1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPURegisterInfo.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/CallingConvLower.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 using namespace llvm; 38 39 #include "AMDGPUGenCallingConv.inc" 40 41 // Find a larger type to do a load / store of a vector with. 42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 43 unsigned StoreSize = VT.getStoreSizeInBits(); 44 if (StoreSize <= 32) 45 return EVT::getIntegerVT(Ctx, StoreSize); 46 47 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 48 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 52 EVT VT = Op.getValueType(); 53 KnownBits Known = DAG.computeKnownBits(Op); 54 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 55 } 56 57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 58 EVT VT = Op.getValueType(); 59 60 // In order for this to be a signed 24-bit value, bit 23, must 61 // be a sign bit. 62 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 // Lower floating point store/load to integer store/load to reduce the number 69 // of patterns in tablegen. 70 setOperationAction(ISD::LOAD, MVT::f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 72 73 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 75 76 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 78 79 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 81 82 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 84 85 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 87 88 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 90 91 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 93 94 setOperationAction(ISD::LOAD, MVT::i64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 96 97 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 99 100 setOperationAction(ISD::LOAD, MVT::f64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 105 106 // There are no 64-bit extloads. These should be done as a 32-bit extload and 107 // an extension to 64-bit. 108 for (MVT VT : MVT::integer_valuetypes()) { 109 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 110 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 111 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 112 } 113 114 for (MVT VT : MVT::integer_valuetypes()) { 115 if (VT == MVT::i64) 116 continue; 117 118 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 119 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 122 123 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 127 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 132 } 133 134 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 150 } 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 156 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 157 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 159 160 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 161 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 162 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 163 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 164 165 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 169 170 setOperationAction(ISD::STORE, MVT::f32, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 175 176 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 178 179 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 181 182 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 184 185 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 187 188 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 190 191 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 193 194 setOperationAction(ISD::STORE, MVT::i64, Promote); 195 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 196 197 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 199 200 setOperationAction(ISD::STORE, MVT::f64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 205 206 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 207 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 208 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 210 211 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 212 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 213 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 215 216 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 217 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 218 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 219 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 220 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 221 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 222 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 223 224 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 226 227 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 228 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 229 230 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 231 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 232 233 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 234 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 235 236 237 setOperationAction(ISD::Constant, MVT::i32, Legal); 238 setOperationAction(ISD::Constant, MVT::i64, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 240 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 241 242 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 243 setOperationAction(ISD::BRIND, MVT::Other, Expand); 244 245 // This is totally unsupported, just custom lower to produce an error. 246 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 247 248 // Library functions. These default to Expand, but we have instructions 249 // for them. 250 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 251 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 252 setOperationAction(ISD::FPOW, MVT::f32, Legal); 253 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 254 setOperationAction(ISD::FABS, MVT::f32, Legal); 255 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 256 setOperationAction(ISD::FRINT, MVT::f32, Legal); 257 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 258 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 259 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 260 261 setOperationAction(ISD::FROUND, MVT::f32, Custom); 262 setOperationAction(ISD::FROUND, MVT::f64, Custom); 263 264 setOperationAction(ISD::FLOG, MVT::f32, Custom); 265 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 266 setOperationAction(ISD::FEXP, MVT::f32, Custom); 267 268 269 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 270 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 271 272 setOperationAction(ISD::FREM, MVT::f32, Custom); 273 setOperationAction(ISD::FREM, MVT::f64, Custom); 274 275 // Expand to fneg + fadd. 276 setOperationAction(ISD::FSUB, MVT::f64, Expand); 277 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 280 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 281 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 282 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 283 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 284 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 285 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 294 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 295 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 296 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 297 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 298 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 299 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 300 301 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 303 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 304 305 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 306 for (MVT VT : ScalarIntVTs) { 307 // These should use [SU]DIVREM, so set them to expand 308 setOperationAction(ISD::SDIV, VT, Expand); 309 setOperationAction(ISD::UDIV, VT, Expand); 310 setOperationAction(ISD::SREM, VT, Expand); 311 setOperationAction(ISD::UREM, VT, Expand); 312 313 // GPU does not have divrem function for signed or unsigned. 314 setOperationAction(ISD::SDIVREM, VT, Custom); 315 setOperationAction(ISD::UDIVREM, VT, Custom); 316 317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 318 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 319 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 320 321 setOperationAction(ISD::BSWAP, VT, Expand); 322 setOperationAction(ISD::CTTZ, VT, Expand); 323 setOperationAction(ISD::CTLZ, VT, Expand); 324 325 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 326 setOperationAction(ISD::ADDC, VT, Legal); 327 setOperationAction(ISD::SUBC, VT, Legal); 328 setOperationAction(ISD::ADDE, VT, Legal); 329 setOperationAction(ISD::SUBE, VT, Legal); 330 } 331 332 // The hardware supports 32-bit ROTR, but not ROTL. 333 setOperationAction(ISD::ROTL, MVT::i32, Expand); 334 setOperationAction(ISD::ROTL, MVT::i64, Expand); 335 setOperationAction(ISD::ROTR, MVT::i64, Expand); 336 337 setOperationAction(ISD::MUL, MVT::i64, Expand); 338 setOperationAction(ISD::MULHU, MVT::i64, Expand); 339 setOperationAction(ISD::MULHS, MVT::i64, Expand); 340 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 341 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 344 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 345 346 setOperationAction(ISD::SMIN, MVT::i32, Legal); 347 setOperationAction(ISD::UMIN, MVT::i32, Legal); 348 setOperationAction(ISD::SMAX, MVT::i32, Legal); 349 setOperationAction(ISD::UMAX, MVT::i32, Legal); 350 351 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 352 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 353 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 354 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 355 356 static const MVT::SimpleValueType VectorIntTypes[] = { 357 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 358 }; 359 360 for (MVT VT : VectorIntTypes) { 361 // Expand the following operations for the current type by default. 362 setOperationAction(ISD::ADD, VT, Expand); 363 setOperationAction(ISD::AND, VT, Expand); 364 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 365 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 366 setOperationAction(ISD::MUL, VT, Expand); 367 setOperationAction(ISD::MULHU, VT, Expand); 368 setOperationAction(ISD::MULHS, VT, Expand); 369 setOperationAction(ISD::OR, VT, Expand); 370 setOperationAction(ISD::SHL, VT, Expand); 371 setOperationAction(ISD::SRA, VT, Expand); 372 setOperationAction(ISD::SRL, VT, Expand); 373 setOperationAction(ISD::ROTL, VT, Expand); 374 setOperationAction(ISD::ROTR, VT, Expand); 375 setOperationAction(ISD::SUB, VT, Expand); 376 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 377 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 383 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Expand); 386 setOperationAction(ISD::SELECT, VT, Expand); 387 setOperationAction(ISD::VSELECT, VT, Expand); 388 setOperationAction(ISD::SELECT_CC, VT, Expand); 389 setOperationAction(ISD::XOR, VT, Expand); 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTPOP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 395 setOperationAction(ISD::SETCC, VT, Expand); 396 } 397 398 static const MVT::SimpleValueType FloatVectorTypes[] = { 399 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 400 }; 401 402 for (MVT VT : FloatVectorTypes) { 403 setOperationAction(ISD::FABS, VT, Expand); 404 setOperationAction(ISD::FMINNUM, VT, Expand); 405 setOperationAction(ISD::FMAXNUM, VT, Expand); 406 setOperationAction(ISD::FADD, VT, Expand); 407 setOperationAction(ISD::FCEIL, VT, Expand); 408 setOperationAction(ISD::FCOS, VT, Expand); 409 setOperationAction(ISD::FDIV, VT, Expand); 410 setOperationAction(ISD::FEXP2, VT, Expand); 411 setOperationAction(ISD::FEXP, VT, Expand); 412 setOperationAction(ISD::FLOG2, VT, Expand); 413 setOperationAction(ISD::FREM, VT, Expand); 414 setOperationAction(ISD::FLOG, VT, Expand); 415 setOperationAction(ISD::FLOG10, VT, Expand); 416 setOperationAction(ISD::FPOW, VT, Expand); 417 setOperationAction(ISD::FFLOOR, VT, Expand); 418 setOperationAction(ISD::FTRUNC, VT, Expand); 419 setOperationAction(ISD::FMUL, VT, Expand); 420 setOperationAction(ISD::FMA, VT, Expand); 421 setOperationAction(ISD::FRINT, VT, Expand); 422 setOperationAction(ISD::FNEARBYINT, VT, Expand); 423 setOperationAction(ISD::FSQRT, VT, Expand); 424 setOperationAction(ISD::FSIN, VT, Expand); 425 setOperationAction(ISD::FSUB, VT, Expand); 426 setOperationAction(ISD::FNEG, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 430 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 431 setOperationAction(ISD::SETCC, VT, Expand); 432 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 433 } 434 435 // This causes using an unrolled select operation rather than expansion with 436 // bit operations. This is in general better, but the alternative using BFI 437 // instructions may be better if the select sources are SGPRs. 438 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 440 441 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 443 444 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 445 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 446 447 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 448 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 449 450 // There are no libcalls of any kind. 451 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 452 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 453 454 setSchedulingPreference(Sched::RegPressure); 455 setJumpIsExpensive(true); 456 457 // FIXME: This is only partially true. If we have to do vector compares, any 458 // SGPR pair can be a condition register. If we have a uniform condition, we 459 // are better off doing SALU operations, where there is only one SCC. For now, 460 // we don't have a way of knowing during instruction selection if a condition 461 // will be uniform and we always use vector compares. Assume we are using 462 // vector compares until that is fixed. 463 setHasMultipleConditionRegisters(true); 464 465 setMinCmpXchgSizeInBits(32); 466 setSupportsUnalignedAtomics(false); 467 468 PredictableSelectIsExpensive = false; 469 470 // We want to find all load dependencies for long chains of stores to enable 471 // merging into very wide vectors. The problem is with vectors with > 4 472 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 473 // vectors are a legal type, even though we have to split the loads 474 // usually. When we can more precisely specify load legality per address 475 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 476 // smarter so that they can figure out what to do in 2 iterations without all 477 // N > 4 stores on the same chain. 478 GatherAllAliasesMaxDepth = 16; 479 480 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 481 // about these during lowering. 482 MaxStoresPerMemcpy = 0xffffffff; 483 MaxStoresPerMemmove = 0xffffffff; 484 MaxStoresPerMemset = 0xffffffff; 485 486 setTargetDAGCombine(ISD::BITCAST); 487 setTargetDAGCombine(ISD::SHL); 488 setTargetDAGCombine(ISD::SRA); 489 setTargetDAGCombine(ISD::SRL); 490 setTargetDAGCombine(ISD::TRUNCATE); 491 setTargetDAGCombine(ISD::MUL); 492 setTargetDAGCombine(ISD::MULHU); 493 setTargetDAGCombine(ISD::MULHS); 494 setTargetDAGCombine(ISD::SELECT); 495 setTargetDAGCombine(ISD::SELECT_CC); 496 setTargetDAGCombine(ISD::STORE); 497 setTargetDAGCombine(ISD::FADD); 498 setTargetDAGCombine(ISD::FSUB); 499 setTargetDAGCombine(ISD::FNEG); 500 setTargetDAGCombine(ISD::FABS); 501 setTargetDAGCombine(ISD::AssertZext); 502 setTargetDAGCombine(ISD::AssertSext); 503 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Target Information 508 //===----------------------------------------------------------------------===// 509 510 LLVM_READNONE 511 static bool fnegFoldsIntoOp(unsigned Opc) { 512 switch (Opc) { 513 case ISD::FADD: 514 case ISD::FSUB: 515 case ISD::FMUL: 516 case ISD::FMA: 517 case ISD::FMAD: 518 case ISD::FMINNUM: 519 case ISD::FMAXNUM: 520 case ISD::FMINNUM_IEEE: 521 case ISD::FMAXNUM_IEEE: 522 case ISD::FSIN: 523 case ISD::FTRUNC: 524 case ISD::FRINT: 525 case ISD::FNEARBYINT: 526 case ISD::FCANONICALIZE: 527 case AMDGPUISD::RCP: 528 case AMDGPUISD::RCP_LEGACY: 529 case AMDGPUISD::RCP_IFLAG: 530 case AMDGPUISD::SIN_HW: 531 case AMDGPUISD::FMUL_LEGACY: 532 case AMDGPUISD::FMIN_LEGACY: 533 case AMDGPUISD::FMAX_LEGACY: 534 case AMDGPUISD::FMED3: 535 return true; 536 default: 537 return false; 538 } 539 } 540 541 /// \p returns true if the operation will definitely need to use a 64-bit 542 /// encoding, and thus will use a VOP3 encoding regardless of the source 543 /// modifiers. 544 LLVM_READONLY 545 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 546 return N->getNumOperands() > 2 || VT == MVT::f64; 547 } 548 549 // Most FP instructions support source modifiers, but this could be refined 550 // slightly. 551 LLVM_READONLY 552 static bool hasSourceMods(const SDNode *N) { 553 if (isa<MemSDNode>(N)) 554 return false; 555 556 switch (N->getOpcode()) { 557 case ISD::CopyToReg: 558 case ISD::SELECT: 559 case ISD::FDIV: 560 case ISD::FREM: 561 case ISD::INLINEASM: 562 case ISD::INLINEASM_BR: 563 case AMDGPUISD::DIV_SCALE: 564 case ISD::INTRINSIC_W_CHAIN: 565 566 // TODO: Should really be looking at the users of the bitcast. These are 567 // problematic because bitcasts are used to legalize all stores to integer 568 // types. 569 case ISD::BITCAST: 570 return false; 571 case ISD::INTRINSIC_WO_CHAIN: { 572 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 573 case Intrinsic::amdgcn_interp_p1: 574 case Intrinsic::amdgcn_interp_p2: 575 case Intrinsic::amdgcn_interp_mov: 576 case Intrinsic::amdgcn_interp_p1_f16: 577 case Intrinsic::amdgcn_interp_p2_f16: 578 return false; 579 default: 580 return true; 581 } 582 } 583 default: 584 return true; 585 } 586 } 587 588 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 589 unsigned CostThreshold) { 590 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 591 // it is truly free to use a source modifier in all cases. If there are 592 // multiple users but for each one will necessitate using VOP3, there will be 593 // a code size increase. Try to avoid increasing code size unless we know it 594 // will save on the instruction count. 595 unsigned NumMayIncreaseSize = 0; 596 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 597 598 // XXX - Should this limit number of uses to check? 599 for (const SDNode *U : N->uses()) { 600 if (!hasSourceMods(U)) 601 return false; 602 603 if (!opMustUseVOP3Encoding(U, VT)) { 604 if (++NumMayIncreaseSize > CostThreshold) 605 return false; 606 } 607 } 608 609 return true; 610 } 611 612 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 613 return MVT::i32; 614 } 615 616 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 617 return true; 618 } 619 620 // The backend supports 32 and 64 bit floating point immediates. 621 // FIXME: Why are we reporting vectors of FP immediates as legal? 622 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 623 bool ForCodeSize) const { 624 EVT ScalarVT = VT.getScalarType(); 625 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 626 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 627 } 628 629 // We don't want to shrink f64 / f32 constants. 630 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 631 EVT ScalarVT = VT.getScalarType(); 632 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 633 } 634 635 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 636 ISD::LoadExtType ExtTy, 637 EVT NewVT) const { 638 // TODO: This may be worth removing. Check regression tests for diffs. 639 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 640 return false; 641 642 unsigned NewSize = NewVT.getStoreSizeInBits(); 643 644 // If we are reducing to a 32-bit load, this is always better. 645 if (NewSize == 32) 646 return true; 647 648 EVT OldVT = N->getValueType(0); 649 unsigned OldSize = OldVT.getStoreSizeInBits(); 650 651 MemSDNode *MN = cast<MemSDNode>(N); 652 unsigned AS = MN->getAddressSpace(); 653 // Do not shrink an aligned scalar load to sub-dword. 654 // Scalar engine cannot do sub-dword loads. 655 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 656 (AS == AMDGPUAS::CONSTANT_ADDRESS || 657 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 658 (isa<LoadSDNode>(N) && 659 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 660 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 661 return false; 662 663 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 664 // extloads, so doing one requires using a buffer_load. In cases where we 665 // still couldn't use a scalar load, using the wider load shouldn't really 666 // hurt anything. 667 668 // If the old size already had to be an extload, there's no harm in continuing 669 // to reduce the width. 670 return (OldSize < 32); 671 } 672 673 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 674 const SelectionDAG &DAG, 675 const MachineMemOperand &MMO) const { 676 677 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 678 679 if (LoadTy.getScalarType() == MVT::i32) 680 return false; 681 682 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 683 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 684 685 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 686 return false; 687 688 bool Fast = false; 689 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 690 CastTy, MMO, &Fast) && 691 Fast; 692 } 693 694 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 695 // profitable with the expansion for 64-bit since it's generally good to 696 // speculate things. 697 // FIXME: These should really have the size as a parameter. 698 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 699 return true; 700 } 701 702 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 703 return true; 704 } 705 706 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 707 switch (N->getOpcode()) { 708 default: 709 return false; 710 case ISD::EntryToken: 711 case ISD::TokenFactor: 712 return true; 713 case ISD::INTRINSIC_WO_CHAIN: 714 { 715 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 716 switch (IntrID) { 717 default: 718 return false; 719 case Intrinsic::amdgcn_readfirstlane: 720 case Intrinsic::amdgcn_readlane: 721 return true; 722 } 723 } 724 break; 725 case ISD::LOAD: 726 { 727 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 728 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 729 return true; 730 return false; 731 } 732 break; 733 } 734 } 735 736 //===---------------------------------------------------------------------===// 737 // Target Properties 738 //===---------------------------------------------------------------------===// 739 740 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 741 assert(VT.isFloatingPoint()); 742 743 // Packed operations do not have a fabs modifier. 744 return VT == MVT::f32 || VT == MVT::f64 || 745 (Subtarget->has16BitInsts() && VT == MVT::f16); 746 } 747 748 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 749 assert(VT.isFloatingPoint()); 750 return VT == MVT::f32 || VT == MVT::f64 || 751 (Subtarget->has16BitInsts() && VT == MVT::f16) || 752 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 753 } 754 755 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 756 unsigned NumElem, 757 unsigned AS) const { 758 return true; 759 } 760 761 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 762 // There are few operations which truly have vector input operands. Any vector 763 // operation is going to involve operations on each component, and a 764 // build_vector will be a copy per element, so it always makes sense to use a 765 // build_vector input in place of the extracted element to avoid a copy into a 766 // super register. 767 // 768 // We should probably only do this if all users are extracts only, but this 769 // should be the common case. 770 return true; 771 } 772 773 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 774 // Truncate is just accessing a subregister. 775 776 unsigned SrcSize = Source.getSizeInBits(); 777 unsigned DestSize = Dest.getSizeInBits(); 778 779 return DestSize < SrcSize && DestSize % 32 == 0 ; 780 } 781 782 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 783 // Truncate is just accessing a subregister. 784 785 unsigned SrcSize = Source->getScalarSizeInBits(); 786 unsigned DestSize = Dest->getScalarSizeInBits(); 787 788 if (DestSize== 16 && Subtarget->has16BitInsts()) 789 return SrcSize >= 32; 790 791 return DestSize < SrcSize && DestSize % 32 == 0; 792 } 793 794 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 795 unsigned SrcSize = Src->getScalarSizeInBits(); 796 unsigned DestSize = Dest->getScalarSizeInBits(); 797 798 if (SrcSize == 16 && Subtarget->has16BitInsts()) 799 return DestSize >= 32; 800 801 return SrcSize == 32 && DestSize == 64; 802 } 803 804 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 805 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 806 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 807 // this will enable reducing 64-bit operations the 32-bit, which is always 808 // good. 809 810 if (Src == MVT::i16) 811 return Dest == MVT::i32 ||Dest == MVT::i64 ; 812 813 return Src == MVT::i32 && Dest == MVT::i64; 814 } 815 816 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 817 return isZExtFree(Val.getValueType(), VT2); 818 } 819 820 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 821 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 822 // limited number of native 64-bit operations. Shrinking an operation to fit 823 // in a single 32-bit register should always be helpful. As currently used, 824 // this is much less general than the name suggests, and is only used in 825 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 826 // not profitable, and may actually be harmful. 827 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 828 } 829 830 //===---------------------------------------------------------------------===// 831 // TargetLowering Callbacks 832 //===---------------------------------------------------------------------===// 833 834 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 835 bool IsVarArg) { 836 switch (CC) { 837 case CallingConv::AMDGPU_VS: 838 case CallingConv::AMDGPU_GS: 839 case CallingConv::AMDGPU_PS: 840 case CallingConv::AMDGPU_CS: 841 case CallingConv::AMDGPU_HS: 842 case CallingConv::AMDGPU_ES: 843 case CallingConv::AMDGPU_LS: 844 return CC_AMDGPU; 845 case CallingConv::C: 846 case CallingConv::Fast: 847 case CallingConv::Cold: 848 return CC_AMDGPU_Func; 849 case CallingConv::AMDGPU_KERNEL: 850 case CallingConv::SPIR_KERNEL: 851 default: 852 report_fatal_error("Unsupported calling convention for call"); 853 } 854 } 855 856 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 857 bool IsVarArg) { 858 switch (CC) { 859 case CallingConv::AMDGPU_KERNEL: 860 case CallingConv::SPIR_KERNEL: 861 llvm_unreachable("kernels should not be handled here"); 862 case CallingConv::AMDGPU_VS: 863 case CallingConv::AMDGPU_GS: 864 case CallingConv::AMDGPU_PS: 865 case CallingConv::AMDGPU_CS: 866 case CallingConv::AMDGPU_HS: 867 case CallingConv::AMDGPU_ES: 868 case CallingConv::AMDGPU_LS: 869 return RetCC_SI_Shader; 870 case CallingConv::C: 871 case CallingConv::Fast: 872 case CallingConv::Cold: 873 return RetCC_AMDGPU_Func; 874 default: 875 report_fatal_error("Unsupported calling convention."); 876 } 877 } 878 879 /// The SelectionDAGBuilder will automatically promote function arguments 880 /// with illegal types. However, this does not work for the AMDGPU targets 881 /// since the function arguments are stored in memory as these illegal types. 882 /// In order to handle this properly we need to get the original types sizes 883 /// from the LLVM IR Function and fixup the ISD:InputArg values before 884 /// passing them to AnalyzeFormalArguments() 885 886 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 887 /// input values across multiple registers. Each item in the Ins array 888 /// represents a single value that will be stored in registers. Ins[x].VT is 889 /// the value type of the value that will be stored in the register, so 890 /// whatever SDNode we lower the argument to needs to be this type. 891 /// 892 /// In order to correctly lower the arguments we need to know the size of each 893 /// argument. Since Ins[x].VT gives us the size of the register that will 894 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 895 /// for the orignal function argument so that we can deduce the correct memory 896 /// type to use for Ins[x]. In most cases the correct memory type will be 897 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 898 /// we have a kernel argument of type v8i8, this argument will be split into 899 /// 8 parts and each part will be represented by its own item in the Ins array. 900 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 901 /// the argument before it was split. From this, we deduce that the memory type 902 /// for each individual part is i8. We pass the memory type as LocVT to the 903 /// calling convention analysis function and the register type (Ins[x].VT) as 904 /// the ValVT. 905 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 906 CCState &State, 907 const SmallVectorImpl<ISD::InputArg> &Ins) const { 908 const MachineFunction &MF = State.getMachineFunction(); 909 const Function &Fn = MF.getFunction(); 910 LLVMContext &Ctx = Fn.getParent()->getContext(); 911 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 912 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 913 CallingConv::ID CC = Fn.getCallingConv(); 914 915 unsigned MaxAlign = 1; 916 uint64_t ExplicitArgOffset = 0; 917 const DataLayout &DL = Fn.getParent()->getDataLayout(); 918 919 unsigned InIndex = 0; 920 921 for (const Argument &Arg : Fn.args()) { 922 Type *BaseArgTy = Arg.getType(); 923 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 924 MaxAlign = std::max(Align, MaxAlign); 925 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 926 927 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 928 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 929 930 // We're basically throwing away everything passed into us and starting over 931 // to get accurate in-memory offsets. The "PartOffset" is completely useless 932 // to us as computed in Ins. 933 // 934 // We also need to figure out what type legalization is trying to do to get 935 // the correct memory offsets. 936 937 SmallVector<EVT, 16> ValueVTs; 938 SmallVector<uint64_t, 16> Offsets; 939 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 940 941 for (unsigned Value = 0, NumValues = ValueVTs.size(); 942 Value != NumValues; ++Value) { 943 uint64_t BasePartOffset = Offsets[Value]; 944 945 EVT ArgVT = ValueVTs[Value]; 946 EVT MemVT = ArgVT; 947 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 948 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 949 950 if (NumRegs == 1) { 951 // This argument is not split, so the IR type is the memory type. 952 if (ArgVT.isExtended()) { 953 // We have an extended type, like i24, so we should just use the 954 // register type. 955 MemVT = RegisterVT; 956 } else { 957 MemVT = ArgVT; 958 } 959 } else if (ArgVT.isVector() && RegisterVT.isVector() && 960 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 961 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 962 // We have a vector value which has been split into a vector with 963 // the same scalar type, but fewer elements. This should handle 964 // all the floating-point vector types. 965 MemVT = RegisterVT; 966 } else if (ArgVT.isVector() && 967 ArgVT.getVectorNumElements() == NumRegs) { 968 // This arg has been split so that each element is stored in a separate 969 // register. 970 MemVT = ArgVT.getScalarType(); 971 } else if (ArgVT.isExtended()) { 972 // We have an extended type, like i65. 973 MemVT = RegisterVT; 974 } else { 975 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 976 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 977 if (RegisterVT.isInteger()) { 978 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 979 } else if (RegisterVT.isVector()) { 980 assert(!RegisterVT.getScalarType().isFloatingPoint()); 981 unsigned NumElements = RegisterVT.getVectorNumElements(); 982 assert(MemoryBits % NumElements == 0); 983 // This vector type has been split into another vector type with 984 // a different elements size. 985 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 986 MemoryBits / NumElements); 987 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 988 } else { 989 llvm_unreachable("cannot deduce memory type."); 990 } 991 } 992 993 // Convert one element vectors to scalar. 994 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 995 MemVT = MemVT.getScalarType(); 996 997 // Round up vec3/vec5 argument. 998 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 999 assert(MemVT.getVectorNumElements() == 3 || 1000 MemVT.getVectorNumElements() == 5); 1001 MemVT = MemVT.getPow2VectorType(State.getContext()); 1002 } 1003 1004 unsigned PartOffset = 0; 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1007 BasePartOffset + PartOffset, 1008 MemVT.getSimpleVT(), 1009 CCValAssign::Full)); 1010 PartOffset += MemVT.getStoreSize(); 1011 } 1012 } 1013 } 1014 } 1015 1016 SDValue AMDGPUTargetLowering::LowerReturn( 1017 SDValue Chain, CallingConv::ID CallConv, 1018 bool isVarArg, 1019 const SmallVectorImpl<ISD::OutputArg> &Outs, 1020 const SmallVectorImpl<SDValue> &OutVals, 1021 const SDLoc &DL, SelectionDAG &DAG) const { 1022 // FIXME: Fails for r600 tests 1023 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1024 // "wave terminate should not have return values"); 1025 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1026 } 1027 1028 //===---------------------------------------------------------------------===// 1029 // Target specific lowering 1030 //===---------------------------------------------------------------------===// 1031 1032 /// Selects the correct CCAssignFn for a given CallingConvention value. 1033 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1034 bool IsVarArg) { 1035 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1036 } 1037 1038 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1039 bool IsVarArg) { 1040 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1041 } 1042 1043 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1044 SelectionDAG &DAG, 1045 MachineFrameInfo &MFI, 1046 int ClobberedFI) const { 1047 SmallVector<SDValue, 8> ArgChains; 1048 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1049 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1050 1051 // Include the original chain at the beginning of the list. When this is 1052 // used by target LowerCall hooks, this helps legalize find the 1053 // CALLSEQ_BEGIN node. 1054 ArgChains.push_back(Chain); 1055 1056 // Add a chain value for each stack argument corresponding 1057 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1058 UE = DAG.getEntryNode().getNode()->use_end(); 1059 U != UE; ++U) { 1060 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1061 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1062 if (FI->getIndex() < 0) { 1063 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1064 int64_t InLastByte = InFirstByte; 1065 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1066 1067 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1068 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1069 ArgChains.push_back(SDValue(L, 1)); 1070 } 1071 } 1072 } 1073 } 1074 1075 // Build a tokenfactor for all the chains. 1076 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1077 } 1078 1079 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1080 SmallVectorImpl<SDValue> &InVals, 1081 StringRef Reason) const { 1082 SDValue Callee = CLI.Callee; 1083 SelectionDAG &DAG = CLI.DAG; 1084 1085 const Function &Fn = DAG.getMachineFunction().getFunction(); 1086 1087 StringRef FuncName("<unknown>"); 1088 1089 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1090 FuncName = G->getSymbol(); 1091 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1092 FuncName = G->getGlobal()->getName(); 1093 1094 DiagnosticInfoUnsupported NoCalls( 1095 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1096 DAG.getContext()->diagnose(NoCalls); 1097 1098 if (!CLI.IsTailCall) { 1099 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1100 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1101 } 1102 1103 return DAG.getEntryNode(); 1104 } 1105 1106 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1107 SmallVectorImpl<SDValue> &InVals) const { 1108 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1109 } 1110 1111 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1112 SelectionDAG &DAG) const { 1113 const Function &Fn = DAG.getMachineFunction().getFunction(); 1114 1115 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1116 SDLoc(Op).getDebugLoc()); 1117 DAG.getContext()->diagnose(NoDynamicAlloca); 1118 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1119 return DAG.getMergeValues(Ops, SDLoc()); 1120 } 1121 1122 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1123 SelectionDAG &DAG) const { 1124 switch (Op.getOpcode()) { 1125 default: 1126 Op->print(errs(), &DAG); 1127 llvm_unreachable("Custom lowering code for this" 1128 "instruction is not implemented yet!"); 1129 break; 1130 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1131 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1132 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1133 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1134 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1135 case ISD::FREM: return LowerFREM(Op, DAG); 1136 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1137 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1138 case ISD::FRINT: return LowerFRINT(Op, DAG); 1139 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1140 case ISD::FROUND: return LowerFROUND(Op, DAG); 1141 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1142 case ISD::FLOG: 1143 return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); 1144 case ISD::FLOG10: 1145 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1146 case ISD::FEXP: 1147 return lowerFEXP(Op, DAG); 1148 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1149 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1150 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1151 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1152 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1153 case ISD::CTTZ: 1154 case ISD::CTTZ_ZERO_UNDEF: 1155 case ISD::CTLZ: 1156 case ISD::CTLZ_ZERO_UNDEF: 1157 return LowerCTLZ_CTTZ(Op, DAG); 1158 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1159 } 1160 return Op; 1161 } 1162 1163 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1164 SmallVectorImpl<SDValue> &Results, 1165 SelectionDAG &DAG) const { 1166 switch (N->getOpcode()) { 1167 case ISD::SIGN_EXTEND_INREG: 1168 // Different parts of legalization seem to interpret which type of 1169 // sign_extend_inreg is the one to check for custom lowering. The extended 1170 // from type is what really matters, but some places check for custom 1171 // lowering of the result type. This results in trying to use 1172 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1173 // nothing here and let the illegal result integer be handled normally. 1174 return; 1175 default: 1176 return; 1177 } 1178 } 1179 1180 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1181 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1182 if (!GVar || !GVar->hasInitializer()) 1183 return false; 1184 1185 return !isa<UndefValue>(GVar->getInitializer()); 1186 } 1187 1188 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1189 SDValue Op, 1190 SelectionDAG &DAG) const { 1191 1192 const DataLayout &DL = DAG.getDataLayout(); 1193 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1194 const GlobalValue *GV = G->getGlobal(); 1195 1196 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1197 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1198 if (!MFI->isEntryFunction()) { 1199 const Function &Fn = DAG.getMachineFunction().getFunction(); 1200 DiagnosticInfoUnsupported BadLDSDecl( 1201 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1202 DAG.getContext()->diagnose(BadLDSDecl); 1203 } 1204 1205 // XXX: What does the value of G->getOffset() mean? 1206 assert(G->getOffset() == 0 && 1207 "Do not know what to do with an non-zero offset"); 1208 1209 // TODO: We could emit code to handle the initialization somewhere. 1210 if (!hasDefinedInitializer(GV)) { 1211 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1212 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1213 } 1214 } 1215 1216 const Function &Fn = DAG.getMachineFunction().getFunction(); 1217 DiagnosticInfoUnsupported BadInit( 1218 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1219 DAG.getContext()->diagnose(BadInit); 1220 return SDValue(); 1221 } 1222 1223 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1224 SelectionDAG &DAG) const { 1225 SmallVector<SDValue, 8> Args; 1226 1227 EVT VT = Op.getValueType(); 1228 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1229 SDLoc SL(Op); 1230 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1231 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1232 1233 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1234 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1235 } 1236 1237 for (const SDUse &U : Op->ops()) 1238 DAG.ExtractVectorElements(U.get(), Args); 1239 1240 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1241 } 1242 1243 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1244 SelectionDAG &DAG) const { 1245 1246 SmallVector<SDValue, 8> Args; 1247 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1248 EVT VT = Op.getValueType(); 1249 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1250 VT.getVectorNumElements()); 1251 1252 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1253 } 1254 1255 /// Generate Min/Max node 1256 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1257 SDValue LHS, SDValue RHS, 1258 SDValue True, SDValue False, 1259 SDValue CC, 1260 DAGCombinerInfo &DCI) const { 1261 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1262 return SDValue(); 1263 1264 SelectionDAG &DAG = DCI.DAG; 1265 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1266 switch (CCOpcode) { 1267 case ISD::SETOEQ: 1268 case ISD::SETONE: 1269 case ISD::SETUNE: 1270 case ISD::SETNE: 1271 case ISD::SETUEQ: 1272 case ISD::SETEQ: 1273 case ISD::SETFALSE: 1274 case ISD::SETFALSE2: 1275 case ISD::SETTRUE: 1276 case ISD::SETTRUE2: 1277 case ISD::SETUO: 1278 case ISD::SETO: 1279 break; 1280 case ISD::SETULE: 1281 case ISD::SETULT: { 1282 if (LHS == True) 1283 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1284 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1285 } 1286 case ISD::SETOLE: 1287 case ISD::SETOLT: 1288 case ISD::SETLE: 1289 case ISD::SETLT: { 1290 // Ordered. Assume ordered for undefined. 1291 1292 // Only do this after legalization to avoid interfering with other combines 1293 // which might occur. 1294 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1295 !DCI.isCalledByLegalizer()) 1296 return SDValue(); 1297 1298 // We need to permute the operands to get the correct NaN behavior. The 1299 // selected operand is the second one based on the failing compare with NaN, 1300 // so permute it based on the compare type the hardware uses. 1301 if (LHS == True) 1302 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1303 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1304 } 1305 case ISD::SETUGE: 1306 case ISD::SETUGT: { 1307 if (LHS == True) 1308 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1309 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1310 } 1311 case ISD::SETGT: 1312 case ISD::SETGE: 1313 case ISD::SETOGE: 1314 case ISD::SETOGT: { 1315 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1316 !DCI.isCalledByLegalizer()) 1317 return SDValue(); 1318 1319 if (LHS == True) 1320 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1321 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1322 } 1323 case ISD::SETCC_INVALID: 1324 llvm_unreachable("Invalid setcc condcode!"); 1325 } 1326 return SDValue(); 1327 } 1328 1329 std::pair<SDValue, SDValue> 1330 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1331 SDLoc SL(Op); 1332 1333 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1334 1335 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1336 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1337 1338 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1339 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1340 1341 return std::make_pair(Lo, Hi); 1342 } 1343 1344 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1345 SDLoc SL(Op); 1346 1347 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1348 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1349 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1350 } 1351 1352 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1353 SDLoc SL(Op); 1354 1355 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1356 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1357 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1358 } 1359 1360 // Split a vector type into two parts. The first part is a power of two vector. 1361 // The second part is whatever is left over, and is a scalar if it would 1362 // otherwise be a 1-vector. 1363 std::pair<EVT, EVT> 1364 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1365 EVT LoVT, HiVT; 1366 EVT EltVT = VT.getVectorElementType(); 1367 unsigned NumElts = VT.getVectorNumElements(); 1368 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1369 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1370 HiVT = NumElts - LoNumElts == 1 1371 ? EltVT 1372 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1373 return std::make_pair(LoVT, HiVT); 1374 } 1375 1376 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1377 // scalar. 1378 std::pair<SDValue, SDValue> 1379 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1380 const EVT &LoVT, const EVT &HiVT, 1381 SelectionDAG &DAG) const { 1382 assert(LoVT.getVectorNumElements() + 1383 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1384 N.getValueType().getVectorNumElements() && 1385 "More vector elements requested than available!"); 1386 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1387 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1388 DAG.getConstant(0, DL, IdxTy)); 1389 SDValue Hi = DAG.getNode( 1390 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1391 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1392 return std::make_pair(Lo, Hi); 1393 } 1394 1395 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1396 SelectionDAG &DAG) const { 1397 LoadSDNode *Load = cast<LoadSDNode>(Op); 1398 EVT VT = Op.getValueType(); 1399 SDLoc SL(Op); 1400 1401 1402 // If this is a 2 element vector, we really want to scalarize and not create 1403 // weird 1 element vectors. 1404 if (VT.getVectorNumElements() == 2) { 1405 SDValue Ops[2]; 1406 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); 1407 return DAG.getMergeValues(Ops, SL); 1408 } 1409 1410 SDValue BasePtr = Load->getBasePtr(); 1411 EVT MemVT = Load->getMemoryVT(); 1412 1413 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1414 1415 EVT LoVT, HiVT; 1416 EVT LoMemVT, HiMemVT; 1417 SDValue Lo, Hi; 1418 1419 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1420 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1421 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1422 1423 unsigned Size = LoMemVT.getStoreSize(); 1424 unsigned BaseAlign = Load->getAlignment(); 1425 unsigned HiAlign = MinAlign(BaseAlign, Size); 1426 1427 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1428 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1429 BaseAlign, Load->getMemOperand()->getFlags()); 1430 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1431 SDValue HiLoad = 1432 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1433 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1434 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1435 1436 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1437 SDValue Join; 1438 if (LoVT == HiVT) { 1439 // This is the case that the vector is power of two so was evenly split. 1440 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1441 } else { 1442 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1443 DAG.getConstant(0, SL, IdxTy)); 1444 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1445 : ISD::INSERT_VECTOR_ELT, 1446 SL, VT, Join, HiLoad, 1447 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1448 } 1449 1450 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1451 LoLoad.getValue(1), HiLoad.getValue(1))}; 1452 1453 return DAG.getMergeValues(Ops, SL); 1454 } 1455 1456 // Widen a vector load from vec3 to vec4. 1457 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1458 SelectionDAG &DAG) const { 1459 LoadSDNode *Load = cast<LoadSDNode>(Op); 1460 EVT VT = Op.getValueType(); 1461 assert(VT.getVectorNumElements() == 3); 1462 SDValue BasePtr = Load->getBasePtr(); 1463 EVT MemVT = Load->getMemoryVT(); 1464 SDLoc SL(Op); 1465 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1466 unsigned BaseAlign = Load->getAlignment(); 1467 1468 EVT WideVT = 1469 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1470 EVT WideMemVT = 1471 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1472 SDValue WideLoad = DAG.getExtLoad( 1473 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1474 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1475 return DAG.getMergeValues( 1476 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1477 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1478 WideLoad.getValue(1)}, 1479 SL); 1480 } 1481 1482 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1483 SelectionDAG &DAG) const { 1484 StoreSDNode *Store = cast<StoreSDNode>(Op); 1485 SDValue Val = Store->getValue(); 1486 EVT VT = Val.getValueType(); 1487 1488 // If this is a 2 element vector, we really want to scalarize and not create 1489 // weird 1 element vectors. 1490 if (VT.getVectorNumElements() == 2) 1491 return scalarizeVectorStore(Store, DAG); 1492 1493 EVT MemVT = Store->getMemoryVT(); 1494 SDValue Chain = Store->getChain(); 1495 SDValue BasePtr = Store->getBasePtr(); 1496 SDLoc SL(Op); 1497 1498 EVT LoVT, HiVT; 1499 EVT LoMemVT, HiMemVT; 1500 SDValue Lo, Hi; 1501 1502 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1503 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1504 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1505 1506 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1507 1508 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1509 unsigned BaseAlign = Store->getAlignment(); 1510 unsigned Size = LoMemVT.getStoreSize(); 1511 unsigned HiAlign = MinAlign(BaseAlign, Size); 1512 1513 SDValue LoStore = 1514 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1515 Store->getMemOperand()->getFlags()); 1516 SDValue HiStore = 1517 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1518 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1519 1520 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1521 } 1522 1523 // This is a shortcut for integer division because we have fast i32<->f32 1524 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1525 // float is enough to accurately represent up to a 24-bit signed integer. 1526 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1527 bool Sign) const { 1528 SDLoc DL(Op); 1529 EVT VT = Op.getValueType(); 1530 SDValue LHS = Op.getOperand(0); 1531 SDValue RHS = Op.getOperand(1); 1532 MVT IntVT = MVT::i32; 1533 MVT FltVT = MVT::f32; 1534 1535 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1536 if (LHSSignBits < 9) 1537 return SDValue(); 1538 1539 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1540 if (RHSSignBits < 9) 1541 return SDValue(); 1542 1543 unsigned BitSize = VT.getSizeInBits(); 1544 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1545 unsigned DivBits = BitSize - SignBits; 1546 if (Sign) 1547 ++DivBits; 1548 1549 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1550 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1551 1552 SDValue jq = DAG.getConstant(1, DL, IntVT); 1553 1554 if (Sign) { 1555 // char|short jq = ia ^ ib; 1556 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1557 1558 // jq = jq >> (bitsize - 2) 1559 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1560 DAG.getConstant(BitSize - 2, DL, VT)); 1561 1562 // jq = jq | 0x1 1563 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1564 } 1565 1566 // int ia = (int)LHS; 1567 SDValue ia = LHS; 1568 1569 // int ib, (int)RHS; 1570 SDValue ib = RHS; 1571 1572 // float fa = (float)ia; 1573 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1574 1575 // float fb = (float)ib; 1576 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1577 1578 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1579 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1580 1581 // fq = trunc(fq); 1582 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1583 1584 // float fqneg = -fq; 1585 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1586 1587 MachineFunction &MF = DAG.getMachineFunction(); 1588 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 1589 1590 // float fr = mad(fqneg, fb, fa); 1591 unsigned OpCode = MFI->getMode().FP32Denormals ? 1592 (unsigned)AMDGPUISD::FMAD_FTZ : 1593 (unsigned)ISD::FMAD; 1594 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1595 1596 // int iq = (int)fq; 1597 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1598 1599 // fr = fabs(fr); 1600 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1601 1602 // fb = fabs(fb); 1603 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1604 1605 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1606 1607 // int cv = fr >= fb; 1608 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1609 1610 // jq = (cv ? jq : 0); 1611 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1612 1613 // dst = iq + jq; 1614 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1615 1616 // Rem needs compensation, it's easier to recompute it 1617 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1618 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1619 1620 // Truncate to number of bits this divide really is. 1621 if (Sign) { 1622 SDValue InRegSize 1623 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1624 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1625 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1626 } else { 1627 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1628 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1629 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1630 } 1631 1632 return DAG.getMergeValues({ Div, Rem }, DL); 1633 } 1634 1635 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1636 SelectionDAG &DAG, 1637 SmallVectorImpl<SDValue> &Results) const { 1638 SDLoc DL(Op); 1639 EVT VT = Op.getValueType(); 1640 1641 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1642 1643 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1644 1645 SDValue One = DAG.getConstant(1, DL, HalfVT); 1646 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1647 1648 //HiLo split 1649 SDValue LHS = Op.getOperand(0); 1650 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1651 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1652 1653 SDValue RHS = Op.getOperand(1); 1654 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1655 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1656 1657 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1658 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1659 1660 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1661 LHS_Lo, RHS_Lo); 1662 1663 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1664 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1665 1666 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1667 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1668 return; 1669 } 1670 1671 if (isTypeLegal(MVT::i64)) { 1672 MachineFunction &MF = DAG.getMachineFunction(); 1673 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1674 1675 // Compute denominator reciprocal. 1676 unsigned FMAD = MFI->getMode().FP32Denormals ? 1677 (unsigned)AMDGPUISD::FMAD_FTZ : 1678 (unsigned)ISD::FMAD; 1679 1680 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1681 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1682 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1683 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1684 Cvt_Lo); 1685 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1686 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1687 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1688 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1689 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1690 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1691 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1692 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1693 Mul1); 1694 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1695 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1696 SDValue Rcp64 = DAG.getBitcast(VT, 1697 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1698 1699 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1700 SDValue One64 = DAG.getConstant(1, DL, VT); 1701 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1702 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1703 1704 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1705 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1706 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1707 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1708 Zero); 1709 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1710 One); 1711 1712 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1713 Mulhi1_Lo, Zero1); 1714 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1715 Mulhi1_Hi, Add1_Lo.getValue(1)); 1716 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1717 SDValue Add1 = DAG.getBitcast(VT, 1718 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1719 1720 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1721 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1722 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1723 Zero); 1724 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1725 One); 1726 1727 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1728 Mulhi2_Lo, Zero1); 1729 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1730 Mulhi2_Hi, Add1_Lo.getValue(1)); 1731 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1732 Zero, Add2_Lo.getValue(1)); 1733 SDValue Add2 = DAG.getBitcast(VT, 1734 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1735 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1736 1737 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1738 1739 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1740 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1741 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1742 Mul3_Lo, Zero1); 1743 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1744 Mul3_Hi, Sub1_Lo.getValue(1)); 1745 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1746 SDValue Sub1 = DAG.getBitcast(VT, 1747 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1748 1749 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1750 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1751 ISD::SETUGE); 1752 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1753 ISD::SETUGE); 1754 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1755 1756 // TODO: Here and below portions of the code can be enclosed into if/endif. 1757 // Currently control flow is unconditional and we have 4 selects after 1758 // potential endif to substitute PHIs. 1759 1760 // if C3 != 0 ... 1761 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1762 RHS_Lo, Zero1); 1763 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1764 RHS_Hi, Sub1_Lo.getValue(1)); 1765 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1766 Zero, Sub2_Lo.getValue(1)); 1767 SDValue Sub2 = DAG.getBitcast(VT, 1768 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1769 1770 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1771 1772 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1773 ISD::SETUGE); 1774 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1775 ISD::SETUGE); 1776 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1777 1778 // if (C6 != 0) 1779 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1780 1781 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1782 RHS_Lo, Zero1); 1783 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1784 RHS_Hi, Sub2_Lo.getValue(1)); 1785 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1786 Zero, Sub3_Lo.getValue(1)); 1787 SDValue Sub3 = DAG.getBitcast(VT, 1788 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1789 1790 // endif C6 1791 // endif C3 1792 1793 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1794 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1795 1796 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1797 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1798 1799 Results.push_back(Div); 1800 Results.push_back(Rem); 1801 1802 return; 1803 } 1804 1805 // r600 expandion. 1806 // Get Speculative values 1807 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1808 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1809 1810 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1811 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1812 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1813 1814 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1815 SDValue DIV_Lo = Zero; 1816 1817 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1818 1819 for (unsigned i = 0; i < halfBitWidth; ++i) { 1820 const unsigned bitPos = halfBitWidth - i - 1; 1821 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1822 // Get value of high bit 1823 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1824 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1825 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1826 1827 // Shift 1828 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1829 // Add LHS high bit 1830 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1831 1832 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1833 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1834 1835 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1836 1837 // Update REM 1838 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1839 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1840 } 1841 1842 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1843 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1844 Results.push_back(DIV); 1845 Results.push_back(REM); 1846 } 1847 1848 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1849 SelectionDAG &DAG) const { 1850 SDLoc DL(Op); 1851 EVT VT = Op.getValueType(); 1852 1853 if (VT == MVT::i64) { 1854 SmallVector<SDValue, 2> Results; 1855 LowerUDIVREM64(Op, DAG, Results); 1856 return DAG.getMergeValues(Results, DL); 1857 } 1858 1859 if (VT == MVT::i32) { 1860 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1861 return Res; 1862 } 1863 1864 SDValue Num = Op.getOperand(0); 1865 SDValue Den = Op.getOperand(1); 1866 1867 // RCP = URECIP(Den) = 2^32 / Den + e 1868 // e is rounding error. 1869 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1870 1871 // RCP_LO = mul(RCP, Den) */ 1872 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1873 1874 // RCP_HI = mulhu (RCP, Den) */ 1875 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1876 1877 // NEG_RCP_LO = -RCP_LO 1878 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1879 RCP_LO); 1880 1881 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1882 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1883 NEG_RCP_LO, RCP_LO, 1884 ISD::SETEQ); 1885 // Calculate the rounding error from the URECIP instruction 1886 // E = mulhu(ABS_RCP_LO, RCP) 1887 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1888 1889 // RCP_A_E = RCP + E 1890 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1891 1892 // RCP_S_E = RCP - E 1893 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1894 1895 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1896 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1897 RCP_A_E, RCP_S_E, 1898 ISD::SETEQ); 1899 // Quotient = mulhu(Tmp0, Num) 1900 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1901 1902 // Num_S_Remainder = Quotient * Den 1903 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1904 1905 // Remainder = Num - Num_S_Remainder 1906 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1907 1908 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1909 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1910 DAG.getConstant(-1, DL, VT), 1911 DAG.getConstant(0, DL, VT), 1912 ISD::SETUGE); 1913 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1914 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1915 Num_S_Remainder, 1916 DAG.getConstant(-1, DL, VT), 1917 DAG.getConstant(0, DL, VT), 1918 ISD::SETUGE); 1919 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1920 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1921 Remainder_GE_Zero); 1922 1923 // Calculate Division result: 1924 1925 // Quotient_A_One = Quotient + 1 1926 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1927 DAG.getConstant(1, DL, VT)); 1928 1929 // Quotient_S_One = Quotient - 1 1930 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1931 DAG.getConstant(1, DL, VT)); 1932 1933 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1934 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1935 Quotient, Quotient_A_One, ISD::SETEQ); 1936 1937 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1938 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1939 Quotient_S_One, Div, ISD::SETEQ); 1940 1941 // Calculate Rem result: 1942 1943 // Remainder_S_Den = Remainder - Den 1944 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1945 1946 // Remainder_A_Den = Remainder + Den 1947 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1948 1949 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1950 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1951 Remainder, Remainder_S_Den, ISD::SETEQ); 1952 1953 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1954 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1955 Remainder_A_Den, Rem, ISD::SETEQ); 1956 SDValue Ops[2] = { 1957 Div, 1958 Rem 1959 }; 1960 return DAG.getMergeValues(Ops, DL); 1961 } 1962 1963 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1964 SelectionDAG &DAG) const { 1965 SDLoc DL(Op); 1966 EVT VT = Op.getValueType(); 1967 1968 SDValue LHS = Op.getOperand(0); 1969 SDValue RHS = Op.getOperand(1); 1970 1971 SDValue Zero = DAG.getConstant(0, DL, VT); 1972 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1973 1974 if (VT == MVT::i32) { 1975 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1976 return Res; 1977 } 1978 1979 if (VT == MVT::i64 && 1980 DAG.ComputeNumSignBits(LHS) > 32 && 1981 DAG.ComputeNumSignBits(RHS) > 32) { 1982 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1983 1984 //HiLo split 1985 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1986 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1987 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1988 LHS_Lo, RHS_Lo); 1989 SDValue Res[2] = { 1990 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1991 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1992 }; 1993 return DAG.getMergeValues(Res, DL); 1994 } 1995 1996 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1997 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1998 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1999 SDValue RSign = LHSign; // Remainder sign is the same as LHS 2000 2001 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 2002 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 2003 2004 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 2005 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2006 2007 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2008 SDValue Rem = Div.getValue(1); 2009 2010 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2011 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2012 2013 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2014 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2015 2016 SDValue Res[2] = { 2017 Div, 2018 Rem 2019 }; 2020 return DAG.getMergeValues(Res, DL); 2021 } 2022 2023 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2024 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2025 SDLoc SL(Op); 2026 EVT VT = Op.getValueType(); 2027 SDValue X = Op.getOperand(0); 2028 SDValue Y = Op.getOperand(1); 2029 2030 // TODO: Should this propagate fast-math-flags? 2031 2032 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2033 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2034 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2035 2036 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2037 } 2038 2039 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2040 SDLoc SL(Op); 2041 SDValue Src = Op.getOperand(0); 2042 2043 // result = trunc(src) 2044 // if (src > 0.0 && src != result) 2045 // result += 1.0 2046 2047 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2048 2049 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2050 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2051 2052 EVT SetCCVT = 2053 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2054 2055 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2056 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2057 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2058 2059 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2060 // TODO: Should this propagate fast-math-flags? 2061 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2062 } 2063 2064 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2065 SelectionDAG &DAG) { 2066 const unsigned FractBits = 52; 2067 const unsigned ExpBits = 11; 2068 2069 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2070 Hi, 2071 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2072 DAG.getConstant(ExpBits, SL, MVT::i32)); 2073 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2074 DAG.getConstant(1023, SL, MVT::i32)); 2075 2076 return Exp; 2077 } 2078 2079 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2080 SDLoc SL(Op); 2081 SDValue Src = Op.getOperand(0); 2082 2083 assert(Op.getValueType() == MVT::f64); 2084 2085 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2086 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2087 2088 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2089 2090 // Extract the upper half, since this is where we will find the sign and 2091 // exponent. 2092 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2093 2094 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2095 2096 const unsigned FractBits = 52; 2097 2098 // Extract the sign bit. 2099 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2100 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2101 2102 // Extend back to 64-bits. 2103 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2104 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2105 2106 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2107 const SDValue FractMask 2108 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2109 2110 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2111 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2112 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2113 2114 EVT SetCCVT = 2115 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2116 2117 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2118 2119 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2120 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2121 2122 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2123 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2124 2125 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2126 } 2127 2128 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2129 SDLoc SL(Op); 2130 SDValue Src = Op.getOperand(0); 2131 2132 assert(Op.getValueType() == MVT::f64); 2133 2134 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2135 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2136 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2137 2138 // TODO: Should this propagate fast-math-flags? 2139 2140 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2141 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2142 2143 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2144 2145 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2146 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2147 2148 EVT SetCCVT = 2149 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2150 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2151 2152 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2153 } 2154 2155 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2156 // FNEARBYINT and FRINT are the same, except in their handling of FP 2157 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2158 // rint, so just treat them as equivalent. 2159 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2160 } 2161 2162 // XXX - May require not supporting f32 denormals? 2163 2164 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2165 // compare and vselect end up producing worse code than scalarizing the whole 2166 // operation. 2167 SDValue AMDGPUTargetLowering::LowerFROUND_LegalFTRUNC(SDValue Op, 2168 SelectionDAG &DAG) const { 2169 SDLoc SL(Op); 2170 SDValue X = Op.getOperand(0); 2171 EVT VT = Op.getValueType(); 2172 2173 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2174 2175 // TODO: Should this propagate fast-math-flags? 2176 2177 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2178 2179 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2180 2181 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2182 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2183 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2184 2185 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2186 2187 EVT SetCCVT = 2188 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2189 2190 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2191 2192 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2193 2194 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2195 } 2196 2197 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2198 SDLoc SL(Op); 2199 SDValue X = Op.getOperand(0); 2200 2201 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2202 2203 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2204 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2205 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2206 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2207 EVT SetCCVT = 2208 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2209 2210 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2211 2212 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2213 2214 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2215 2216 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2217 MVT::i64); 2218 2219 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2220 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2221 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2222 MVT::i64), 2223 Exp); 2224 2225 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2226 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2227 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2228 ISD::SETNE); 2229 2230 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2231 D, DAG.getConstant(0, SL, MVT::i64)); 2232 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2233 2234 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2235 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2236 2237 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2238 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2239 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2240 2241 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2242 ExpEqNegOne, 2243 DAG.getConstantFP(1.0, SL, MVT::f64), 2244 DAG.getConstantFP(0.0, SL, MVT::f64)); 2245 2246 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2247 2248 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2249 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2250 2251 return K; 2252 } 2253 2254 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2255 EVT VT = Op.getValueType(); 2256 2257 if (isOperationLegal(ISD::FTRUNC, VT)) 2258 return LowerFROUND_LegalFTRUNC(Op, DAG); 2259 2260 if (VT == MVT::f64) 2261 return LowerFROUND64(Op, DAG); 2262 2263 llvm_unreachable("unhandled type"); 2264 } 2265 2266 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2267 SDLoc SL(Op); 2268 SDValue Src = Op.getOperand(0); 2269 2270 // result = trunc(src); 2271 // if (src < 0.0 && src != result) 2272 // result += -1.0. 2273 2274 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2275 2276 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2277 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2278 2279 EVT SetCCVT = 2280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2281 2282 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2283 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2284 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2285 2286 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2287 // TODO: Should this propagate fast-math-flags? 2288 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2289 } 2290 2291 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2292 double Log2BaseInverted) const { 2293 EVT VT = Op.getValueType(); 2294 2295 SDLoc SL(Op); 2296 SDValue Operand = Op.getOperand(0); 2297 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2298 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2299 2300 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2301 } 2302 2303 // exp2(M_LOG2E_F * f); 2304 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2305 EVT VT = Op.getValueType(); 2306 SDLoc SL(Op); 2307 SDValue Src = Op.getOperand(0); 2308 2309 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2310 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2311 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2312 } 2313 2314 static bool isCtlzOpc(unsigned Opc) { 2315 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2316 } 2317 2318 static bool isCttzOpc(unsigned Opc) { 2319 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2320 } 2321 2322 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2323 SDLoc SL(Op); 2324 SDValue Src = Op.getOperand(0); 2325 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2326 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2327 2328 unsigned ISDOpc, NewOpc; 2329 if (isCtlzOpc(Op.getOpcode())) { 2330 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2331 NewOpc = AMDGPUISD::FFBH_U32; 2332 } else if (isCttzOpc(Op.getOpcode())) { 2333 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2334 NewOpc = AMDGPUISD::FFBL_B32; 2335 } else 2336 llvm_unreachable("Unexpected OPCode!!!"); 2337 2338 2339 if (ZeroUndef && Src.getValueType() == MVT::i32) 2340 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2341 2342 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2343 2344 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2345 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2346 2347 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2348 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2349 2350 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2351 *DAG.getContext(), MVT::i32); 2352 2353 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2354 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2355 2356 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2357 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2358 2359 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2360 SDValue Add, NewOpr; 2361 if (isCtlzOpc(Op.getOpcode())) { 2362 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2363 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2364 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2365 } else { 2366 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2367 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2368 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2369 } 2370 2371 if (!ZeroUndef) { 2372 // Test if the full 64-bit input is zero. 2373 2374 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2375 // which we probably don't want. 2376 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2377 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2378 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2379 2380 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2381 // with the same cycles, otherwise it is slower. 2382 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2383 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2384 2385 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2386 2387 // The instruction returns -1 for 0 input, but the defined intrinsic 2388 // behavior is to return the number of bits. 2389 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2390 SrcIsZero, Bits32, NewOpr); 2391 } 2392 2393 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2394 } 2395 2396 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2397 bool Signed) const { 2398 // Unsigned 2399 // cul2f(ulong u) 2400 //{ 2401 // uint lz = clz(u); 2402 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2403 // u = (u << lz) & 0x7fffffffffffffffUL; 2404 // ulong t = u & 0xffffffffffUL; 2405 // uint v = (e << 23) | (uint)(u >> 40); 2406 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2407 // return as_float(v + r); 2408 //} 2409 // Signed 2410 // cl2f(long l) 2411 //{ 2412 // long s = l >> 63; 2413 // float r = cul2f((l + s) ^ s); 2414 // return s ? -r : r; 2415 //} 2416 2417 SDLoc SL(Op); 2418 SDValue Src = Op.getOperand(0); 2419 SDValue L = Src; 2420 2421 SDValue S; 2422 if (Signed) { 2423 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2424 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2425 2426 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2427 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2428 } 2429 2430 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2431 *DAG.getContext(), MVT::f32); 2432 2433 2434 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2435 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2436 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2437 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2438 2439 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2440 SDValue E = DAG.getSelect(SL, MVT::i32, 2441 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2442 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2443 ZeroI32); 2444 2445 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2446 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2447 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2448 2449 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2450 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2451 2452 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2453 U, DAG.getConstant(40, SL, MVT::i64)); 2454 2455 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2456 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2457 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2458 2459 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2460 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2461 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2462 2463 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2464 2465 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2466 2467 SDValue R = DAG.getSelect(SL, MVT::i32, 2468 RCmp, 2469 One, 2470 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2471 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2472 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2473 2474 if (!Signed) 2475 return R; 2476 2477 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2478 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2479 } 2480 2481 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2482 bool Signed) const { 2483 SDLoc SL(Op); 2484 SDValue Src = Op.getOperand(0); 2485 2486 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2487 2488 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2489 DAG.getConstant(0, SL, MVT::i32)); 2490 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2491 DAG.getConstant(1, SL, MVT::i32)); 2492 2493 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2494 SL, MVT::f64, Hi); 2495 2496 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2497 2498 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2499 DAG.getConstant(32, SL, MVT::i32)); 2500 // TODO: Should this propagate fast-math-flags? 2501 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2502 } 2503 2504 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2505 SelectionDAG &DAG) const { 2506 // TODO: Factor out code common with LowerSINT_TO_FP. 2507 EVT DestVT = Op.getValueType(); 2508 SDValue Src = Op.getOperand(0); 2509 EVT SrcVT = Src.getValueType(); 2510 2511 if (SrcVT == MVT::i16) { 2512 if (DestVT == MVT::f16) 2513 return Op; 2514 SDLoc DL(Op); 2515 2516 // Promote src to i32 2517 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); 2518 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); 2519 } 2520 2521 assert(SrcVT == MVT::i64 && "operation should be legal"); 2522 2523 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2524 SDLoc DL(Op); 2525 2526 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2527 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2528 SDValue FPRound = 2529 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2530 2531 return FPRound; 2532 } 2533 2534 if (DestVT == MVT::f32) 2535 return LowerINT_TO_FP32(Op, DAG, false); 2536 2537 assert(DestVT == MVT::f64); 2538 return LowerINT_TO_FP64(Op, DAG, false); 2539 } 2540 2541 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2542 SelectionDAG &DAG) const { 2543 EVT DestVT = Op.getValueType(); 2544 2545 SDValue Src = Op.getOperand(0); 2546 EVT SrcVT = Src.getValueType(); 2547 2548 if (SrcVT == MVT::i16) { 2549 if (DestVT == MVT::f16) 2550 return Op; 2551 2552 SDLoc DL(Op); 2553 // Promote src to i32 2554 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); 2555 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); 2556 } 2557 2558 assert(SrcVT == MVT::i64 && "operation should be legal"); 2559 2560 // TODO: Factor out code common with LowerUINT_TO_FP. 2561 2562 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2563 SDLoc DL(Op); 2564 SDValue Src = Op.getOperand(0); 2565 2566 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2567 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2568 SDValue FPRound = 2569 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2570 2571 return FPRound; 2572 } 2573 2574 if (DestVT == MVT::f32) 2575 return LowerINT_TO_FP32(Op, DAG, true); 2576 2577 assert(DestVT == MVT::f64); 2578 return LowerINT_TO_FP64(Op, DAG, true); 2579 } 2580 2581 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2582 bool Signed) const { 2583 SDLoc SL(Op); 2584 2585 SDValue Src = Op.getOperand(0); 2586 2587 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2588 2589 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2590 MVT::f64); 2591 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2592 MVT::f64); 2593 // TODO: Should this propagate fast-math-flags? 2594 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2595 2596 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2597 2598 2599 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2600 2601 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2602 MVT::i32, FloorMul); 2603 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2604 2605 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2606 2607 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2608 } 2609 2610 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2611 SDLoc DL(Op); 2612 SDValue N0 = Op.getOperand(0); 2613 2614 // Convert to target node to get known bits 2615 if (N0.getValueType() == MVT::f32) 2616 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2617 2618 if (getTargetMachine().Options.UnsafeFPMath) { 2619 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2620 return SDValue(); 2621 } 2622 2623 assert(N0.getSimpleValueType() == MVT::f64); 2624 2625 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2626 const unsigned ExpMask = 0x7ff; 2627 const unsigned ExpBiasf64 = 1023; 2628 const unsigned ExpBiasf16 = 15; 2629 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2630 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2631 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2632 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2633 DAG.getConstant(32, DL, MVT::i64)); 2634 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2635 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2636 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2637 DAG.getConstant(20, DL, MVT::i64)); 2638 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2639 DAG.getConstant(ExpMask, DL, MVT::i32)); 2640 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2641 // add the f16 bias (15) to get the biased exponent for the f16 format. 2642 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2643 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2644 2645 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2646 DAG.getConstant(8, DL, MVT::i32)); 2647 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2648 DAG.getConstant(0xffe, DL, MVT::i32)); 2649 2650 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2651 DAG.getConstant(0x1ff, DL, MVT::i32)); 2652 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2653 2654 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2655 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2656 2657 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2658 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2659 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2660 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2661 2662 // N = M | (E << 12); 2663 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2664 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2665 DAG.getConstant(12, DL, MVT::i32))); 2666 2667 // B = clamp(1-E, 0, 13); 2668 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2669 One, E); 2670 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2671 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2672 DAG.getConstant(13, DL, MVT::i32)); 2673 2674 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2675 DAG.getConstant(0x1000, DL, MVT::i32)); 2676 2677 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2678 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2679 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2680 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2681 2682 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2683 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2684 DAG.getConstant(0x7, DL, MVT::i32)); 2685 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2686 DAG.getConstant(2, DL, MVT::i32)); 2687 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2688 One, Zero, ISD::SETEQ); 2689 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2690 One, Zero, ISD::SETGT); 2691 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2692 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2693 2694 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2695 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2696 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2697 I, V, ISD::SETEQ); 2698 2699 // Extract the sign bit. 2700 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2701 DAG.getConstant(16, DL, MVT::i32)); 2702 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2703 DAG.getConstant(0x8000, DL, MVT::i32)); 2704 2705 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2706 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2707 } 2708 2709 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2710 SelectionDAG &DAG) const { 2711 SDValue Src = Op.getOperand(0); 2712 2713 // TODO: Factor out code common with LowerFP_TO_UINT. 2714 2715 EVT SrcVT = Src.getValueType(); 2716 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2717 SDLoc DL(Op); 2718 2719 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2720 SDValue FpToInt32 = 2721 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2722 2723 return FpToInt32; 2724 } 2725 2726 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2727 return LowerFP64_TO_INT(Op, DAG, true); 2728 2729 return SDValue(); 2730 } 2731 2732 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2733 SelectionDAG &DAG) const { 2734 SDValue Src = Op.getOperand(0); 2735 2736 // TODO: Factor out code common with LowerFP_TO_SINT. 2737 2738 EVT SrcVT = Src.getValueType(); 2739 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2740 SDLoc DL(Op); 2741 2742 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2743 SDValue FpToInt32 = 2744 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2745 2746 return FpToInt32; 2747 } 2748 2749 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2750 return LowerFP64_TO_INT(Op, DAG, false); 2751 2752 return SDValue(); 2753 } 2754 2755 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2756 SelectionDAG &DAG) const { 2757 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2758 MVT VT = Op.getSimpleValueType(); 2759 MVT ScalarVT = VT.getScalarType(); 2760 2761 assert(VT.isVector()); 2762 2763 SDValue Src = Op.getOperand(0); 2764 SDLoc DL(Op); 2765 2766 // TODO: Don't scalarize on Evergreen? 2767 unsigned NElts = VT.getVectorNumElements(); 2768 SmallVector<SDValue, 8> Args; 2769 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2770 2771 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2772 for (unsigned I = 0; I < NElts; ++I) 2773 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2774 2775 return DAG.getBuildVector(VT, DL, Args); 2776 } 2777 2778 //===----------------------------------------------------------------------===// 2779 // Custom DAG optimizations 2780 //===----------------------------------------------------------------------===// 2781 2782 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2783 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2784 } 2785 2786 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2787 EVT VT = Op.getValueType(); 2788 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2789 // as unsigned 24-bit values. 2790 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2791 } 2792 2793 static SDValue simplifyI24(SDNode *Node24, 2794 TargetLowering::DAGCombinerInfo &DCI) { 2795 SelectionDAG &DAG = DCI.DAG; 2796 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2797 2798 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2799 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2800 unsigned NewOpcode = Node24->getOpcode(); 2801 if (IsIntrin) { 2802 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2803 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2804 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2805 } 2806 2807 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2808 2809 // First try to simplify using GetDemandedBits which allows the operands to 2810 // have other uses, but will only perform simplifications that involve 2811 // bypassing some nodes for this user. 2812 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2813 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2814 if (DemandedLHS || DemandedRHS) 2815 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2816 DemandedLHS ? DemandedLHS : LHS, 2817 DemandedRHS ? DemandedRHS : RHS); 2818 2819 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2820 // operands if this node is the only user. 2821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2822 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2823 return SDValue(Node24, 0); 2824 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2825 return SDValue(Node24, 0); 2826 2827 return SDValue(); 2828 } 2829 2830 template <typename IntTy> 2831 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2832 uint32_t Width, const SDLoc &DL) { 2833 if (Width + Offset < 32) { 2834 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2835 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2836 return DAG.getConstant(Result, DL, MVT::i32); 2837 } 2838 2839 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2840 } 2841 2842 static bool hasVolatileUser(SDNode *Val) { 2843 for (SDNode *U : Val->uses()) { 2844 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2845 if (M->isVolatile()) 2846 return true; 2847 } 2848 } 2849 2850 return false; 2851 } 2852 2853 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2854 // i32 vectors are the canonical memory type. 2855 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2856 return false; 2857 2858 if (!VT.isByteSized()) 2859 return false; 2860 2861 unsigned Size = VT.getStoreSize(); 2862 2863 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2864 return false; 2865 2866 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2867 return false; 2868 2869 return true; 2870 } 2871 2872 // Replace load of an illegal type with a store of a bitcast to a friendlier 2873 // type. 2874 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2875 DAGCombinerInfo &DCI) const { 2876 if (!DCI.isBeforeLegalize()) 2877 return SDValue(); 2878 2879 LoadSDNode *LN = cast<LoadSDNode>(N); 2880 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2881 return SDValue(); 2882 2883 SDLoc SL(N); 2884 SelectionDAG &DAG = DCI.DAG; 2885 EVT VT = LN->getMemoryVT(); 2886 2887 unsigned Size = VT.getStoreSize(); 2888 unsigned Align = LN->getAlignment(); 2889 if (Align < Size && isTypeLegal(VT)) { 2890 bool IsFast; 2891 unsigned AS = LN->getAddressSpace(); 2892 2893 // Expand unaligned loads earlier than legalization. Due to visitation order 2894 // problems during legalization, the emitted instructions to pack and unpack 2895 // the bytes again are not eliminated in the case of an unaligned copy. 2896 if (!allowsMisalignedMemoryAccesses( 2897 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2898 SDValue Ops[2]; 2899 2900 if (VT.isVector()) 2901 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG); 2902 else 2903 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2904 2905 return DAG.getMergeValues(Ops, SDLoc(N)); 2906 } 2907 2908 if (!IsFast) 2909 return SDValue(); 2910 } 2911 2912 if (!shouldCombineMemoryType(VT)) 2913 return SDValue(); 2914 2915 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2916 2917 SDValue NewLoad 2918 = DAG.getLoad(NewVT, SL, LN->getChain(), 2919 LN->getBasePtr(), LN->getMemOperand()); 2920 2921 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2922 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2923 return SDValue(N, 0); 2924 } 2925 2926 // Replace store of an illegal type with a store of a bitcast to a friendlier 2927 // type. 2928 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2929 DAGCombinerInfo &DCI) const { 2930 if (!DCI.isBeforeLegalize()) 2931 return SDValue(); 2932 2933 StoreSDNode *SN = cast<StoreSDNode>(N); 2934 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2935 return SDValue(); 2936 2937 EVT VT = SN->getMemoryVT(); 2938 unsigned Size = VT.getStoreSize(); 2939 2940 SDLoc SL(N); 2941 SelectionDAG &DAG = DCI.DAG; 2942 unsigned Align = SN->getAlignment(); 2943 if (Align < Size && isTypeLegal(VT)) { 2944 bool IsFast; 2945 unsigned AS = SN->getAddressSpace(); 2946 2947 // Expand unaligned stores earlier than legalization. Due to visitation 2948 // order problems during legalization, the emitted instructions to pack and 2949 // unpack the bytes again are not eliminated in the case of an unaligned 2950 // copy. 2951 if (!allowsMisalignedMemoryAccesses( 2952 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2953 if (VT.isVector()) 2954 return scalarizeVectorStore(SN, DAG); 2955 2956 return expandUnalignedStore(SN, DAG); 2957 } 2958 2959 if (!IsFast) 2960 return SDValue(); 2961 } 2962 2963 if (!shouldCombineMemoryType(VT)) 2964 return SDValue(); 2965 2966 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2967 SDValue Val = SN->getValue(); 2968 2969 //DCI.AddToWorklist(Val.getNode()); 2970 2971 bool OtherUses = !Val.hasOneUse(); 2972 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2973 if (OtherUses) { 2974 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2975 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2976 } 2977 2978 return DAG.getStore(SN->getChain(), SL, CastVal, 2979 SN->getBasePtr(), SN->getMemOperand()); 2980 } 2981 2982 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2983 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2984 // issues. 2985 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2986 DAGCombinerInfo &DCI) const { 2987 SelectionDAG &DAG = DCI.DAG; 2988 SDValue N0 = N->getOperand(0); 2989 2990 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2991 // (vt2 (truncate (assertzext vt0:x, vt1))) 2992 if (N0.getOpcode() == ISD::TRUNCATE) { 2993 SDValue N1 = N->getOperand(1); 2994 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2995 SDLoc SL(N); 2996 2997 SDValue Src = N0.getOperand(0); 2998 EVT SrcVT = Src.getValueType(); 2999 if (SrcVT.bitsGE(ExtVT)) { 3000 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 3001 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 3002 } 3003 } 3004 3005 return SDValue(); 3006 } 3007 3008 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 3009 SDNode *N, DAGCombinerInfo &DCI) const { 3010 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 3011 switch (IID) { 3012 case Intrinsic::amdgcn_mul_i24: 3013 case Intrinsic::amdgcn_mul_u24: 3014 return simplifyI24(N, DCI); 3015 default: 3016 return SDValue(); 3017 } 3018 } 3019 3020 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 3021 /// binary operation \p Opc to it with the corresponding constant operands. 3022 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 3023 DAGCombinerInfo &DCI, const SDLoc &SL, 3024 unsigned Opc, SDValue LHS, 3025 uint32_t ValLo, uint32_t ValHi) const { 3026 SelectionDAG &DAG = DCI.DAG; 3027 SDValue Lo, Hi; 3028 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 3029 3030 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 3031 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3032 3033 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3034 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3035 3036 // Re-visit the ands. It's possible we eliminated one of them and it could 3037 // simplify the vector. 3038 DCI.AddToWorklist(Lo.getNode()); 3039 DCI.AddToWorklist(Hi.getNode()); 3040 3041 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3042 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3043 } 3044 3045 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3046 DAGCombinerInfo &DCI) const { 3047 EVT VT = N->getValueType(0); 3048 3049 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3050 if (!RHS) 3051 return SDValue(); 3052 3053 SDValue LHS = N->getOperand(0); 3054 unsigned RHSVal = RHS->getZExtValue(); 3055 if (!RHSVal) 3056 return LHS; 3057 3058 SDLoc SL(N); 3059 SelectionDAG &DAG = DCI.DAG; 3060 3061 switch (LHS->getOpcode()) { 3062 default: 3063 break; 3064 case ISD::ZERO_EXTEND: 3065 case ISD::SIGN_EXTEND: 3066 case ISD::ANY_EXTEND: { 3067 SDValue X = LHS->getOperand(0); 3068 3069 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3070 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3071 // Prefer build_vector as the canonical form if packed types are legal. 3072 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3073 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3074 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3075 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3076 } 3077 3078 // shl (ext x) => zext (shl x), if shift does not overflow int 3079 if (VT != MVT::i64) 3080 break; 3081 KnownBits Known = DAG.computeKnownBits(X); 3082 unsigned LZ = Known.countMinLeadingZeros(); 3083 if (LZ < RHSVal) 3084 break; 3085 EVT XVT = X.getValueType(); 3086 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3087 return DAG.getZExtOrTrunc(Shl, SL, VT); 3088 } 3089 } 3090 3091 if (VT != MVT::i64) 3092 return SDValue(); 3093 3094 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3095 3096 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3097 // common case, splitting this into a move and a 32-bit shift is faster and 3098 // the same code size. 3099 if (RHSVal < 32) 3100 return SDValue(); 3101 3102 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3103 3104 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3105 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3106 3107 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3108 3109 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3110 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3111 } 3112 3113 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3114 DAGCombinerInfo &DCI) const { 3115 if (N->getValueType(0) != MVT::i64) 3116 return SDValue(); 3117 3118 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3119 if (!RHS) 3120 return SDValue(); 3121 3122 SelectionDAG &DAG = DCI.DAG; 3123 SDLoc SL(N); 3124 unsigned RHSVal = RHS->getZExtValue(); 3125 3126 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3127 if (RHSVal == 32) { 3128 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3129 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3130 DAG.getConstant(31, SL, MVT::i32)); 3131 3132 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3133 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3134 } 3135 3136 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3137 if (RHSVal == 63) { 3138 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3139 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3140 DAG.getConstant(31, SL, MVT::i32)); 3141 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3142 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3143 } 3144 3145 return SDValue(); 3146 } 3147 3148 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3149 DAGCombinerInfo &DCI) const { 3150 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3151 if (!RHS) 3152 return SDValue(); 3153 3154 EVT VT = N->getValueType(0); 3155 SDValue LHS = N->getOperand(0); 3156 unsigned ShiftAmt = RHS->getZExtValue(); 3157 SelectionDAG &DAG = DCI.DAG; 3158 SDLoc SL(N); 3159 3160 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3161 // this improves the ability to match BFE patterns in isel. 3162 if (LHS.getOpcode() == ISD::AND) { 3163 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3164 if (Mask->getAPIntValue().isShiftedMask() && 3165 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3166 return DAG.getNode( 3167 ISD::AND, SL, VT, 3168 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3169 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3170 } 3171 } 3172 } 3173 3174 if (VT != MVT::i64) 3175 return SDValue(); 3176 3177 if (ShiftAmt < 32) 3178 return SDValue(); 3179 3180 // srl i64:x, C for C >= 32 3181 // => 3182 // build_pair (srl hi_32(x), C - 32), 0 3183 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3184 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3185 3186 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3187 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3188 3189 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3190 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3191 3192 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3193 3194 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3195 } 3196 3197 SDValue AMDGPUTargetLowering::performTruncateCombine( 3198 SDNode *N, DAGCombinerInfo &DCI) const { 3199 SDLoc SL(N); 3200 SelectionDAG &DAG = DCI.DAG; 3201 EVT VT = N->getValueType(0); 3202 SDValue Src = N->getOperand(0); 3203 3204 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3205 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3206 SDValue Vec = Src.getOperand(0); 3207 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3208 SDValue Elt0 = Vec.getOperand(0); 3209 EVT EltVT = Elt0.getValueType(); 3210 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3211 if (EltVT.isFloatingPoint()) { 3212 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3213 EltVT.changeTypeToInteger(), Elt0); 3214 } 3215 3216 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3217 } 3218 } 3219 } 3220 3221 // Equivalent of above for accessing the high element of a vector as an 3222 // integer operation. 3223 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3224 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3225 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3226 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3227 SDValue BV = stripBitcast(Src.getOperand(0)); 3228 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3229 BV.getValueType().getVectorNumElements() == 2) { 3230 SDValue SrcElt = BV.getOperand(1); 3231 EVT SrcEltVT = SrcElt.getValueType(); 3232 if (SrcEltVT.isFloatingPoint()) { 3233 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3234 SrcEltVT.changeTypeToInteger(), SrcElt); 3235 } 3236 3237 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3238 } 3239 } 3240 } 3241 } 3242 3243 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3244 // 3245 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3246 // i16 (trunc (srl (i32 (trunc x), K))) 3247 if (VT.getScalarSizeInBits() < 32) { 3248 EVT SrcVT = Src.getValueType(); 3249 if (SrcVT.getScalarSizeInBits() > 32 && 3250 (Src.getOpcode() == ISD::SRL || 3251 Src.getOpcode() == ISD::SRA || 3252 Src.getOpcode() == ISD::SHL)) { 3253 SDValue Amt = Src.getOperand(1); 3254 KnownBits Known = DAG.computeKnownBits(Amt); 3255 unsigned Size = VT.getScalarSizeInBits(); 3256 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3257 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3258 EVT MidVT = VT.isVector() ? 3259 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3260 VT.getVectorNumElements()) : MVT::i32; 3261 3262 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3263 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3264 Src.getOperand(0)); 3265 DCI.AddToWorklist(Trunc.getNode()); 3266 3267 if (Amt.getValueType() != NewShiftVT) { 3268 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3269 DCI.AddToWorklist(Amt.getNode()); 3270 } 3271 3272 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3273 Trunc, Amt); 3274 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3275 } 3276 } 3277 } 3278 3279 return SDValue(); 3280 } 3281 3282 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3283 // instructions. If we only match on the legalized i64 mul expansion, 3284 // SimplifyDemandedBits will be unable to remove them because there will be 3285 // multiple uses due to the separate mul + mulh[su]. 3286 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3287 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3288 if (Size <= 32) { 3289 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3290 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3291 } 3292 3293 // Because we want to eliminate extension instructions before the 3294 // operation, we need to create a single user here (i.e. not the separate 3295 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3296 3297 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3298 3299 SDValue Mul = DAG.getNode(MulOpc, SL, 3300 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3301 3302 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3303 Mul.getValue(0), Mul.getValue(1)); 3304 } 3305 3306 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3307 DAGCombinerInfo &DCI) const { 3308 EVT VT = N->getValueType(0); 3309 3310 unsigned Size = VT.getSizeInBits(); 3311 if (VT.isVector() || Size > 64) 3312 return SDValue(); 3313 3314 // There are i16 integer mul/mad. 3315 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3316 return SDValue(); 3317 3318 SelectionDAG &DAG = DCI.DAG; 3319 SDLoc DL(N); 3320 3321 SDValue N0 = N->getOperand(0); 3322 SDValue N1 = N->getOperand(1); 3323 3324 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3325 // in the source into any_extends if the result of the mul is truncated. Since 3326 // we can assume the high bits are whatever we want, use the underlying value 3327 // to avoid the unknown high bits from interfering. 3328 if (N0.getOpcode() == ISD::ANY_EXTEND) 3329 N0 = N0.getOperand(0); 3330 3331 if (N1.getOpcode() == ISD::ANY_EXTEND) 3332 N1 = N1.getOperand(0); 3333 3334 SDValue Mul; 3335 3336 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3337 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3338 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3339 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3340 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3341 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3342 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3343 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3344 } else { 3345 return SDValue(); 3346 } 3347 3348 // We need to use sext even for MUL_U24, because MUL_U24 is used 3349 // for signed multiply of 8 and 16-bit types. 3350 return DAG.getSExtOrTrunc(Mul, DL, VT); 3351 } 3352 3353 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3354 DAGCombinerInfo &DCI) const { 3355 EVT VT = N->getValueType(0); 3356 3357 if (!Subtarget->hasMulI24() || VT.isVector()) 3358 return SDValue(); 3359 3360 SelectionDAG &DAG = DCI.DAG; 3361 SDLoc DL(N); 3362 3363 SDValue N0 = N->getOperand(0); 3364 SDValue N1 = N->getOperand(1); 3365 3366 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3367 return SDValue(); 3368 3369 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3370 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3371 3372 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3373 DCI.AddToWorklist(Mulhi.getNode()); 3374 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3375 } 3376 3377 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3378 DAGCombinerInfo &DCI) const { 3379 EVT VT = N->getValueType(0); 3380 3381 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3382 return SDValue(); 3383 3384 SelectionDAG &DAG = DCI.DAG; 3385 SDLoc DL(N); 3386 3387 SDValue N0 = N->getOperand(0); 3388 SDValue N1 = N->getOperand(1); 3389 3390 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3391 return SDValue(); 3392 3393 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3394 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3395 3396 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3397 DCI.AddToWorklist(Mulhi.getNode()); 3398 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3399 } 3400 3401 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3402 SDNode *N, DAGCombinerInfo &DCI) const { 3403 SelectionDAG &DAG = DCI.DAG; 3404 3405 // Simplify demanded bits before splitting into multiple users. 3406 if (SDValue V = simplifyI24(N, DCI)) 3407 return V; 3408 3409 SDValue N0 = N->getOperand(0); 3410 SDValue N1 = N->getOperand(1); 3411 3412 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3413 3414 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3415 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3416 3417 SDLoc SL(N); 3418 3419 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3420 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3421 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3422 } 3423 3424 static bool isNegativeOne(SDValue Val) { 3425 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3426 return C->isAllOnesValue(); 3427 return false; 3428 } 3429 3430 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3431 SDValue Op, 3432 const SDLoc &DL, 3433 unsigned Opc) const { 3434 EVT VT = Op.getValueType(); 3435 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3436 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3437 LegalVT != MVT::i16)) 3438 return SDValue(); 3439 3440 if (VT != MVT::i32) 3441 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3442 3443 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3444 if (VT != MVT::i32) 3445 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3446 3447 return FFBX; 3448 } 3449 3450 // The native instructions return -1 on 0 input. Optimize out a select that 3451 // produces -1 on 0. 3452 // 3453 // TODO: If zero is not undef, we could also do this if the output is compared 3454 // against the bitwidth. 3455 // 3456 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3457 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3458 SDValue LHS, SDValue RHS, 3459 DAGCombinerInfo &DCI) const { 3460 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3461 if (!CmpRhs || !CmpRhs->isNullValue()) 3462 return SDValue(); 3463 3464 SelectionDAG &DAG = DCI.DAG; 3465 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3466 SDValue CmpLHS = Cond.getOperand(0); 3467 3468 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3469 AMDGPUISD::FFBH_U32; 3470 3471 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3472 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3473 if (CCOpcode == ISD::SETEQ && 3474 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3475 RHS.getOperand(0) == CmpLHS && 3476 isNegativeOne(LHS)) { 3477 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3478 } 3479 3480 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3481 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3482 if (CCOpcode == ISD::SETNE && 3483 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3484 LHS.getOperand(0) == CmpLHS && 3485 isNegativeOne(RHS)) { 3486 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3487 } 3488 3489 return SDValue(); 3490 } 3491 3492 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3493 unsigned Op, 3494 const SDLoc &SL, 3495 SDValue Cond, 3496 SDValue N1, 3497 SDValue N2) { 3498 SelectionDAG &DAG = DCI.DAG; 3499 EVT VT = N1.getValueType(); 3500 3501 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3502 N1.getOperand(0), N2.getOperand(0)); 3503 DCI.AddToWorklist(NewSelect.getNode()); 3504 return DAG.getNode(Op, SL, VT, NewSelect); 3505 } 3506 3507 // Pull a free FP operation out of a select so it may fold into uses. 3508 // 3509 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3510 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3511 // 3512 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3513 // select c, (fabs x), +k -> fabs (select c, x, k) 3514 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3515 SDValue N) { 3516 SelectionDAG &DAG = DCI.DAG; 3517 SDValue Cond = N.getOperand(0); 3518 SDValue LHS = N.getOperand(1); 3519 SDValue RHS = N.getOperand(2); 3520 3521 EVT VT = N.getValueType(); 3522 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3523 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3524 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3525 SDLoc(N), Cond, LHS, RHS); 3526 } 3527 3528 bool Inv = false; 3529 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3530 std::swap(LHS, RHS); 3531 Inv = true; 3532 } 3533 3534 // TODO: Support vector constants. 3535 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3536 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3537 SDLoc SL(N); 3538 // If one side is an fneg/fabs and the other is a constant, we can push the 3539 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3540 SDValue NewLHS = LHS.getOperand(0); 3541 SDValue NewRHS = RHS; 3542 3543 // Careful: if the neg can be folded up, don't try to pull it back down. 3544 bool ShouldFoldNeg = true; 3545 3546 if (NewLHS.hasOneUse()) { 3547 unsigned Opc = NewLHS.getOpcode(); 3548 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3549 ShouldFoldNeg = false; 3550 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3551 ShouldFoldNeg = false; 3552 } 3553 3554 if (ShouldFoldNeg) { 3555 if (LHS.getOpcode() == ISD::FNEG) 3556 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3557 else if (CRHS->isNegative()) 3558 return SDValue(); 3559 3560 if (Inv) 3561 std::swap(NewLHS, NewRHS); 3562 3563 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3564 Cond, NewLHS, NewRHS); 3565 DCI.AddToWorklist(NewSelect.getNode()); 3566 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3567 } 3568 } 3569 3570 return SDValue(); 3571 } 3572 3573 3574 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3575 DAGCombinerInfo &DCI) const { 3576 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3577 return Folded; 3578 3579 SDValue Cond = N->getOperand(0); 3580 if (Cond.getOpcode() != ISD::SETCC) 3581 return SDValue(); 3582 3583 EVT VT = N->getValueType(0); 3584 SDValue LHS = Cond.getOperand(0); 3585 SDValue RHS = Cond.getOperand(1); 3586 SDValue CC = Cond.getOperand(2); 3587 3588 SDValue True = N->getOperand(1); 3589 SDValue False = N->getOperand(2); 3590 3591 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3592 SelectionDAG &DAG = DCI.DAG; 3593 if (DAG.isConstantValueOfAnyType(True) && 3594 !DAG.isConstantValueOfAnyType(False)) { 3595 // Swap cmp + select pair to move constant to false input. 3596 // This will allow using VOPC cndmasks more often. 3597 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3598 3599 SDLoc SL(N); 3600 ISD::CondCode NewCC = 3601 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); 3602 3603 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3604 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3605 } 3606 3607 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3608 SDValue MinMax 3609 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3610 // Revisit this node so we can catch min3/max3/med3 patterns. 3611 //DCI.AddToWorklist(MinMax.getNode()); 3612 return MinMax; 3613 } 3614 } 3615 3616 // There's no reason to not do this if the condition has other uses. 3617 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3618 } 3619 3620 static bool isInv2Pi(const APFloat &APF) { 3621 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3622 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3623 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3624 3625 return APF.bitwiseIsEqual(KF16) || 3626 APF.bitwiseIsEqual(KF32) || 3627 APF.bitwiseIsEqual(KF64); 3628 } 3629 3630 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3631 // additional cost to negate them. 3632 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3633 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3634 if (C->isZero() && !C->isNegative()) 3635 return true; 3636 3637 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3638 return true; 3639 } 3640 3641 return false; 3642 } 3643 3644 static unsigned inverseMinMax(unsigned Opc) { 3645 switch (Opc) { 3646 case ISD::FMAXNUM: 3647 return ISD::FMINNUM; 3648 case ISD::FMINNUM: 3649 return ISD::FMAXNUM; 3650 case ISD::FMAXNUM_IEEE: 3651 return ISD::FMINNUM_IEEE; 3652 case ISD::FMINNUM_IEEE: 3653 return ISD::FMAXNUM_IEEE; 3654 case AMDGPUISD::FMAX_LEGACY: 3655 return AMDGPUISD::FMIN_LEGACY; 3656 case AMDGPUISD::FMIN_LEGACY: 3657 return AMDGPUISD::FMAX_LEGACY; 3658 default: 3659 llvm_unreachable("invalid min/max opcode"); 3660 } 3661 } 3662 3663 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3664 DAGCombinerInfo &DCI) const { 3665 SelectionDAG &DAG = DCI.DAG; 3666 SDValue N0 = N->getOperand(0); 3667 EVT VT = N->getValueType(0); 3668 3669 unsigned Opc = N0.getOpcode(); 3670 3671 // If the input has multiple uses and we can either fold the negate down, or 3672 // the other uses cannot, give up. This both prevents unprofitable 3673 // transformations and infinite loops: we won't repeatedly try to fold around 3674 // a negate that has no 'good' form. 3675 if (N0.hasOneUse()) { 3676 // This may be able to fold into the source, but at a code size cost. Don't 3677 // fold if the fold into the user is free. 3678 if (allUsesHaveSourceMods(N, 0)) 3679 return SDValue(); 3680 } else { 3681 if (fnegFoldsIntoOp(Opc) && 3682 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3683 return SDValue(); 3684 } 3685 3686 SDLoc SL(N); 3687 switch (Opc) { 3688 case ISD::FADD: { 3689 if (!mayIgnoreSignedZero(N0)) 3690 return SDValue(); 3691 3692 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3693 SDValue LHS = N0.getOperand(0); 3694 SDValue RHS = N0.getOperand(1); 3695 3696 if (LHS.getOpcode() != ISD::FNEG) 3697 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3698 else 3699 LHS = LHS.getOperand(0); 3700 3701 if (RHS.getOpcode() != ISD::FNEG) 3702 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3703 else 3704 RHS = RHS.getOperand(0); 3705 3706 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3707 if (Res.getOpcode() != ISD::FADD) 3708 return SDValue(); // Op got folded away. 3709 if (!N0.hasOneUse()) 3710 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3711 return Res; 3712 } 3713 case ISD::FMUL: 3714 case AMDGPUISD::FMUL_LEGACY: { 3715 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3716 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3717 SDValue LHS = N0.getOperand(0); 3718 SDValue RHS = N0.getOperand(1); 3719 3720 if (LHS.getOpcode() == ISD::FNEG) 3721 LHS = LHS.getOperand(0); 3722 else if (RHS.getOpcode() == ISD::FNEG) 3723 RHS = RHS.getOperand(0); 3724 else 3725 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3726 3727 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3728 if (Res.getOpcode() != Opc) 3729 return SDValue(); // Op got folded away. 3730 if (!N0.hasOneUse()) 3731 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3732 return Res; 3733 } 3734 case ISD::FMA: 3735 case ISD::FMAD: { 3736 if (!mayIgnoreSignedZero(N0)) 3737 return SDValue(); 3738 3739 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3740 SDValue LHS = N0.getOperand(0); 3741 SDValue MHS = N0.getOperand(1); 3742 SDValue RHS = N0.getOperand(2); 3743 3744 if (LHS.getOpcode() == ISD::FNEG) 3745 LHS = LHS.getOperand(0); 3746 else if (MHS.getOpcode() == ISD::FNEG) 3747 MHS = MHS.getOperand(0); 3748 else 3749 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3750 3751 if (RHS.getOpcode() != ISD::FNEG) 3752 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3753 else 3754 RHS = RHS.getOperand(0); 3755 3756 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3757 if (Res.getOpcode() != Opc) 3758 return SDValue(); // Op got folded away. 3759 if (!N0.hasOneUse()) 3760 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3761 return Res; 3762 } 3763 case ISD::FMAXNUM: 3764 case ISD::FMINNUM: 3765 case ISD::FMAXNUM_IEEE: 3766 case ISD::FMINNUM_IEEE: 3767 case AMDGPUISD::FMAX_LEGACY: 3768 case AMDGPUISD::FMIN_LEGACY: { 3769 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3770 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3771 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3772 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3773 3774 SDValue LHS = N0.getOperand(0); 3775 SDValue RHS = N0.getOperand(1); 3776 3777 // 0 doesn't have a negated inline immediate. 3778 // TODO: This constant check should be generalized to other operations. 3779 if (isConstantCostlierToNegate(RHS)) 3780 return SDValue(); 3781 3782 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3783 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3784 unsigned Opposite = inverseMinMax(Opc); 3785 3786 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3787 if (Res.getOpcode() != Opposite) 3788 return SDValue(); // Op got folded away. 3789 if (!N0.hasOneUse()) 3790 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3791 return Res; 3792 } 3793 case AMDGPUISD::FMED3: { 3794 SDValue Ops[3]; 3795 for (unsigned I = 0; I < 3; ++I) 3796 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3797 3798 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3799 if (Res.getOpcode() != AMDGPUISD::FMED3) 3800 return SDValue(); // Op got folded away. 3801 if (!N0.hasOneUse()) 3802 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3803 return Res; 3804 } 3805 case ISD::FP_EXTEND: 3806 case ISD::FTRUNC: 3807 case ISD::FRINT: 3808 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3809 case ISD::FSIN: 3810 case ISD::FCANONICALIZE: 3811 case AMDGPUISD::RCP: 3812 case AMDGPUISD::RCP_LEGACY: 3813 case AMDGPUISD::RCP_IFLAG: 3814 case AMDGPUISD::SIN_HW: { 3815 SDValue CvtSrc = N0.getOperand(0); 3816 if (CvtSrc.getOpcode() == ISD::FNEG) { 3817 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3818 // (fneg (rcp (fneg x))) -> (rcp x) 3819 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3820 } 3821 3822 if (!N0.hasOneUse()) 3823 return SDValue(); 3824 3825 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3826 // (fneg (rcp x)) -> (rcp (fneg x)) 3827 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3828 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3829 } 3830 case ISD::FP_ROUND: { 3831 SDValue CvtSrc = N0.getOperand(0); 3832 3833 if (CvtSrc.getOpcode() == ISD::FNEG) { 3834 // (fneg (fp_round (fneg x))) -> (fp_round x) 3835 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3836 CvtSrc.getOperand(0), N0.getOperand(1)); 3837 } 3838 3839 if (!N0.hasOneUse()) 3840 return SDValue(); 3841 3842 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3843 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3844 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3845 } 3846 case ISD::FP16_TO_FP: { 3847 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3848 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3849 // Put the fneg back as a legal source operation that can be matched later. 3850 SDLoc SL(N); 3851 3852 SDValue Src = N0.getOperand(0); 3853 EVT SrcVT = Src.getValueType(); 3854 3855 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3856 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3857 DAG.getConstant(0x8000, SL, SrcVT)); 3858 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3859 } 3860 default: 3861 return SDValue(); 3862 } 3863 } 3864 3865 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3866 DAGCombinerInfo &DCI) const { 3867 SelectionDAG &DAG = DCI.DAG; 3868 SDValue N0 = N->getOperand(0); 3869 3870 if (!N0.hasOneUse()) 3871 return SDValue(); 3872 3873 switch (N0.getOpcode()) { 3874 case ISD::FP16_TO_FP: { 3875 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3876 SDLoc SL(N); 3877 SDValue Src = N0.getOperand(0); 3878 EVT SrcVT = Src.getValueType(); 3879 3880 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3881 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3882 DAG.getConstant(0x7fff, SL, SrcVT)); 3883 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3884 } 3885 default: 3886 return SDValue(); 3887 } 3888 } 3889 3890 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3891 DAGCombinerInfo &DCI) const { 3892 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3893 if (!CFP) 3894 return SDValue(); 3895 3896 // XXX - Should this flush denormals? 3897 const APFloat &Val = CFP->getValueAPF(); 3898 APFloat One(Val.getSemantics(), "1.0"); 3899 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3900 } 3901 3902 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3903 DAGCombinerInfo &DCI) const { 3904 SelectionDAG &DAG = DCI.DAG; 3905 SDLoc DL(N); 3906 3907 switch(N->getOpcode()) { 3908 default: 3909 break; 3910 case ISD::BITCAST: { 3911 EVT DestVT = N->getValueType(0); 3912 3913 // Push casts through vector builds. This helps avoid emitting a large 3914 // number of copies when materializing floating point vector constants. 3915 // 3916 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3917 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3918 if (DestVT.isVector()) { 3919 SDValue Src = N->getOperand(0); 3920 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3921 EVT SrcVT = Src.getValueType(); 3922 unsigned NElts = DestVT.getVectorNumElements(); 3923 3924 if (SrcVT.getVectorNumElements() == NElts) { 3925 EVT DestEltVT = DestVT.getVectorElementType(); 3926 3927 SmallVector<SDValue, 8> CastedElts; 3928 SDLoc SL(N); 3929 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3930 SDValue Elt = Src.getOperand(I); 3931 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3932 } 3933 3934 return DAG.getBuildVector(DestVT, SL, CastedElts); 3935 } 3936 } 3937 } 3938 3939 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3940 break; 3941 3942 // Fold bitcasts of constants. 3943 // 3944 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3945 // TODO: Generalize and move to DAGCombiner 3946 SDValue Src = N->getOperand(0); 3947 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3948 if (Src.getValueType() == MVT::i64) { 3949 SDLoc SL(N); 3950 uint64_t CVal = C->getZExtValue(); 3951 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3952 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3953 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3954 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3955 } 3956 } 3957 3958 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3959 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3960 SDLoc SL(N); 3961 uint64_t CVal = Val.getZExtValue(); 3962 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3963 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3964 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3965 3966 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3967 } 3968 3969 break; 3970 } 3971 case ISD::SHL: { 3972 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3973 break; 3974 3975 return performShlCombine(N, DCI); 3976 } 3977 case ISD::SRL: { 3978 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3979 break; 3980 3981 return performSrlCombine(N, DCI); 3982 } 3983 case ISD::SRA: { 3984 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3985 break; 3986 3987 return performSraCombine(N, DCI); 3988 } 3989 case ISD::TRUNCATE: 3990 return performTruncateCombine(N, DCI); 3991 case ISD::MUL: 3992 return performMulCombine(N, DCI); 3993 case ISD::MULHS: 3994 return performMulhsCombine(N, DCI); 3995 case ISD::MULHU: 3996 return performMulhuCombine(N, DCI); 3997 case AMDGPUISD::MUL_I24: 3998 case AMDGPUISD::MUL_U24: 3999 case AMDGPUISD::MULHI_I24: 4000 case AMDGPUISD::MULHI_U24: { 4001 if (SDValue V = simplifyI24(N, DCI)) 4002 return V; 4003 return SDValue(); 4004 } 4005 case AMDGPUISD::MUL_LOHI_I24: 4006 case AMDGPUISD::MUL_LOHI_U24: 4007 return performMulLoHi24Combine(N, DCI); 4008 case ISD::SELECT: 4009 return performSelectCombine(N, DCI); 4010 case ISD::FNEG: 4011 return performFNegCombine(N, DCI); 4012 case ISD::FABS: 4013 return performFAbsCombine(N, DCI); 4014 case AMDGPUISD::BFE_I32: 4015 case AMDGPUISD::BFE_U32: { 4016 assert(!N->getValueType(0).isVector() && 4017 "Vector handling of BFE not implemented"); 4018 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 4019 if (!Width) 4020 break; 4021 4022 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 4023 if (WidthVal == 0) 4024 return DAG.getConstant(0, DL, MVT::i32); 4025 4026 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4027 if (!Offset) 4028 break; 4029 4030 SDValue BitsFrom = N->getOperand(0); 4031 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4032 4033 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4034 4035 if (OffsetVal == 0) { 4036 // This is already sign / zero extended, so try to fold away extra BFEs. 4037 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4038 4039 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4040 if (OpSignBits >= SignBits) 4041 return BitsFrom; 4042 4043 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4044 if (Signed) { 4045 // This is a sign_extend_inreg. Replace it to take advantage of existing 4046 // DAG Combines. If not eliminated, we will match back to BFE during 4047 // selection. 4048 4049 // TODO: The sext_inreg of extended types ends, although we can could 4050 // handle them in a single BFE. 4051 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4052 DAG.getValueType(SmallVT)); 4053 } 4054 4055 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4056 } 4057 4058 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4059 if (Signed) { 4060 return constantFoldBFE<int32_t>(DAG, 4061 CVal->getSExtValue(), 4062 OffsetVal, 4063 WidthVal, 4064 DL); 4065 } 4066 4067 return constantFoldBFE<uint32_t>(DAG, 4068 CVal->getZExtValue(), 4069 OffsetVal, 4070 WidthVal, 4071 DL); 4072 } 4073 4074 if ((OffsetVal + WidthVal) >= 32 && 4075 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4076 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4077 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4078 BitsFrom, ShiftVal); 4079 } 4080 4081 if (BitsFrom.hasOneUse()) { 4082 APInt Demanded = APInt::getBitsSet(32, 4083 OffsetVal, 4084 OffsetVal + WidthVal); 4085 4086 KnownBits Known; 4087 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4088 !DCI.isBeforeLegalizeOps()); 4089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4090 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4091 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4092 DCI.CommitTargetLoweringOpt(TLO); 4093 } 4094 } 4095 4096 break; 4097 } 4098 case ISD::LOAD: 4099 return performLoadCombine(N, DCI); 4100 case ISD::STORE: 4101 return performStoreCombine(N, DCI); 4102 case AMDGPUISD::RCP: 4103 case AMDGPUISD::RCP_IFLAG: 4104 return performRcpCombine(N, DCI); 4105 case ISD::AssertZext: 4106 case ISD::AssertSext: 4107 return performAssertSZExtCombine(N, DCI); 4108 case ISD::INTRINSIC_WO_CHAIN: 4109 return performIntrinsicWOChainCombine(N, DCI); 4110 } 4111 return SDValue(); 4112 } 4113 4114 //===----------------------------------------------------------------------===// 4115 // Helper functions 4116 //===----------------------------------------------------------------------===// 4117 4118 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4119 const TargetRegisterClass *RC, 4120 unsigned Reg, EVT VT, 4121 const SDLoc &SL, 4122 bool RawReg) const { 4123 MachineFunction &MF = DAG.getMachineFunction(); 4124 MachineRegisterInfo &MRI = MF.getRegInfo(); 4125 unsigned VReg; 4126 4127 if (!MRI.isLiveIn(Reg)) { 4128 VReg = MRI.createVirtualRegister(RC); 4129 MRI.addLiveIn(Reg, VReg); 4130 } else { 4131 VReg = MRI.getLiveInVirtReg(Reg); 4132 } 4133 4134 if (RawReg) 4135 return DAG.getRegister(VReg, VT); 4136 4137 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4138 } 4139 4140 // This may be called multiple times, and nothing prevents creating multiple 4141 // objects at the same offset. See if we already defined this object. 4142 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4143 int64_t Offset) { 4144 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4145 if (MFI.getObjectOffset(I) == Offset) { 4146 assert(MFI.getObjectSize(I) == Size); 4147 return I; 4148 } 4149 } 4150 4151 return MFI.CreateFixedObject(Size, Offset, true); 4152 } 4153 4154 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4155 EVT VT, 4156 const SDLoc &SL, 4157 int64_t Offset) const { 4158 MachineFunction &MF = DAG.getMachineFunction(); 4159 MachineFrameInfo &MFI = MF.getFrameInfo(); 4160 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4161 4162 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4163 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4164 4165 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4166 MachineMemOperand::MODereferenceable | 4167 MachineMemOperand::MOInvariant); 4168 } 4169 4170 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4171 const SDLoc &SL, 4172 SDValue Chain, 4173 SDValue ArgVal, 4174 int64_t Offset) const { 4175 MachineFunction &MF = DAG.getMachineFunction(); 4176 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4177 4178 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4179 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4180 MachineMemOperand::MODereferenceable); 4181 return Store; 4182 } 4183 4184 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4185 const TargetRegisterClass *RC, 4186 EVT VT, const SDLoc &SL, 4187 const ArgDescriptor &Arg) const { 4188 assert(Arg && "Attempting to load missing argument"); 4189 4190 SDValue V = Arg.isRegister() ? 4191 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4192 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4193 4194 if (!Arg.isMasked()) 4195 return V; 4196 4197 unsigned Mask = Arg.getMask(); 4198 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4199 V = DAG.getNode(ISD::SRL, SL, VT, V, 4200 DAG.getShiftAmountConstant(Shift, VT, SL)); 4201 return DAG.getNode(ISD::AND, SL, VT, V, 4202 DAG.getConstant(Mask >> Shift, SL, VT)); 4203 } 4204 4205 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4206 const MachineFunction &MF, const ImplicitParameter Param) const { 4207 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4208 const AMDGPUSubtarget &ST = 4209 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4210 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4211 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4212 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4213 ExplicitArgOffset; 4214 switch (Param) { 4215 case GRID_DIM: 4216 return ArgOffset; 4217 case GRID_OFFSET: 4218 return ArgOffset + 4; 4219 } 4220 llvm_unreachable("unexpected implicit parameter type"); 4221 } 4222 4223 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4224 4225 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4226 switch ((AMDGPUISD::NodeType)Opcode) { 4227 case AMDGPUISD::FIRST_NUMBER: break; 4228 // AMDIL DAG nodes 4229 NODE_NAME_CASE(UMUL); 4230 NODE_NAME_CASE(BRANCH_COND); 4231 4232 // AMDGPU DAG nodes 4233 NODE_NAME_CASE(IF) 4234 NODE_NAME_CASE(ELSE) 4235 NODE_NAME_CASE(LOOP) 4236 NODE_NAME_CASE(CALL) 4237 NODE_NAME_CASE(TC_RETURN) 4238 NODE_NAME_CASE(TRAP) 4239 NODE_NAME_CASE(RET_FLAG) 4240 NODE_NAME_CASE(RETURN_TO_EPILOG) 4241 NODE_NAME_CASE(ENDPGM) 4242 NODE_NAME_CASE(DWORDADDR) 4243 NODE_NAME_CASE(FRACT) 4244 NODE_NAME_CASE(SETCC) 4245 NODE_NAME_CASE(SETREG) 4246 NODE_NAME_CASE(DENORM_MODE) 4247 NODE_NAME_CASE(FMA_W_CHAIN) 4248 NODE_NAME_CASE(FMUL_W_CHAIN) 4249 NODE_NAME_CASE(CLAMP) 4250 NODE_NAME_CASE(COS_HW) 4251 NODE_NAME_CASE(SIN_HW) 4252 NODE_NAME_CASE(FMAX_LEGACY) 4253 NODE_NAME_CASE(FMIN_LEGACY) 4254 NODE_NAME_CASE(FMAX3) 4255 NODE_NAME_CASE(SMAX3) 4256 NODE_NAME_CASE(UMAX3) 4257 NODE_NAME_CASE(FMIN3) 4258 NODE_NAME_CASE(SMIN3) 4259 NODE_NAME_CASE(UMIN3) 4260 NODE_NAME_CASE(FMED3) 4261 NODE_NAME_CASE(SMED3) 4262 NODE_NAME_CASE(UMED3) 4263 NODE_NAME_CASE(FDOT2) 4264 NODE_NAME_CASE(URECIP) 4265 NODE_NAME_CASE(DIV_SCALE) 4266 NODE_NAME_CASE(DIV_FMAS) 4267 NODE_NAME_CASE(DIV_FIXUP) 4268 NODE_NAME_CASE(FMAD_FTZ) 4269 NODE_NAME_CASE(TRIG_PREOP) 4270 NODE_NAME_CASE(RCP) 4271 NODE_NAME_CASE(RSQ) 4272 NODE_NAME_CASE(RCP_LEGACY) 4273 NODE_NAME_CASE(RSQ_LEGACY) 4274 NODE_NAME_CASE(RCP_IFLAG) 4275 NODE_NAME_CASE(FMUL_LEGACY) 4276 NODE_NAME_CASE(RSQ_CLAMP) 4277 NODE_NAME_CASE(LDEXP) 4278 NODE_NAME_CASE(FP_CLASS) 4279 NODE_NAME_CASE(DOT4) 4280 NODE_NAME_CASE(CARRY) 4281 NODE_NAME_CASE(BORROW) 4282 NODE_NAME_CASE(BFE_U32) 4283 NODE_NAME_CASE(BFE_I32) 4284 NODE_NAME_CASE(BFI) 4285 NODE_NAME_CASE(BFM) 4286 NODE_NAME_CASE(FFBH_U32) 4287 NODE_NAME_CASE(FFBH_I32) 4288 NODE_NAME_CASE(FFBL_B32) 4289 NODE_NAME_CASE(MUL_U24) 4290 NODE_NAME_CASE(MUL_I24) 4291 NODE_NAME_CASE(MULHI_U24) 4292 NODE_NAME_CASE(MULHI_I24) 4293 NODE_NAME_CASE(MUL_LOHI_U24) 4294 NODE_NAME_CASE(MUL_LOHI_I24) 4295 NODE_NAME_CASE(MAD_U24) 4296 NODE_NAME_CASE(MAD_I24) 4297 NODE_NAME_CASE(MAD_I64_I32) 4298 NODE_NAME_CASE(MAD_U64_U32) 4299 NODE_NAME_CASE(PERM) 4300 NODE_NAME_CASE(TEXTURE_FETCH) 4301 NODE_NAME_CASE(EXPORT) 4302 NODE_NAME_CASE(EXPORT_DONE) 4303 NODE_NAME_CASE(R600_EXPORT) 4304 NODE_NAME_CASE(CONST_ADDRESS) 4305 NODE_NAME_CASE(REGISTER_LOAD) 4306 NODE_NAME_CASE(REGISTER_STORE) 4307 NODE_NAME_CASE(SAMPLE) 4308 NODE_NAME_CASE(SAMPLEB) 4309 NODE_NAME_CASE(SAMPLED) 4310 NODE_NAME_CASE(SAMPLEL) 4311 NODE_NAME_CASE(CVT_F32_UBYTE0) 4312 NODE_NAME_CASE(CVT_F32_UBYTE1) 4313 NODE_NAME_CASE(CVT_F32_UBYTE2) 4314 NODE_NAME_CASE(CVT_F32_UBYTE3) 4315 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4316 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4317 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4318 NODE_NAME_CASE(CVT_PK_I16_I32) 4319 NODE_NAME_CASE(CVT_PK_U16_U32) 4320 NODE_NAME_CASE(FP_TO_FP16) 4321 NODE_NAME_CASE(FP16_ZEXT) 4322 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4323 NODE_NAME_CASE(CONST_DATA_PTR) 4324 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4325 NODE_NAME_CASE(LDS) 4326 NODE_NAME_CASE(KILL) 4327 NODE_NAME_CASE(DUMMY_CHAIN) 4328 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4329 NODE_NAME_CASE(INTERP_P1LL_F16) 4330 NODE_NAME_CASE(INTERP_P1LV_F16) 4331 NODE_NAME_CASE(INTERP_P2_F16) 4332 NODE_NAME_CASE(LOAD_D16_HI) 4333 NODE_NAME_CASE(LOAD_D16_LO) 4334 NODE_NAME_CASE(LOAD_D16_HI_I8) 4335 NODE_NAME_CASE(LOAD_D16_HI_U8) 4336 NODE_NAME_CASE(LOAD_D16_LO_I8) 4337 NODE_NAME_CASE(LOAD_D16_LO_U8) 4338 NODE_NAME_CASE(STORE_MSKOR) 4339 NODE_NAME_CASE(LOAD_CONSTANT) 4340 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4341 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4342 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4343 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4344 NODE_NAME_CASE(DS_ORDERED_COUNT) 4345 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4346 NODE_NAME_CASE(ATOMIC_INC) 4347 NODE_NAME_CASE(ATOMIC_DEC) 4348 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4349 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4350 NODE_NAME_CASE(BUFFER_LOAD) 4351 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4352 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4353 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4354 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4355 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4356 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4357 NODE_NAME_CASE(SBUFFER_LOAD) 4358 NODE_NAME_CASE(BUFFER_STORE) 4359 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4360 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4361 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4362 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4363 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4364 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4365 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4366 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4367 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4368 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4369 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4370 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4371 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4372 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4373 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4374 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4375 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4376 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4377 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4378 NODE_NAME_CASE(ATOMIC_PK_FADD) 4379 4380 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4381 } 4382 return nullptr; 4383 } 4384 4385 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4386 SelectionDAG &DAG, int Enabled, 4387 int &RefinementSteps, 4388 bool &UseOneConstNR, 4389 bool Reciprocal) const { 4390 EVT VT = Operand.getValueType(); 4391 4392 if (VT == MVT::f32) { 4393 RefinementSteps = 0; 4394 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4395 } 4396 4397 // TODO: There is also f64 rsq instruction, but the documentation is less 4398 // clear on its precision. 4399 4400 return SDValue(); 4401 } 4402 4403 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4404 SelectionDAG &DAG, int Enabled, 4405 int &RefinementSteps) const { 4406 EVT VT = Operand.getValueType(); 4407 4408 if (VT == MVT::f32) { 4409 // Reciprocal, < 1 ulp error. 4410 // 4411 // This reciprocal approximation converges to < 0.5 ulp error with one 4412 // newton rhapson performed with two fused multiple adds (FMAs). 4413 4414 RefinementSteps = 0; 4415 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4416 } 4417 4418 // TODO: There is also f64 rcp instruction, but the documentation is less 4419 // clear on its precision. 4420 4421 return SDValue(); 4422 } 4423 4424 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4425 const SDValue Op, KnownBits &Known, 4426 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4427 4428 Known.resetAll(); // Don't know anything. 4429 4430 unsigned Opc = Op.getOpcode(); 4431 4432 switch (Opc) { 4433 default: 4434 break; 4435 case AMDGPUISD::CARRY: 4436 case AMDGPUISD::BORROW: { 4437 Known.Zero = APInt::getHighBitsSet(32, 31); 4438 break; 4439 } 4440 4441 case AMDGPUISD::BFE_I32: 4442 case AMDGPUISD::BFE_U32: { 4443 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4444 if (!CWidth) 4445 return; 4446 4447 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4448 4449 if (Opc == AMDGPUISD::BFE_U32) 4450 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4451 4452 break; 4453 } 4454 case AMDGPUISD::FP_TO_FP16: 4455 case AMDGPUISD::FP16_ZEXT: { 4456 unsigned BitWidth = Known.getBitWidth(); 4457 4458 // High bits are zero. 4459 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4460 break; 4461 } 4462 case AMDGPUISD::MUL_U24: 4463 case AMDGPUISD::MUL_I24: { 4464 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4465 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4466 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4467 RHSKnown.countMinTrailingZeros(); 4468 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4469 // Skip extra check if all bits are known zeros. 4470 if (TrailZ >= 32) 4471 break; 4472 4473 // Truncate to 24 bits. 4474 LHSKnown = LHSKnown.trunc(24); 4475 RHSKnown = RHSKnown.trunc(24); 4476 4477 if (Opc == AMDGPUISD::MUL_I24) { 4478 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4479 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4480 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4481 if (MaxValBits >= 32) 4482 break; 4483 bool LHSNegative = LHSKnown.isNegative(); 4484 bool LHSNonNegative = LHSKnown.isNonNegative(); 4485 bool LHSPositive = LHSKnown.isStrictlyPositive(); 4486 bool RHSNegative = RHSKnown.isNegative(); 4487 bool RHSNonNegative = RHSKnown.isNonNegative(); 4488 bool RHSPositive = RHSKnown.isStrictlyPositive(); 4489 4490 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) 4491 Known.Zero.setHighBits(32 - MaxValBits); 4492 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) 4493 Known.One.setHighBits(32 - MaxValBits); 4494 } else { 4495 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4496 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4497 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4498 if (MaxValBits >= 32) 4499 break; 4500 Known.Zero.setHighBits(32 - MaxValBits); 4501 } 4502 break; 4503 } 4504 case AMDGPUISD::PERM: { 4505 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4506 if (!CMask) 4507 return; 4508 4509 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4510 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4511 unsigned Sel = CMask->getZExtValue(); 4512 4513 for (unsigned I = 0; I < 32; I += 8) { 4514 unsigned SelBits = Sel & 0xff; 4515 if (SelBits < 4) { 4516 SelBits *= 8; 4517 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4518 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4519 } else if (SelBits < 7) { 4520 SelBits = (SelBits & 3) * 8; 4521 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4522 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4523 } else if (SelBits == 0x0c) { 4524 Known.Zero |= 0xFFull << I; 4525 } else if (SelBits > 0x0c) { 4526 Known.One |= 0xFFull << I; 4527 } 4528 Sel >>= 8; 4529 } 4530 break; 4531 } 4532 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4533 Known.Zero.setHighBits(24); 4534 break; 4535 } 4536 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4537 Known.Zero.setHighBits(16); 4538 break; 4539 } 4540 case AMDGPUISD::LDS: { 4541 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4542 unsigned Align = GA->getGlobal()->getAlignment(); 4543 4544 Known.Zero.setHighBits(16); 4545 if (Align) 4546 Known.Zero.setLowBits(Log2_32(Align)); 4547 break; 4548 } 4549 case ISD::INTRINSIC_WO_CHAIN: { 4550 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4551 switch (IID) { 4552 case Intrinsic::amdgcn_mbcnt_lo: 4553 case Intrinsic::amdgcn_mbcnt_hi: { 4554 const GCNSubtarget &ST = 4555 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4556 // These return at most the wavefront size - 1. 4557 unsigned Size = Op.getValueType().getSizeInBits(); 4558 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4559 break; 4560 } 4561 default: 4562 break; 4563 } 4564 } 4565 } 4566 } 4567 4568 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4569 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4570 unsigned Depth) const { 4571 switch (Op.getOpcode()) { 4572 case AMDGPUISD::BFE_I32: { 4573 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4574 if (!Width) 4575 return 1; 4576 4577 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4578 if (!isNullConstant(Op.getOperand(1))) 4579 return SignBits; 4580 4581 // TODO: Could probably figure something out with non-0 offsets. 4582 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4583 return std::max(SignBits, Op0SignBits); 4584 } 4585 4586 case AMDGPUISD::BFE_U32: { 4587 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4588 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4589 } 4590 4591 case AMDGPUISD::CARRY: 4592 case AMDGPUISD::BORROW: 4593 return 31; 4594 case AMDGPUISD::BUFFER_LOAD_BYTE: 4595 return 25; 4596 case AMDGPUISD::BUFFER_LOAD_SHORT: 4597 return 17; 4598 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4599 return 24; 4600 case AMDGPUISD::BUFFER_LOAD_USHORT: 4601 return 16; 4602 case AMDGPUISD::FP_TO_FP16: 4603 case AMDGPUISD::FP16_ZEXT: 4604 return 16; 4605 default: 4606 return 1; 4607 } 4608 } 4609 4610 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4611 const SelectionDAG &DAG, 4612 bool SNaN, 4613 unsigned Depth) const { 4614 unsigned Opcode = Op.getOpcode(); 4615 switch (Opcode) { 4616 case AMDGPUISD::FMIN_LEGACY: 4617 case AMDGPUISD::FMAX_LEGACY: { 4618 if (SNaN) 4619 return true; 4620 4621 // TODO: Can check no nans on one of the operands for each one, but which 4622 // one? 4623 return false; 4624 } 4625 case AMDGPUISD::FMUL_LEGACY: 4626 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4627 if (SNaN) 4628 return true; 4629 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4630 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4631 } 4632 case AMDGPUISD::FMED3: 4633 case AMDGPUISD::FMIN3: 4634 case AMDGPUISD::FMAX3: 4635 case AMDGPUISD::FMAD_FTZ: { 4636 if (SNaN) 4637 return true; 4638 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4639 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4640 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4641 } 4642 case AMDGPUISD::CVT_F32_UBYTE0: 4643 case AMDGPUISD::CVT_F32_UBYTE1: 4644 case AMDGPUISD::CVT_F32_UBYTE2: 4645 case AMDGPUISD::CVT_F32_UBYTE3: 4646 return true; 4647 4648 case AMDGPUISD::RCP: 4649 case AMDGPUISD::RSQ: 4650 case AMDGPUISD::RCP_LEGACY: 4651 case AMDGPUISD::RSQ_LEGACY: 4652 case AMDGPUISD::RSQ_CLAMP: { 4653 if (SNaN) 4654 return true; 4655 4656 // TODO: Need is known positive check. 4657 return false; 4658 } 4659 case AMDGPUISD::LDEXP: 4660 case AMDGPUISD::FRACT: { 4661 if (SNaN) 4662 return true; 4663 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4664 } 4665 case AMDGPUISD::DIV_SCALE: 4666 case AMDGPUISD::DIV_FMAS: 4667 case AMDGPUISD::DIV_FIXUP: 4668 case AMDGPUISD::TRIG_PREOP: 4669 // TODO: Refine on operands. 4670 return SNaN; 4671 case AMDGPUISD::SIN_HW: 4672 case AMDGPUISD::COS_HW: { 4673 // TODO: Need check for infinity 4674 return SNaN; 4675 } 4676 case ISD::INTRINSIC_WO_CHAIN: { 4677 unsigned IntrinsicID 4678 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4679 // TODO: Handle more intrinsics 4680 switch (IntrinsicID) { 4681 case Intrinsic::amdgcn_cubeid: 4682 return true; 4683 4684 case Intrinsic::amdgcn_frexp_mant: { 4685 if (SNaN) 4686 return true; 4687 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4688 } 4689 case Intrinsic::amdgcn_cvt_pkrtz: { 4690 if (SNaN) 4691 return true; 4692 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4693 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4694 } 4695 case Intrinsic::amdgcn_fdot2: 4696 // TODO: Refine on operand 4697 return SNaN; 4698 default: 4699 return false; 4700 } 4701 } 4702 default: 4703 return false; 4704 } 4705 } 4706 4707 TargetLowering::AtomicExpansionKind 4708 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4709 switch (RMW->getOperation()) { 4710 case AtomicRMWInst::Nand: 4711 case AtomicRMWInst::FAdd: 4712 case AtomicRMWInst::FSub: 4713 return AtomicExpansionKind::CmpXChg; 4714 default: 4715 return AtomicExpansionKind::None; 4716 } 4717 } 4718