LN->getMemoryVT(); 2871 2872 unsigned Size = VT.getStoreSize(); 2873 Align Alignment = LN->getAlign(); 2874 if (Alignment < Size && isTypeLegal(VT)) { 2875 bool IsFast; 2876 unsigned AS = LN->getAddressSpace(); 2877 2878 // Expand unaligned loads earlier than legalization. Due to visitation order 2879 // problems during legalization, the emitted instructions to pack and unpack 2880 // the bytes again are not eliminated in the case of an unaligned copy. 2881 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2882 LN->getMemOperand()->getFlags(), 2883 &IsFast)) { 2884 SDValue Ops[2]; 2885 2886 if (VT.isVector()) 2887 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2888 else 2889 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2890 2891 return DAG.getMergeValues(Ops, SDLoc(N)); 2892 } 2893 2894 if (!IsFast) 2895 return SDValue(); 2896 } 2897 2898 if (!shouldCombineMemoryType(VT)) 2899 return SDValue(); 2900 2901 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2902 2903 SDValue NewLoad 2904 = DAG.getLoad(NewVT, SL, LN->getChain(), 2905 LN->getBasePtr(), LN->getMemOperand()); 2906 2907 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2908 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2909 return SDValue(N, 0); 2910 } 2911 2912 // Replace store of an illegal type with a store of a bitcast to a friendlier 2913 // type. 2914 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2915 DAGCombinerInfo &DCI) const { 2916 if (!DCI.isBeforeLegalize()) 2917 return SDValue(); 2918 2919 StoreSDNode *SN = cast<StoreSDNode>(N); 2920 if (!SN->isSimple() || !ISD::isNormalStore(SN)) 2921 return SDValue(); 2922 2923 EVT VT = SN->getMemoryVT(); 2924 unsigned Size = VT.getStoreSize(); 2925 2926 SDLoc SL(N); 2927 SelectionDAG &DAG = DCI.DAG; 2928 Align Alignment = SN->getAlign(); 2929 if (Alignment < Size && isTypeLegal(VT)) { 2930 bool IsFast; 2931 unsigned AS = SN->getAddressSpace(); 2932 2933 // Expand unaligned stores earlier than legalization. Due to visitation 2934 // order problems during legalization, the emitted instructions to pack and 2935 // unpack the bytes again are not eliminated in the case of an unaligned 2936 // copy. 2937 if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(), 2938 SN->getMemOperand()->getFlags(), 2939 &IsFast)) { 2940 if (VT.isVector()) 2941 return scalarizeVectorStore(SN, DAG); 2942 2943 return expandUnalignedStore(SN, DAG); 2944 } 2945 2946 if (!IsFast) 2947 return SDValue(); 2948 } 2949 2950 if (!shouldCombineMemoryType(VT)) 2951 return SDValue(); 2952 2953 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2954 SDValue Val = SN->getValue(); 2955 2956 //DCI.AddToWorklist(Val.getNode()); 2957 2958 bool OtherUses = !Val.hasOneUse(); 2959 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2960 if (OtherUses) { 2961 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2962 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2963 } 2964 2965 return DAG.getStore(SN->getChain(), SL, CastVal, 2966 SN->getBasePtr(), SN->getMemOperand()); 2967 } 2968 2969 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2970 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2971 // issues. 2972 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2973 DAGCombinerInfo &DCI) const { 2974 SelectionDAG &DAG = DCI.DAG; 2975 SDValue N0 = N->getOperand(0); 2976 2977 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2978 // (vt2 (truncate (assertzext vt0:x, vt1))) 2979 if (N0.getOpcode() == ISD::TRUNCATE) { 2980 SDValue N1 = N->getOperand(1); 2981 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2982 SDLoc SL(N); 2983 2984 SDValue Src = N0.getOperand(0); 2985 EVT SrcVT = Src.getValueType(); 2986 if (SrcVT.bitsGE(ExtVT)) { 2987 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2988 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2989 } 2990 } 2991 2992 return SDValue(); 2993 } 2994 2995 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 2996 SDNode *N, DAGCombinerInfo &DCI) const { 2997 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2998 switch (IID) { 2999 case Intrinsic::amdgcn_mul_i24: 3000 case Intrinsic::amdgcn_mul_u24: 3001 return simplifyI24(N, DCI); 3002 case Intrinsic::amdgcn_fract: 3003 case Intrinsic::amdgcn_rsq: 3004 case Intrinsic::amdgcn_rcp_legacy: 3005 case Intrinsic::amdgcn_rsq_legacy: 3006 case Intrinsic::amdgcn_rsq_clamp: 3007 case Intrinsic::amdgcn_ldexp: { 3008 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted 3009 SDValue Src = N->getOperand(1); 3010 return Src.isUndef() ? Src : SDValue(); 3011 } 3012 default: 3013 return SDValue(); 3014 } 3015 } 3016 3017 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3018 /// binary operation \p Opc to it with the corresponding constant operands. 3019 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3020 DAGCombinerInfo &DCI, const SDLoc &SL, 3021 unsigned Opc, SDValue LHS, 3022 uint32_t ValLo, uint32_t ValHi) const { 3023 SelectionDAG &DAG = DCI.DAG; 3024 SDValue Lo, Hi; 3025 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3026 3027 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3028 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3029 3030 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3031 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3032 3033 // Re-visit the ands. It's possible we eliminated one of them and it could 3034 // simplify the vector. 3035 DCI.AddToWorklist(Lo.getNode()); 3036 DCI.AddToWorklist(Hi.getNode()); 3037 3038 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3039 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3040 } 3041 3042 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3043 DAGCombinerInfo &DCI) const { 3044 EVT VT = N->getValueType(0); 3045 3046 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3047 if (!RHS) 3048 return SDValue(); 3049 3050 SDValue LHS = N->getOperand(0); 3051 unsigned RHSVal = RHS->getZExtValue(); 3052 if (!RHSVal) 3053 return LHS; 3054 3055 SDLoc SL(N); 3056 SelectionDAG &DAG = DCI.DAG; 3057 3058 switch (LHS->getOpcode()) { 3059 default: 3060 break; 3061 case ISD::ZERO_EXTEND: 3062 case ISD::SIGN_EXTEND: 3063 case ISD::ANY_EXTEND: { 3064 SDValue X = LHS->getOperand(0); 3065 3066 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3067 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3068 // Prefer build_vector as the canonical form if packed types are legal. 3069 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3070 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3071 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3072 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3073 } 3074 3075 // shl (ext x) => zext (shl x), if shift does not overflow int 3076 if (VT != MVT::i64) 3077 break; 3078 KnownBits Known = DAG.computeKnownBits(X); 3079 unsigned LZ = Known.countMinLeadingZeros(); 3080 if (LZ < RHSVal) 3081 break; 3082 EVT XVT = X.getValueType(); 3083 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3084 return DAG.getZExtOrTrunc(Shl, SL, VT); 3085 } 3086 } 3087 3088 if (VT != MVT::i64) 3089 return SDValue(); 3090 3091 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3092 3093 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3094 // common case, splitting this into a move and a 32-bit shift is faster and 3095 // the same code size. 3096 if (RHSVal < 32) 3097 return SDValue(); 3098 3099 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3100 3101 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3102 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3103 3104 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3105 3106 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3107 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3108 } 3109 3110 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3111 DAGCombinerInfo &DCI) const { 3112 if (N->getValueType(0) != MVT::i64) 3113 return SDValue(); 3114 3115 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3116 if (!RHS) 3117 return SDValue(); 3118 3119 SelectionDAG &DAG = DCI.DAG; 3120 SDLoc SL(N); 3121 unsigned RHSVal = RHS->getZExtValue(); 3122 3123 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3124 if (RHSVal == 32) { 3125 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3126 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3127 DAG.getConstant(31, SL, MVT::i32)); 3128 3129 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3130 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3131 } 3132 3133 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3134 if (RHSVal == 63) { 3135 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3136 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3137 DAG.getConstant(31, SL, MVT::i32)); 3138 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3139 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3140 } 3141 3142 return SDValue(); 3143 } 3144 3145 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3146 DAGCombinerInfo &DCI) const { 3147 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3148 if (!RHS) 3149 return SDValue(); 3150 3151 EVT VT = N->getValueType(0); 3152 SDValue LHS = N->getOperand(0); 3153 unsigned ShiftAmt = RHS->getZExtValue(); 3154 SelectionDAG &DAG = DCI.DAG; 3155 SDLoc SL(N); 3156 3157 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3158 // this improves the ability to match BFE patterns in isel. 3159 if (LHS.getOpcode() == ISD::AND) { 3160 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3161 if (Mask->getAPIntValue().isShiftedMask() && 3162 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3163 return DAG.getNode( 3164 ISD::AND, SL, VT, 3165 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3166 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3167 } 3168 } 3169 } 3170 3171 if (VT != MVT::i64) 3172 return SDValue(); 3173 3174 if (ShiftAmt < 32) 3175 return SDValue(); 3176 3177 // srl i64:x, C for C >= 32 3178 // => 3179 // build_pair (srl hi_32(x), C - 32), 0 3180 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3181 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3182 3183 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3184 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3185 3186 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3187 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3188 3189 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3190 3191 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3192 } 3193 3194 SDValue AMDGPUTargetLowering::performTruncateCombine( 3195 SDNode *N, DAGCombinerInfo &DCI) const { 3196 SDLoc SL(N); 3197 SelectionDAG &DAG = DCI.DAG; 3198 EVT VT = N->getValueType(0); 3199 SDValue Src = N->getOperand(0); 3200 3201 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3202 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3203 SDValue Vec = Src.getOperand(0); 3204 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3205 SDValue Elt0 = Vec.getOperand(0); 3206 EVT EltVT = Elt0.getValueType(); 3207 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3208 if (EltVT.isFloatingPoint()) { 3209 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3210 EltVT.changeTypeToInteger(), Elt0); 3211 } 3212 3213 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3214 } 3215 } 3216 } 3217 3218 // Equivalent of above for accessing the high element of a vector as an 3219 // integer operation. 3220 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3221 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3222 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3223 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3224 SDValue BV = stripBitcast(Src.getOperand(0)); 3225 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3226 BV.getValueType().getVectorNumElements() == 2) { 3227 SDValue SrcElt = BV.getOperand(1); 3228 EVT SrcEltVT = SrcElt.getValueType(); 3229 if (SrcEltVT.isFloatingPoint()) { 3230 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3231 SrcEltVT.changeTypeToInteger(), SrcElt); 3232 } 3233 3234 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3235 } 3236 } 3237 } 3238 } 3239 3240 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3241 // 3242 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3243 // i16 (trunc (srl (i32 (trunc x), K))) 3244 if (VT.getScalarSizeInBits() < 32) { 3245 EVT SrcVT = Src.getValueType(); 3246 if (SrcVT.getScalarSizeInBits() > 32 && 3247 (Src.getOpcode() == ISD::SRL || 3248 Src.getOpcode() == ISD::SRA || 3249 Src.getOpcode() == ISD::SHL)) { 3250 SDValue Amt = Src.getOperand(1); 3251 KnownBits Known = DAG.computeKnownBits(Amt); 3252 unsigned Size = VT.getScalarSizeInBits(); 3253 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3254 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3255 EVT MidVT = VT.isVector() ? 3256 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3257 VT.getVectorNumElements()) : MVT::i32; 3258 3259 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3260 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3261 Src.getOperand(0)); 3262 DCI.AddToWorklist(Trunc.getNode()); 3263 3264 if (Amt.getValueType() != NewShiftVT) { 3265 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3266 DCI.AddToWorklist(Amt.getNode()); 3267 } 3268 3269 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3270 Trunc, Amt); 3271 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3272 } 3273 } 3274 } 3275 3276 return SDValue(); 3277 } 3278 3279 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3280 // instructions. If we only match on the legalized i64 mul expansion, 3281 // SimplifyDemandedBits will be unable to remove them because there will be 3282 // multiple uses due to the separate mul + mulh[su]. 3283 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3284 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3285 if (Size <= 32) { 3286 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3287 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3288 } 3289 3290 // Because we want to eliminate extension instructions before the 3291 // operation, we need to create a single user here (i.e. not the separate 3292 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3293 3294 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3295 3296 SDValue Mul = DAG.getNode(MulOpc, SL, 3297 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3298 3299 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3300 Mul.getValue(0), Mul.getValue(1)); 3301 } 3302 3303 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3304 DAGCombinerInfo &DCI) const { 3305 EVT VT = N->getValueType(0); 3306 3307 unsigned Size = VT.getSizeInBits(); 3308 if (VT.isVector() || Size > 64) 3309 return SDValue(); 3310 3311 // There are i16 integer mul/mad. 3312 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3313 return SDValue(); 3314 3315 SelectionDAG &DAG = DCI.DAG; 3316 SDLoc DL(N); 3317 3318 SDValue N0 = N->getOperand(0); 3319 SDValue N1 = N->getOperand(1); 3320 3321 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3322 // in the source into any_extends if the result of the mul is truncated. Since 3323 // we can assume the high bits are whatever we want, use the underlying value 3324 // to avoid the unknown high bits from interfering. 3325 if (N0.getOpcode() == ISD::ANY_EXTEND) 3326 N0 = N0.getOperand(0); 3327 3328 if (N1.getOpcode() == ISD::ANY_EXTEND) 3329 N1 = N1.getOperand(0); 3330 3331 SDValue Mul; 3332 3333 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3334 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3335 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3336 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3337 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3338 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3339 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3340 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3341 } else { 3342 return SDValue(); 3343 } 3344 3345 // We need to use sext even for MUL_U24, because MUL_U24 is used 3346 // for signed multiply of 8 and 16-bit types. 3347 return DAG.getSExtOrTrunc(Mul, DL, VT); 3348 } 3349 3350 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3351 DAGCombinerInfo &DCI) const { 3352 EVT VT = N->getValueType(0); 3353 3354 if (!Subtarget->hasMulI24() || VT.isVector()) 3355 return SDValue(); 3356 3357 SelectionDAG &DAG = DCI.DAG; 3358 SDLoc DL(N); 3359 3360 SDValue N0 = N->getOperand(0); 3361 SDValue N1 = N->getOperand(1); 3362 3363 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3364 return SDValue(); 3365 3366 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3367 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3368 3369 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3370 DCI.AddToWorklist(Mulhi.getNode()); 3371 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3372 } 3373 3374 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3375 DAGCombinerInfo &DCI) const { 3376 EVT VT = N->getValueType(0); 3377 3378 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3379 return SDValue(); 3380 3381 SelectionDAG &DAG = DCI.DAG; 3382 SDLoc DL(N); 3383 3384 SDValue N0 = N->getOperand(0); 3385 SDValue N1 = N->getOperand(1); 3386 3387 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3388 return SDValue(); 3389 3390 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3391 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3392 3393 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3394 DCI.AddToWorklist(Mulhi.getNode()); 3395 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3396 } 3397 3398 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3399 SDNode *N, DAGCombinerInfo &DCI) const { 3400 SelectionDAG &DAG = DCI.DAG; 3401 3402 // Simplify demanded bits before splitting into multiple users. 3403 if (SDValue V = simplifyI24(N, DCI)) 3404 return V; 3405 3406 SDValue N0 = N->getOperand(0); 3407 SDValue N1 = N->getOperand(1); 3408 3409 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3410 3411 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3412 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3413 3414 SDLoc SL(N); 3415 3416 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3417 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3418 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3419 } 3420 3421 static bool isNegativeOne(SDValue Val) { 3422 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3423 return C->isAllOnesValue(); 3424 return false; 3425 } 3426 3427 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3428 SDValue Op, 3429 const SDLoc &DL, 3430 unsigned Opc) const { 3431 EVT VT = Op.getValueType(); 3432 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3433 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3434 LegalVT != MVT::i16)) 3435 return SDValue(); 3436 3437 if (VT != MVT::i32) 3438 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3439 3440 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3441 if (VT != MVT::i32) 3442 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3443 3444 return FFBX; 3445 } 3446 3447 // The native instructions return -1 on 0 input. Optimize out a select that 3448 // produces -1 on 0. 3449 // 3450 // TODO: If zero is not undef, we could also do this if the output is compared 3451 // against the bitwidth. 3452 // 3453 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3454 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3455 SDValue LHS, SDValue RHS, 3456 DAGCombinerInfo &DCI) const { 3457 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3458 if (!CmpRhs || !CmpRhs->isNullValue()) 3459 return SDValue(); 3460 3461 SelectionDAG &DAG = DCI.DAG; 3462 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3463 SDValue CmpLHS = Cond.getOperand(0); 3464 3465 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3466 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3467 if (CCOpcode == ISD::SETEQ && 3468 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3469 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { 3470 unsigned Opc = 3471 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3472 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3473 } 3474 3475 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3476 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3477 if (CCOpcode == ISD::SETNE && 3478 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && 3479 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { 3480 unsigned Opc = 3481 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; 3482 3483 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3484 } 3485 3486 return SDValue(); 3487 } 3488 3489 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3490 unsigned Op, 3491 const SDLoc &SL, 3492 SDValue Cond, 3493 SDValue N1, 3494 SDValue N2) { 3495 SelectionDAG &DAG = DCI.DAG; 3496 EVT VT = N1.getValueType(); 3497 3498 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3499 N1.getOperand(0), N2.getOperand(0)); 3500 DCI.AddToWorklist(NewSelect.getNode()); 3501 return DAG.getNode(Op, SL, VT, NewSelect); 3502 } 3503 3504 // Pull a free FP operation out of a select so it may fold into uses. 3505 // 3506 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3507 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3508 // 3509 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3510 // select c, (fabs x), +k -> fabs (select c, x, k) 3511 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3512 SDValue N) { 3513 SelectionDAG &DAG = DCI.DAG; 3514 SDValue Cond = N.getOperand(0); 3515 SDValue LHS = N.getOperand(1); 3516 SDValue RHS = N.getOperand(2); 3517 3518 EVT VT = N.getValueType(); 3519 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3520 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3521 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3522 SDLoc(N), Cond, LHS, RHS); 3523 } 3524 3525 bool Inv = false; 3526 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3527 std::swap(LHS, RHS); 3528 Inv = true; 3529 } 3530 3531 // TODO: Support vector constants. 3532 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3533 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3534 SDLoc SL(N); 3535 // If one side is an fneg/fabs and the other is a constant, we can push the 3536 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3537 SDValue NewLHS = LHS.getOperand(0); 3538 SDValue NewRHS = RHS; 3539 3540 // Careful: if the neg can be folded up, don't try to pull it back down. 3541 bool ShouldFoldNeg = true; 3542 3543 if (NewLHS.hasOneUse()) { 3544 unsigned Opc = NewLHS.getOpcode(); 3545 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3546 ShouldFoldNeg = false; 3547 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3548 ShouldFoldNeg = false; 3549 } 3550 3551 if (ShouldFoldNeg) { 3552 if (LHS.getOpcode() == ISD::FNEG) 3553 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3554 else if (CRHS->isNegative()) 3555 return SDValue(); 3556 3557 if (Inv) 3558 std::swap(NewLHS, NewRHS); 3559 3560 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3561 Cond, NewLHS, NewRHS); 3562 DCI.AddToWorklist(NewSelect.getNode()); 3563 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3564 } 3565 } 3566 3567 return SDValue(); 3568 } 3569 3570 3571 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3572 DAGCombinerInfo &DCI) const { 3573 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3574 return Folded; 3575 3576 SDValue Cond = N->getOperand(0); 3577 if (Cond.getOpcode() != ISD::SETCC) 3578 return SDValue(); 3579 3580 EVT VT = N->getValueType(0); 3581 SDValue LHS = Cond.getOperand(0); 3582 SDValue RHS = Cond.getOperand(1); 3583 SDValue CC = Cond.getOperand(2); 3584 3585 SDValue True = N->getOperand(1); 3586 SDValue False = N->getOperand(2); 3587 3588 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3589 SelectionDAG &DAG = DCI.DAG; 3590 if (DAG.isConstantValueOfAnyType(True) && 3591 !DAG.isConstantValueOfAnyType(False)) { 3592 // Swap cmp + select pair to move constant to false input. 3593 // This will allow using VOPC cndmasks more often. 3594 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3595 3596 SDLoc SL(N); 3597 ISD::CondCode NewCC = 3598 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3599 3600 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3601 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3602 } 3603 3604 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3605 SDValue MinMax 3606 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3607 // Revisit this node so we can catch min3/max3/med3 patterns. 3608 //DCI.AddToWorklist(MinMax.getNode()); 3609 return MinMax; 3610 } 3611 } 3612 3613 // There's no reason to not do this if the condition has other uses. 3614 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3615 } 3616 3617 static bool isInv2Pi(const APFloat &APF) { 3618 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3619 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3620 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3621 3622 return APF.bitwiseIsEqual(KF16) || 3623 APF.bitwiseIsEqual(KF32) || 3624 APF.bitwiseIsEqual(KF64); 3625 } 3626 3627 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3628 // additional cost to negate them. 3629 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3630 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3631 if (C->isZero() && !C->isNegative()) 3632 return true; 3633 3634 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3635 return true; 3636 } 3637 3638 return false; 3639 } 3640 3641 static unsigned inverseMinMax(unsigned Opc) { 3642 switch (Opc) { 3643 case ISD::FMAXNUM: 3644 return ISD::FMINNUM; 3645 case ISD::FMINNUM: 3646 return ISD::FMAXNUM; 3647 case ISD::FMAXNUM_IEEE: 3648 return ISD::FMINNUM_IEEE; 3649 case ISD::FMINNUM_IEEE: 3650 return ISD::FMAXNUM_IEEE; 3651 case AMDGPUISD::FMAX_LEGACY: 3652 return AMDGPUISD::FMIN_LEGACY; 3653 case AMDGPUISD::FMIN_LEGACY: 3654 return AMDGPUISD::FMAX_LEGACY; 3655 default: 3656 llvm_unreachable("invalid min/max opcode"); 3657 } 3658 } 3659 3660 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3661 DAGCombinerInfo &DCI) const { 3662 SelectionDAG &DAG = DCI.DAG; 3663 SDValue N0 = N->getOperand(0); 3664 EVT VT = N->getValueType(0); 3665 3666 unsigned Opc = N0.getOpcode(); 3667 3668 // If the input has multiple uses and we can either fold the negate down, or 3669 // the other uses cannot, give up. This both prevents unprofitable 3670 // transformations and infinite loops: we won't repeatedly try to fold around 3671 // a negate that has no 'good' form. 3672 if (N0.hasOneUse()) { 3673 // This may be able to fold into the source, but at a code size cost. Don't 3674 // fold if the fold into the user is free. 3675 if (allUsesHaveSourceMods(N, 0)) 3676 return SDValue(); 3677 } else { 3678 if (fnegFoldsIntoOp(Opc) && 3679 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3680 return SDValue(); 3681 } 3682 3683 SDLoc SL(N); 3684 switch (Opc) { 3685 case ISD::FADD: { 3686 if (!mayIgnoreSignedZero(N0)) 3687 return SDValue(); 3688 3689 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3690 SDValue LHS = N0.getOperand(0); 3691 SDValue RHS = N0.getOperand(1); 3692 3693 if (LHS.getOpcode() != ISD::FNEG) 3694 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3695 else 3696 LHS = LHS.getOperand(0); 3697 3698 if (RHS.getOpcode() != ISD::FNEG) 3699 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3700 else 3701 RHS = RHS.getOperand(0); 3702 3703 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3704 if (Res.getOpcode() != ISD::FADD) 3705 return SDValue(); // Op got folded away. 3706 if (!N0.hasOneUse()) 3707 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3708 return Res; 3709 } 3710 case ISD::FMUL: 3711 case AMDGPUISD::FMUL_LEGACY: { 3712 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3713 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3714 SDValue LHS = N0.getOperand(0); 3715 SDValue RHS = N0.getOperand(1); 3716 3717 if (LHS.getOpcode() == ISD::FNEG) 3718 LHS = LHS.getOperand(0); 3719 else if (RHS.getOpcode() == ISD::FNEG) 3720 RHS = RHS.getOperand(0); 3721 else 3722 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3723 3724 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3725 if (Res.getOpcode() != Opc) 3726 return SDValue(); // Op got folded away. 3727 if (!N0.hasOneUse()) 3728 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3729 return Res; 3730 } 3731 case ISD::FMA: 3732 case ISD::FMAD: { 3733 if (!mayIgnoreSignedZero(N0)) 3734 return SDValue(); 3735 3736 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3737 SDValue LHS = N0.getOperand(0); 3738 SDValue MHS = N0.getOperand(1); 3739 SDValue RHS = N0.getOperand(2); 3740 3741 if (LHS.getOpcode() == ISD::FNEG) 3742 LHS = LHS.getOperand(0); 3743 else if (MHS.getOpcode() == ISD::FNEG) 3744 MHS = MHS.getOperand(0); 3745 else 3746 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3747 3748 if (RHS.getOpcode() != ISD::FNEG) 3749 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3750 else 3751 RHS = RHS.getOperand(0); 3752 3753 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3754 if (Res.getOpcode() != Opc) 3755 return SDValue(); // Op got folded away. 3756 if (!N0.hasOneUse()) 3757 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3758 return Res; 3759 } 3760 case ISD::FMAXNUM: 3761 case ISD::FMINNUM: 3762 case ISD::FMAXNUM_IEEE: 3763 case ISD::FMINNUM_IEEE: 3764 case AMDGPUISD::FMAX_LEGACY: 3765 case AMDGPUISD::FMIN_LEGACY: { 3766 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3767 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3768 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3769 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3770 3771 SDValue LHS = N0.getOperand(0); 3772 SDValue RHS = N0.getOperand(1); 3773 3774 // 0 doesn't have a negated inline immediate. 3775 // TODO: This constant check should be generalized to other operations. 3776 if (isConstantCostlierToNegate(RHS)) 3777 return SDValue(); 3778 3779 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3780 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3781 unsigned Opposite = inverseMinMax(Opc); 3782 3783 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3784 if (Res.getOpcode() != Opposite) 3785 return SDValue(); // Op got folded away. 3786 if (!N0.hasOneUse()) 3787 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3788 return Res; 3789 } 3790 case AMDGPUISD::FMED3: { 3791 SDValue Ops[3]; 3792 for (unsigned I = 0; I < 3; ++I) 3793 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3794 3795 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3796 if (Res.getOpcode() != AMDGPUISD::FMED3) 3797 return SDValue(); // Op got folded away. 3798 if (!N0.hasOneUse()) 3799 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3800 return Res; 3801 } 3802 case ISD::FP_EXTEND: 3803 case ISD::FTRUNC: 3804 case ISD::FRINT: 3805 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3806 case ISD::FSIN: 3807 case ISD::FCANONICALIZE: 3808 case AMDGPUISD::RCP: 3809 case AMDGPUISD::RCP_LEGACY: 3810 case AMDGPUISD::RCP_IFLAG: 3811 case AMDGPUISD::SIN_HW: { 3812 SDValue CvtSrc = N0.getOperand(0); 3813 if (CvtSrc.getOpcode() == ISD::FNEG) { 3814 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3815 // (fneg (rcp (fneg x))) -> (rcp x) 3816 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3817 } 3818 3819 if (!N0.hasOneUse()) 3820 return SDValue(); 3821 3822 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3823 // (fneg (rcp x)) -> (rcp (fneg x)) 3824 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3825 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3826 } 3827 case ISD::FP_ROUND: { 3828 SDValue CvtSrc = N0.getOperand(0); 3829 3830 if (CvtSrc.getOpcode() == ISD::FNEG) { 3831 // (fneg (fp_round (fneg x))) -> (fp_round x) 3832 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3833 CvtSrc.getOperand(0), N0.getOperand(1)); 3834 } 3835 3836 if (!N0.hasOneUse()) 3837 return SDValue(); 3838 3839 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3840 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3841 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3842 } 3843 case ISD::FP16_TO_FP: { 3844 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3845 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3846 // Put the fneg back as a legal source operation that can be matched later. 3847 SDLoc SL(N); 3848 3849 SDValue Src = N0.getOperand(0); 3850 EVT SrcVT = Src.getValueType(); 3851 3852 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3853 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3854 DAG.getConstant(0x8000, SL, SrcVT)); 3855 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3856 } 3857 default: 3858 return SDValue(); 3859 } 3860 } 3861 3862 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3863 DAGCombinerInfo &DCI) const { 3864 SelectionDAG &DAG = DCI.DAG; 3865 SDValue N0 = N->getOperand(0); 3866 3867 if (!N0.hasOneUse()) 3868 return SDValue(); 3869 3870 switch (N0.getOpcode()) { 3871 case ISD::FP16_TO_FP: { 3872 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3873 SDLoc SL(N); 3874 SDValue Src = N0.getOperand(0); 3875 EVT SrcVT = Src.getValueType(); 3876 3877 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3878 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3879 DAG.getConstant(0x7fff, SL, SrcVT)); 3880 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3881 } 3882 default: 3883 return SDValue(); 3884 } 3885 } 3886 3887 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3888 DAGCombinerInfo &DCI) const { 3889 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3890 if (!CFP) 3891 return SDValue(); 3892 3893 // XXX - Should this flush denormals? 3894 const APFloat &Val = CFP->getValueAPF(); 3895 APFloat One(Val.getSemantics(), "1.0"); 3896 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3897 } 3898 3899 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3900 DAGCombinerInfo &DCI) const { 3901 SelectionDAG &DAG = DCI.DAG; 3902 SDLoc DL(N); 3903 3904 switch(N->getOpcode()) { 3905 default: 3906 break; 3907 case ISD::BITCAST: { 3908 EVT DestVT = N->getValueType(0); 3909 3910 // Push casts through vector builds. This helps avoid emitting a large 3911 // number of copies when materializing floating point vector constants. 3912 // 3913 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3914 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3915 if (DestVT.isVector()) { 3916 SDValue Src = N->getOperand(0); 3917 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3918 EVT SrcVT = Src.getValueType(); 3919 unsigned NElts = DestVT.getVectorNumElements(); 3920 3921 if (SrcVT.getVectorNumElements() == NElts) { 3922 EVT DestEltVT = DestVT.getVectorElementType(); 3923 3924 SmallVector<SDValue, 8> CastedElts; 3925 SDLoc SL(N); 3926 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3927 SDValue Elt = Src.getOperand(I); 3928 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3929 } 3930 3931 return DAG.getBuildVector(DestVT, SL, CastedElts); 3932 } 3933 } 3934 } 3935 3936 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3937 break; 3938 3939 // Fold bitcasts of constants. 3940 // 3941 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3942 // TODO: Generalize and move to DAGCombiner 3943 SDValue Src = N->getOperand(0); 3944 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3945 if (Src.getValueType() == MVT::i64) { 3946 SDLoc SL(N); 3947 uint64_t CVal = C->getZExtValue(); 3948 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3949 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3950 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3951 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3952 } 3953 } 3954 3955 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3956 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3957 SDLoc SL(N); 3958 uint64_t CVal = Val.getZExtValue(); 3959 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3960 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3961 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3962 3963 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3964 } 3965 3966 break; 3967 } 3968 case ISD::SHL: { 3969 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3970 break; 3971 3972 return performShlCombine(N, DCI); 3973 } 3974 case ISD::SRL: { 3975 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3976 break; 3977 3978 return performSrlCombine(N, DCI); 3979 } 3980 case ISD::SRA: { 3981 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3982 break; 3983 3984 return performSraCombine(N, DCI); 3985 } 3986 case ISD::TRUNCATE: 3987 return performTruncateCombine(N, DCI); 3988 case ISD::MUL: 3989 return performMulCombine(N, DCI); 3990 case ISD::MULHS: 3991 return performMulhsCombine(N, DCI); 3992 case ISD::MULHU: 3993 return performMulhuCombine(N, DCI); 3994 case AMDGPUISD::MUL_I24: 3995 case AMDGPUISD::MUL_U24: 3996 case AMDGPUISD::MULHI_I24: 3997 case AMDGPUISD::MULHI_U24: { 3998 if (SDValue V = simplifyI24(N, DCI)) 3999 return V; 4000 return SDValue(); 4001 } 4002 case AMDGPUISD::MUL_LOHI_I24: 4003 case AMDGPUISD::MUL_LOHI_U24: 4004 return performMulLoHi24Combine(N, DCI); 4005 case ISD::SELECT: 4006 return performSelectCombine(N, DCI); 4007 case ISD::FNEG: 4008 return performFNegCombine(N, DCI); 4009 case ISD::FABS: 4010 return performFAbsCombine(N, DCI); 4011 case AMDGPUISD::BFE_I32: 4012 case AMDGPUISD::BFE_U32: { 4013 assert(!N->getValueType(0).isVector() && 4014 "Vector handling of BFE not implemented"); 4015 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4016 if (!Width) 4017 break; 4018 4019 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4020 if (WidthVal == 0) 4021 return DAG.getConstant(0, DL, MVT::i32); 4022 4023 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4024 if (!Offset) 4025 break; 4026 4027 SDValue BitsFrom = N->getOperand(0); 4028 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4029 4030 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4031 4032 if (OffsetVal == 0) { 4033 // This is already sign / zero extended, so try to fold away extra BFEs. 4034 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4035 4036 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4037 if (OpSignBits >= SignBits) 4038 return BitsFrom; 4039 4040 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4041 if (Signed) { 4042 // This is a sign_extend_inreg. Replace it to take advantage of existing 4043 // DAG Combines. If not eliminated, we will match back to BFE during 4044 // selection. 4045 4046 // TODO: The sext_inreg of extended types ends, although we can could 4047 // handle them in a single BFE. 4048 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4049 DAG.getValueType(SmallVT)); 4050 } 4051 4052 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4053 } 4054 4055 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4056 if (Signed) { 4057 return constantFoldBFE<int32_t>(DAG, 4058 CVal->getSExtValue(), 4059 OffsetVal, 4060 WidthVal, 4061 DL); 4062 } 4063 4064 return constantFoldBFE<uint32_t>(DAG, 4065 CVal->getZExtValue(), 4066 OffsetVal, 4067 WidthVal, 4068 DL); 4069 } 4070 4071 if ((OffsetVal + WidthVal) >= 32 && 4072 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4073 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4074 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4075 BitsFrom, ShiftVal); 4076 } 4077 4078 if (BitsFrom.hasOneUse()) { 4079 APInt Demanded = APInt::getBitsSet(32, 4080 OffsetVal, 4081 OffsetVal + WidthVal); 4082 4083 KnownBits Known; 4084 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4085 !DCI.isBeforeLegalizeOps()); 4086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4087 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4088 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4089 DCI.CommitTargetLoweringOpt(TLO); 4090 } 4091 } 4092 4093 break; 4094 } 4095 case ISD::LOAD: 4096 return performLoadCombine(N, DCI); 4097 case ISD::STORE: 4098 return performStoreCombine(N, DCI); 4099 case AMDGPUISD::RCP: 4100 case AMDGPUISD::RCP_IFLAG: 4101 return performRcpCombine(N, DCI); 4102 case ISD::AssertZext: 4103 case ISD::AssertSext: 4104 return performAssertSZExtCombine(N, DCI); 4105 case ISD::INTRINSIC_WO_CHAIN: 4106 return performIntrinsicWOChainCombine(N, DCI); 4107 } 4108 return SDValue(); 4109 } 4110 4111 //===----------------------------------------------------------------------===// 4112 // Helper functions 4113 //===----------------------------------------------------------------------===// 4114 4115 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4116 const TargetRegisterClass *RC, 4117 Register Reg, EVT VT, 4118 const SDLoc &SL, 4119 bool RawReg) const { 4120 MachineFunction &MF = DAG.getMachineFunction(); 4121 MachineRegisterInfo &MRI = MF.getRegInfo(); 4122 Register VReg; 4123 4124 if (!MRI.isLiveIn(Reg)) { 4125 VReg = MRI.createVirtualRegister(RC); 4126 MRI.addLiveIn(Reg, VReg); 4127 } else { 4128 VReg = MRI.getLiveInVirtReg(Reg); 4129 } 4130 4131 if (RawReg) 4132 return DAG.getRegister(VReg, VT); 4133 4134 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4135 } 4136 4137 // This may be called multiple times, and nothing prevents creating multiple 4138 // objects at the same offset. See if we already defined this object. 4139 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4140 int64_t Offset) { 4141 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4142 if (MFI.getObjectOffset(I) == Offset) { 4143 assert(MFI.getObjectSize(I) == Size); 4144 return I; 4145 } 4146 } 4147 4148 return MFI.CreateFixedObject(Size, Offset, true); 4149 } 4150 4151 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4152 EVT VT, 4153 const SDLoc &SL, 4154 int64_t Offset) const { 4155 MachineFunction &MF = DAG.getMachineFunction(); 4156 MachineFrameInfo &MFI = MF.getFrameInfo(); 4157 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4158 4159 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4160 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4161 4162 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4163 MachineMemOperand::MODereferenceable | 4164 MachineMemOperand::MOInvariant); 4165 } 4166 4167 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4168 const SDLoc &SL, 4169 SDValue Chain, 4170 SDValue ArgVal, 4171 int64_t Offset) const { 4172 MachineFunction &MF = DAG.getMachineFunction(); 4173 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4174 4175 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4176 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4177 MachineMemOperand::MODereferenceable); 4178 return Store; 4179 } 4180 4181 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4182 const TargetRegisterClass *RC, 4183 EVT VT, const SDLoc &SL, 4184 const ArgDescriptor &Arg) const { 4185 assert(Arg && "Attempting to load missing argument"); 4186 4187 SDValue V = Arg.isRegister() ? 4188 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4189 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4190 4191 if (!Arg.isMasked()) 4192 return V; 4193 4194 unsigned Mask = Arg.getMask(); 4195 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4196 V = DAG.getNode(ISD::SRL, SL, VT, V, 4197 DAG.getShiftAmountConstant(Shift, VT, SL)); 4198 return DAG.getNode(ISD::AND, SL, VT, V, 4199 DAG.getConstant(Mask >> Shift, SL, VT)); 4200 } 4201 4202 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4203 const MachineFunction &MF, const ImplicitParameter Param) const { 4204 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4205 const AMDGPUSubtarget &ST = 4206 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4207 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4208 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4209 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4210 ExplicitArgOffset; 4211 switch (Param) { 4212 case GRID_DIM: 4213 return ArgOffset; 4214 case GRID_OFFSET: 4215 return ArgOffset + 4; 4216 } 4217 llvm_unreachable("unexpected implicit parameter type"); 4218 } 4219 4220 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4221 4222 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4223 switch ((AMDGPUISD::NodeType)Opcode) { 4224 case AMDGPUISD::FIRST_NUMBER: break; 4225 // AMDIL DAG nodes 4226 NODE_NAME_CASE(UMUL); 4227 NODE_NAME_CASE(BRANCH_COND); 4228 4229 // AMDGPU DAG nodes 4230 NODE_NAME_CASE(IF) 4231 NODE_NAME_CASE(ELSE) 4232 NODE_NAME_CASE(LOOP) 4233 NODE_NAME_CASE(CALL) 4234 NODE_NAME_CASE(TC_RETURN) 4235 NODE_NAME_CASE(TRAP) 4236 NODE_NAME_CASE(RET_FLAG) 4237 NODE_NAME_CASE(RETURN_TO_EPILOG) 4238 NODE_NAME_CASE(ENDPGM) 4239 NODE_NAME_CASE(DWORDADDR) 4240 NODE_NAME_CASE(FRACT) 4241 NODE_NAME_CASE(SETCC) 4242 NODE_NAME_CASE(SETREG) 4243 NODE_NAME_CASE(DENORM_MODE) 4244 NODE_NAME_CASE(FMA_W_CHAIN) 4245 NODE_NAME_CASE(FMUL_W_CHAIN) 4246 NODE_NAME_CASE(CLAMP) 4247 NODE_NAME_CASE(COS_HW) 4248 NODE_NAME_CASE(SIN_HW) 4249 NODE_NAME_CASE(FMAX_LEGACY) 4250 NODE_NAME_CASE(FMIN_LEGACY) 4251 NODE_NAME_CASE(FMAX3) 4252 NODE_NAME_CASE(SMAX3) 4253 NODE_NAME_CASE(UMAX3) 4254 NODE_NAME_CASE(FMIN3) 4255 NODE_NAME_CASE(SMIN3) 4256 NODE_NAME_CASE(UMIN3) 4257 NODE_NAME_CASE(FMED3) 4258 NODE_NAME_CASE(SMED3) 4259 NODE_NAME_CASE(UMED3) 4260 NODE_NAME_CASE(FDOT2) 4261 NODE_NAME_CASE(URECIP) 4262 NODE_NAME_CASE(DIV_SCALE) 4263 NODE_NAME_CASE(DIV_FMAS) 4264 NODE_NAME_CASE(DIV_FIXUP) 4265 NODE_NAME_CASE(FMAD_FTZ) 4266 NODE_NAME_CASE(RCP) 4267 NODE_NAME_CASE(RSQ) 4268 NODE_NAME_CASE(RCP_LEGACY) 4269 NODE_NAME_CASE(RCP_IFLAG) 4270 NODE_NAME_CASE(FMUL_LEGACY) 4271 NODE_NAME_CASE(RSQ_CLAMP) 4272 NODE_NAME_CASE(LDEXP) 4273 NODE_NAME_CASE(FP_CLASS) 4274 NODE_NAME_CASE(DOT4) 4275 NODE_NAME_CASE(CARRY) 4276 NODE_NAME_CASE(BORROW) 4277 NODE_NAME_CASE(BFE_U32) 4278 NODE_NAME_CASE(BFE_I32) 4279 NODE_NAME_CASE(BFI) 4280 NODE_NAME_CASE(BFM) 4281 NODE_NAME_CASE(FFBH_U32) 4282 NODE_NAME_CASE(FFBH_I32) 4283 NODE_NAME_CASE(FFBL_B32) 4284 NODE_NAME_CASE(MUL_U24) 4285 NODE_NAME_CASE(MUL_I24) 4286 NODE_NAME_CASE(MULHI_U24) 4287 NODE_NAME_CASE(MULHI_I24) 4288 NODE_NAME_CASE(MUL_LOHI_U24) 4289 NODE_NAME_CASE(MUL_LOHI_I24) 4290 NODE_NAME_CASE(MAD_U24) 4291 NODE_NAME_CASE(MAD_I24) 4292 NODE_NAME_CASE(MAD_I64_I32) 4293 NODE_NAME_CASE(MAD_U64_U32) 4294 NODE_NAME_CASE(PERM) 4295 NODE_NAME_CASE(TEXTURE_FETCH) 4296 NODE_NAME_CASE(R600_EXPORT) 4297 NODE_NAME_CASE(CONST_ADDRESS) 4298 NODE_NAME_CASE(REGISTER_LOAD) 4299 NODE_NAME_CASE(REGISTER_STORE) 4300 NODE_NAME_CASE(SAMPLE) 4301 NODE_NAME_CASE(SAMPLEB) 4302 NODE_NAME_CASE(SAMPLED) 4303 NODE_NAME_CASE(SAMPLEL) 4304 NODE_NAME_CASE(CVT_F32_UBYTE0) 4305 NODE_NAME_CASE(CVT_F32_UBYTE1) 4306 NODE_NAME_CASE(CVT_F32_UBYTE2) 4307 NODE_NAME_CASE(CVT_F32_UBYTE3) 4308 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4309 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4310 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4311 NODE_NAME_CASE(CVT_PK_I16_I32) 4312 NODE_NAME_CASE(CVT_PK_U16_U32) 4313 NODE_NAME_CASE(FP_TO_FP16) 4314 NODE_NAME_CASE(FP16_ZEXT) 4315 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4316 NODE_NAME_CASE(CONST_DATA_PTR) 4317 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4318 NODE_NAME_CASE(LDS) 4319 NODE_NAME_CASE(DUMMY_CHAIN) 4320 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4321 NODE_NAME_CASE(LOAD_D16_HI) 4322 NODE_NAME_CASE(LOAD_D16_LO) 4323 NODE_NAME_CASE(LOAD_D16_HI_I8) 4324 NODE_NAME_CASE(LOAD_D16_HI_U8) 4325 NODE_NAME_CASE(LOAD_D16_LO_I8) 4326 NODE_NAME_CASE(LOAD_D16_LO_U8) 4327 NODE_NAME_CASE(STORE_MSKOR) 4328 NODE_NAME_CASE(LOAD_CONSTANT) 4329 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4330 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4331 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4332 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4333 NODE_NAME_CASE(DS_ORDERED_COUNT) 4334 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4335 NODE_NAME_CASE(ATOMIC_INC) 4336 NODE_NAME_CASE(ATOMIC_DEC) 4337 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4338 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4339 NODE_NAME_CASE(ATOMIC_LOAD_CSUB) 4340 NODE_NAME_CASE(BUFFER_LOAD) 4341 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4342 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4343 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4344 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4345 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4346 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4347 NODE_NAME_CASE(SBUFFER_LOAD) 4348 NODE_NAME_CASE(BUFFER_STORE) 4349 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4350 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4351 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4352 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4353 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4354 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4355 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4356 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4357 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4358 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4359 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4360 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4361 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4362 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4363 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4364 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4365 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4366 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) 4367 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4368 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4369 NODE_NAME_CASE(ATOMIC_PK_FADD) 4370 4371 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4372 } 4373 return nullptr; 4374 } 4375 4376 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4377 SelectionDAG &DAG, int Enabled, 4378 int &RefinementSteps, 4379 bool &UseOneConstNR, 4380 bool Reciprocal) const { 4381 EVT VT = Operand.getValueType(); 4382 4383 if (VT == MVT::f32) { 4384 RefinementSteps = 0; 4385 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4386 } 4387 4388 // TODO: There is also f64 rsq instruction, but the documentation is less 4389 // clear on its precision. 4390 4391 return SDValue(); 4392 } 4393 4394 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4395 SelectionDAG &DAG, int Enabled, 4396 int &RefinementSteps) const { 4397 EVT VT = Operand.getValueType(); 4398 4399 if (VT == MVT::f32) { 4400 // Reciprocal, < 1 ulp error. 4401 // 4402 // This reciprocal approximation converges to < 0.5 ulp error with one 4403 // newton rhapson performed with two fused multiple adds (FMAs). 4404 4405 RefinementSteps = 0; 4406 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4407 } 4408 4409 // TODO: There is also f64 rcp instruction, but the documentation is less 4410 // clear on its precision. 4411 4412 return SDValue(); 4413 } 4414 4415 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4416 const SDValue Op, KnownBits &Known, 4417 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4418 4419 Known.resetAll(); // Don't know anything. 4420 4421 unsigned Opc = Op.getOpcode(); 4422 4423 switch (Opc) { 4424 default: 4425 break; 4426 case AMDGPUISD::CARRY: 4427 case AMDGPUISD::BORROW: { 4428 Known.Zero = APInt::getHighBitsSet(32, 31); 4429 break; 4430 } 4431 4432 case AMDGPUISD::BFE_I32: 4433 case AMDGPUISD::BFE_U32: { 4434 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4435 if (!CWidth) 4436 return; 4437 4438 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4439 4440 if (Opc == AMDGPUISD::BFE_U32) 4441 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4442 4443 break; 4444 } 4445 case AMDGPUISD::FP_TO_FP16: 4446 case AMDGPUISD::FP16_ZEXT: { 4447 unsigned BitWidth = Known.getBitWidth(); 4448 4449 // High bits are zero. 4450 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4451 break; 4452 } 4453 case AMDGPUISD::MUL_U24: 4454 case AMDGPUISD::MUL_I24: { 4455 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4456 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4457 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4458 RHSKnown.countMinTrailingZeros(); 4459 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4460 // Skip extra check if all bits are known zeros. 4461 if (TrailZ >= 32) 4462 break; 4463 4464 // Truncate to 24 bits. 4465 LHSKnown = LHSKnown.trunc(24); 4466 RHSKnown = RHSKnown.trunc(24); 4467 4468 if (Opc == AMDGPUISD::MUL_I24) { 4469 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4470 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4471 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4472 if (MaxValBits >= 32) 4473 break; 4474 bool LHSNegative = LHSKnown.isNegative(); 4475 bool LHSNonNegative = LHSKnown.isNonNegative(); 4476 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4477 bool RHSNegative = RHSKnown.isNegative(); 4478 bool RHSNonNegative = RHSKnown.isNonNegative(); 4479 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4480 4481 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4482 Known.Zero.setHighBits(32 - MaxValBits); 4483 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4484 Known.One.setHighBits(32 - MaxValBits); 4485 } else { 4486 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4487 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4488 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4489 if (MaxValBits >= 32) 4490 break; 4491 Known.Zero.setHighBits(32 - MaxValBits); 4492 } 4493 break; 4494 } 4495 case AMDGPUISD::PERM: { 4496 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4497 if (!CMask) 4498 return; 4499 4500 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4501 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4502 unsigned Sel = CMask->getZExtValue(); 4503 4504 for (unsigned I = 0; I < 32; I += 8) { 4505 unsigned SelBits = Sel & 0xff; 4506 if (SelBits < 4) { 4507 SelBits *= 8; 4508 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4509 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4510 } else if (SelBits < 7) { 4511 SelBits = (SelBits & 3) * 8; 4512 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4513 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4514 } else if (SelBits == 0x0c) { 4515 Known.Zero |= 0xFFull << I; 4516 } else if (SelBits > 0x0c) { 4517 Known.One |= 0xFFull << I; 4518 } 4519 Sel >>= 8; 4520 } 4521 break; 4522 } 4523 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4524 Known.Zero.setHighBits(24); 4525 break; 4526 } 4527 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4528 Known.Zero.setHighBits(16); 4529 break; 4530 } 4531 case AMDGPUISD::LDS: { 4532 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4533 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); 4534 4535 Known.Zero.setHighBits(16); 4536 Known.Zero.setLowBits(Log2(Alignment)); 4537 break; 4538 } 4539 case ISD::INTRINSIC_WO_CHAIN: { 4540 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4541 switch (IID) { 4542 case Intrinsic::amdgcn_mbcnt_lo: 4543 case Intrinsic::amdgcn_mbcnt_hi: { 4544 const GCNSubtarget &ST = 4545 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4546 // These return at most the wavefront size - 1. 4547 unsigned Size = Op.getValueType().getSizeInBits(); 4548 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4549 break; 4550 } 4551 default: 4552 break; 4553 } 4554 } 4555 } 4556 } 4557 4558 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4559 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4560 unsigned Depth) const { 4561 switch (Op.getOpcode()) { 4562 case AMDGPUISD::BFE_I32: { 4563 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4564 if (!Width) 4565 return 1; 4566 4567 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4568 if (!isNullConstant(Op.getOperand(1))) 4569 return SignBits; 4570 4571 // TODO: Could probably figure something out with non-0 offsets. 4572 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4573 return std::max(SignBits, Op0SignBits); 4574 } 4575 4576 case AMDGPUISD::BFE_U32: { 4577 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4578 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4579 } 4580 4581 case AMDGPUISD::CARRY: 4582 case AMDGPUISD::BORROW: 4583 return 31; 4584 case AMDGPUISD::BUFFER_LOAD_BYTE: 4585 return 25; 4586 case AMDGPUISD::BUFFER_LOAD_SHORT: 4587 return 17; 4588 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4589 return 24; 4590 case AMDGPUISD::BUFFER_LOAD_USHORT: 4591 return 16; 4592 case AMDGPUISD::FP_TO_FP16: 4593 case AMDGPUISD::FP16_ZEXT: 4594 return 16; 4595 default: 4596 return 1; 4597 } 4598 } 4599 4600 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( 4601 GISelKnownBits &Analysis, Register R, 4602 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 4603 unsigned Depth) const { 4604 const MachineInstr *MI = MRI.getVRegDef(R); 4605 if (!MI) 4606 return 1; 4607 4608 // TODO: Check range metadata on MMO. 4609 switch (MI->getOpcode()) { 4610 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: 4611 return 25; 4612 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: 4613 return 17; 4614 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: 4615 return 24; 4616 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: 4617 return 16; 4618 default: 4619 return 1; 4620 } 4621 } 4622 4623 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4624 const SelectionDAG &DAG, 4625 bool SNaN, 4626 unsigned Depth) const { 4627 unsigned Opcode = Op.getOpcode(); 4628 switch (Opcode) { 4629 case AMDGPUISD::FMIN_LEGACY: 4630 case AMDGPUISD::FMAX_LEGACY: { 4631 if (SNaN) 4632 return true; 4633 4634 // TODO: Can check no nans on one of the operands for each one, but which 4635 // one? 4636 return false; 4637 } 4638 case AMDGPUISD::FMUL_LEGACY: 4639 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4640 if (SNaN) 4641 return true; 4642 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4643 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4644 } 4645 case AMDGPUISD::FMED3: 4646 case AMDGPUISD::FMIN3: 4647 case AMDGPUISD::FMAX3: 4648 case AMDGPUISD::FMAD_FTZ: { 4649 if (SNaN) 4650 return true; 4651 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4652 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4653 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4654 } 4655 case AMDGPUISD::CVT_F32_UBYTE0: 4656 case AMDGPUISD::CVT_F32_UBYTE1: 4657 case AMDGPUISD::CVT_F32_UBYTE2: 4658 case AMDGPUISD::CVT_F32_UBYTE3: 4659 return true; 4660 4661 case AMDGPUISD::RCP: 4662 case AMDGPUISD::RSQ: 4663 case AMDGPUISD::RCP_LEGACY: 4664 case AMDGPUISD::RSQ_CLAMP: { 4665 if (SNaN) 4666 return true; 4667 4668 // TODO: Need is known positive check. 4669 return false; 4670 } 4671 case AMDGPUISD::LDEXP: 4672 case AMDGPUISD::FRACT: { 4673 if (SNaN) 4674 return true; 4675 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4676 } 4677 case AMDGPUISD::DIV_SCALE: 4678 case AMDGPUISD::DIV_FMAS: 4679 case AMDGPUISD::DIV_FIXUP: 4680 // TODO: Refine on operands. 4681 return SNaN; 4682 case AMDGPUISD::SIN_HW: 4683 case AMDGPUISD::COS_HW: { 4684 // TODO: Need check for infinity 4685 return SNaN; 4686 } 4687 case ISD::INTRINSIC_WO_CHAIN: { 4688 unsigned IntrinsicID 4689 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4690 // TODO: Handle more intrinsics 4691 switch (IntrinsicID) { 4692 case Intrinsic::amdgcn_cubeid: 4693 return true; 4694 4695 case Intrinsic::amdgcn_frexp_mant: { 4696 if (SNaN) 4697 return true; 4698 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4699 } 4700 case Intrinsic::amdgcn_cvt_pkrtz: { 4701 if (SNaN) 4702 return true; 4703 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4704 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4705 } 4706 case Intrinsic::amdgcn_rcp: 4707 case Intrinsic::amdgcn_rsq: 4708 case Intrinsic::amdgcn_rcp_legacy: 4709 case Intrinsic::amdgcn_rsq_legacy: 4710 case Intrinsic::amdgcn_rsq_clamp: { 4711 if (SNaN) 4712 return true; 4713 4714 // TODO: Need is known positive check. 4715 return false; 4716 } 4717 case Intrinsic::amdgcn_trig_preop: 4718 case Intrinsic::amdgcn_fdot2: 4719 // TODO: Refine on operand 4720 return SNaN; 4721 default: 4722 return false; 4723 } 4724 } 4725 default: 4726 return false; 4727 } 4728 } 4729 4730 TargetLowering::AtomicExpansionKind 4731 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4732 switch (RMW->getOperation()) { 4733 case AtomicRMWInst::Nand: 4734 case AtomicRMWInst::FAdd: 4735 case AtomicRMWInst::FSub: 4736 return AtomicExpansionKind::CmpXChg; 4737 default: 4738 return AtomicExpansionKind::None; 4739 } 4740 } 4741