1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This is the parent TargetLowering class for hardware code gen 11 /// targets. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUISelLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUCallLowering.h" 18 #include "AMDGPUFrameLowering.h" 19 #include "AMDGPURegisterInfo.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/CallingConvLower.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 using namespace llvm; 38 39 #include "AMDGPUGenCallingConv.inc" 40 41 // Find a larger type to do a load / store of a vector with. 42 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 43 unsigned StoreSize = VT.getStoreSizeInBits(); 44 if (StoreSize <= 32) 45 return EVT::getIntegerVT(Ctx, StoreSize); 46 47 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 48 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 49 } 50 51 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { 52 EVT VT = Op.getValueType(); 53 KnownBits Known = DAG.computeKnownBits(Op); 54 return VT.getSizeInBits() - Known.countMinLeadingZeros(); 55 } 56 57 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { 58 EVT VT = Op.getValueType(); 59 60 // In order for this to be a signed 24-bit value, bit 23, must 61 // be a sign bit. 62 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 // Lower floating point store/load to integer store/load to reduce the number 69 // of patterns in tablegen. 70 setOperationAction(ISD::LOAD, MVT::f32, Promote); 71 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 72 73 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 74 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 75 76 setOperationAction(ISD::LOAD, MVT::v3f32, Promote); 77 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); 78 79 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 80 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 81 82 setOperationAction(ISD::LOAD, MVT::v5f32, Promote); 83 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); 84 85 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 86 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 87 88 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 89 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 90 91 setOperationAction(ISD::LOAD, MVT::v32f32, Promote); 92 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); 93 94 setOperationAction(ISD::LOAD, MVT::i64, Promote); 95 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 96 97 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 98 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); 99 100 setOperationAction(ISD::LOAD, MVT::f64, Promote); 101 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); 102 103 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 104 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); 105 106 // There are no 64-bit extloads. These should be done as a 32-bit extload and 107 // an extension to 64-bit. 108 for (MVT VT : MVT::integer_valuetypes()) { 109 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 110 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 111 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 112 } 113 114 for (MVT VT : MVT::integer_valuetypes()) { 115 if (VT == MVT::i64) 116 continue; 117 118 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 119 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); 120 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); 121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 122 123 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); 126 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 127 128 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); 130 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 132 } 133 134 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 135 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 138 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 141 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 143 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); 145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); 146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); 147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 148 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 150 } 151 152 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 153 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 154 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); 155 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 156 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 157 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); 158 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); 159 160 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 161 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); 162 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); 163 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); 164 165 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 166 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 167 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 168 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 169 170 setOperationAction(ISD::STORE, MVT::f32, Promote); 171 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 172 173 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 174 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 175 176 setOperationAction(ISD::STORE, MVT::v3f32, Promote); 177 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); 178 179 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 180 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 181 182 setOperationAction(ISD::STORE, MVT::v5f32, Promote); 183 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); 184 185 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 186 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 187 188 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 189 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 190 191 setOperationAction(ISD::STORE, MVT::v32f32, Promote); 192 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); 193 194 setOperationAction(ISD::STORE, MVT::i64, Promote); 195 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 196 197 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 198 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); 199 200 setOperationAction(ISD::STORE, MVT::f64, Promote); 201 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); 202 203 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 204 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); 205 206 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 207 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 208 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 209 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 210 211 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 212 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); 213 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); 214 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); 215 216 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 217 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 218 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); 219 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 220 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 221 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); 222 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); 223 224 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 225 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 226 227 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 228 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); 229 230 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); 231 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); 232 233 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); 234 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); 235 236 237 setOperationAction(ISD::Constant, MVT::i32, Legal); 238 setOperationAction(ISD::Constant, MVT::i64, Legal); 239 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 240 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 241 242 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 243 setOperationAction(ISD::BRIND, MVT::Other, Expand); 244 245 // This is totally unsupported, just custom lower to produce an error. 246 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 247 248 // Library functions. These default to Expand, but we have instructions 249 // for them. 250 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 251 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 252 setOperationAction(ISD::FPOW, MVT::f32, Legal); 253 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 254 setOperationAction(ISD::FABS, MVT::f32, Legal); 255 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 256 setOperationAction(ISD::FRINT, MVT::f32, Legal); 257 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 258 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 259 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 260 261 setOperationAction(ISD::FROUND, MVT::f32, Custom); 262 setOperationAction(ISD::FROUND, MVT::f64, Custom); 263 264 setOperationAction(ISD::FLOG, MVT::f32, Custom); 265 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 266 setOperationAction(ISD::FEXP, MVT::f32, Custom); 267 268 269 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 270 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 271 272 setOperationAction(ISD::FREM, MVT::f32, Custom); 273 setOperationAction(ISD::FREM, MVT::f64, Custom); 274 275 // Expand to fneg + fadd. 276 setOperationAction(ISD::FSUB, MVT::f64, Expand); 277 278 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); 279 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); 280 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 281 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 282 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); 283 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); 284 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 285 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 286 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 287 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 288 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); 289 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); 290 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 291 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 292 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); 293 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); 294 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 295 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 296 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); 297 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); 298 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); 299 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); 300 301 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 302 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); 303 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); 304 305 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 306 for (MVT VT : ScalarIntVTs) { 307 // These should use [SU]DIVREM, so set them to expand 308 setOperationAction(ISD::SDIV, VT, Expand); 309 setOperationAction(ISD::UDIV, VT, Expand); 310 setOperationAction(ISD::SREM, VT, Expand); 311 setOperationAction(ISD::UREM, VT, Expand); 312 313 // GPU does not have divrem function for signed or unsigned. 314 setOperationAction(ISD::SDIVREM, VT, Custom); 315 setOperationAction(ISD::UDIVREM, VT, Custom); 316 317 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 318 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 319 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 320 321 setOperationAction(ISD::BSWAP, VT, Expand); 322 setOperationAction(ISD::CTTZ, VT, Expand); 323 setOperationAction(ISD::CTLZ, VT, Expand); 324 325 // AMDGPU uses ADDC/SUBC/ADDE/SUBE 326 setOperationAction(ISD::ADDC, VT, Legal); 327 setOperationAction(ISD::SUBC, VT, Legal); 328 setOperationAction(ISD::ADDE, VT, Legal); 329 setOperationAction(ISD::SUBE, VT, Legal); 330 } 331 332 // The hardware supports 32-bit ROTR, but not ROTL. 333 setOperationAction(ISD::ROTL, MVT::i32, Expand); 334 setOperationAction(ISD::ROTL, MVT::i64, Expand); 335 setOperationAction(ISD::ROTR, MVT::i64, Expand); 336 337 setOperationAction(ISD::MUL, MVT::i64, Expand); 338 setOperationAction(ISD::MULHU, MVT::i64, Expand); 339 setOperationAction(ISD::MULHS, MVT::i64, Expand); 340 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 341 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 342 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 343 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 344 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 345 346 setOperationAction(ISD::SMIN, MVT::i32, Legal); 347 setOperationAction(ISD::UMIN, MVT::i32, Legal); 348 setOperationAction(ISD::SMAX, MVT::i32, Legal); 349 setOperationAction(ISD::UMAX, MVT::i32, Legal); 350 351 setOperationAction(ISD::CTTZ, MVT::i64, Custom); 352 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); 353 setOperationAction(ISD::CTLZ, MVT::i64, Custom); 354 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); 355 356 static const MVT::SimpleValueType VectorIntTypes[] = { 357 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 358 }; 359 360 for (MVT VT : VectorIntTypes) { 361 // Expand the following operations for the current type by default. 362 setOperationAction(ISD::ADD, VT, Expand); 363 setOperationAction(ISD::AND, VT, Expand); 364 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 365 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 366 setOperationAction(ISD::MUL, VT, Expand); 367 setOperationAction(ISD::MULHU, VT, Expand); 368 setOperationAction(ISD::MULHS, VT, Expand); 369 setOperationAction(ISD::OR, VT, Expand); 370 setOperationAction(ISD::SHL, VT, Expand); 371 setOperationAction(ISD::SRA, VT, Expand); 372 setOperationAction(ISD::SRL, VT, Expand); 373 setOperationAction(ISD::ROTL, VT, Expand); 374 setOperationAction(ISD::ROTR, VT, Expand); 375 setOperationAction(ISD::SUB, VT, Expand); 376 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 377 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 378 setOperationAction(ISD::SDIV, VT, Expand); 379 setOperationAction(ISD::UDIV, VT, Expand); 380 setOperationAction(ISD::SREM, VT, Expand); 381 setOperationAction(ISD::UREM, VT, Expand); 382 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 383 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 384 setOperationAction(ISD::SDIVREM, VT, Custom); 385 setOperationAction(ISD::UDIVREM, VT, Expand); 386 setOperationAction(ISD::SELECT, VT, Expand); 387 setOperationAction(ISD::VSELECT, VT, Expand); 388 setOperationAction(ISD::SELECT_CC, VT, Expand); 389 setOperationAction(ISD::XOR, VT, Expand); 390 setOperationAction(ISD::BSWAP, VT, Expand); 391 setOperationAction(ISD::CTPOP, VT, Expand); 392 setOperationAction(ISD::CTTZ, VT, Expand); 393 setOperationAction(ISD::CTLZ, VT, Expand); 394 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 395 setOperationAction(ISD::SETCC, VT, Expand); 396 } 397 398 static const MVT::SimpleValueType FloatVectorTypes[] = { 399 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 400 }; 401 402 for (MVT VT : FloatVectorTypes) { 403 setOperationAction(ISD::FABS, VT, Expand); 404 setOperationAction(ISD::FMINNUM, VT, Expand); 405 setOperationAction(ISD::FMAXNUM, VT, Expand); 406 setOperationAction(ISD::FADD, VT, Expand); 407 setOperationAction(ISD::FCEIL, VT, Expand); 408 setOperationAction(ISD::FCOS, VT, Expand); 409 setOperationAction(ISD::FDIV, VT, Expand); 410 setOperationAction(ISD::FEXP2, VT, Expand); 411 setOperationAction(ISD::FEXP, VT, Expand); 412 setOperationAction(ISD::FLOG2, VT, Expand); 413 setOperationAction(ISD::FREM, VT, Expand); 414 setOperationAction(ISD::FLOG, VT, Expand); 415 setOperationAction(ISD::FLOG10, VT, Expand); 416 setOperationAction(ISD::FPOW, VT, Expand); 417 setOperationAction(ISD::FFLOOR, VT, Expand); 418 setOperationAction(ISD::FTRUNC, VT, Expand); 419 setOperationAction(ISD::FMUL, VT, Expand); 420 setOperationAction(ISD::FMA, VT, Expand); 421 setOperationAction(ISD::FRINT, VT, Expand); 422 setOperationAction(ISD::FNEARBYINT, VT, Expand); 423 setOperationAction(ISD::FSQRT, VT, Expand); 424 setOperationAction(ISD::FSIN, VT, Expand); 425 setOperationAction(ISD::FSUB, VT, Expand); 426 setOperationAction(ISD::FNEG, VT, Expand); 427 setOperationAction(ISD::VSELECT, VT, Expand); 428 setOperationAction(ISD::SELECT_CC, VT, Expand); 429 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 430 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 431 setOperationAction(ISD::SETCC, VT, Expand); 432 setOperationAction(ISD::FCANONICALIZE, VT, Expand); 433 } 434 435 // This causes using an unrolled select operation rather than expansion with 436 // bit operations. This is in general better, but the alternative using BFI 437 // instructions may be better if the select sources are SGPRs. 438 setOperationAction(ISD::SELECT, MVT::v2f32, Promote); 439 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); 440 441 setOperationAction(ISD::SELECT, MVT::v3f32, Promote); 442 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); 443 444 setOperationAction(ISD::SELECT, MVT::v4f32, Promote); 445 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); 446 447 setOperationAction(ISD::SELECT, MVT::v5f32, Promote); 448 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); 449 450 // There are no libcalls of any kind. 451 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) 452 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); 453 454 setBooleanContents(ZeroOrNegativeOneBooleanContent); 455 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 456 457 setSchedulingPreference(Sched::RegPressure); 458 setJumpIsExpensive(true); 459 460 // FIXME: This is only partially true. If we have to do vector compares, any 461 // SGPR pair can be a condition register. If we have a uniform condition, we 462 // are better off doing SALU operations, where there is only one SCC. For now, 463 // we don't have a way of knowing during instruction selection if a condition 464 // will be uniform and we always use vector compares. Assume we are using 465 // vector compares until that is fixed. 466 setHasMultipleConditionRegisters(true); 467 468 setMinCmpXchgSizeInBits(32); 469 setSupportsUnalignedAtomics(false); 470 471 PredictableSelectIsExpensive = false; 472 473 // We want to find all load dependencies for long chains of stores to enable 474 // merging into very wide vectors. The problem is with vectors with > 4 475 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 476 // vectors are a legal type, even though we have to split the loads 477 // usually. When we can more precisely specify load legality per address 478 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 479 // smarter so that they can figure out what to do in 2 iterations without all 480 // N > 4 stores on the same chain. 481 GatherAllAliasesMaxDepth = 16; 482 483 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry 484 // about these during lowering. 485 MaxStoresPerMemcpy = 0xffffffff; 486 MaxStoresPerMemmove = 0xffffffff; 487 MaxStoresPerMemset = 0xffffffff; 488 489 setTargetDAGCombine(ISD::BITCAST); 490 setTargetDAGCombine(ISD::SHL); 491 setTargetDAGCombine(ISD::SRA); 492 setTargetDAGCombine(ISD::SRL); 493 setTargetDAGCombine(ISD::TRUNCATE); 494 setTargetDAGCombine(ISD::MUL); 495 setTargetDAGCombine(ISD::MULHU); 496 setTargetDAGCombine(ISD::MULHS); 497 setTargetDAGCombine(ISD::SELECT); 498 setTargetDAGCombine(ISD::SELECT_CC); 499 setTargetDAGCombine(ISD::STORE); 500 setTargetDAGCombine(ISD::FADD); 501 setTargetDAGCombine(ISD::FSUB); 502 setTargetDAGCombine(ISD::FNEG); 503 setTargetDAGCombine(ISD::FABS); 504 setTargetDAGCombine(ISD::AssertZext); 505 setTargetDAGCombine(ISD::AssertSext); 506 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 507 } 508 509 //===----------------------------------------------------------------------===// 510 // Target Information 511 //===----------------------------------------------------------------------===// 512 513 LLVM_READNONE 514 static bool fnegFoldsIntoOp(unsigned Opc) { 515 switch (Opc) { 516 case ISD::FADD: 517 case ISD::FSUB: 518 case ISD::FMUL: 519 case ISD::FMA: 520 case ISD::FMAD: 521 case ISD::FMINNUM: 522 case ISD::FMAXNUM: 523 case ISD::FMINNUM_IEEE: 524 case ISD::FMAXNUM_IEEE: 525 case ISD::FSIN: 526 case ISD::FTRUNC: 527 case ISD::FRINT: 528 case ISD::FNEARBYINT: 529 case ISD::FCANONICALIZE: 530 case AMDGPUISD::RCP: 531 case AMDGPUISD::RCP_LEGACY: 532 case AMDGPUISD::RCP_IFLAG: 533 case AMDGPUISD::SIN_HW: 534 case AMDGPUISD::FMUL_LEGACY: 535 case AMDGPUISD::FMIN_LEGACY: 536 case AMDGPUISD::FMAX_LEGACY: 537 case AMDGPUISD::FMED3: 538 return true; 539 default: 540 return false; 541 } 542 } 543 544 /// \p returns true if the operation will definitely need to use a 64-bit 545 /// encoding, and thus will use a VOP3 encoding regardless of the source 546 /// modifiers. 547 LLVM_READONLY 548 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { 549 return N->getNumOperands() > 2 || VT == MVT::f64; 550 } 551 552 // Most FP instructions support source modifiers, but this could be refined 553 // slightly. 554 LLVM_READONLY 555 static bool hasSourceMods(const SDNode *N) { 556 if (isa<MemSDNode>(N)) 557 return false; 558 559 switch (N->getOpcode()) { 560 case ISD::CopyToReg: 561 case ISD::SELECT: 562 case ISD::FDIV: 563 case ISD::FREM: 564 case ISD::INLINEASM: 565 case ISD::INLINEASM_BR: 566 case AMDGPUISD::DIV_SCALE: 567 case ISD::INTRINSIC_W_CHAIN: 568 569 // TODO: Should really be looking at the users of the bitcast. These are 570 // problematic because bitcasts are used to legalize all stores to integer 571 // types. 572 case ISD::BITCAST: 573 return false; 574 case ISD::INTRINSIC_WO_CHAIN: { 575 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 576 case Intrinsic::amdgcn_interp_p1: 577 case Intrinsic::amdgcn_interp_p2: 578 case Intrinsic::amdgcn_interp_mov: 579 case Intrinsic::amdgcn_interp_p1_f16: 580 case Intrinsic::amdgcn_interp_p2_f16: 581 return false; 582 default: 583 return true; 584 } 585 } 586 default: 587 return true; 588 } 589 } 590 591 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, 592 unsigned CostThreshold) { 593 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus 594 // it is truly free to use a source modifier in all cases. If there are 595 // multiple users but for each one will necessitate using VOP3, there will be 596 // a code size increase. Try to avoid increasing code size unless we know it 597 // will save on the instruction count. 598 unsigned NumMayIncreaseSize = 0; 599 MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); 600 601 // XXX - Should this limit number of uses to check? 602 for (const SDNode *U : N->uses()) { 603 if (!hasSourceMods(U)) 604 return false; 605 606 if (!opMustUseVOP3Encoding(U, VT)) { 607 if (++NumMayIncreaseSize > CostThreshold) 608 return false; 609 } 610 } 611 612 return true; 613 } 614 615 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 616 return MVT::i32; 617 } 618 619 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 620 return true; 621 } 622 623 // The backend supports 32 and 64 bit floating point immediates. 624 // FIXME: Why are we reporting vectors of FP immediates as legal? 625 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 626 bool ForCodeSize) const { 627 EVT ScalarVT = VT.getScalarType(); 628 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || 629 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); 630 } 631 632 // We don't want to shrink f64 / f32 constants. 633 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 634 EVT ScalarVT = VT.getScalarType(); 635 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 636 } 637 638 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 639 ISD::LoadExtType ExtTy, 640 EVT NewVT) const { 641 // TODO: This may be worth removing. Check regression tests for diffs. 642 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) 643 return false; 644 645 unsigned NewSize = NewVT.getStoreSizeInBits(); 646 647 // If we are reducing to a 32-bit load, this is always better. 648 if (NewSize == 32) 649 return true; 650 651 EVT OldVT = N->getValueType(0); 652 unsigned OldSize = OldVT.getStoreSizeInBits(); 653 654 MemSDNode *MN = cast<MemSDNode>(N); 655 unsigned AS = MN->getAddressSpace(); 656 // Do not shrink an aligned scalar load to sub-dword. 657 // Scalar engine cannot do sub-dword loads. 658 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && 659 (AS == AMDGPUAS::CONSTANT_ADDRESS || 660 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 661 (isa<LoadSDNode>(N) && 662 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && 663 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) 664 return false; 665 666 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 667 // extloads, so doing one requires using a buffer_load. In cases where we 668 // still couldn't use a scalar load, using the wider load shouldn't really 669 // hurt anything. 670 671 // If the old size already had to be an extload, there's no harm in continuing 672 // to reduce the width. 673 return (OldSize < 32); 674 } 675 676 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, 677 const SelectionDAG &DAG, 678 const MachineMemOperand &MMO) const { 679 680 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); 681 682 if (LoadTy.getScalarType() == MVT::i32) 683 return false; 684 685 unsigned LScalarSize = LoadTy.getScalarSizeInBits(); 686 unsigned CastScalarSize = CastTy.getScalarSizeInBits(); 687 688 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) 689 return false; 690 691 bool Fast = false; 692 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 693 CastTy, MMO, &Fast) && 694 Fast; 695 } 696 697 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 698 // profitable with the expansion for 64-bit since it's generally good to 699 // speculate things. 700 // FIXME: These should really have the size as a parameter. 701 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 702 return true; 703 } 704 705 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 706 return true; 707 } 708 709 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { 710 switch (N->getOpcode()) { 711 default: 712 return false; 713 case ISD::EntryToken: 714 case ISD::TokenFactor: 715 return true; 716 case ISD::INTRINSIC_WO_CHAIN: 717 { 718 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 719 switch (IntrID) { 720 default: 721 return false; 722 case Intrinsic::amdgcn_readfirstlane: 723 case Intrinsic::amdgcn_readlane: 724 return true; 725 } 726 } 727 break; 728 case ISD::LOAD: 729 { 730 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == 731 AMDGPUAS::CONSTANT_ADDRESS_32BIT) 732 return true; 733 return false; 734 } 735 break; 736 } 737 } 738 739 //===---------------------------------------------------------------------===// 740 // Target Properties 741 //===---------------------------------------------------------------------===// 742 743 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 744 assert(VT.isFloatingPoint()); 745 746 // Packed operations do not have a fabs modifier. 747 return VT == MVT::f32 || VT == MVT::f64 || 748 (Subtarget->has16BitInsts() && VT == MVT::f16); 749 } 750 751 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 752 assert(VT.isFloatingPoint()); 753 return VT == MVT::f32 || VT == MVT::f64 || 754 (Subtarget->has16BitInsts() && VT == MVT::f16) || 755 (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); 756 } 757 758 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 759 unsigned NumElem, 760 unsigned AS) const { 761 return true; 762 } 763 764 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 765 // There are few operations which truly have vector input operands. Any vector 766 // operation is going to involve operations on each component, and a 767 // build_vector will be a copy per element, so it always makes sense to use a 768 // build_vector input in place of the extracted element to avoid a copy into a 769 // super register. 770 // 771 // We should probably only do this if all users are extracts only, but this 772 // should be the common case. 773 return true; 774 } 775 776 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 777 // Truncate is just accessing a subregister. 778 779 unsigned SrcSize = Source.getSizeInBits(); 780 unsigned DestSize = Dest.getSizeInBits(); 781 782 return DestSize < SrcSize && DestSize % 32 == 0 ; 783 } 784 785 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 786 // Truncate is just accessing a subregister. 787 788 unsigned SrcSize = Source->getScalarSizeInBits(); 789 unsigned DestSize = Dest->getScalarSizeInBits(); 790 791 if (DestSize== 16 && Subtarget->has16BitInsts()) 792 return SrcSize >= 32; 793 794 return DestSize < SrcSize && DestSize % 32 == 0; 795 } 796 797 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 798 unsigned SrcSize = Src->getScalarSizeInBits(); 799 unsigned DestSize = Dest->getScalarSizeInBits(); 800 801 if (SrcSize == 16 && Subtarget->has16BitInsts()) 802 return DestSize >= 32; 803 804 return SrcSize == 32 && DestSize == 64; 805 } 806 807 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 808 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 809 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 810 // this will enable reducing 64-bit operations the 32-bit, which is always 811 // good. 812 813 if (Src == MVT::i16) 814 return Dest == MVT::i32 ||Dest == MVT::i64 ; 815 816 return Src == MVT::i32 && Dest == MVT::i64; 817 } 818 819 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 820 return isZExtFree(Val.getValueType(), VT2); 821 } 822 823 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 824 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 825 // limited number of native 64-bit operations. Shrinking an operation to fit 826 // in a single 32-bit register should always be helpful. As currently used, 827 // this is much less general than the name suggests, and is only used in 828 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 829 // not profitable, and may actually be harmful. 830 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 831 } 832 833 //===---------------------------------------------------------------------===// 834 // TargetLowering Callbacks 835 //===---------------------------------------------------------------------===// 836 837 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, 838 bool IsVarArg) { 839 switch (CC) { 840 case CallingConv::AMDGPU_VS: 841 case CallingConv::AMDGPU_GS: 842 case CallingConv::AMDGPU_PS: 843 case CallingConv::AMDGPU_CS: 844 case CallingConv::AMDGPU_HS: 845 case CallingConv::AMDGPU_ES: 846 case CallingConv::AMDGPU_LS: 847 return CC_AMDGPU; 848 case CallingConv::C: 849 case CallingConv::Fast: 850 case CallingConv::Cold: 851 return CC_AMDGPU_Func; 852 case CallingConv::AMDGPU_KERNEL: 853 case CallingConv::SPIR_KERNEL: 854 default: 855 report_fatal_error("Unsupported calling convention for call"); 856 } 857 } 858 859 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, 860 bool IsVarArg) { 861 switch (CC) { 862 case CallingConv::AMDGPU_KERNEL: 863 case CallingConv::SPIR_KERNEL: 864 llvm_unreachable("kernels should not be handled here"); 865 case CallingConv::AMDGPU_VS: 866 case CallingConv::AMDGPU_GS: 867 case CallingConv::AMDGPU_PS: 868 case CallingConv::AMDGPU_CS: 869 case CallingConv::AMDGPU_HS: 870 case CallingConv::AMDGPU_ES: 871 case CallingConv::AMDGPU_LS: 872 return RetCC_SI_Shader; 873 case CallingConv::C: 874 case CallingConv::Fast: 875 case CallingConv::Cold: 876 return RetCC_AMDGPU_Func; 877 default: 878 report_fatal_error("Unsupported calling convention."); 879 } 880 } 881 882 /// The SelectionDAGBuilder will automatically promote function arguments 883 /// with illegal types. However, this does not work for the AMDGPU targets 884 /// since the function arguments are stored in memory as these illegal types. 885 /// In order to handle this properly we need to get the original types sizes 886 /// from the LLVM IR Function and fixup the ISD:InputArg values before 887 /// passing them to AnalyzeFormalArguments() 888 889 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting 890 /// input values across multiple registers. Each item in the Ins array 891 /// represents a single value that will be stored in registers. Ins[x].VT is 892 /// the value type of the value that will be stored in the register, so 893 /// whatever SDNode we lower the argument to needs to be this type. 894 /// 895 /// In order to correctly lower the arguments we need to know the size of each 896 /// argument. Since Ins[x].VT gives us the size of the register that will 897 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type 898 /// for the orignal function argument so that we can deduce the correct memory 899 /// type to use for Ins[x]. In most cases the correct memory type will be 900 /// Ins[x].ArgVT. However, this will not always be the case. If, for example, 901 /// we have a kernel argument of type v8i8, this argument will be split into 902 /// 8 parts and each part will be represented by its own item in the Ins array. 903 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of 904 /// the argument before it was split. From this, we deduce that the memory type 905 /// for each individual part is i8. We pass the memory type as LocVT to the 906 /// calling convention analysis function and the register type (Ins[x].VT) as 907 /// the ValVT. 908 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( 909 CCState &State, 910 const SmallVectorImpl<ISD::InputArg> &Ins) const { 911 const MachineFunction &MF = State.getMachineFunction(); 912 const Function &Fn = MF.getFunction(); 913 LLVMContext &Ctx = Fn.getParent()->getContext(); 914 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); 915 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); 916 CallingConv::ID CC = Fn.getCallingConv(); 917 918 unsigned MaxAlign = 1; 919 uint64_t ExplicitArgOffset = 0; 920 const DataLayout &DL = Fn.getParent()->getDataLayout(); 921 922 unsigned InIndex = 0; 923 924 for (const Argument &Arg : Fn.args()) { 925 Type *BaseArgTy = Arg.getType(); 926 unsigned Align = DL.getABITypeAlignment(BaseArgTy); 927 MaxAlign = std::max(Align, MaxAlign); 928 unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); 929 930 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; 931 ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; 932 933 // We're basically throwing away everything passed into us and starting over 934 // to get accurate in-memory offsets. The "PartOffset" is completely useless 935 // to us as computed in Ins. 936 // 937 // We also need to figure out what type legalization is trying to do to get 938 // the correct memory offsets. 939 940 SmallVector<EVT, 16> ValueVTs; 941 SmallVector<uint64_t, 16> Offsets; 942 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); 943 944 for (unsigned Value = 0, NumValues = ValueVTs.size(); 945 Value != NumValues; ++Value) { 946 uint64_t BasePartOffset = Offsets[Value]; 947 948 EVT ArgVT = ValueVTs[Value]; 949 EVT MemVT = ArgVT; 950 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); 951 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); 952 953 if (NumRegs == 1) { 954 // This argument is not split, so the IR type is the memory type. 955 if (ArgVT.isExtended()) { 956 // We have an extended type, like i24, so we should just use the 957 // register type. 958 MemVT = RegisterVT; 959 } else { 960 MemVT = ArgVT; 961 } 962 } else if (ArgVT.isVector() && RegisterVT.isVector() && 963 ArgVT.getScalarType() == RegisterVT.getScalarType()) { 964 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); 965 // We have a vector value which has been split into a vector with 966 // the same scalar type, but fewer elements. This should handle 967 // all the floating-point vector types. 968 MemVT = RegisterVT; 969 } else if (ArgVT.isVector() && 970 ArgVT.getVectorNumElements() == NumRegs) { 971 // This arg has been split so that each element is stored in a separate 972 // register. 973 MemVT = ArgVT.getScalarType(); 974 } else if (ArgVT.isExtended()) { 975 // We have an extended type, like i65. 976 MemVT = RegisterVT; 977 } else { 978 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; 979 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); 980 if (RegisterVT.isInteger()) { 981 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); 982 } else if (RegisterVT.isVector()) { 983 assert(!RegisterVT.getScalarType().isFloatingPoint()); 984 unsigned NumElements = RegisterVT.getVectorNumElements(); 985 assert(MemoryBits % NumElements == 0); 986 // This vector type has been split into another vector type with 987 // a different elements size. 988 EVT ScalarVT = EVT::getIntegerVT(State.getContext(), 989 MemoryBits / NumElements); 990 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); 991 } else { 992 llvm_unreachable("cannot deduce memory type."); 993 } 994 } 995 996 // Convert one element vectors to scalar. 997 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) 998 MemVT = MemVT.getScalarType(); 999 1000 // Round up vec3/vec5 argument. 1001 if (MemVT.isVector() && !MemVT.isPow2VectorType()) { 1002 assert(MemVT.getVectorNumElements() == 3 || 1003 MemVT.getVectorNumElements() == 5); 1004 MemVT = MemVT.getPow2VectorType(State.getContext()); 1005 } 1006 1007 unsigned PartOffset = 0; 1008 for (unsigned i = 0; i != NumRegs; ++i) { 1009 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, 1010 BasePartOffset + PartOffset, 1011 MemVT.getSimpleVT(), 1012 CCValAssign::Full)); 1013 PartOffset += MemVT.getStoreSize(); 1014 } 1015 } 1016 } 1017 } 1018 1019 SDValue AMDGPUTargetLowering::LowerReturn( 1020 SDValue Chain, CallingConv::ID CallConv, 1021 bool isVarArg, 1022 const SmallVectorImpl<ISD::OutputArg> &Outs, 1023 const SmallVectorImpl<SDValue> &OutVals, 1024 const SDLoc &DL, SelectionDAG &DAG) const { 1025 // FIXME: Fails for r600 tests 1026 //assert(!isVarArg && Outs.empty() && OutVals.empty() && 1027 // "wave terminate should not have return values"); 1028 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); 1029 } 1030 1031 //===---------------------------------------------------------------------===// 1032 // Target specific lowering 1033 //===---------------------------------------------------------------------===// 1034 1035 /// Selects the correct CCAssignFn for a given CallingConvention value. 1036 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1037 bool IsVarArg) { 1038 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); 1039 } 1040 1041 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 1042 bool IsVarArg) { 1043 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); 1044 } 1045 1046 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, 1047 SelectionDAG &DAG, 1048 MachineFrameInfo &MFI, 1049 int ClobberedFI) const { 1050 SmallVector<SDValue, 8> ArgChains; 1051 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 1052 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 1053 1054 // Include the original chain at the beginning of the list. When this is 1055 // used by target LowerCall hooks, this helps legalize find the 1056 // CALLSEQ_BEGIN node. 1057 ArgChains.push_back(Chain); 1058 1059 // Add a chain value for each stack argument corresponding 1060 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 1061 UE = DAG.getEntryNode().getNode()->use_end(); 1062 U != UE; ++U) { 1063 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { 1064 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { 1065 if (FI->getIndex() < 0) { 1066 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 1067 int64_t InLastByte = InFirstByte; 1068 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 1069 1070 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 1071 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 1072 ArgChains.push_back(SDValue(L, 1)); 1073 } 1074 } 1075 } 1076 } 1077 1078 // Build a tokenfactor for all the chains. 1079 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 1080 } 1081 1082 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, 1083 SmallVectorImpl<SDValue> &InVals, 1084 StringRef Reason) const { 1085 SDValue Callee = CLI.Callee; 1086 SelectionDAG &DAG = CLI.DAG; 1087 1088 const Function &Fn = DAG.getMachineFunction().getFunction(); 1089 1090 StringRef FuncName("<unknown>"); 1091 1092 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 1093 FuncName = G->getSymbol(); 1094 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1095 FuncName = G->getGlobal()->getName(); 1096 1097 DiagnosticInfoUnsupported NoCalls( 1098 Fn, Reason + FuncName, CLI.DL.getDebugLoc()); 1099 DAG.getContext()->diagnose(NoCalls); 1100 1101 if (!CLI.IsTailCall) { 1102 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) 1103 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); 1104 } 1105 1106 return DAG.getEntryNode(); 1107 } 1108 1109 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 1110 SmallVectorImpl<SDValue> &InVals) const { 1111 return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); 1112 } 1113 1114 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1115 SelectionDAG &DAG) const { 1116 const Function &Fn = DAG.getMachineFunction().getFunction(); 1117 1118 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", 1119 SDLoc(Op).getDebugLoc()); 1120 DAG.getContext()->diagnose(NoDynamicAlloca); 1121 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; 1122 return DAG.getMergeValues(Ops, SDLoc()); 1123 } 1124 1125 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 1126 SelectionDAG &DAG) const { 1127 switch (Op.getOpcode()) { 1128 default: 1129 Op->print(errs(), &DAG); 1130 llvm_unreachable("Custom lowering code for this" 1131 "instruction is not implemented yet!"); 1132 break; 1133 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 1134 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 1135 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 1136 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 1137 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 1138 case ISD::FREM: return LowerFREM(Op, DAG); 1139 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 1140 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 1141 case ISD::FRINT: return LowerFRINT(Op, DAG); 1142 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 1143 case ISD::FROUND: return LowerFROUND(Op, DAG); 1144 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 1145 case ISD::FLOG: 1146 return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); 1147 case ISD::FLOG10: 1148 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); 1149 case ISD::FEXP: 1150 return lowerFEXP(Op, DAG); 1151 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 1152 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 1153 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); 1154 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1155 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 1156 case ISD::CTTZ: 1157 case ISD::CTTZ_ZERO_UNDEF: 1158 case ISD::CTLZ: 1159 case ISD::CTLZ_ZERO_UNDEF: 1160 return LowerCTLZ_CTTZ(Op, DAG); 1161 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 1162 } 1163 return Op; 1164 } 1165 1166 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 1167 SmallVectorImpl<SDValue> &Results, 1168 SelectionDAG &DAG) const { 1169 switch (N->getOpcode()) { 1170 case ISD::SIGN_EXTEND_INREG: 1171 // Different parts of legalization seem to interpret which type of 1172 // sign_extend_inreg is the one to check for custom lowering. The extended 1173 // from type is what really matters, but some places check for custom 1174 // lowering of the result type. This results in trying to use 1175 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 1176 // nothing here and let the illegal result integer be handled normally. 1177 return; 1178 default: 1179 return; 1180 } 1181 } 1182 1183 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { 1184 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 1185 if (!GVar || !GVar->hasInitializer()) 1186 return false; 1187 1188 return !isa<UndefValue>(GVar->getInitializer()); 1189 } 1190 1191 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 1192 SDValue Op, 1193 SelectionDAG &DAG) const { 1194 1195 const DataLayout &DL = DAG.getDataLayout(); 1196 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 1197 const GlobalValue *GV = G->getGlobal(); 1198 1199 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1200 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { 1201 if (!MFI->isEntryFunction()) { 1202 const Function &Fn = DAG.getMachineFunction().getFunction(); 1203 DiagnosticInfoUnsupported BadLDSDecl( 1204 Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); 1205 DAG.getContext()->diagnose(BadLDSDecl); 1206 } 1207 1208 // XXX: What does the value of G->getOffset() mean? 1209 assert(G->getOffset() == 0 && 1210 "Do not know what to do with an non-zero offset"); 1211 1212 // TODO: We could emit code to handle the initialization somewhere. 1213 if (!hasDefinedInitializer(GV)) { 1214 unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); 1215 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); 1216 } 1217 } 1218 1219 const Function &Fn = DAG.getMachineFunction().getFunction(); 1220 DiagnosticInfoUnsupported BadInit( 1221 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); 1222 DAG.getContext()->diagnose(BadInit); 1223 return SDValue(); 1224 } 1225 1226 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 1227 SelectionDAG &DAG) const { 1228 SmallVector<SDValue, 8> Args; 1229 1230 EVT VT = Op.getValueType(); 1231 if (VT == MVT::v4i16 || VT == MVT::v4f16) { 1232 SDLoc SL(Op); 1233 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); 1234 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); 1235 1236 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); 1237 return DAG.getNode(ISD::BITCAST, SL, VT, BV); 1238 } 1239 1240 for (const SDUse &U : Op->ops()) 1241 DAG.ExtractVectorElements(U.get(), Args); 1242 1243 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1244 } 1245 1246 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 1247 SelectionDAG &DAG) const { 1248 1249 SmallVector<SDValue, 8> Args; 1250 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1251 EVT VT = Op.getValueType(); 1252 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 1253 VT.getVectorNumElements()); 1254 1255 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); 1256 } 1257 1258 /// Generate Min/Max node 1259 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, 1260 SDValue LHS, SDValue RHS, 1261 SDValue True, SDValue False, 1262 SDValue CC, 1263 DAGCombinerInfo &DCI) const { 1264 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1265 return SDValue(); 1266 1267 SelectionDAG &DAG = DCI.DAG; 1268 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1269 switch (CCOpcode) { 1270 case ISD::SETOEQ: 1271 case ISD::SETONE: 1272 case ISD::SETUNE: 1273 case ISD::SETNE: 1274 case ISD::SETUEQ: 1275 case ISD::SETEQ: 1276 case ISD::SETFALSE: 1277 case ISD::SETFALSE2: 1278 case ISD::SETTRUE: 1279 case ISD::SETTRUE2: 1280 case ISD::SETUO: 1281 case ISD::SETO: 1282 break; 1283 case ISD::SETULE: 1284 case ISD::SETULT: { 1285 if (LHS == True) 1286 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1287 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1288 } 1289 case ISD::SETOLE: 1290 case ISD::SETOLT: 1291 case ISD::SETLE: 1292 case ISD::SETLT: { 1293 // Ordered. Assume ordered for undefined. 1294 1295 // Only do this after legalization to avoid interfering with other combines 1296 // which might occur. 1297 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1298 !DCI.isCalledByLegalizer()) 1299 return SDValue(); 1300 1301 // We need to permute the operands to get the correct NaN behavior. The 1302 // selected operand is the second one based on the failing compare with NaN, 1303 // so permute it based on the compare type the hardware uses. 1304 if (LHS == True) 1305 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1306 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1307 } 1308 case ISD::SETUGE: 1309 case ISD::SETUGT: { 1310 if (LHS == True) 1311 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1312 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1313 } 1314 case ISD::SETGT: 1315 case ISD::SETGE: 1316 case ISD::SETOGE: 1317 case ISD::SETOGT: { 1318 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1319 !DCI.isCalledByLegalizer()) 1320 return SDValue(); 1321 1322 if (LHS == True) 1323 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1324 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1325 } 1326 case ISD::SETCC_INVALID: 1327 llvm_unreachable("Invalid setcc condcode!"); 1328 } 1329 return SDValue(); 1330 } 1331 1332 std::pair<SDValue, SDValue> 1333 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { 1334 SDLoc SL(Op); 1335 1336 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1337 1338 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1339 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1340 1341 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1342 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1343 1344 return std::make_pair(Lo, Hi); 1345 } 1346 1347 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { 1348 SDLoc SL(Op); 1349 1350 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1351 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1352 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 1353 } 1354 1355 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { 1356 SDLoc SL(Op); 1357 1358 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); 1359 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1360 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 1361 } 1362 1363 // Split a vector type into two parts. The first part is a power of two vector. 1364 // The second part is whatever is left over, and is a scalar if it would 1365 // otherwise be a 1-vector. 1366 std::pair<EVT, EVT> 1367 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { 1368 EVT LoVT, HiVT; 1369 EVT EltVT = VT.getVectorElementType(); 1370 unsigned NumElts = VT.getVectorNumElements(); 1371 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); 1372 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); 1373 HiVT = NumElts - LoNumElts == 1 1374 ? EltVT 1375 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); 1376 return std::make_pair(LoVT, HiVT); 1377 } 1378 1379 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be 1380 // scalar. 1381 std::pair<SDValue, SDValue> 1382 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, 1383 const EVT &LoVT, const EVT &HiVT, 1384 SelectionDAG &DAG) const { 1385 assert(LoVT.getVectorNumElements() + 1386 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= 1387 N.getValueType().getVectorNumElements() && 1388 "More vector elements requested than available!"); 1389 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1390 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 1391 DAG.getConstant(0, DL, IdxTy)); 1392 SDValue Hi = DAG.getNode( 1393 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, 1394 HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); 1395 return std::make_pair(Lo, Hi); 1396 } 1397 1398 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1399 SelectionDAG &DAG) const { 1400 LoadSDNode *Load = cast<LoadSDNode>(Op); 1401 EVT VT = Op.getValueType(); 1402 1403 1404 // If this is a 2 element vector, we really want to scalarize and not create 1405 // weird 1 element vectors. 1406 if (VT.getVectorNumElements() == 2) 1407 return scalarizeVectorLoad(Load, DAG); 1408 1409 SDValue BasePtr = Load->getBasePtr(); 1410 EVT MemVT = Load->getMemoryVT(); 1411 SDLoc SL(Op); 1412 1413 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1414 1415 EVT LoVT, HiVT; 1416 EVT LoMemVT, HiMemVT; 1417 SDValue Lo, Hi; 1418 1419 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1420 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1421 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); 1422 1423 unsigned Size = LoMemVT.getStoreSize(); 1424 unsigned BaseAlign = Load->getAlignment(); 1425 unsigned HiAlign = MinAlign(BaseAlign, Size); 1426 1427 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1428 Load->getChain(), BasePtr, SrcValue, LoMemVT, 1429 BaseAlign, Load->getMemOperand()->getFlags()); 1430 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); 1431 SDValue HiLoad = 1432 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), 1433 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1434 HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); 1435 1436 auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); 1437 SDValue Join; 1438 if (LoVT == HiVT) { 1439 // This is the case that the vector is power of two so was evenly split. 1440 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); 1441 } else { 1442 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, 1443 DAG.getConstant(0, SL, IdxTy)); 1444 Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR 1445 : ISD::INSERT_VECTOR_ELT, 1446 SL, VT, Join, HiLoad, 1447 DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); 1448 } 1449 1450 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1451 LoLoad.getValue(1), HiLoad.getValue(1))}; 1452 1453 return DAG.getMergeValues(Ops, SL); 1454 } 1455 1456 // Widen a vector load from vec3 to vec4. 1457 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, 1458 SelectionDAG &DAG) const { 1459 LoadSDNode *Load = cast<LoadSDNode>(Op); 1460 EVT VT = Op.getValueType(); 1461 assert(VT.getVectorNumElements() == 3); 1462 SDValue BasePtr = Load->getBasePtr(); 1463 EVT MemVT = Load->getMemoryVT(); 1464 SDLoc SL(Op); 1465 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1466 unsigned BaseAlign = Load->getAlignment(); 1467 1468 EVT WideVT = 1469 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); 1470 EVT WideMemVT = 1471 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); 1472 SDValue WideLoad = DAG.getExtLoad( 1473 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, 1474 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); 1475 return DAG.getMergeValues( 1476 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, 1477 DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), 1478 WideLoad.getValue(1)}, 1479 SL); 1480 } 1481 1482 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1483 SelectionDAG &DAG) const { 1484 StoreSDNode *Store = cast<StoreSDNode>(Op); 1485 SDValue Val = Store->getValue(); 1486 EVT VT = Val.getValueType(); 1487 1488 // If this is a 2 element vector, we really want to scalarize and not create 1489 // weird 1 element vectors. 1490 if (VT.getVectorNumElements() == 2) 1491 return scalarizeVectorStore(Store, DAG); 1492 1493 EVT MemVT = Store->getMemoryVT(); 1494 SDValue Chain = Store->getChain(); 1495 SDValue BasePtr = Store->getBasePtr(); 1496 SDLoc SL(Op); 1497 1498 EVT LoVT, HiVT; 1499 EVT LoMemVT, HiMemVT; 1500 SDValue Lo, Hi; 1501 1502 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); 1503 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); 1504 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); 1505 1506 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); 1507 1508 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1509 unsigned BaseAlign = Store->getAlignment(); 1510 unsigned Size = LoMemVT.getStoreSize(); 1511 unsigned HiAlign = MinAlign(BaseAlign, Size); 1512 1513 SDValue LoStore = 1514 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, 1515 Store->getMemOperand()->getFlags()); 1516 SDValue HiStore = 1517 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), 1518 HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); 1519 1520 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1521 } 1522 1523 // This is a shortcut for integer division because we have fast i32<->f32 1524 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1525 // float is enough to accurately represent up to a 24-bit signed integer. 1526 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, 1527 bool Sign) const { 1528 SDLoc DL(Op); 1529 EVT VT = Op.getValueType(); 1530 SDValue LHS = Op.getOperand(0); 1531 SDValue RHS = Op.getOperand(1); 1532 MVT IntVT = MVT::i32; 1533 MVT FltVT = MVT::f32; 1534 1535 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); 1536 if (LHSSignBits < 9) 1537 return SDValue(); 1538 1539 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); 1540 if (RHSSignBits < 9) 1541 return SDValue(); 1542 1543 unsigned BitSize = VT.getSizeInBits(); 1544 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1545 unsigned DivBits = BitSize - SignBits; 1546 if (Sign) 1547 ++DivBits; 1548 1549 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1550 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1551 1552 SDValue jq = DAG.getConstant(1, DL, IntVT); 1553 1554 if (Sign) { 1555 // char|short jq = ia ^ ib; 1556 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1557 1558 // jq = jq >> (bitsize - 2) 1559 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1560 DAG.getConstant(BitSize - 2, DL, VT)); 1561 1562 // jq = jq | 0x1 1563 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1564 } 1565 1566 // int ia = (int)LHS; 1567 SDValue ia = LHS; 1568 1569 // int ib, (int)RHS; 1570 SDValue ib = RHS; 1571 1572 // float fa = (float)ia; 1573 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1574 1575 // float fb = (float)ib; 1576 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1577 1578 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1579 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1580 1581 // fq = trunc(fq); 1582 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1583 1584 // float fqneg = -fq; 1585 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1586 1587 // float fr = mad(fqneg, fb, fa); 1588 unsigned OpCode = Subtarget->hasFP32Denormals() ? 1589 (unsigned)AMDGPUISD::FMAD_FTZ : 1590 (unsigned)ISD::FMAD; 1591 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); 1592 1593 // int iq = (int)fq; 1594 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1595 1596 // fr = fabs(fr); 1597 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1598 1599 // fb = fabs(fb); 1600 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1601 1602 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1603 1604 // int cv = fr >= fb; 1605 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1606 1607 // jq = (cv ? jq : 0); 1608 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1609 1610 // dst = iq + jq; 1611 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1612 1613 // Rem needs compensation, it's easier to recompute it 1614 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1615 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1616 1617 // Truncate to number of bits this divide really is. 1618 if (Sign) { 1619 SDValue InRegSize 1620 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); 1621 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); 1622 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); 1623 } else { 1624 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); 1625 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); 1626 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); 1627 } 1628 1629 return DAG.getMergeValues({ Div, Rem }, DL); 1630 } 1631 1632 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1633 SelectionDAG &DAG, 1634 SmallVectorImpl<SDValue> &Results) const { 1635 SDLoc DL(Op); 1636 EVT VT = Op.getValueType(); 1637 1638 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); 1639 1640 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1641 1642 SDValue One = DAG.getConstant(1, DL, HalfVT); 1643 SDValue Zero = DAG.getConstant(0, DL, HalfVT); 1644 1645 //HiLo split 1646 SDValue LHS = Op.getOperand(0); 1647 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1648 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); 1649 1650 SDValue RHS = Op.getOperand(1); 1651 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1652 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); 1653 1654 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1655 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1656 1657 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1658 LHS_Lo, RHS_Lo); 1659 1660 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); 1661 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); 1662 1663 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); 1664 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); 1665 return; 1666 } 1667 1668 if (isTypeLegal(MVT::i64)) { 1669 // Compute denominator reciprocal. 1670 unsigned FMAD = Subtarget->hasFP32Denormals() ? 1671 (unsigned)AMDGPUISD::FMAD_FTZ : 1672 (unsigned)ISD::FMAD; 1673 1674 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); 1675 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); 1676 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, 1677 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), 1678 Cvt_Lo); 1679 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); 1680 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, 1681 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); 1682 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, 1683 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); 1684 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); 1685 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, 1686 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), 1687 Mul1); 1688 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); 1689 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); 1690 SDValue Rcp64 = DAG.getBitcast(VT, 1691 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); 1692 1693 SDValue Zero64 = DAG.getConstant(0, DL, VT); 1694 SDValue One64 = DAG.getConstant(1, DL, VT); 1695 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); 1696 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); 1697 1698 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); 1699 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); 1700 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); 1701 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1702 Zero); 1703 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, 1704 One); 1705 1706 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, 1707 Mulhi1_Lo, Zero1); 1708 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, 1709 Mulhi1_Hi, Add1_Lo.getValue(1)); 1710 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); 1711 SDValue Add1 = DAG.getBitcast(VT, 1712 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); 1713 1714 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); 1715 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); 1716 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1717 Zero); 1718 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, 1719 One); 1720 1721 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, 1722 Mulhi2_Lo, Zero1); 1723 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, 1724 Mulhi2_Hi, Add1_Lo.getValue(1)); 1725 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, 1726 Zero, Add2_Lo.getValue(1)); 1727 SDValue Add2 = DAG.getBitcast(VT, 1728 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); 1729 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); 1730 1731 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); 1732 1733 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); 1734 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); 1735 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, 1736 Mul3_Lo, Zero1); 1737 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, 1738 Mul3_Hi, Sub1_Lo.getValue(1)); 1739 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); 1740 SDValue Sub1 = DAG.getBitcast(VT, 1741 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); 1742 1743 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); 1744 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, 1745 ISD::SETUGE); 1746 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, 1747 ISD::SETUGE); 1748 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); 1749 1750 // TODO: Here and below portions of the code can be enclosed into if/endif. 1751 // Currently control flow is unconditional and we have 4 selects after 1752 // potential endif to substitute PHIs. 1753 1754 // if C3 != 0 ... 1755 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, 1756 RHS_Lo, Zero1); 1757 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, 1758 RHS_Hi, Sub1_Lo.getValue(1)); 1759 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1760 Zero, Sub2_Lo.getValue(1)); 1761 SDValue Sub2 = DAG.getBitcast(VT, 1762 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); 1763 1764 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); 1765 1766 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, 1767 ISD::SETUGE); 1768 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, 1769 ISD::SETUGE); 1770 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); 1771 1772 // if (C6 != 0) 1773 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); 1774 1775 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, 1776 RHS_Lo, Zero1); 1777 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, 1778 RHS_Hi, Sub2_Lo.getValue(1)); 1779 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, 1780 Zero, Sub3_Lo.getValue(1)); 1781 SDValue Sub3 = DAG.getBitcast(VT, 1782 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); 1783 1784 // endif C6 1785 // endif C3 1786 1787 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); 1788 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); 1789 1790 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); 1791 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); 1792 1793 Results.push_back(Div); 1794 Results.push_back(Rem); 1795 1796 return; 1797 } 1798 1799 // r600 expandion. 1800 // Get Speculative values 1801 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1802 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1803 1804 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); 1805 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); 1806 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); 1807 1808 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); 1809 SDValue DIV_Lo = Zero; 1810 1811 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1812 1813 for (unsigned i = 0; i < halfBitWidth; ++i) { 1814 const unsigned bitPos = halfBitWidth - i - 1; 1815 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1816 // Get value of high bit 1817 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1818 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); 1819 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1820 1821 // Shift 1822 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1823 // Add LHS high bit 1824 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1825 1826 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); 1827 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); 1828 1829 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1830 1831 // Update REM 1832 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1833 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1834 } 1835 1836 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); 1837 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); 1838 Results.push_back(DIV); 1839 Results.push_back(REM); 1840 } 1841 1842 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1843 SelectionDAG &DAG) const { 1844 SDLoc DL(Op); 1845 EVT VT = Op.getValueType(); 1846 1847 if (VT == MVT::i64) { 1848 SmallVector<SDValue, 2> Results; 1849 LowerUDIVREM64(Op, DAG, Results); 1850 return DAG.getMergeValues(Results, DL); 1851 } 1852 1853 if (VT == MVT::i32) { 1854 if (SDValue Res = LowerDIVREM24(Op, DAG, false)) 1855 return Res; 1856 } 1857 1858 SDValue Num = Op.getOperand(0); 1859 SDValue Den = Op.getOperand(1); 1860 1861 // RCP = URECIP(Den) = 2^32 / Den + e 1862 // e is rounding error. 1863 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1864 1865 // RCP_LO = mul(RCP, Den) */ 1866 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1867 1868 // RCP_HI = mulhu (RCP, Den) */ 1869 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1870 1871 // NEG_RCP_LO = -RCP_LO 1872 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1873 RCP_LO); 1874 1875 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1876 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1877 NEG_RCP_LO, RCP_LO, 1878 ISD::SETEQ); 1879 // Calculate the rounding error from the URECIP instruction 1880 // E = mulhu(ABS_RCP_LO, RCP) 1881 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1882 1883 // RCP_A_E = RCP + E 1884 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1885 1886 // RCP_S_E = RCP - E 1887 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1888 1889 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1890 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1891 RCP_A_E, RCP_S_E, 1892 ISD::SETEQ); 1893 // Quotient = mulhu(Tmp0, Num) 1894 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1895 1896 // Num_S_Remainder = Quotient * Den 1897 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1898 1899 // Remainder = Num - Num_S_Remainder 1900 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1901 1902 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1903 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1904 DAG.getConstant(-1, DL, VT), 1905 DAG.getConstant(0, DL, VT), 1906 ISD::SETUGE); 1907 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1908 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1909 Num_S_Remainder, 1910 DAG.getConstant(-1, DL, VT), 1911 DAG.getConstant(0, DL, VT), 1912 ISD::SETUGE); 1913 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1914 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1915 Remainder_GE_Zero); 1916 1917 // Calculate Division result: 1918 1919 // Quotient_A_One = Quotient + 1 1920 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1921 DAG.getConstant(1, DL, VT)); 1922 1923 // Quotient_S_One = Quotient - 1 1924 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1925 DAG.getConstant(1, DL, VT)); 1926 1927 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1928 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1929 Quotient, Quotient_A_One, ISD::SETEQ); 1930 1931 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1932 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1933 Quotient_S_One, Div, ISD::SETEQ); 1934 1935 // Calculate Rem result: 1936 1937 // Remainder_S_Den = Remainder - Den 1938 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1939 1940 // Remainder_A_Den = Remainder + Den 1941 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1942 1943 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1944 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1945 Remainder, Remainder_S_Den, ISD::SETEQ); 1946 1947 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1948 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1949 Remainder_A_Den, Rem, ISD::SETEQ); 1950 SDValue Ops[2] = { 1951 Div, 1952 Rem 1953 }; 1954 return DAG.getMergeValues(Ops, DL); 1955 } 1956 1957 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1958 SelectionDAG &DAG) const { 1959 SDLoc DL(Op); 1960 EVT VT = Op.getValueType(); 1961 1962 SDValue LHS = Op.getOperand(0); 1963 SDValue RHS = Op.getOperand(1); 1964 1965 SDValue Zero = DAG.getConstant(0, DL, VT); 1966 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1967 1968 if (VT == MVT::i32) { 1969 if (SDValue Res = LowerDIVREM24(Op, DAG, true)) 1970 return Res; 1971 } 1972 1973 if (VT == MVT::i64 && 1974 DAG.ComputeNumSignBits(LHS) > 32 && 1975 DAG.ComputeNumSignBits(RHS) > 32) { 1976 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1977 1978 //HiLo split 1979 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1980 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1981 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1982 LHS_Lo, RHS_Lo); 1983 SDValue Res[2] = { 1984 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1985 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1986 }; 1987 return DAG.getMergeValues(Res, DL); 1988 } 1989 1990 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1991 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1992 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1993 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1994 1995 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1996 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1997 1998 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1999 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 2000 2001 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 2002 SDValue Rem = Div.getValue(1); 2003 2004 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 2005 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 2006 2007 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 2008 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 2009 2010 SDValue Res[2] = { 2011 Div, 2012 Rem 2013 }; 2014 return DAG.getMergeValues(Res, DL); 2015 } 2016 2017 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 2018 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 2019 SDLoc SL(Op); 2020 EVT VT = Op.getValueType(); 2021 SDValue X = Op.getOperand(0); 2022 SDValue Y = Op.getOperand(1); 2023 2024 // TODO: Should this propagate fast-math-flags? 2025 2026 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 2027 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 2028 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 2029 2030 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 2031 } 2032 2033 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 2034 SDLoc SL(Op); 2035 SDValue Src = Op.getOperand(0); 2036 2037 // result = trunc(src) 2038 // if (src > 0.0 && src != result) 2039 // result += 1.0 2040 2041 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2042 2043 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2044 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 2045 2046 EVT SetCCVT = 2047 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2048 2049 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 2050 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2051 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2052 2053 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 2054 // TODO: Should this propagate fast-math-flags? 2055 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2056 } 2057 2058 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, 2059 SelectionDAG &DAG) { 2060 const unsigned FractBits = 52; 2061 const unsigned ExpBits = 11; 2062 2063 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 2064 Hi, 2065 DAG.getConstant(FractBits - 32, SL, MVT::i32), 2066 DAG.getConstant(ExpBits, SL, MVT::i32)); 2067 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 2068 DAG.getConstant(1023, SL, MVT::i32)); 2069 2070 return Exp; 2071 } 2072 2073 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 2074 SDLoc SL(Op); 2075 SDValue Src = Op.getOperand(0); 2076 2077 assert(Op.getValueType() == MVT::f64); 2078 2079 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2080 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2081 2082 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2083 2084 // Extract the upper half, since this is where we will find the sign and 2085 // exponent. 2086 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 2087 2088 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2089 2090 const unsigned FractBits = 52; 2091 2092 // Extract the sign bit. 2093 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 2094 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 2095 2096 // Extend back to 64-bits. 2097 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); 2098 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 2099 2100 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 2101 const SDValue FractMask 2102 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 2103 2104 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 2105 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 2106 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 2107 2108 EVT SetCCVT = 2109 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2110 2111 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 2112 2113 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2114 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2115 2116 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2117 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2118 2119 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2120 } 2121 2122 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2123 SDLoc SL(Op); 2124 SDValue Src = Op.getOperand(0); 2125 2126 assert(Op.getValueType() == MVT::f64); 2127 2128 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); 2129 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2130 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2131 2132 // TODO: Should this propagate fast-math-flags? 2133 2134 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2135 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2136 2137 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2138 2139 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); 2140 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2141 2142 EVT SetCCVT = 2143 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2144 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2145 2146 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2147 } 2148 2149 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2150 // FNEARBYINT and FRINT are the same, except in their handling of FP 2151 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2152 // rint, so just treat them as equivalent. 2153 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2154 } 2155 2156 // XXX - May require not supporting f32 denormals? 2157 2158 // Don't handle v2f16. The extra instructions to scalarize and repack around the 2159 // compare and vselect end up producing worse code than scalarizing the whole 2160 // operation. 2161 SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { 2162 SDLoc SL(Op); 2163 SDValue X = Op.getOperand(0); 2164 EVT VT = Op.getValueType(); 2165 2166 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); 2167 2168 // TODO: Should this propagate fast-math-flags? 2169 2170 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); 2171 2172 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); 2173 2174 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); 2175 const SDValue One = DAG.getConstantFP(1.0, SL, VT); 2176 const SDValue Half = DAG.getConstantFP(0.5, SL, VT); 2177 2178 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); 2179 2180 EVT SetCCVT = 2181 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 2182 2183 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2184 2185 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); 2186 2187 return DAG.getNode(ISD::FADD, SL, VT, T, Sel); 2188 } 2189 2190 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2191 SDLoc SL(Op); 2192 SDValue X = Op.getOperand(0); 2193 2194 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2195 2196 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2197 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2198 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2199 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2200 EVT SetCCVT = 2201 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2202 2203 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2204 2205 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2206 2207 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2208 2209 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2210 MVT::i64); 2211 2212 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2213 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2214 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2215 MVT::i64), 2216 Exp); 2217 2218 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2219 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2220 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2221 ISD::SETNE); 2222 2223 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2224 D, DAG.getConstant(0, SL, MVT::i64)); 2225 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2226 2227 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2228 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2229 2230 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2231 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2232 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2233 2234 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2235 ExpEqNegOne, 2236 DAG.getConstantFP(1.0, SL, MVT::f64), 2237 DAG.getConstantFP(0.0, SL, MVT::f64)); 2238 2239 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2240 2241 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2242 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2243 2244 return K; 2245 } 2246 2247 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2248 EVT VT = Op.getValueType(); 2249 2250 if (VT == MVT::f32 || VT == MVT::f16) 2251 return LowerFROUND32_16(Op, DAG); 2252 2253 if (VT == MVT::f64) 2254 return LowerFROUND64(Op, DAG); 2255 2256 llvm_unreachable("unhandled type"); 2257 } 2258 2259 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2260 SDLoc SL(Op); 2261 SDValue Src = Op.getOperand(0); 2262 2263 // result = trunc(src); 2264 // if (src < 0.0 && src != result) 2265 // result += -1.0. 2266 2267 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2268 2269 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2270 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2271 2272 EVT SetCCVT = 2273 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2274 2275 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2276 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2277 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2278 2279 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2280 // TODO: Should this propagate fast-math-flags? 2281 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2282 } 2283 2284 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, 2285 double Log2BaseInverted) const { 2286 EVT VT = Op.getValueType(); 2287 2288 SDLoc SL(Op); 2289 SDValue Operand = Op.getOperand(0); 2290 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); 2291 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); 2292 2293 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); 2294 } 2295 2296 // exp2(M_LOG2E_F * f); 2297 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { 2298 EVT VT = Op.getValueType(); 2299 SDLoc SL(Op); 2300 SDValue Src = Op.getOperand(0); 2301 2302 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); 2303 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); 2304 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); 2305 } 2306 2307 static bool isCtlzOpc(unsigned Opc) { 2308 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; 2309 } 2310 2311 static bool isCttzOpc(unsigned Opc) { 2312 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; 2313 } 2314 2315 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { 2316 SDLoc SL(Op); 2317 SDValue Src = Op.getOperand(0); 2318 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || 2319 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; 2320 2321 unsigned ISDOpc, NewOpc; 2322 if (isCtlzOpc(Op.getOpcode())) { 2323 ISDOpc = ISD::CTLZ_ZERO_UNDEF; 2324 NewOpc = AMDGPUISD::FFBH_U32; 2325 } else if (isCttzOpc(Op.getOpcode())) { 2326 ISDOpc = ISD::CTTZ_ZERO_UNDEF; 2327 NewOpc = AMDGPUISD::FFBL_B32; 2328 } else 2329 llvm_unreachable("Unexpected OPCode!!!"); 2330 2331 2332 if (ZeroUndef && Src.getValueType() == MVT::i32) 2333 return DAG.getNode(NewOpc, SL, MVT::i32, Src); 2334 2335 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2336 2337 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2338 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2339 2340 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); 2341 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); 2342 2343 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2344 *DAG.getContext(), MVT::i32); 2345 2346 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; 2347 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); 2348 2349 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); 2350 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); 2351 2352 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); 2353 SDValue Add, NewOpr; 2354 if (isCtlzOpc(Op.getOpcode())) { 2355 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); 2356 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) 2357 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); 2358 } else { 2359 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); 2360 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) 2361 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); 2362 } 2363 2364 if (!ZeroUndef) { 2365 // Test if the full 64-bit input is zero. 2366 2367 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, 2368 // which we probably don't want. 2369 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; 2370 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); 2371 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); 2372 2373 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction 2374 // with the same cycles, otherwise it is slower. 2375 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, 2376 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); 2377 2378 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); 2379 2380 // The instruction returns -1 for 0 input, but the defined intrinsic 2381 // behavior is to return the number of bits. 2382 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, 2383 SrcIsZero, Bits32, NewOpr); 2384 } 2385 2386 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); 2387 } 2388 2389 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, 2390 bool Signed) const { 2391 // Unsigned 2392 // cul2f(ulong u) 2393 //{ 2394 // uint lz = clz(u); 2395 // uint e = (u != 0) ? 127U + 63U - lz : 0; 2396 // u = (u << lz) & 0x7fffffffffffffffUL; 2397 // ulong t = u & 0xffffffffffUL; 2398 // uint v = (e << 23) | (uint)(u >> 40); 2399 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 2400 // return as_float(v + r); 2401 //} 2402 // Signed 2403 // cl2f(long l) 2404 //{ 2405 // long s = l >> 63; 2406 // float r = cul2f((l + s) ^ s); 2407 // return s ? -r : r; 2408 //} 2409 2410 SDLoc SL(Op); 2411 SDValue Src = Op.getOperand(0); 2412 SDValue L = Src; 2413 2414 SDValue S; 2415 if (Signed) { 2416 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); 2417 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); 2418 2419 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); 2420 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); 2421 } 2422 2423 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), 2424 *DAG.getContext(), MVT::f32); 2425 2426 2427 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); 2428 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); 2429 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); 2430 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); 2431 2432 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); 2433 SDValue E = DAG.getSelect(SL, MVT::i32, 2434 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), 2435 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), 2436 ZeroI32); 2437 2438 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, 2439 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), 2440 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); 2441 2442 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, 2443 DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); 2444 2445 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, 2446 U, DAG.getConstant(40, SL, MVT::i64)); 2447 2448 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, 2449 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), 2450 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); 2451 2452 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); 2453 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); 2454 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); 2455 2456 SDValue One = DAG.getConstant(1, SL, MVT::i32); 2457 2458 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); 2459 2460 SDValue R = DAG.getSelect(SL, MVT::i32, 2461 RCmp, 2462 One, 2463 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); 2464 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); 2465 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); 2466 2467 if (!Signed) 2468 return R; 2469 2470 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); 2471 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); 2472 } 2473 2474 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2475 bool Signed) const { 2476 SDLoc SL(Op); 2477 SDValue Src = Op.getOperand(0); 2478 2479 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2480 2481 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2482 DAG.getConstant(0, SL, MVT::i32)); 2483 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2484 DAG.getConstant(1, SL, MVT::i32)); 2485 2486 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2487 SL, MVT::f64, Hi); 2488 2489 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2490 2491 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2492 DAG.getConstant(32, SL, MVT::i32)); 2493 // TODO: Should this propagate fast-math-flags? 2494 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2495 } 2496 2497 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2498 SelectionDAG &DAG) const { 2499 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2500 "operation should be legal"); 2501 2502 // TODO: Factor out code common with LowerSINT_TO_FP. 2503 2504 EVT DestVT = Op.getValueType(); 2505 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2506 SDLoc DL(Op); 2507 SDValue Src = Op.getOperand(0); 2508 2509 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2510 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2511 SDValue FPRound = 2512 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2513 2514 return FPRound; 2515 } 2516 2517 if (DestVT == MVT::f32) 2518 return LowerINT_TO_FP32(Op, DAG, false); 2519 2520 assert(DestVT == MVT::f64); 2521 return LowerINT_TO_FP64(Op, DAG, false); 2522 } 2523 2524 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2525 SelectionDAG &DAG) const { 2526 assert(Op.getOperand(0).getValueType() == MVT::i64 && 2527 "operation should be legal"); 2528 2529 // TODO: Factor out code common with LowerUINT_TO_FP. 2530 2531 EVT DestVT = Op.getValueType(); 2532 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { 2533 SDLoc DL(Op); 2534 SDValue Src = Op.getOperand(0); 2535 2536 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); 2537 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); 2538 SDValue FPRound = 2539 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); 2540 2541 return FPRound; 2542 } 2543 2544 if (DestVT == MVT::f32) 2545 return LowerINT_TO_FP32(Op, DAG, true); 2546 2547 assert(DestVT == MVT::f64); 2548 return LowerINT_TO_FP64(Op, DAG, true); 2549 } 2550 2551 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2552 bool Signed) const { 2553 SDLoc SL(Op); 2554 2555 SDValue Src = Op.getOperand(0); 2556 2557 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2558 2559 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2560 MVT::f64); 2561 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2562 MVT::f64); 2563 // TODO: Should this propagate fast-math-flags? 2564 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2565 2566 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2567 2568 2569 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2570 2571 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2572 MVT::i32, FloorMul); 2573 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2574 2575 SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); 2576 2577 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2578 } 2579 2580 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { 2581 SDLoc DL(Op); 2582 SDValue N0 = Op.getOperand(0); 2583 2584 // Convert to target node to get known bits 2585 if (N0.getValueType() == MVT::f32) 2586 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); 2587 2588 if (getTargetMachine().Options.UnsafeFPMath) { 2589 // There is a generic expand for FP_TO_FP16 with unsafe fast math. 2590 return SDValue(); 2591 } 2592 2593 assert(N0.getSimpleValueType() == MVT::f64); 2594 2595 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 2596 const unsigned ExpMask = 0x7ff; 2597 const unsigned ExpBiasf64 = 1023; 2598 const unsigned ExpBiasf16 = 15; 2599 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 2600 SDValue One = DAG.getConstant(1, DL, MVT::i32); 2601 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); 2602 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, 2603 DAG.getConstant(32, DL, MVT::i64)); 2604 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); 2605 U = DAG.getZExtOrTrunc(U, DL, MVT::i32); 2606 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2607 DAG.getConstant(20, DL, MVT::i64)); 2608 E = DAG.getNode(ISD::AND, DL, MVT::i32, E, 2609 DAG.getConstant(ExpMask, DL, MVT::i32)); 2610 // Subtract the fp64 exponent bias (1023) to get the real exponent and 2611 // add the f16 bias (15) to get the biased exponent for the f16 format. 2612 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, 2613 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); 2614 2615 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2616 DAG.getConstant(8, DL, MVT::i32)); 2617 M = DAG.getNode(ISD::AND, DL, MVT::i32, M, 2618 DAG.getConstant(0xffe, DL, MVT::i32)); 2619 2620 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, 2621 DAG.getConstant(0x1ff, DL, MVT::i32)); 2622 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); 2623 2624 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); 2625 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); 2626 2627 // (M != 0 ? 0x0200 : 0) | 0x7c00; 2628 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, 2629 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), 2630 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); 2631 2632 // N = M | (E << 12); 2633 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2634 DAG.getNode(ISD::SHL, DL, MVT::i32, E, 2635 DAG.getConstant(12, DL, MVT::i32))); 2636 2637 // B = clamp(1-E, 0, 13); 2638 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, 2639 One, E); 2640 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); 2641 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, 2642 DAG.getConstant(13, DL, MVT::i32)); 2643 2644 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, 2645 DAG.getConstant(0x1000, DL, MVT::i32)); 2646 2647 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); 2648 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); 2649 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); 2650 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); 2651 2652 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); 2653 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, 2654 DAG.getConstant(0x7, DL, MVT::i32)); 2655 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, 2656 DAG.getConstant(2, DL, MVT::i32)); 2657 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), 2658 One, Zero, ISD::SETEQ); 2659 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), 2660 One, Zero, ISD::SETGT); 2661 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); 2662 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); 2663 2664 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), 2665 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); 2666 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), 2667 I, V, ISD::SETEQ); 2668 2669 // Extract the sign bit. 2670 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, 2671 DAG.getConstant(16, DL, MVT::i32)); 2672 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, 2673 DAG.getConstant(0x8000, DL, MVT::i32)); 2674 2675 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); 2676 return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); 2677 } 2678 2679 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2680 SelectionDAG &DAG) const { 2681 SDValue Src = Op.getOperand(0); 2682 2683 // TODO: Factor out code common with LowerFP_TO_UINT. 2684 2685 EVT SrcVT = Src.getValueType(); 2686 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2687 SDLoc DL(Op); 2688 2689 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2690 SDValue FpToInt32 = 2691 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2692 2693 return FpToInt32; 2694 } 2695 2696 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2697 return LowerFP64_TO_INT(Op, DAG, true); 2698 2699 return SDValue(); 2700 } 2701 2702 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2703 SelectionDAG &DAG) const { 2704 SDValue Src = Op.getOperand(0); 2705 2706 // TODO: Factor out code common with LowerFP_TO_SINT. 2707 2708 EVT SrcVT = Src.getValueType(); 2709 if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { 2710 SDLoc DL(Op); 2711 2712 SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); 2713 SDValue FpToInt32 = 2714 DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); 2715 2716 return FpToInt32; 2717 } 2718 2719 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2720 return LowerFP64_TO_INT(Op, DAG, false); 2721 2722 return SDValue(); 2723 } 2724 2725 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2726 SelectionDAG &DAG) const { 2727 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2728 MVT VT = Op.getSimpleValueType(); 2729 MVT ScalarVT = VT.getScalarType(); 2730 2731 assert(VT.isVector()); 2732 2733 SDValue Src = Op.getOperand(0); 2734 SDLoc DL(Op); 2735 2736 // TODO: Don't scalarize on Evergreen? 2737 unsigned NElts = VT.getVectorNumElements(); 2738 SmallVector<SDValue, 8> Args; 2739 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2740 2741 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2742 for (unsigned I = 0; I < NElts; ++I) 2743 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2744 2745 return DAG.getBuildVector(VT, DL, Args); 2746 } 2747 2748 //===----------------------------------------------------------------------===// 2749 // Custom DAG optimizations 2750 //===----------------------------------------------------------------------===// 2751 2752 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2753 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; 2754 } 2755 2756 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2757 EVT VT = Op.getValueType(); 2758 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2759 // as unsigned 24-bit values. 2760 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; 2761 } 2762 2763 static SDValue simplifyI24(SDNode *Node24, 2764 TargetLowering::DAGCombinerInfo &DCI) { 2765 SelectionDAG &DAG = DCI.DAG; 2766 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; 2767 2768 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); 2769 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); 2770 unsigned NewOpcode = Node24->getOpcode(); 2771 if (IsIntrin) { 2772 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); 2773 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? 2774 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 2775 } 2776 2777 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); 2778 2779 // First try to simplify using GetDemandedBits which allows the operands to 2780 // have other uses, but will only perform simplifications that involve 2781 // bypassing some nodes for this user. 2782 SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); 2783 SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); 2784 if (DemandedLHS || DemandedRHS) 2785 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), 2786 DemandedLHS ? DemandedLHS : LHS, 2787 DemandedRHS ? DemandedRHS : RHS); 2788 2789 // Now try SimplifyDemandedBits which can simplify the nodes used by our 2790 // operands if this node is the only user. 2791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2792 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) 2793 return SDValue(Node24, 0); 2794 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) 2795 return SDValue(Node24, 0); 2796 2797 return SDValue(); 2798 } 2799 2800 template <typename IntTy> 2801 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, 2802 uint32_t Width, const SDLoc &DL) { 2803 if (Width + Offset < 32) { 2804 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2805 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2806 return DAG.getConstant(Result, DL, MVT::i32); 2807 } 2808 2809 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2810 } 2811 2812 static bool hasVolatileUser(SDNode *Val) { 2813 for (SDNode *U : Val->uses()) { 2814 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { 2815 if (M->isVolatile()) 2816 return true; 2817 } 2818 } 2819 2820 return false; 2821 } 2822 2823 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { 2824 // i32 vectors are the canonical memory type. 2825 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) 2826 return false; 2827 2828 if (!VT.isByteSized()) 2829 return false; 2830 2831 unsigned Size = VT.getStoreSize(); 2832 2833 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) 2834 return false; 2835 2836 if (Size == 3 || (Size > 4 && (Size % 4 != 0))) 2837 return false; 2838 2839 return true; 2840 } 2841 2842 // Replace load of an illegal type with a store of a bitcast to a friendlier 2843 // type. 2844 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, 2845 DAGCombinerInfo &DCI) const { 2846 if (!DCI.isBeforeLegalize()) 2847 return SDValue(); 2848 2849 LoadSDNode *LN = cast<LoadSDNode>(N); 2850 if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) 2851 return SDValue(); 2852 2853 SDLoc SL(N); 2854 SelectionDAG &DAG = DCI.DAG; 2855 EVT VT = LN->getMemoryVT(); 2856 2857 unsigned Size = VT.getStoreSize(); 2858 unsigned Align = LN->getAlignment(); 2859 if (Align < Size && isTypeLegal(VT)) { 2860 bool IsFast; 2861 unsigned AS = LN->getAddressSpace(); 2862 2863 // Expand unaligned loads earlier than legalization. Due to visitation order 2864 // problems during legalization, the emitted instructions to pack and unpack 2865 // the bytes again are not eliminated in the case of an unaligned copy. 2866 if (!allowsMisalignedMemoryAccesses( 2867 VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { 2868 if (VT.isVector()) 2869 return scalarizeVectorLoad(LN, DAG); 2870 2871 SDValue Ops[2]; 2872 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); 2873 return DAG.getMergeValues(Ops, SDLoc(N)); 2874 } 2875 2876 if (!IsFast) 2877 return SDValue(); 2878 } 2879 2880 if (!shouldCombineMemoryType(VT)) 2881 return SDValue(); 2882 2883 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2884 2885 SDValue NewLoad 2886 = DAG.getLoad(NewVT, SL, LN->getChain(), 2887 LN->getBasePtr(), LN->getMemOperand()); 2888 2889 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); 2890 DCI.CombineTo(N, BC, NewLoad.getValue(1)); 2891 return SDValue(N, 0); 2892 } 2893 2894 // Replace store of an illegal type with a store of a bitcast to a friendlier 2895 // type. 2896 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2897 DAGCombinerInfo &DCI) const { 2898 if (!DCI.isBeforeLegalize()) 2899 return SDValue(); 2900 2901 StoreSDNode *SN = cast<StoreSDNode>(N); 2902 if (SN->isVolatile() || !ISD::isNormalStore(SN)) 2903 return SDValue(); 2904 2905 EVT VT = SN->getMemoryVT(); 2906 unsigned Size = VT.getStoreSize(); 2907 2908 SDLoc SL(N); 2909 SelectionDAG &DAG = DCI.DAG; 2910 unsigned Align = SN->getAlignment(); 2911 if (Align < Size && isTypeLegal(VT)) { 2912 bool IsFast; 2913 unsigned AS = SN->getAddressSpace(); 2914 2915 // Expand unaligned stores earlier than legalization. Due to visitation 2916 // order problems during legalization, the emitted instructions to pack and 2917 // unpack the bytes again are not eliminated in the case of an unaligned 2918 // copy. 2919 if (!allowsMisalignedMemoryAccesses( 2920 VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { 2921 if (VT.isVector()) 2922 return scalarizeVectorStore(SN, DAG); 2923 2924 return expandUnalignedStore(SN, DAG); 2925 } 2926 2927 if (!IsFast) 2928 return SDValue(); 2929 } 2930 2931 if (!shouldCombineMemoryType(VT)) 2932 return SDValue(); 2933 2934 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); 2935 SDValue Val = SN->getValue(); 2936 2937 //DCI.AddToWorklist(Val.getNode()); 2938 2939 bool OtherUses = !Val.hasOneUse(); 2940 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); 2941 if (OtherUses) { 2942 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); 2943 DAG.ReplaceAllUsesOfValueWith(Val, CastBack); 2944 } 2945 2946 return DAG.getStore(SN->getChain(), SL, CastVal, 2947 SN->getBasePtr(), SN->getMemOperand()); 2948 } 2949 2950 // FIXME: This should go in generic DAG combiner with an isTruncateFree check, 2951 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU 2952 // issues. 2953 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, 2954 DAGCombinerInfo &DCI) const { 2955 SelectionDAG &DAG = DCI.DAG; 2956 SDValue N0 = N->getOperand(0); 2957 2958 // (vt2 (assertzext (truncate vt0:x), vt1)) -> 2959 // (vt2 (truncate (assertzext vt0:x, vt1))) 2960 if (N0.getOpcode() == ISD::TRUNCATE) { 2961 SDValue N1 = N->getOperand(1); 2962 EVT ExtVT = cast<VTSDNode>(N1)->getVT(); 2963 SDLoc SL(N); 2964 2965 SDValue Src = N0.getOperand(0); 2966 EVT SrcVT = Src.getValueType(); 2967 if (SrcVT.bitsGE(ExtVT)) { 2968 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); 2969 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); 2970 } 2971 } 2972 2973 return SDValue(); 2974 } 2975 2976 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( 2977 SDNode *N, DAGCombinerInfo &DCI) const { 2978 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2979 switch (IID) { 2980 case Intrinsic::amdgcn_mul_i24: 2981 case Intrinsic::amdgcn_mul_u24: 2982 return simplifyI24(N, DCI); 2983 default: 2984 return SDValue(); 2985 } 2986 } 2987 2988 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the 2989 /// binary operation \p Opc to it with the corresponding constant operands. 2990 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( 2991 DAGCombinerInfo &DCI, const SDLoc &SL, 2992 unsigned Opc, SDValue LHS, 2993 uint32_t ValLo, uint32_t ValHi) const { 2994 SelectionDAG &DAG = DCI.DAG; 2995 SDValue Lo, Hi; 2996 std::tie(Lo, Hi) = split64BitValue(LHS, DAG); 2997 2998 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); 2999 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); 3000 3001 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); 3002 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); 3003 3004 // Re-visit the ands. It's possible we eliminated one of them and it could 3005 // simplify the vector. 3006 DCI.AddToWorklist(Lo.getNode()); 3007 DCI.AddToWorklist(Hi.getNode()); 3008 3009 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); 3010 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3011 } 3012 3013 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 3014 DAGCombinerInfo &DCI) const { 3015 EVT VT = N->getValueType(0); 3016 3017 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3018 if (!RHS) 3019 return SDValue(); 3020 3021 SDValue LHS = N->getOperand(0); 3022 unsigned RHSVal = RHS->getZExtValue(); 3023 if (!RHSVal) 3024 return LHS; 3025 3026 SDLoc SL(N); 3027 SelectionDAG &DAG = DCI.DAG; 3028 3029 switch (LHS->getOpcode()) { 3030 default: 3031 break; 3032 case ISD::ZERO_EXTEND: 3033 case ISD::SIGN_EXTEND: 3034 case ISD::ANY_EXTEND: { 3035 SDValue X = LHS->getOperand(0); 3036 3037 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && 3038 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { 3039 // Prefer build_vector as the canonical form if packed types are legal. 3040 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x 3041 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, 3042 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); 3043 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); 3044 } 3045 3046 // shl (ext x) => zext (shl x), if shift does not overflow int 3047 if (VT != MVT::i64) 3048 break; 3049 KnownBits Known = DAG.computeKnownBits(X); 3050 unsigned LZ = Known.countMinLeadingZeros(); 3051 if (LZ < RHSVal) 3052 break; 3053 EVT XVT = X.getValueType(); 3054 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); 3055 return DAG.getZExtOrTrunc(Shl, SL, VT); 3056 } 3057 } 3058 3059 if (VT != MVT::i64) 3060 return SDValue(); 3061 3062 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) 3063 3064 // On some subtargets, 64-bit shift is a quarter rate instruction. In the 3065 // common case, splitting this into a move and a 32-bit shift is faster and 3066 // the same code size. 3067 if (RHSVal < 32) 3068 return SDValue(); 3069 3070 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); 3071 3072 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 3073 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); 3074 3075 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3076 3077 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); 3078 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); 3079 } 3080 3081 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, 3082 DAGCombinerInfo &DCI) const { 3083 if (N->getValueType(0) != MVT::i64) 3084 return SDValue(); 3085 3086 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3087 if (!RHS) 3088 return SDValue(); 3089 3090 SelectionDAG &DAG = DCI.DAG; 3091 SDLoc SL(N); 3092 unsigned RHSVal = RHS->getZExtValue(); 3093 3094 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) 3095 if (RHSVal == 32) { 3096 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3097 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3098 DAG.getConstant(31, SL, MVT::i32)); 3099 3100 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); 3101 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3102 } 3103 3104 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) 3105 if (RHSVal == 63) { 3106 SDValue Hi = getHiHalf64(N->getOperand(0), DAG); 3107 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, 3108 DAG.getConstant(31, SL, MVT::i32)); 3109 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); 3110 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); 3111 } 3112 3113 return SDValue(); 3114 } 3115 3116 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, 3117 DAGCombinerInfo &DCI) const { 3118 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3119 if (!RHS) 3120 return SDValue(); 3121 3122 EVT VT = N->getValueType(0); 3123 SDValue LHS = N->getOperand(0); 3124 unsigned ShiftAmt = RHS->getZExtValue(); 3125 SelectionDAG &DAG = DCI.DAG; 3126 SDLoc SL(N); 3127 3128 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) 3129 // this improves the ability to match BFE patterns in isel. 3130 if (LHS.getOpcode() == ISD::AND) { 3131 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { 3132 if (Mask->getAPIntValue().isShiftedMask() && 3133 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { 3134 return DAG.getNode( 3135 ISD::AND, SL, VT, 3136 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), 3137 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); 3138 } 3139 } 3140 } 3141 3142 if (VT != MVT::i64) 3143 return SDValue(); 3144 3145 if (ShiftAmt < 32) 3146 return SDValue(); 3147 3148 // srl i64:x, C for C >= 32 3149 // => 3150 // build_pair (srl hi_32(x), C - 32), 0 3151 SDValue One = DAG.getConstant(1, SL, MVT::i32); 3152 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 3153 3154 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); 3155 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); 3156 3157 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); 3158 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); 3159 3160 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); 3161 3162 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); 3163 } 3164 3165 SDValue AMDGPUTargetLowering::performTruncateCombine( 3166 SDNode *N, DAGCombinerInfo &DCI) const { 3167 SDLoc SL(N); 3168 SelectionDAG &DAG = DCI.DAG; 3169 EVT VT = N->getValueType(0); 3170 SDValue Src = N->getOperand(0); 3171 3172 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) 3173 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { 3174 SDValue Vec = Src.getOperand(0); 3175 if (Vec.getOpcode() == ISD::BUILD_VECTOR) { 3176 SDValue Elt0 = Vec.getOperand(0); 3177 EVT EltVT = Elt0.getValueType(); 3178 if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { 3179 if (EltVT.isFloatingPoint()) { 3180 Elt0 = DAG.getNode(ISD::BITCAST, SL, 3181 EltVT.changeTypeToInteger(), Elt0); 3182 } 3183 3184 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); 3185 } 3186 } 3187 } 3188 3189 // Equivalent of above for accessing the high element of a vector as an 3190 // integer operation. 3191 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) 3192 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { 3193 if (auto K = isConstOrConstSplat(Src.getOperand(1))) { 3194 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { 3195 SDValue BV = stripBitcast(Src.getOperand(0)); 3196 if (BV.getOpcode() == ISD::BUILD_VECTOR && 3197 BV.getValueType().getVectorNumElements() == 2) { 3198 SDValue SrcElt = BV.getOperand(1); 3199 EVT SrcEltVT = SrcElt.getValueType(); 3200 if (SrcEltVT.isFloatingPoint()) { 3201 SrcElt = DAG.getNode(ISD::BITCAST, SL, 3202 SrcEltVT.changeTypeToInteger(), SrcElt); 3203 } 3204 3205 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); 3206 } 3207 } 3208 } 3209 } 3210 3211 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. 3212 // 3213 // i16 (trunc (srl i64:x, K)), K <= 16 -> 3214 // i16 (trunc (srl (i32 (trunc x), K))) 3215 if (VT.getScalarSizeInBits() < 32) { 3216 EVT SrcVT = Src.getValueType(); 3217 if (SrcVT.getScalarSizeInBits() > 32 && 3218 (Src.getOpcode() == ISD::SRL || 3219 Src.getOpcode() == ISD::SRA || 3220 Src.getOpcode() == ISD::SHL)) { 3221 SDValue Amt = Src.getOperand(1); 3222 KnownBits Known = DAG.computeKnownBits(Amt); 3223 unsigned Size = VT.getScalarSizeInBits(); 3224 if ((Known.isConstant() && Known.getConstant().ule(Size)) || 3225 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { 3226 EVT MidVT = VT.isVector() ? 3227 EVT::getVectorVT(*DAG.getContext(), MVT::i32, 3228 VT.getVectorNumElements()) : MVT::i32; 3229 3230 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); 3231 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, 3232 Src.getOperand(0)); 3233 DCI.AddToWorklist(Trunc.getNode()); 3234 3235 if (Amt.getValueType() != NewShiftVT) { 3236 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); 3237 DCI.AddToWorklist(Amt.getNode()); 3238 } 3239 3240 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, 3241 Trunc, Amt); 3242 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); 3243 } 3244 } 3245 } 3246 3247 return SDValue(); 3248 } 3249 3250 // We need to specifically handle i64 mul here to avoid unnecessary conversion 3251 // instructions. If we only match on the legalized i64 mul expansion, 3252 // SimplifyDemandedBits will be unable to remove them because there will be 3253 // multiple uses due to the separate mul + mulh[su]. 3254 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, 3255 SDValue N0, SDValue N1, unsigned Size, bool Signed) { 3256 if (Size <= 32) { 3257 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3258 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); 3259 } 3260 3261 // Because we want to eliminate extension instructions before the 3262 // operation, we need to create a single user here (i.e. not the separate 3263 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. 3264 3265 unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; 3266 3267 SDValue Mul = DAG.getNode(MulOpc, SL, 3268 DAG.getVTList(MVT::i32, MVT::i32), N0, N1); 3269 3270 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, 3271 Mul.getValue(0), Mul.getValue(1)); 3272 } 3273 3274 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 3275 DAGCombinerInfo &DCI) const { 3276 EVT VT = N->getValueType(0); 3277 3278 unsigned Size = VT.getSizeInBits(); 3279 if (VT.isVector() || Size > 64) 3280 return SDValue(); 3281 3282 // There are i16 integer mul/mad. 3283 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) 3284 return SDValue(); 3285 3286 SelectionDAG &DAG = DCI.DAG; 3287 SDLoc DL(N); 3288 3289 SDValue N0 = N->getOperand(0); 3290 SDValue N1 = N->getOperand(1); 3291 3292 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends 3293 // in the source into any_extends if the result of the mul is truncated. Since 3294 // we can assume the high bits are whatever we want, use the underlying value 3295 // to avoid the unknown high bits from interfering. 3296 if (N0.getOpcode() == ISD::ANY_EXTEND) 3297 N0 = N0.getOperand(0); 3298 3299 if (N1.getOpcode() == ISD::ANY_EXTEND) 3300 N1 = N1.getOperand(0); 3301 3302 SDValue Mul; 3303 3304 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 3305 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3306 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3307 Mul = getMul24(DAG, DL, N0, N1, Size, false); 3308 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 3309 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3310 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3311 Mul = getMul24(DAG, DL, N0, N1, Size, true); 3312 } else { 3313 return SDValue(); 3314 } 3315 3316 // We need to use sext even for MUL_U24, because MUL_U24 is used 3317 // for signed multiply of 8 and 16-bit types. 3318 return DAG.getSExtOrTrunc(Mul, DL, VT); 3319 } 3320 3321 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, 3322 DAGCombinerInfo &DCI) const { 3323 EVT VT = N->getValueType(0); 3324 3325 if (!Subtarget->hasMulI24() || VT.isVector()) 3326 return SDValue(); 3327 3328 SelectionDAG &DAG = DCI.DAG; 3329 SDLoc DL(N); 3330 3331 SDValue N0 = N->getOperand(0); 3332 SDValue N1 = N->getOperand(1); 3333 3334 if (!isI24(N0, DAG) || !isI24(N1, DAG)) 3335 return SDValue(); 3336 3337 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 3338 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 3339 3340 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); 3341 DCI.AddToWorklist(Mulhi.getNode()); 3342 return DAG.getSExtOrTrunc(Mulhi, DL, VT); 3343 } 3344 3345 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, 3346 DAGCombinerInfo &DCI) const { 3347 EVT VT = N->getValueType(0); 3348 3349 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) 3350 return SDValue(); 3351 3352 SelectionDAG &DAG = DCI.DAG; 3353 SDLoc DL(N); 3354 3355 SDValue N0 = N->getOperand(0); 3356 SDValue N1 = N->getOperand(1); 3357 3358 if (!isU24(N0, DAG) || !isU24(N1, DAG)) 3359 return SDValue(); 3360 3361 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 3362 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 3363 3364 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); 3365 DCI.AddToWorklist(Mulhi.getNode()); 3366 return DAG.getZExtOrTrunc(Mulhi, DL, VT); 3367 } 3368 3369 SDValue AMDGPUTargetLowering::performMulLoHi24Combine( 3370 SDNode *N, DAGCombinerInfo &DCI) const { 3371 SelectionDAG &DAG = DCI.DAG; 3372 3373 // Simplify demanded bits before splitting into multiple users. 3374 if (SDValue V = simplifyI24(N, DCI)) 3375 return V; 3376 3377 SDValue N0 = N->getOperand(0); 3378 SDValue N1 = N->getOperand(1); 3379 3380 bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); 3381 3382 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; 3383 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; 3384 3385 SDLoc SL(N); 3386 3387 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); 3388 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); 3389 return DAG.getMergeValues({ MulLo, MulHi }, SL); 3390 } 3391 3392 static bool isNegativeOne(SDValue Val) { 3393 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) 3394 return C->isAllOnesValue(); 3395 return false; 3396 } 3397 3398 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, 3399 SDValue Op, 3400 const SDLoc &DL, 3401 unsigned Opc) const { 3402 EVT VT = Op.getValueType(); 3403 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); 3404 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && 3405 LegalVT != MVT::i16)) 3406 return SDValue(); 3407 3408 if (VT != MVT::i32) 3409 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); 3410 3411 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); 3412 if (VT != MVT::i32) 3413 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); 3414 3415 return FFBX; 3416 } 3417 3418 // The native instructions return -1 on 0 input. Optimize out a select that 3419 // produces -1 on 0. 3420 // 3421 // TODO: If zero is not undef, we could also do this if the output is compared 3422 // against the bitwidth. 3423 // 3424 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. 3425 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, 3426 SDValue LHS, SDValue RHS, 3427 DAGCombinerInfo &DCI) const { 3428 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3429 if (!CmpRhs || !CmpRhs->isNullValue()) 3430 return SDValue(); 3431 3432 SelectionDAG &DAG = DCI.DAG; 3433 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 3434 SDValue CmpLHS = Cond.getOperand(0); 3435 3436 unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : 3437 AMDGPUISD::FFBH_U32; 3438 3439 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x 3440 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x 3441 if (CCOpcode == ISD::SETEQ && 3442 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3443 RHS.getOperand(0) == CmpLHS && 3444 isNegativeOne(LHS)) { 3445 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3446 } 3447 3448 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x 3449 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x 3450 if (CCOpcode == ISD::SETNE && 3451 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && 3452 LHS.getOperand(0) == CmpLHS && 3453 isNegativeOne(RHS)) { 3454 return getFFBX_U32(DAG, CmpLHS, SL, Opc); 3455 } 3456 3457 return SDValue(); 3458 } 3459 3460 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, 3461 unsigned Op, 3462 const SDLoc &SL, 3463 SDValue Cond, 3464 SDValue N1, 3465 SDValue N2) { 3466 SelectionDAG &DAG = DCI.DAG; 3467 EVT VT = N1.getValueType(); 3468 3469 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, 3470 N1.getOperand(0), N2.getOperand(0)); 3471 DCI.AddToWorklist(NewSelect.getNode()); 3472 return DAG.getNode(Op, SL, VT, NewSelect); 3473 } 3474 3475 // Pull a free FP operation out of a select so it may fold into uses. 3476 // 3477 // select c, (fneg x), (fneg y) -> fneg (select c, x, y) 3478 // select c, (fneg x), k -> fneg (select c, x, (fneg k)) 3479 // 3480 // select c, (fabs x), (fabs y) -> fabs (select c, x, y) 3481 // select c, (fabs x), +k -> fabs (select c, x, k) 3482 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, 3483 SDValue N) { 3484 SelectionDAG &DAG = DCI.DAG; 3485 SDValue Cond = N.getOperand(0); 3486 SDValue LHS = N.getOperand(1); 3487 SDValue RHS = N.getOperand(2); 3488 3489 EVT VT = N.getValueType(); 3490 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || 3491 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { 3492 return distributeOpThroughSelect(DCI, LHS.getOpcode(), 3493 SDLoc(N), Cond, LHS, RHS); 3494 } 3495 3496 bool Inv = false; 3497 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { 3498 std::swap(LHS, RHS); 3499 Inv = true; 3500 } 3501 3502 // TODO: Support vector constants. 3503 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); 3504 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { 3505 SDLoc SL(N); 3506 // If one side is an fneg/fabs and the other is a constant, we can push the 3507 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. 3508 SDValue NewLHS = LHS.getOperand(0); 3509 SDValue NewRHS = RHS; 3510 3511 // Careful: if the neg can be folded up, don't try to pull it back down. 3512 bool ShouldFoldNeg = true; 3513 3514 if (NewLHS.hasOneUse()) { 3515 unsigned Opc = NewLHS.getOpcode(); 3516 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) 3517 ShouldFoldNeg = false; 3518 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) 3519 ShouldFoldNeg = false; 3520 } 3521 3522 if (ShouldFoldNeg) { 3523 if (LHS.getOpcode() == ISD::FNEG) 3524 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3525 else if (CRHS->isNegative()) 3526 return SDValue(); 3527 3528 if (Inv) 3529 std::swap(NewLHS, NewRHS); 3530 3531 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, 3532 Cond, NewLHS, NewRHS); 3533 DCI.AddToWorklist(NewSelect.getNode()); 3534 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); 3535 } 3536 } 3537 3538 return SDValue(); 3539 } 3540 3541 3542 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, 3543 DAGCombinerInfo &DCI) const { 3544 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) 3545 return Folded; 3546 3547 SDValue Cond = N->getOperand(0); 3548 if (Cond.getOpcode() != ISD::SETCC) 3549 return SDValue(); 3550 3551 EVT VT = N->getValueType(0); 3552 SDValue LHS = Cond.getOperand(0); 3553 SDValue RHS = Cond.getOperand(1); 3554 SDValue CC = Cond.getOperand(2); 3555 3556 SDValue True = N->getOperand(1); 3557 SDValue False = N->getOperand(2); 3558 3559 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. 3560 SelectionDAG &DAG = DCI.DAG; 3561 if (DAG.isConstantValueOfAnyType(True) && 3562 !DAG.isConstantValueOfAnyType(False)) { 3563 // Swap cmp + select pair to move constant to false input. 3564 // This will allow using VOPC cndmasks more often. 3565 // select (setcc x, y), k, x -> select (setccinv x, y), x, k 3566 3567 SDLoc SL(N); 3568 ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 3569 LHS.getValueType().isInteger()); 3570 3571 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); 3572 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); 3573 } 3574 3575 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { 3576 SDValue MinMax 3577 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); 3578 // Revisit this node so we can catch min3/max3/med3 patterns. 3579 //DCI.AddToWorklist(MinMax.getNode()); 3580 return MinMax; 3581 } 3582 } 3583 3584 // There's no reason to not do this if the condition has other uses. 3585 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); 3586 } 3587 3588 static bool isInv2Pi(const APFloat &APF) { 3589 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); 3590 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); 3591 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); 3592 3593 return APF.bitwiseIsEqual(KF16) || 3594 APF.bitwiseIsEqual(KF32) || 3595 APF.bitwiseIsEqual(KF64); 3596 } 3597 3598 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an 3599 // additional cost to negate them. 3600 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { 3601 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { 3602 if (C->isZero() && !C->isNegative()) 3603 return true; 3604 3605 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) 3606 return true; 3607 } 3608 3609 return false; 3610 } 3611 3612 static unsigned inverseMinMax(unsigned Opc) { 3613 switch (Opc) { 3614 case ISD::FMAXNUM: 3615 return ISD::FMINNUM; 3616 case ISD::FMINNUM: 3617 return ISD::FMAXNUM; 3618 case ISD::FMAXNUM_IEEE: 3619 return ISD::FMINNUM_IEEE; 3620 case ISD::FMINNUM_IEEE: 3621 return ISD::FMAXNUM_IEEE; 3622 case AMDGPUISD::FMAX_LEGACY: 3623 return AMDGPUISD::FMIN_LEGACY; 3624 case AMDGPUISD::FMIN_LEGACY: 3625 return AMDGPUISD::FMAX_LEGACY; 3626 default: 3627 llvm_unreachable("invalid min/max opcode"); 3628 } 3629 } 3630 3631 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, 3632 DAGCombinerInfo &DCI) const { 3633 SelectionDAG &DAG = DCI.DAG; 3634 SDValue N0 = N->getOperand(0); 3635 EVT VT = N->getValueType(0); 3636 3637 unsigned Opc = N0.getOpcode(); 3638 3639 // If the input has multiple uses and we can either fold the negate down, or 3640 // the other uses cannot, give up. This both prevents unprofitable 3641 // transformations and infinite loops: we won't repeatedly try to fold around 3642 // a negate that has no 'good' form. 3643 if (N0.hasOneUse()) { 3644 // This may be able to fold into the source, but at a code size cost. Don't 3645 // fold if the fold into the user is free. 3646 if (allUsesHaveSourceMods(N, 0)) 3647 return SDValue(); 3648 } else { 3649 if (fnegFoldsIntoOp(Opc) && 3650 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) 3651 return SDValue(); 3652 } 3653 3654 SDLoc SL(N); 3655 switch (Opc) { 3656 case ISD::FADD: { 3657 if (!mayIgnoreSignedZero(N0)) 3658 return SDValue(); 3659 3660 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) 3661 SDValue LHS = N0.getOperand(0); 3662 SDValue RHS = N0.getOperand(1); 3663 3664 if (LHS.getOpcode() != ISD::FNEG) 3665 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3666 else 3667 LHS = LHS.getOperand(0); 3668 3669 if (RHS.getOpcode() != ISD::FNEG) 3670 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3671 else 3672 RHS = RHS.getOperand(0); 3673 3674 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); 3675 if (Res.getOpcode() != ISD::FADD) 3676 return SDValue(); // Op got folded away. 3677 if (!N0.hasOneUse()) 3678 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3679 return Res; 3680 } 3681 case ISD::FMUL: 3682 case AMDGPUISD::FMUL_LEGACY: { 3683 // (fneg (fmul x, y)) -> (fmul x, (fneg y)) 3684 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) 3685 SDValue LHS = N0.getOperand(0); 3686 SDValue RHS = N0.getOperand(1); 3687 3688 if (LHS.getOpcode() == ISD::FNEG) 3689 LHS = LHS.getOperand(0); 3690 else if (RHS.getOpcode() == ISD::FNEG) 3691 RHS = RHS.getOperand(0); 3692 else 3693 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3694 3695 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); 3696 if (Res.getOpcode() != Opc) 3697 return SDValue(); // Op got folded away. 3698 if (!N0.hasOneUse()) 3699 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3700 return Res; 3701 } 3702 case ISD::FMA: 3703 case ISD::FMAD: { 3704 if (!mayIgnoreSignedZero(N0)) 3705 return SDValue(); 3706 3707 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) 3708 SDValue LHS = N0.getOperand(0); 3709 SDValue MHS = N0.getOperand(1); 3710 SDValue RHS = N0.getOperand(2); 3711 3712 if (LHS.getOpcode() == ISD::FNEG) 3713 LHS = LHS.getOperand(0); 3714 else if (MHS.getOpcode() == ISD::FNEG) 3715 MHS = MHS.getOperand(0); 3716 else 3717 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); 3718 3719 if (RHS.getOpcode() != ISD::FNEG) 3720 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3721 else 3722 RHS = RHS.getOperand(0); 3723 3724 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); 3725 if (Res.getOpcode() != Opc) 3726 return SDValue(); // Op got folded away. 3727 if (!N0.hasOneUse()) 3728 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3729 return Res; 3730 } 3731 case ISD::FMAXNUM: 3732 case ISD::FMINNUM: 3733 case ISD::FMAXNUM_IEEE: 3734 case ISD::FMINNUM_IEEE: 3735 case AMDGPUISD::FMAX_LEGACY: 3736 case AMDGPUISD::FMIN_LEGACY: { 3737 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) 3738 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) 3739 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) 3740 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) 3741 3742 SDValue LHS = N0.getOperand(0); 3743 SDValue RHS = N0.getOperand(1); 3744 3745 // 0 doesn't have a negated inline immediate. 3746 // TODO: This constant check should be generalized to other operations. 3747 if (isConstantCostlierToNegate(RHS)) 3748 return SDValue(); 3749 3750 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); 3751 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); 3752 unsigned Opposite = inverseMinMax(Opc); 3753 3754 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); 3755 if (Res.getOpcode() != Opposite) 3756 return SDValue(); // Op got folded away. 3757 if (!N0.hasOneUse()) 3758 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3759 return Res; 3760 } 3761 case AMDGPUISD::FMED3: { 3762 SDValue Ops[3]; 3763 for (unsigned I = 0; I < 3; ++I) 3764 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); 3765 3766 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); 3767 if (Res.getOpcode() != AMDGPUISD::FMED3) 3768 return SDValue(); // Op got folded away. 3769 if (!N0.hasOneUse()) 3770 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); 3771 return Res; 3772 } 3773 case ISD::FP_EXTEND: 3774 case ISD::FTRUNC: 3775 case ISD::FRINT: 3776 case ISD::FNEARBYINT: // XXX - Should fround be handled? 3777 case ISD::FSIN: 3778 case ISD::FCANONICALIZE: 3779 case AMDGPUISD::RCP: 3780 case AMDGPUISD::RCP_LEGACY: 3781 case AMDGPUISD::RCP_IFLAG: 3782 case AMDGPUISD::SIN_HW: { 3783 SDValue CvtSrc = N0.getOperand(0); 3784 if (CvtSrc.getOpcode() == ISD::FNEG) { 3785 // (fneg (fp_extend (fneg x))) -> (fp_extend x) 3786 // (fneg (rcp (fneg x))) -> (rcp x) 3787 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); 3788 } 3789 3790 if (!N0.hasOneUse()) 3791 return SDValue(); 3792 3793 // (fneg (fp_extend x)) -> (fp_extend (fneg x)) 3794 // (fneg (rcp x)) -> (rcp (fneg x)) 3795 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3796 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); 3797 } 3798 case ISD::FP_ROUND: { 3799 SDValue CvtSrc = N0.getOperand(0); 3800 3801 if (CvtSrc.getOpcode() == ISD::FNEG) { 3802 // (fneg (fp_round (fneg x))) -> (fp_round x) 3803 return DAG.getNode(ISD::FP_ROUND, SL, VT, 3804 CvtSrc.getOperand(0), N0.getOperand(1)); 3805 } 3806 3807 if (!N0.hasOneUse()) 3808 return SDValue(); 3809 3810 // (fneg (fp_round x)) -> (fp_round (fneg x)) 3811 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); 3812 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); 3813 } 3814 case ISD::FP16_TO_FP: { 3815 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal 3816 // f16, but legalization of f16 fneg ends up pulling it out of the source. 3817 // Put the fneg back as a legal source operation that can be matched later. 3818 SDLoc SL(N); 3819 3820 SDValue Src = N0.getOperand(0); 3821 EVT SrcVT = Src.getValueType(); 3822 3823 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) 3824 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, 3825 DAG.getConstant(0x8000, SL, SrcVT)); 3826 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); 3827 } 3828 default: 3829 return SDValue(); 3830 } 3831 } 3832 3833 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, 3834 DAGCombinerInfo &DCI) const { 3835 SelectionDAG &DAG = DCI.DAG; 3836 SDValue N0 = N->getOperand(0); 3837 3838 if (!N0.hasOneUse()) 3839 return SDValue(); 3840 3841 switch (N0.getOpcode()) { 3842 case ISD::FP16_TO_FP: { 3843 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); 3844 SDLoc SL(N); 3845 SDValue Src = N0.getOperand(0); 3846 EVT SrcVT = Src.getValueType(); 3847 3848 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) 3849 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, 3850 DAG.getConstant(0x7fff, SL, SrcVT)); 3851 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); 3852 } 3853 default: 3854 return SDValue(); 3855 } 3856 } 3857 3858 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, 3859 DAGCombinerInfo &DCI) const { 3860 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); 3861 if (!CFP) 3862 return SDValue(); 3863 3864 // XXX - Should this flush denormals? 3865 const APFloat &Val = CFP->getValueAPF(); 3866 APFloat One(Val.getSemantics(), "1.0"); 3867 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); 3868 } 3869 3870 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 3871 DAGCombinerInfo &DCI) const { 3872 SelectionDAG &DAG = DCI.DAG; 3873 SDLoc DL(N); 3874 3875 switch(N->getOpcode()) { 3876 default: 3877 break; 3878 case ISD::BITCAST: { 3879 EVT DestVT = N->getValueType(0); 3880 3881 // Push casts through vector builds. This helps avoid emitting a large 3882 // number of copies when materializing floating point vector constants. 3883 // 3884 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => 3885 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) 3886 if (DestVT.isVector()) { 3887 SDValue Src = N->getOperand(0); 3888 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 3889 EVT SrcVT = Src.getValueType(); 3890 unsigned NElts = DestVT.getVectorNumElements(); 3891 3892 if (SrcVT.getVectorNumElements() == NElts) { 3893 EVT DestEltVT = DestVT.getVectorElementType(); 3894 3895 SmallVector<SDValue, 8> CastedElts; 3896 SDLoc SL(N); 3897 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { 3898 SDValue Elt = Src.getOperand(I); 3899 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); 3900 } 3901 3902 return DAG.getBuildVector(DestVT, SL, CastedElts); 3903 } 3904 } 3905 } 3906 3907 if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) 3908 break; 3909 3910 // Fold bitcasts of constants. 3911 // 3912 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) 3913 // TODO: Generalize and move to DAGCombiner 3914 SDValue Src = N->getOperand(0); 3915 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { 3916 if (Src.getValueType() == MVT::i64) { 3917 SDLoc SL(N); 3918 uint64_t CVal = C->getZExtValue(); 3919 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3920 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3921 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3922 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); 3923 } 3924 } 3925 3926 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { 3927 const APInt &Val = C->getValueAPF().bitcastToAPInt(); 3928 SDLoc SL(N); 3929 uint64_t CVal = Val.getZExtValue(); 3930 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 3931 DAG.getConstant(Lo_32(CVal), SL, MVT::i32), 3932 DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); 3933 3934 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); 3935 } 3936 3937 break; 3938 } 3939 case ISD::SHL: { 3940 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3941 break; 3942 3943 return performShlCombine(N, DCI); 3944 } 3945 case ISD::SRL: { 3946 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3947 break; 3948 3949 return performSrlCombine(N, DCI); 3950 } 3951 case ISD::SRA: { 3952 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 3953 break; 3954 3955 return performSraCombine(N, DCI); 3956 } 3957 case ISD::TRUNCATE: 3958 return performTruncateCombine(N, DCI); 3959 case ISD::MUL: 3960 return performMulCombine(N, DCI); 3961 case ISD::MULHS: 3962 return performMulhsCombine(N, DCI); 3963 case ISD::MULHU: 3964 return performMulhuCombine(N, DCI); 3965 case AMDGPUISD::MUL_I24: 3966 case AMDGPUISD::MUL_U24: 3967 case AMDGPUISD::MULHI_I24: 3968 case AMDGPUISD::MULHI_U24: { 3969 if (SDValue V = simplifyI24(N, DCI)) 3970 return V; 3971 return SDValue(); 3972 } 3973 case AMDGPUISD::MUL_LOHI_I24: 3974 case AMDGPUISD::MUL_LOHI_U24: 3975 return performMulLoHi24Combine(N, DCI); 3976 case ISD::SELECT: 3977 return performSelectCombine(N, DCI); 3978 case ISD::FNEG: 3979 return performFNegCombine(N, DCI); 3980 case ISD::FABS: 3981 return performFAbsCombine(N, DCI); 3982 case AMDGPUISD::BFE_I32: 3983 case AMDGPUISD::BFE_U32: { 3984 assert(!N->getValueType(0).isVector() && 3985 "Vector handling of BFE not implemented"); 3986 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 3987 if (!Width) 3988 break; 3989 3990 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 3991 if (WidthVal == 0) 3992 return DAG.getConstant(0, DL, MVT::i32); 3993 3994 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3995 if (!Offset) 3996 break; 3997 3998 SDValue BitsFrom = N->getOperand(0); 3999 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 4000 4001 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 4002 4003 if (OffsetVal == 0) { 4004 // This is already sign / zero extended, so try to fold away extra BFEs. 4005 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 4006 4007 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 4008 if (OpSignBits >= SignBits) 4009 return BitsFrom; 4010 4011 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 4012 if (Signed) { 4013 // This is a sign_extend_inreg. Replace it to take advantage of existing 4014 // DAG Combines. If not eliminated, we will match back to BFE during 4015 // selection. 4016 4017 // TODO: The sext_inreg of extended types ends, although we can could 4018 // handle them in a single BFE. 4019 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 4020 DAG.getValueType(SmallVT)); 4021 } 4022 4023 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 4024 } 4025 4026 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 4027 if (Signed) { 4028 return constantFoldBFE<int32_t>(DAG, 4029 CVal->getSExtValue(), 4030 OffsetVal, 4031 WidthVal, 4032 DL); 4033 } 4034 4035 return constantFoldBFE<uint32_t>(DAG, 4036 CVal->getZExtValue(), 4037 OffsetVal, 4038 WidthVal, 4039 DL); 4040 } 4041 4042 if ((OffsetVal + WidthVal) >= 32 && 4043 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { 4044 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 4045 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 4046 BitsFrom, ShiftVal); 4047 } 4048 4049 if (BitsFrom.hasOneUse()) { 4050 APInt Demanded = APInt::getBitsSet(32, 4051 OffsetVal, 4052 OffsetVal + WidthVal); 4053 4054 KnownBits Known; 4055 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 4056 !DCI.isBeforeLegalizeOps()); 4057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4058 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || 4059 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { 4060 DCI.CommitTargetLoweringOpt(TLO); 4061 } 4062 } 4063 4064 break; 4065 } 4066 case ISD::LOAD: 4067 return performLoadCombine(N, DCI); 4068 case ISD::STORE: 4069 return performStoreCombine(N, DCI); 4070 case AMDGPUISD::RCP: 4071 case AMDGPUISD::RCP_IFLAG: 4072 return performRcpCombine(N, DCI); 4073 case ISD::AssertZext: 4074 case ISD::AssertSext: 4075 return performAssertSZExtCombine(N, DCI); 4076 case ISD::INTRINSIC_WO_CHAIN: 4077 return performIntrinsicWOChainCombine(N, DCI); 4078 } 4079 return SDValue(); 4080 } 4081 4082 //===----------------------------------------------------------------------===// 4083 // Helper functions 4084 //===----------------------------------------------------------------------===// 4085 4086 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 4087 const TargetRegisterClass *RC, 4088 unsigned Reg, EVT VT, 4089 const SDLoc &SL, 4090 bool RawReg) const { 4091 MachineFunction &MF = DAG.getMachineFunction(); 4092 MachineRegisterInfo &MRI = MF.getRegInfo(); 4093 unsigned VReg; 4094 4095 if (!MRI.isLiveIn(Reg)) { 4096 VReg = MRI.createVirtualRegister(RC); 4097 MRI.addLiveIn(Reg, VReg); 4098 } else { 4099 VReg = MRI.getLiveInVirtReg(Reg); 4100 } 4101 4102 if (RawReg) 4103 return DAG.getRegister(VReg, VT); 4104 4105 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); 4106 } 4107 4108 // This may be called multiple times, and nothing prevents creating multiple 4109 // objects at the same offset. See if we already defined this object. 4110 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, 4111 int64_t Offset) { 4112 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 4113 if (MFI.getObjectOffset(I) == Offset) { 4114 assert(MFI.getObjectSize(I) == Size); 4115 return I; 4116 } 4117 } 4118 4119 return MFI.CreateFixedObject(Size, Offset, true); 4120 } 4121 4122 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, 4123 EVT VT, 4124 const SDLoc &SL, 4125 int64_t Offset) const { 4126 MachineFunction &MF = DAG.getMachineFunction(); 4127 MachineFrameInfo &MFI = MF.getFrameInfo(); 4128 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); 4129 4130 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); 4131 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); 4132 4133 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, 4134 MachineMemOperand::MODereferenceable | 4135 MachineMemOperand::MOInvariant); 4136 } 4137 4138 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, 4139 const SDLoc &SL, 4140 SDValue Chain, 4141 SDValue ArgVal, 4142 int64_t Offset) const { 4143 MachineFunction &MF = DAG.getMachineFunction(); 4144 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); 4145 4146 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); 4147 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, 4148 MachineMemOperand::MODereferenceable); 4149 return Store; 4150 } 4151 4152 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, 4153 const TargetRegisterClass *RC, 4154 EVT VT, const SDLoc &SL, 4155 const ArgDescriptor &Arg) const { 4156 assert(Arg && "Attempting to load missing argument"); 4157 4158 SDValue V = Arg.isRegister() ? 4159 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : 4160 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); 4161 4162 if (!Arg.isMasked()) 4163 return V; 4164 4165 unsigned Mask = Arg.getMask(); 4166 unsigned Shift = countTrailingZeros<unsigned>(Mask); 4167 V = DAG.getNode(ISD::SRL, SL, VT, V, 4168 DAG.getShiftAmountConstant(Shift, VT, SL)); 4169 return DAG.getNode(ISD::AND, SL, VT, V, 4170 DAG.getConstant(Mask >> Shift, SL, VT)); 4171 } 4172 4173 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 4174 const MachineFunction &MF, const ImplicitParameter Param) const { 4175 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 4176 const AMDGPUSubtarget &ST = 4177 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); 4178 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); 4179 const Align Alignment = ST.getAlignmentForImplicitArgPtr(); 4180 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + 4181 ExplicitArgOffset; 4182 switch (Param) { 4183 case GRID_DIM: 4184 return ArgOffset; 4185 case GRID_OFFSET: 4186 return ArgOffset + 4; 4187 } 4188 llvm_unreachable("unexpected implicit parameter type"); 4189 } 4190 4191 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 4192 4193 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 4194 switch ((AMDGPUISD::NodeType)Opcode) { 4195 case AMDGPUISD::FIRST_NUMBER: break; 4196 // AMDIL DAG nodes 4197 NODE_NAME_CASE(UMUL); 4198 NODE_NAME_CASE(BRANCH_COND); 4199 4200 // AMDGPU DAG nodes 4201 NODE_NAME_CASE(IF) 4202 NODE_NAME_CASE(ELSE) 4203 NODE_NAME_CASE(LOOP) 4204 NODE_NAME_CASE(CALL) 4205 NODE_NAME_CASE(TC_RETURN) 4206 NODE_NAME_CASE(TRAP) 4207 NODE_NAME_CASE(RET_FLAG) 4208 NODE_NAME_CASE(RETURN_TO_EPILOG) 4209 NODE_NAME_CASE(ENDPGM) 4210 NODE_NAME_CASE(DWORDADDR) 4211 NODE_NAME_CASE(FRACT) 4212 NODE_NAME_CASE(SETCC) 4213 NODE_NAME_CASE(SETREG) 4214 NODE_NAME_CASE(DENORM_MODE) 4215 NODE_NAME_CASE(FMA_W_CHAIN) 4216 NODE_NAME_CASE(FMUL_W_CHAIN) 4217 NODE_NAME_CASE(CLAMP) 4218 NODE_NAME_CASE(COS_HW) 4219 NODE_NAME_CASE(SIN_HW) 4220 NODE_NAME_CASE(FMAX_LEGACY) 4221 NODE_NAME_CASE(FMIN_LEGACY) 4222 NODE_NAME_CASE(FMAX3) 4223 NODE_NAME_CASE(SMAX3) 4224 NODE_NAME_CASE(UMAX3) 4225 NODE_NAME_CASE(FMIN3) 4226 NODE_NAME_CASE(SMIN3) 4227 NODE_NAME_CASE(UMIN3) 4228 NODE_NAME_CASE(FMED3) 4229 NODE_NAME_CASE(SMED3) 4230 NODE_NAME_CASE(UMED3) 4231 NODE_NAME_CASE(FDOT2) 4232 NODE_NAME_CASE(URECIP) 4233 NODE_NAME_CASE(DIV_SCALE) 4234 NODE_NAME_CASE(DIV_FMAS) 4235 NODE_NAME_CASE(DIV_FIXUP) 4236 NODE_NAME_CASE(FMAD_FTZ) 4237 NODE_NAME_CASE(TRIG_PREOP) 4238 NODE_NAME_CASE(RCP) 4239 NODE_NAME_CASE(RSQ) 4240 NODE_NAME_CASE(RCP_LEGACY) 4241 NODE_NAME_CASE(RSQ_LEGACY) 4242 NODE_NAME_CASE(RCP_IFLAG) 4243 NODE_NAME_CASE(FMUL_LEGACY) 4244 NODE_NAME_CASE(RSQ_CLAMP) 4245 NODE_NAME_CASE(LDEXP) 4246 NODE_NAME_CASE(FP_CLASS) 4247 NODE_NAME_CASE(DOT4) 4248 NODE_NAME_CASE(CARRY) 4249 NODE_NAME_CASE(BORROW) 4250 NODE_NAME_CASE(BFE_U32) 4251 NODE_NAME_CASE(BFE_I32) 4252 NODE_NAME_CASE(BFI) 4253 NODE_NAME_CASE(BFM) 4254 NODE_NAME_CASE(FFBH_U32) 4255 NODE_NAME_CASE(FFBH_I32) 4256 NODE_NAME_CASE(FFBL_B32) 4257 NODE_NAME_CASE(MUL_U24) 4258 NODE_NAME_CASE(MUL_I24) 4259 NODE_NAME_CASE(MULHI_U24) 4260 NODE_NAME_CASE(MULHI_I24) 4261 NODE_NAME_CASE(MUL_LOHI_U24) 4262 NODE_NAME_CASE(MUL_LOHI_I24) 4263 NODE_NAME_CASE(MAD_U24) 4264 NODE_NAME_CASE(MAD_I24) 4265 NODE_NAME_CASE(MAD_I64_I32) 4266 NODE_NAME_CASE(MAD_U64_U32) 4267 NODE_NAME_CASE(PERM) 4268 NODE_NAME_CASE(TEXTURE_FETCH) 4269 NODE_NAME_CASE(EXPORT) 4270 NODE_NAME_CASE(EXPORT_DONE) 4271 NODE_NAME_CASE(R600_EXPORT) 4272 NODE_NAME_CASE(CONST_ADDRESS) 4273 NODE_NAME_CASE(REGISTER_LOAD) 4274 NODE_NAME_CASE(REGISTER_STORE) 4275 NODE_NAME_CASE(SAMPLE) 4276 NODE_NAME_CASE(SAMPLEB) 4277 NODE_NAME_CASE(SAMPLED) 4278 NODE_NAME_CASE(SAMPLEL) 4279 NODE_NAME_CASE(CVT_F32_UBYTE0) 4280 NODE_NAME_CASE(CVT_F32_UBYTE1) 4281 NODE_NAME_CASE(CVT_F32_UBYTE2) 4282 NODE_NAME_CASE(CVT_F32_UBYTE3) 4283 NODE_NAME_CASE(CVT_PKRTZ_F16_F32) 4284 NODE_NAME_CASE(CVT_PKNORM_I16_F32) 4285 NODE_NAME_CASE(CVT_PKNORM_U16_F32) 4286 NODE_NAME_CASE(CVT_PK_I16_I32) 4287 NODE_NAME_CASE(CVT_PK_U16_U32) 4288 NODE_NAME_CASE(FP_TO_FP16) 4289 NODE_NAME_CASE(FP16_ZEXT) 4290 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 4291 NODE_NAME_CASE(CONST_DATA_PTR) 4292 NODE_NAME_CASE(PC_ADD_REL_OFFSET) 4293 NODE_NAME_CASE(LDS) 4294 NODE_NAME_CASE(KILL) 4295 NODE_NAME_CASE(DUMMY_CHAIN) 4296 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 4297 NODE_NAME_CASE(INTERP_P1LL_F16) 4298 NODE_NAME_CASE(INTERP_P1LV_F16) 4299 NODE_NAME_CASE(INTERP_P2_F16) 4300 NODE_NAME_CASE(LOAD_D16_HI) 4301 NODE_NAME_CASE(LOAD_D16_LO) 4302 NODE_NAME_CASE(LOAD_D16_HI_I8) 4303 NODE_NAME_CASE(LOAD_D16_HI_U8) 4304 NODE_NAME_CASE(LOAD_D16_LO_I8) 4305 NODE_NAME_CASE(LOAD_D16_LO_U8) 4306 NODE_NAME_CASE(STORE_MSKOR) 4307 NODE_NAME_CASE(LOAD_CONSTANT) 4308 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 4309 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) 4310 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) 4311 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) 4312 NODE_NAME_CASE(DS_ORDERED_COUNT) 4313 NODE_NAME_CASE(ATOMIC_CMP_SWAP) 4314 NODE_NAME_CASE(ATOMIC_INC) 4315 NODE_NAME_CASE(ATOMIC_DEC) 4316 NODE_NAME_CASE(ATOMIC_LOAD_FMIN) 4317 NODE_NAME_CASE(ATOMIC_LOAD_FMAX) 4318 NODE_NAME_CASE(BUFFER_LOAD) 4319 NODE_NAME_CASE(BUFFER_LOAD_UBYTE) 4320 NODE_NAME_CASE(BUFFER_LOAD_USHORT) 4321 NODE_NAME_CASE(BUFFER_LOAD_BYTE) 4322 NODE_NAME_CASE(BUFFER_LOAD_SHORT) 4323 NODE_NAME_CASE(BUFFER_LOAD_FORMAT) 4324 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) 4325 NODE_NAME_CASE(SBUFFER_LOAD) 4326 NODE_NAME_CASE(BUFFER_STORE) 4327 NODE_NAME_CASE(BUFFER_STORE_BYTE) 4328 NODE_NAME_CASE(BUFFER_STORE_SHORT) 4329 NODE_NAME_CASE(BUFFER_STORE_FORMAT) 4330 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) 4331 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) 4332 NODE_NAME_CASE(BUFFER_ATOMIC_ADD) 4333 NODE_NAME_CASE(BUFFER_ATOMIC_SUB) 4334 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) 4335 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) 4336 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) 4337 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) 4338 NODE_NAME_CASE(BUFFER_ATOMIC_AND) 4339 NODE_NAME_CASE(BUFFER_ATOMIC_OR) 4340 NODE_NAME_CASE(BUFFER_ATOMIC_XOR) 4341 NODE_NAME_CASE(BUFFER_ATOMIC_INC) 4342 NODE_NAME_CASE(BUFFER_ATOMIC_DEC) 4343 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) 4344 NODE_NAME_CASE(BUFFER_ATOMIC_FADD) 4345 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) 4346 NODE_NAME_CASE(ATOMIC_FADD) 4347 NODE_NAME_CASE(ATOMIC_PK_FADD) 4348 4349 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 4350 } 4351 return nullptr; 4352 } 4353 4354 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, 4355 SelectionDAG &DAG, int Enabled, 4356 int &RefinementSteps, 4357 bool &UseOneConstNR, 4358 bool Reciprocal) const { 4359 EVT VT = Operand.getValueType(); 4360 4361 if (VT == MVT::f32) { 4362 RefinementSteps = 0; 4363 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 4364 } 4365 4366 // TODO: There is also f64 rsq instruction, but the documentation is less 4367 // clear on its precision. 4368 4369 return SDValue(); 4370 } 4371 4372 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 4373 SelectionDAG &DAG, int Enabled, 4374 int &RefinementSteps) const { 4375 EVT VT = Operand.getValueType(); 4376 4377 if (VT == MVT::f32) { 4378 // Reciprocal, < 1 ulp error. 4379 // 4380 // This reciprocal approximation converges to < 0.5 ulp error with one 4381 // newton rhapson performed with two fused multiple adds (FMAs). 4382 4383 RefinementSteps = 0; 4384 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 4385 } 4386 4387 // TODO: There is also f64 rcp instruction, but the documentation is less 4388 // clear on its precision. 4389 4390 return SDValue(); 4391 } 4392 4393 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 4394 const SDValue Op, KnownBits &Known, 4395 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 4396 4397 Known.resetAll(); // Don't know anything. 4398 4399 unsigned Opc = Op.getOpcode(); 4400 4401 switch (Opc) { 4402 default: 4403 break; 4404 case AMDGPUISD::CARRY: 4405 case AMDGPUISD::BORROW: { 4406 Known.Zero = APInt::getHighBitsSet(32, 31); 4407 break; 4408 } 4409 4410 case AMDGPUISD::BFE_I32: 4411 case AMDGPUISD::BFE_U32: { 4412 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4413 if (!CWidth) 4414 return; 4415 4416 uint32_t Width = CWidth->getZExtValue() & 0x1f; 4417 4418 if (Opc == AMDGPUISD::BFE_U32) 4419 Known.Zero = APInt::getHighBitsSet(32, 32 - Width); 4420 4421 break; 4422 } 4423 case AMDGPUISD::FP_TO_FP16: 4424 case AMDGPUISD::FP16_ZEXT: { 4425 unsigned BitWidth = Known.getBitWidth(); 4426 4427 // High bits are zero. 4428 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 4429 break; 4430 } 4431 case AMDGPUISD::MUL_U24: 4432 case AMDGPUISD::MUL_I24: { 4433 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4434 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4435 unsigned TrailZ = LHSKnown.countMinTrailingZeros() + 4436 RHSKnown.countMinTrailingZeros(); 4437 Known.Zero.setLowBits(std::min(TrailZ, 32u)); 4438 4439 // Truncate to 24 bits. 4440 LHSKnown = LHSKnown.trunc(24); 4441 RHSKnown = RHSKnown.trunc(24); 4442 4443 bool Negative = false; 4444 if (Opc == AMDGPUISD::MUL_I24) { 4445 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); 4446 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); 4447 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4448 if (MaxValBits >= 32) 4449 break; 4450 bool LHSNegative = LHSKnown.isNegative(); 4451 bool LHSPositive = LHSKnown.isNonNegative(); 4452 bool RHSNegative = RHSKnown.isNegative(); 4453 bool RHSPositive = RHSKnown.isNonNegative(); 4454 if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) 4455 break; 4456 Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); 4457 if (Negative) 4458 Known.One.setHighBits(32 - MaxValBits); 4459 else 4460 Known.Zero.setHighBits(32 - MaxValBits); 4461 } else { 4462 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); 4463 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); 4464 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); 4465 if (MaxValBits >= 32) 4466 break; 4467 Known.Zero.setHighBits(32 - MaxValBits); 4468 } 4469 break; 4470 } 4471 case AMDGPUISD::PERM: { 4472 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4473 if (!CMask) 4474 return; 4475 4476 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 4477 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 4478 unsigned Sel = CMask->getZExtValue(); 4479 4480 for (unsigned I = 0; I < 32; I += 8) { 4481 unsigned SelBits = Sel & 0xff; 4482 if (SelBits < 4) { 4483 SelBits *= 8; 4484 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4485 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4486 } else if (SelBits < 7) { 4487 SelBits = (SelBits & 3) * 8; 4488 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; 4489 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; 4490 } else if (SelBits == 0x0c) { 4491 Known.Zero |= 0xFFull << I; 4492 } else if (SelBits > 0x0c) { 4493 Known.One |= 0xFFull << I; 4494 } 4495 Sel >>= 8; 4496 } 4497 break; 4498 } 4499 case AMDGPUISD::BUFFER_LOAD_UBYTE: { 4500 Known.Zero.setHighBits(24); 4501 break; 4502 } 4503 case AMDGPUISD::BUFFER_LOAD_USHORT: { 4504 Known.Zero.setHighBits(16); 4505 break; 4506 } 4507 case AMDGPUISD::LDS: { 4508 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); 4509 unsigned Align = GA->getGlobal()->getAlignment(); 4510 4511 Known.Zero.setHighBits(16); 4512 if (Align) 4513 Known.Zero.setLowBits(Log2_32(Align)); 4514 break; 4515 } 4516 case ISD::INTRINSIC_WO_CHAIN: { 4517 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4518 switch (IID) { 4519 case Intrinsic::amdgcn_mbcnt_lo: 4520 case Intrinsic::amdgcn_mbcnt_hi: { 4521 const GCNSubtarget &ST = 4522 DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); 4523 // These return at most the wavefront size - 1. 4524 unsigned Size = Op.getValueType().getSizeInBits(); 4525 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); 4526 break; 4527 } 4528 default: 4529 break; 4530 } 4531 } 4532 } 4533 } 4534 4535 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 4536 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 4537 unsigned Depth) const { 4538 switch (Op.getOpcode()) { 4539 case AMDGPUISD::BFE_I32: { 4540 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4541 if (!Width) 4542 return 1; 4543 4544 unsigned SignBits = 32 - Width->getZExtValue() + 1; 4545 if (!isNullConstant(Op.getOperand(1))) 4546 return SignBits; 4547 4548 // TODO: Could probably figure something out with non-0 offsets. 4549 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4550 return std::max(SignBits, Op0SignBits); 4551 } 4552 4553 case AMDGPUISD::BFE_U32: { 4554 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 4555 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 4556 } 4557 4558 case AMDGPUISD::CARRY: 4559 case AMDGPUISD::BORROW: 4560 return 31; 4561 case AMDGPUISD::BUFFER_LOAD_BYTE: 4562 return 25; 4563 case AMDGPUISD::BUFFER_LOAD_SHORT: 4564 return 17; 4565 case AMDGPUISD::BUFFER_LOAD_UBYTE: 4566 return 24; 4567 case AMDGPUISD::BUFFER_LOAD_USHORT: 4568 return 16; 4569 case AMDGPUISD::FP_TO_FP16: 4570 case AMDGPUISD::FP16_ZEXT: 4571 return 16; 4572 default: 4573 return 1; 4574 } 4575 } 4576 4577 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 4578 const SelectionDAG &DAG, 4579 bool SNaN, 4580 unsigned Depth) const { 4581 unsigned Opcode = Op.getOpcode(); 4582 switch (Opcode) { 4583 case AMDGPUISD::FMIN_LEGACY: 4584 case AMDGPUISD::FMAX_LEGACY: { 4585 if (SNaN) 4586 return true; 4587 4588 // TODO: Can check no nans on one of the operands for each one, but which 4589 // one? 4590 return false; 4591 } 4592 case AMDGPUISD::FMUL_LEGACY: 4593 case AMDGPUISD::CVT_PKRTZ_F16_F32: { 4594 if (SNaN) 4595 return true; 4596 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4597 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4598 } 4599 case AMDGPUISD::FMED3: 4600 case AMDGPUISD::FMIN3: 4601 case AMDGPUISD::FMAX3: 4602 case AMDGPUISD::FMAD_FTZ: { 4603 if (SNaN) 4604 return true; 4605 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4606 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4607 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4608 } 4609 case AMDGPUISD::CVT_F32_UBYTE0: 4610 case AMDGPUISD::CVT_F32_UBYTE1: 4611 case AMDGPUISD::CVT_F32_UBYTE2: 4612 case AMDGPUISD::CVT_F32_UBYTE3: 4613 return true; 4614 4615 case AMDGPUISD::RCP: 4616 case AMDGPUISD::RSQ: 4617 case AMDGPUISD::RCP_LEGACY: 4618 case AMDGPUISD::RSQ_LEGACY: 4619 case AMDGPUISD::RSQ_CLAMP: { 4620 if (SNaN) 4621 return true; 4622 4623 // TODO: Need is known positive check. 4624 return false; 4625 } 4626 case AMDGPUISD::LDEXP: 4627 case AMDGPUISD::FRACT: { 4628 if (SNaN) 4629 return true; 4630 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4631 } 4632 case AMDGPUISD::DIV_SCALE: 4633 case AMDGPUISD::DIV_FMAS: 4634 case AMDGPUISD::DIV_FIXUP: 4635 case AMDGPUISD::TRIG_PREOP: 4636 // TODO: Refine on operands. 4637 return SNaN; 4638 case AMDGPUISD::SIN_HW: 4639 case AMDGPUISD::COS_HW: { 4640 // TODO: Need check for infinity 4641 return SNaN; 4642 } 4643 case ISD::INTRINSIC_WO_CHAIN: { 4644 unsigned IntrinsicID 4645 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4646 // TODO: Handle more intrinsics 4647 switch (IntrinsicID) { 4648 case Intrinsic::amdgcn_cubeid: 4649 return true; 4650 4651 case Intrinsic::amdgcn_frexp_mant: { 4652 if (SNaN) 4653 return true; 4654 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4655 } 4656 case Intrinsic::amdgcn_cvt_pkrtz: { 4657 if (SNaN) 4658 return true; 4659 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4660 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4661 } 4662 case Intrinsic::amdgcn_fdot2: 4663 // TODO: Refine on operand 4664 return SNaN; 4665 default: 4666 return false; 4667 } 4668 } 4669 default: 4670 return false; 4671 } 4672 } 4673 4674 TargetLowering::AtomicExpansionKind 4675 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 4676 switch (RMW->getOperation()) { 4677 case AtomicRMWInst::Nand: 4678 case AtomicRMWInst::FAdd: 4679 case AtomicRMWInst::FSub: 4680 return AtomicExpansionKind::CmpXChg; 4681 default: 4682 return AtomicExpansionKind::None; 4683 } 4684 } 4685