xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUCallLowering.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "Utils/AMDGPUBaseInfo.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIInstrInfo.h"
24 #include "SIMachineFunctionInfo.h"
25 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/MathExtras.h"
36 using namespace llvm;
37 
38 #include "AMDGPUGenCallingConv.inc"
39 
40 static cl::opt<bool> AMDGPUBypassSlowDiv(
41   "amdgpu-bypass-slow-div",
42   cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
43   cl::init(true));
44 
45 // Find a larger type to do a load / store of a vector with.
46 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
47   unsigned StoreSize = VT.getStoreSizeInBits();
48   if (StoreSize <= 32)
49     return EVT::getIntegerVT(Ctx, StoreSize);
50 
51   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
52   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
53 }
54 
55 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
56   EVT VT = Op.getValueType();
57   KnownBits Known = DAG.computeKnownBits(Op);
58   return VT.getSizeInBits() - Known.countMinLeadingZeros();
59 }
60 
61 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
62   EVT VT = Op.getValueType();
63 
64   // In order for this to be a signed 24-bit value, bit 23, must
65   // be a sign bit.
66   return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
67 }
68 
69 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
70                                            const AMDGPUSubtarget &STI)
71     : TargetLowering(TM), Subtarget(&STI) {
72   // Lower floating point store/load to integer store/load to reduce the number
73   // of patterns in tablegen.
74   setOperationAction(ISD::LOAD, MVT::f32, Promote);
75   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
76 
77   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
78   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
79 
80   setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
81   AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
82 
83   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
84   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
85 
86   setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
87   AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
88 
89   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
90   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
91 
92   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
93   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
94 
95   setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
96   AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
97 
98   setOperationAction(ISD::LOAD, MVT::i64, Promote);
99   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
100 
101   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
102   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
103 
104   setOperationAction(ISD::LOAD, MVT::f64, Promote);
105   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
106 
107   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
108   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
109 
110   setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
111   AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
112 
113   setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
114   AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
115 
116   setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
117   AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
118 
119   setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
120   AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
121 
122   setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
123   AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
124 
125   setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
126   AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
127 
128   // There are no 64-bit extloads. These should be done as a 32-bit extload and
129   // an extension to 64-bit.
130   for (MVT VT : MVT::integer_valuetypes()) {
131     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
132     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
133     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
134   }
135 
136   for (MVT VT : MVT::integer_valuetypes()) {
137     if (VT == MVT::i64)
138       continue;
139 
140     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
141     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
143     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
144 
145     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
146     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
147     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
148     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
149 
150     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
151     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
152     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
153     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
154   }
155 
156   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
157     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
159     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
160     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
161     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
162     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
163     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
164     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
165     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
166     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
168     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
169     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
171     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
172   }
173 
174   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
175   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
176   setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
177   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
178   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
179   setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
180   setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
181 
182   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
183   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
184   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
185   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
186   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
187 
188   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
189   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
190   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
191   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
192   setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
193 
194   setOperationAction(ISD::STORE, MVT::f32, Promote);
195   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
196 
197   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
198   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
199 
200   setOperationAction(ISD::STORE, MVT::v3f32, Promote);
201   AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
202 
203   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
204   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
205 
206   setOperationAction(ISD::STORE, MVT::v5f32, Promote);
207   AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
208 
209   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
210   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
211 
212   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
213   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
214 
215   setOperationAction(ISD::STORE, MVT::v32f32, Promote);
216   AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
217 
218   setOperationAction(ISD::STORE, MVT::i64, Promote);
219   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
220 
221   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
222   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
223 
224   setOperationAction(ISD::STORE, MVT::f64, Promote);
225   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
226 
227   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
228   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
229 
230   setOperationAction(ISD::STORE, MVT::v4i64, Promote);
231   AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
232 
233   setOperationAction(ISD::STORE, MVT::v4f64, Promote);
234   AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
235 
236   setOperationAction(ISD::STORE, MVT::v8i64, Promote);
237   AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
238 
239   setOperationAction(ISD::STORE, MVT::v8f64, Promote);
240   AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
241 
242   setOperationAction(ISD::STORE, MVT::v16i64, Promote);
243   AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
244 
245   setOperationAction(ISD::STORE, MVT::v16f64, Promote);
246   AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
247 
248   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
249   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
250   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
251   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
252 
253   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
254   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
255   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
256   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
257 
258   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
259   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
260   setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
261   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
262   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
263   setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
264   setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
265 
266   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
267   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
268 
269   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
270   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
271 
272   setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
273   setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
274   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
275   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
276 
277   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
278   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
279 
280   setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
281   setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
282   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
283   setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
284   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
285   setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
286   setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
287 
288   setOperationAction(ISD::Constant, MVT::i32, Legal);
289   setOperationAction(ISD::Constant, MVT::i64, Legal);
290   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
291   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
292 
293   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
294   setOperationAction(ISD::BRIND, MVT::Other, Expand);
295 
296   // This is totally unsupported, just custom lower to produce an error.
297   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
298 
299   // Library functions.  These default to Expand, but we have instructions
300   // for them.
301   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
302   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
303   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
304   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
305   setOperationAction(ISD::FABS,   MVT::f32, Legal);
306   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
307   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
308   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
309   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
310   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
311 
312   setOperationAction(ISD::FROUND, MVT::f32, Custom);
313   setOperationAction(ISD::FROUND, MVT::f64, Custom);
314 
315   setOperationAction(ISD::FLOG, MVT::f32, Custom);
316   setOperationAction(ISD::FLOG10, MVT::f32, Custom);
317   setOperationAction(ISD::FEXP, MVT::f32, Custom);
318 
319 
320   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
321   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
322 
323   setOperationAction(ISD::FREM, MVT::f32, Custom);
324   setOperationAction(ISD::FREM, MVT::f64, Custom);
325 
326   // Expand to fneg + fadd.
327   setOperationAction(ISD::FSUB, MVT::f64, Expand);
328 
329   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
330   setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
331   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
332   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
333   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
334   setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
335   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
336   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
337   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
338   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
339   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
340   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
341   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
342   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
343   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
344   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
345   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
346   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
347   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
348   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
349   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
350   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
351   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
352   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
353   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
354   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
355   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
356   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
357   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
358   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
359 
360   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
361   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
362   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
363 
364   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
365   for (MVT VT : ScalarIntVTs) {
366     // These should use [SU]DIVREM, so set them to expand
367     setOperationAction(ISD::SDIV, VT, Expand);
368     setOperationAction(ISD::UDIV, VT, Expand);
369     setOperationAction(ISD::SREM, VT, Expand);
370     setOperationAction(ISD::UREM, VT, Expand);
371 
372     // GPU does not have divrem function for signed or unsigned.
373     setOperationAction(ISD::SDIVREM, VT, Custom);
374     setOperationAction(ISD::UDIVREM, VT, Custom);
375 
376     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
377     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
378     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
379 
380     setOperationAction(ISD::BSWAP, VT, Expand);
381     setOperationAction(ISD::CTTZ, VT, Expand);
382     setOperationAction(ISD::CTLZ, VT, Expand);
383 
384     // AMDGPU uses ADDC/SUBC/ADDE/SUBE
385     setOperationAction(ISD::ADDC, VT, Legal);
386     setOperationAction(ISD::SUBC, VT, Legal);
387     setOperationAction(ISD::ADDE, VT, Legal);
388     setOperationAction(ISD::SUBE, VT, Legal);
389   }
390 
391   // The hardware supports 32-bit FSHR, but not FSHL.
392   setOperationAction(ISD::FSHR, MVT::i32, Legal);
393 
394   // The hardware supports 32-bit ROTR, but not ROTL.
395   setOperationAction(ISD::ROTL, MVT::i32, Expand);
396   setOperationAction(ISD::ROTL, MVT::i64, Expand);
397   setOperationAction(ISD::ROTR, MVT::i64, Expand);
398 
399   setOperationAction(ISD::MUL, MVT::i64, Expand);
400   setOperationAction(ISD::MULHU, MVT::i64, Expand);
401   setOperationAction(ISD::MULHS, MVT::i64, Expand);
402   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
403   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
404   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
405   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
406   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
407 
408   setOperationAction(ISD::SMIN, MVT::i32, Legal);
409   setOperationAction(ISD::UMIN, MVT::i32, Legal);
410   setOperationAction(ISD::SMAX, MVT::i32, Legal);
411   setOperationAction(ISD::UMAX, MVT::i32, Legal);
412 
413   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
414   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
415   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
416   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
417 
418   static const MVT::SimpleValueType VectorIntTypes[] = {
419     MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
420   };
421 
422   for (MVT VT : VectorIntTypes) {
423     // Expand the following operations for the current type by default.
424     setOperationAction(ISD::ADD,  VT, Expand);
425     setOperationAction(ISD::AND,  VT, Expand);
426     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
427     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
428     setOperationAction(ISD::MUL,  VT, Expand);
429     setOperationAction(ISD::MULHU, VT, Expand);
430     setOperationAction(ISD::MULHS, VT, Expand);
431     setOperationAction(ISD::OR,   VT, Expand);
432     setOperationAction(ISD::SHL,  VT, Expand);
433     setOperationAction(ISD::SRA,  VT, Expand);
434     setOperationAction(ISD::SRL,  VT, Expand);
435     setOperationAction(ISD::ROTL, VT, Expand);
436     setOperationAction(ISD::ROTR, VT, Expand);
437     setOperationAction(ISD::SUB,  VT, Expand);
438     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
439     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
440     setOperationAction(ISD::SDIV, VT, Expand);
441     setOperationAction(ISD::UDIV, VT, Expand);
442     setOperationAction(ISD::SREM, VT, Expand);
443     setOperationAction(ISD::UREM, VT, Expand);
444     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
445     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
446     setOperationAction(ISD::SDIVREM, VT, Expand);
447     setOperationAction(ISD::UDIVREM, VT, Expand);
448     setOperationAction(ISD::SELECT, VT, Expand);
449     setOperationAction(ISD::VSELECT, VT, Expand);
450     setOperationAction(ISD::SELECT_CC, VT, Expand);
451     setOperationAction(ISD::XOR,  VT, Expand);
452     setOperationAction(ISD::BSWAP, VT, Expand);
453     setOperationAction(ISD::CTPOP, VT, Expand);
454     setOperationAction(ISD::CTTZ, VT, Expand);
455     setOperationAction(ISD::CTLZ, VT, Expand);
456     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
457     setOperationAction(ISD::SETCC, VT, Expand);
458   }
459 
460   static const MVT::SimpleValueType FloatVectorTypes[] = {
461      MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
462   };
463 
464   for (MVT VT : FloatVectorTypes) {
465     setOperationAction(ISD::FABS, VT, Expand);
466     setOperationAction(ISD::FMINNUM, VT, Expand);
467     setOperationAction(ISD::FMAXNUM, VT, Expand);
468     setOperationAction(ISD::FADD, VT, Expand);
469     setOperationAction(ISD::FCEIL, VT, Expand);
470     setOperationAction(ISD::FCOS, VT, Expand);
471     setOperationAction(ISD::FDIV, VT, Expand);
472     setOperationAction(ISD::FEXP2, VT, Expand);
473     setOperationAction(ISD::FEXP, VT, Expand);
474     setOperationAction(ISD::FLOG2, VT, Expand);
475     setOperationAction(ISD::FREM, VT, Expand);
476     setOperationAction(ISD::FLOG, VT, Expand);
477     setOperationAction(ISD::FLOG10, VT, Expand);
478     setOperationAction(ISD::FPOW, VT, Expand);
479     setOperationAction(ISD::FFLOOR, VT, Expand);
480     setOperationAction(ISD::FTRUNC, VT, Expand);
481     setOperationAction(ISD::FMUL, VT, Expand);
482     setOperationAction(ISD::FMA, VT, Expand);
483     setOperationAction(ISD::FRINT, VT, Expand);
484     setOperationAction(ISD::FNEARBYINT, VT, Expand);
485     setOperationAction(ISD::FSQRT, VT, Expand);
486     setOperationAction(ISD::FSIN, VT, Expand);
487     setOperationAction(ISD::FSUB, VT, Expand);
488     setOperationAction(ISD::FNEG, VT, Expand);
489     setOperationAction(ISD::VSELECT, VT, Expand);
490     setOperationAction(ISD::SELECT_CC, VT, Expand);
491     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
492     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
493     setOperationAction(ISD::SETCC, VT, Expand);
494     setOperationAction(ISD::FCANONICALIZE, VT, Expand);
495   }
496 
497   // This causes using an unrolled select operation rather than expansion with
498   // bit operations. This is in general better, but the alternative using BFI
499   // instructions may be better if the select sources are SGPRs.
500   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
501   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
502 
503   setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
504   AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
505 
506   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
507   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
508 
509   setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
510   AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
511 
512   // There are no libcalls of any kind.
513   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
514     setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
515 
516   setSchedulingPreference(Sched::RegPressure);
517   setJumpIsExpensive(true);
518 
519   // FIXME: This is only partially true. If we have to do vector compares, any
520   // SGPR pair can be a condition register. If we have a uniform condition, we
521   // are better off doing SALU operations, where there is only one SCC. For now,
522   // we don't have a way of knowing during instruction selection if a condition
523   // will be uniform and we always use vector compares. Assume we are using
524   // vector compares until that is fixed.
525   setHasMultipleConditionRegisters(true);
526 
527   setMinCmpXchgSizeInBits(32);
528   setSupportsUnalignedAtomics(false);
529 
530   PredictableSelectIsExpensive = false;
531 
532   // We want to find all load dependencies for long chains of stores to enable
533   // merging into very wide vectors. The problem is with vectors with > 4
534   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
535   // vectors are a legal type, even though we have to split the loads
536   // usually. When we can more precisely specify load legality per address
537   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
538   // smarter so that they can figure out what to do in 2 iterations without all
539   // N > 4 stores on the same chain.
540   GatherAllAliasesMaxDepth = 16;
541 
542   // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
543   // about these during lowering.
544   MaxStoresPerMemcpy  = 0xffffffff;
545   MaxStoresPerMemmove = 0xffffffff;
546   MaxStoresPerMemset  = 0xffffffff;
547 
548   // The expansion for 64-bit division is enormous.
549   if (AMDGPUBypassSlowDiv)
550     addBypassSlowDiv(64, 32);
551 
552   setTargetDAGCombine(ISD::BITCAST);
553   setTargetDAGCombine(ISD::SHL);
554   setTargetDAGCombine(ISD::SRA);
555   setTargetDAGCombine(ISD::SRL);
556   setTargetDAGCombine(ISD::TRUNCATE);
557   setTargetDAGCombine(ISD::MUL);
558   setTargetDAGCombine(ISD::MULHU);
559   setTargetDAGCombine(ISD::MULHS);
560   setTargetDAGCombine(ISD::SELECT);
561   setTargetDAGCombine(ISD::SELECT_CC);
562   setTargetDAGCombine(ISD::STORE);
563   setTargetDAGCombine(ISD::FADD);
564   setTargetDAGCombine(ISD::FSUB);
565   setTargetDAGCombine(ISD::FNEG);
566   setTargetDAGCombine(ISD::FABS);
567   setTargetDAGCombine(ISD::AssertZext);
568   setTargetDAGCombine(ISD::AssertSext);
569   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
570 }
571 
572 //===----------------------------------------------------------------------===//
573 // Target Information
574 //===----------------------------------------------------------------------===//
575 
576 LLVM_READNONE
577 static bool fnegFoldsIntoOp(unsigned Opc) {
578   switch (Opc) {
579   case ISD::FADD:
580   case ISD::FSUB:
581   case ISD::FMUL:
582   case ISD::FMA:
583   case ISD::FMAD:
584   case ISD::FMINNUM:
585   case ISD::FMAXNUM:
586   case ISD::FMINNUM_IEEE:
587   case ISD::FMAXNUM_IEEE:
588   case ISD::FSIN:
589   case ISD::FTRUNC:
590   case ISD::FRINT:
591   case ISD::FNEARBYINT:
592   case ISD::FCANONICALIZE:
593   case AMDGPUISD::RCP:
594   case AMDGPUISD::RCP_LEGACY:
595   case AMDGPUISD::RCP_IFLAG:
596   case AMDGPUISD::SIN_HW:
597   case AMDGPUISD::FMUL_LEGACY:
598   case AMDGPUISD::FMIN_LEGACY:
599   case AMDGPUISD::FMAX_LEGACY:
600   case AMDGPUISD::FMED3:
601     return true;
602   default:
603     return false;
604   }
605 }
606 
607 /// \p returns true if the operation will definitely need to use a 64-bit
608 /// encoding, and thus will use a VOP3 encoding regardless of the source
609 /// modifiers.
610 LLVM_READONLY
611 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
612   return N->getNumOperands() > 2 || VT == MVT::f64;
613 }
614 
615 // Most FP instructions support source modifiers, but this could be refined
616 // slightly.
617 LLVM_READONLY
618 static bool hasSourceMods(const SDNode *N) {
619   if (isa<MemSDNode>(N))
620     return false;
621 
622   switch (N->getOpcode()) {
623   case ISD::CopyToReg:
624   case ISD::SELECT:
625   case ISD::FDIV:
626   case ISD::FREM:
627   case ISD::INLINEASM:
628   case ISD::INLINEASM_BR:
629   case AMDGPUISD::DIV_SCALE:
630   case ISD::INTRINSIC_W_CHAIN:
631 
632   // TODO: Should really be looking at the users of the bitcast. These are
633   // problematic because bitcasts are used to legalize all stores to integer
634   // types.
635   case ISD::BITCAST:
636     return false;
637   case ISD::INTRINSIC_WO_CHAIN: {
638     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
639     case Intrinsic::amdgcn_interp_p1:
640     case Intrinsic::amdgcn_interp_p2:
641     case Intrinsic::amdgcn_interp_mov:
642     case Intrinsic::amdgcn_interp_p1_f16:
643     case Intrinsic::amdgcn_interp_p2_f16:
644       return false;
645     default:
646       return true;
647     }
648   }
649   default:
650     return true;
651   }
652 }
653 
654 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
655                                                  unsigned CostThreshold) {
656   // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
657   // it is truly free to use a source modifier in all cases. If there are
658   // multiple users but for each one will necessitate using VOP3, there will be
659   // a code size increase. Try to avoid increasing code size unless we know it
660   // will save on the instruction count.
661   unsigned NumMayIncreaseSize = 0;
662   MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
663 
664   // XXX - Should this limit number of uses to check?
665   for (const SDNode *U : N->uses()) {
666     if (!hasSourceMods(U))
667       return false;
668 
669     if (!opMustUseVOP3Encoding(U, VT)) {
670       if (++NumMayIncreaseSize > CostThreshold)
671         return false;
672     }
673   }
674 
675   return true;
676 }
677 
678 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
679                                               ISD::NodeType ExtendKind) const {
680   assert(!VT.isVector() && "only scalar expected");
681 
682   // Round to the next multiple of 32-bits.
683   unsigned Size = VT.getSizeInBits();
684   if (Size <= 32)
685     return MVT::i32;
686   return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
687 }
688 
689 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
690   return MVT::i32;
691 }
692 
693 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
694   return true;
695 }
696 
697 // The backend supports 32 and 64 bit floating point immediates.
698 // FIXME: Why are we reporting vectors of FP immediates as legal?
699 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
700                                         bool ForCodeSize) const {
701   EVT ScalarVT = VT.getScalarType();
702   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
703          (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
704 }
705 
706 // We don't want to shrink f64 / f32 constants.
707 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
708   EVT ScalarVT = VT.getScalarType();
709   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
710 }
711 
712 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
713                                                  ISD::LoadExtType ExtTy,
714                                                  EVT NewVT) const {
715   // TODO: This may be worth removing. Check regression tests for diffs.
716   if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
717     return false;
718 
719   unsigned NewSize = NewVT.getStoreSizeInBits();
720 
721   // If we are reducing to a 32-bit load or a smaller multi-dword load,
722   // this is always better.
723   if (NewSize >= 32)
724     return true;
725 
726   EVT OldVT = N->getValueType(0);
727   unsigned OldSize = OldVT.getStoreSizeInBits();
728 
729   MemSDNode *MN = cast<MemSDNode>(N);
730   unsigned AS = MN->getAddressSpace();
731   // Do not shrink an aligned scalar load to sub-dword.
732   // Scalar engine cannot do sub-dword loads.
733   if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
734       (AS == AMDGPUAS::CONSTANT_ADDRESS ||
735        AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
736        (isa<LoadSDNode>(N) &&
737         AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
738       AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
739     return false;
740 
741   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
742   // extloads, so doing one requires using a buffer_load. In cases where we
743   // still couldn't use a scalar load, using the wider load shouldn't really
744   // hurt anything.
745 
746   // If the old size already had to be an extload, there's no harm in continuing
747   // to reduce the width.
748   return (OldSize < 32);
749 }
750 
751 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
752                                                    const SelectionDAG &DAG,
753                                                    const MachineMemOperand &MMO) const {
754 
755   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
756 
757   if (LoadTy.getScalarType() == MVT::i32)
758     return false;
759 
760   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
761   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
762 
763   if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
764     return false;
765 
766   bool Fast = false;
767   return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
768                                         CastTy, MMO, &Fast) &&
769          Fast;
770 }
771 
772 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
773 // profitable with the expansion for 64-bit since it's generally good to
774 // speculate things.
775 // FIXME: These should really have the size as a parameter.
776 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
777   return true;
778 }
779 
780 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
781   return true;
782 }
783 
784 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
785   switch (N->getOpcode()) {
786     default:
787     return false;
788     case ISD::EntryToken:
789     case ISD::TokenFactor:
790       return true;
791     case ISD::INTRINSIC_WO_CHAIN:
792     {
793       unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
794       switch (IntrID) {
795         default:
796         return false;
797         case Intrinsic::amdgcn_readfirstlane:
798         case Intrinsic::amdgcn_readlane:
799           return true;
800       }
801     }
802     break;
803     case ISD::LOAD:
804     {
805       if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
806           AMDGPUAS::CONSTANT_ADDRESS_32BIT)
807         return true;
808       return false;
809     }
810     break;
811   }
812 }
813 
814 SDValue AMDGPUTargetLowering::getNegatedExpression(
815     SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
816     NegatibleCost &Cost, unsigned Depth) const {
817 
818   switch (Op.getOpcode()) {
819   case ISD::FMA:
820   case ISD::FMAD: {
821     // Negating a fma is not free if it has users without source mods.
822     if (!allUsesHaveSourceMods(Op.getNode()))
823       return SDValue();
824     break;
825   }
826   default:
827     break;
828   }
829 
830   return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
831                                               ForCodeSize, Cost, Depth);
832 }
833 
834 //===---------------------------------------------------------------------===//
835 // Target Properties
836 //===---------------------------------------------------------------------===//
837 
838 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
839   assert(VT.isFloatingPoint());
840 
841   // Packed operations do not have a fabs modifier.
842   return VT == MVT::f32 || VT == MVT::f64 ||
843          (Subtarget->has16BitInsts() && VT == MVT::f16);
844 }
845 
846 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
847   assert(VT.isFloatingPoint());
848   return VT == MVT::f32 || VT == MVT::f64 ||
849          (Subtarget->has16BitInsts() && VT == MVT::f16) ||
850          (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
851 }
852 
853 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
854                                                          unsigned NumElem,
855                                                          unsigned AS) const {
856   return true;
857 }
858 
859 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
860   // There are few operations which truly have vector input operands. Any vector
861   // operation is going to involve operations on each component, and a
862   // build_vector will be a copy per element, so it always makes sense to use a
863   // build_vector input in place of the extracted element to avoid a copy into a
864   // super register.
865   //
866   // We should probably only do this if all users are extracts only, but this
867   // should be the common case.
868   return true;
869 }
870 
871 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
872   // Truncate is just accessing a subregister.
873 
874   unsigned SrcSize = Source.getSizeInBits();
875   unsigned DestSize = Dest.getSizeInBits();
876 
877   return DestSize < SrcSize && DestSize % 32 == 0 ;
878 }
879 
880 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
881   // Truncate is just accessing a subregister.
882 
883   unsigned SrcSize = Source->getScalarSizeInBits();
884   unsigned DestSize = Dest->getScalarSizeInBits();
885 
886   if (DestSize== 16 && Subtarget->has16BitInsts())
887     return SrcSize >= 32;
888 
889   return DestSize < SrcSize && DestSize % 32 == 0;
890 }
891 
892 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
893   unsigned SrcSize = Src->getScalarSizeInBits();
894   unsigned DestSize = Dest->getScalarSizeInBits();
895 
896   if (SrcSize == 16 && Subtarget->has16BitInsts())
897     return DestSize >= 32;
898 
899   return SrcSize == 32 && DestSize == 64;
900 }
901 
902 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
903   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
904   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
905   // this will enable reducing 64-bit operations the 32-bit, which is always
906   // good.
907 
908   if (Src == MVT::i16)
909     return Dest == MVT::i32 ||Dest == MVT::i64 ;
910 
911   return Src == MVT::i32 && Dest == MVT::i64;
912 }
913 
914 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
915   return isZExtFree(Val.getValueType(), VT2);
916 }
917 
918 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
919   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
920   // limited number of native 64-bit operations. Shrinking an operation to fit
921   // in a single 32-bit register should always be helpful. As currently used,
922   // this is much less general than the name suggests, and is only used in
923   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
924   // not profitable, and may actually be harmful.
925   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
926 }
927 
928 //===---------------------------------------------------------------------===//
929 // TargetLowering Callbacks
930 //===---------------------------------------------------------------------===//
931 
932 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
933                                                   bool IsVarArg) {
934   switch (CC) {
935   case CallingConv::AMDGPU_VS:
936   case CallingConv::AMDGPU_GS:
937   case CallingConv::AMDGPU_PS:
938   case CallingConv::AMDGPU_CS:
939   case CallingConv::AMDGPU_HS:
940   case CallingConv::AMDGPU_ES:
941   case CallingConv::AMDGPU_LS:
942     return CC_AMDGPU;
943   case CallingConv::C:
944   case CallingConv::Fast:
945   case CallingConv::Cold:
946     return CC_AMDGPU_Func;
947   case CallingConv::AMDGPU_KERNEL:
948   case CallingConv::SPIR_KERNEL:
949   default:
950     report_fatal_error("Unsupported calling convention for call");
951   }
952 }
953 
954 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
955                                                     bool IsVarArg) {
956   switch (CC) {
957   case CallingConv::AMDGPU_KERNEL:
958   case CallingConv::SPIR_KERNEL:
959     llvm_unreachable("kernels should not be handled here");
960   case CallingConv::AMDGPU_VS:
961   case CallingConv::AMDGPU_GS:
962   case CallingConv::AMDGPU_PS:
963   case CallingConv::AMDGPU_CS:
964   case CallingConv::AMDGPU_HS:
965   case CallingConv::AMDGPU_ES:
966   case CallingConv::AMDGPU_LS:
967     return RetCC_SI_Shader;
968   case CallingConv::C:
969   case CallingConv::Fast:
970   case CallingConv::Cold:
971     return RetCC_AMDGPU_Func;
972   default:
973     report_fatal_error("Unsupported calling convention.");
974   }
975 }
976 
977 /// The SelectionDAGBuilder will automatically promote function arguments
978 /// with illegal types.  However, this does not work for the AMDGPU targets
979 /// since the function arguments are stored in memory as these illegal types.
980 /// In order to handle this properly we need to get the original types sizes
981 /// from the LLVM IR Function and fixup the ISD:InputArg values before
982 /// passing them to AnalyzeFormalArguments()
983 
984 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
985 /// input values across multiple registers.  Each item in the Ins array
986 /// represents a single value that will be stored in registers.  Ins[x].VT is
987 /// the value type of the value that will be stored in the register, so
988 /// whatever SDNode we lower the argument to needs to be this type.
989 ///
990 /// In order to correctly lower the arguments we need to know the size of each
991 /// argument.  Since Ins[x].VT gives us the size of the register that will
992 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
993 /// for the orignal function argument so that we can deduce the correct memory
994 /// type to use for Ins[x].  In most cases the correct memory type will be
995 /// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
996 /// we have a kernel argument of type v8i8, this argument will be split into
997 /// 8 parts and each part will be represented by its own item in the Ins array.
998 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
999 /// the argument before it was split.  From this, we deduce that the memory type
1000 /// for each individual part is i8.  We pass the memory type as LocVT to the
1001 /// calling convention analysis function and the register type (Ins[x].VT) as
1002 /// the ValVT.
1003 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1004   CCState &State,
1005   const SmallVectorImpl<ISD::InputArg> &Ins) const {
1006   const MachineFunction &MF = State.getMachineFunction();
1007   const Function &Fn = MF.getFunction();
1008   LLVMContext &Ctx = Fn.getParent()->getContext();
1009   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1010   const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1011   CallingConv::ID CC = Fn.getCallingConv();
1012 
1013   Align MaxAlign = Align(1);
1014   uint64_t ExplicitArgOffset = 0;
1015   const DataLayout &DL = Fn.getParent()->getDataLayout();
1016 
1017   unsigned InIndex = 0;
1018 
1019   for (const Argument &Arg : Fn.args()) {
1020     Type *BaseArgTy = Arg.getType();
1021     Align Alignment = DL.getABITypeAlign(BaseArgTy);
1022     MaxAlign = std::max(Alignment, MaxAlign);
1023     unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
1024 
1025     uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1026     ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1027 
1028     // We're basically throwing away everything passed into us and starting over
1029     // to get accurate in-memory offsets. The "PartOffset" is completely useless
1030     // to us as computed in Ins.
1031     //
1032     // We also need to figure out what type legalization is trying to do to get
1033     // the correct memory offsets.
1034 
1035     SmallVector<EVT, 16> ValueVTs;
1036     SmallVector<uint64_t, 16> Offsets;
1037     ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1038 
1039     for (unsigned Value = 0, NumValues = ValueVTs.size();
1040          Value != NumValues; ++Value) {
1041       uint64_t BasePartOffset = Offsets[Value];
1042 
1043       EVT ArgVT = ValueVTs[Value];
1044       EVT MemVT = ArgVT;
1045       MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1046       unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1047 
1048       if (NumRegs == 1) {
1049         // This argument is not split, so the IR type is the memory type.
1050         if (ArgVT.isExtended()) {
1051           // We have an extended type, like i24, so we should just use the
1052           // register type.
1053           MemVT = RegisterVT;
1054         } else {
1055           MemVT = ArgVT;
1056         }
1057       } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1058                  ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1059         assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1060         // We have a vector value which has been split into a vector with
1061         // the same scalar type, but fewer elements.  This should handle
1062         // all the floating-point vector types.
1063         MemVT = RegisterVT;
1064       } else if (ArgVT.isVector() &&
1065                  ArgVT.getVectorNumElements() == NumRegs) {
1066         // This arg has been split so that each element is stored in a separate
1067         // register.
1068         MemVT = ArgVT.getScalarType();
1069       } else if (ArgVT.isExtended()) {
1070         // We have an extended type, like i65.
1071         MemVT = RegisterVT;
1072       } else {
1073         unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1074         assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1075         if (RegisterVT.isInteger()) {
1076           MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1077         } else if (RegisterVT.isVector()) {
1078           assert(!RegisterVT.getScalarType().isFloatingPoint());
1079           unsigned NumElements = RegisterVT.getVectorNumElements();
1080           assert(MemoryBits % NumElements == 0);
1081           // This vector type has been split into another vector type with
1082           // a different elements size.
1083           EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1084                                            MemoryBits / NumElements);
1085           MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1086         } else {
1087           llvm_unreachable("cannot deduce memory type.");
1088         }
1089       }
1090 
1091       // Convert one element vectors to scalar.
1092       if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1093         MemVT = MemVT.getScalarType();
1094 
1095       // Round up vec3/vec5 argument.
1096       if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1097         assert(MemVT.getVectorNumElements() == 3 ||
1098                MemVT.getVectorNumElements() == 5);
1099         MemVT = MemVT.getPow2VectorType(State.getContext());
1100       } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1101         MemVT = MemVT.getRoundIntegerType(State.getContext());
1102       }
1103 
1104       unsigned PartOffset = 0;
1105       for (unsigned i = 0; i != NumRegs; ++i) {
1106         State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1107                                                BasePartOffset + PartOffset,
1108                                                MemVT.getSimpleVT(),
1109                                                CCValAssign::Full));
1110         PartOffset += MemVT.getStoreSize();
1111       }
1112     }
1113   }
1114 }
1115 
1116 SDValue AMDGPUTargetLowering::LowerReturn(
1117   SDValue Chain, CallingConv::ID CallConv,
1118   bool isVarArg,
1119   const SmallVectorImpl<ISD::OutputArg> &Outs,
1120   const SmallVectorImpl<SDValue> &OutVals,
1121   const SDLoc &DL, SelectionDAG &DAG) const {
1122   // FIXME: Fails for r600 tests
1123   //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1124   // "wave terminate should not have return values");
1125   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1126 }
1127 
1128 //===---------------------------------------------------------------------===//
1129 // Target specific lowering
1130 //===---------------------------------------------------------------------===//
1131 
1132 /// Selects the correct CCAssignFn for a given CallingConvention value.
1133 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1134                                                     bool IsVarArg) {
1135   return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1136 }
1137 
1138 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1139                                                       bool IsVarArg) {
1140   return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1141 }
1142 
1143 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1144                                                   SelectionDAG &DAG,
1145                                                   MachineFrameInfo &MFI,
1146                                                   int ClobberedFI) const {
1147   SmallVector<SDValue, 8> ArgChains;
1148   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1149   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1150 
1151   // Include the original chain at the beginning of the list. When this is
1152   // used by target LowerCall hooks, this helps legalize find the
1153   // CALLSEQ_BEGIN node.
1154   ArgChains.push_back(Chain);
1155 
1156   // Add a chain value for each stack argument corresponding
1157   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1158                             UE = DAG.getEntryNode().getNode()->use_end();
1159        U != UE; ++U) {
1160     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1161       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1162         if (FI->getIndex() < 0) {
1163           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1164           int64_t InLastByte = InFirstByte;
1165           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1166 
1167           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1168               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1169             ArgChains.push_back(SDValue(L, 1));
1170         }
1171       }
1172     }
1173   }
1174 
1175   // Build a tokenfactor for all the chains.
1176   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1177 }
1178 
1179 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1180                                                  SmallVectorImpl<SDValue> &InVals,
1181                                                  StringRef Reason) const {
1182   SDValue Callee = CLI.Callee;
1183   SelectionDAG &DAG = CLI.DAG;
1184 
1185   const Function &Fn = DAG.getMachineFunction().getFunction();
1186 
1187   StringRef FuncName("<unknown>");
1188 
1189   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1190     FuncName = G->getSymbol();
1191   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1192     FuncName = G->getGlobal()->getName();
1193 
1194   DiagnosticInfoUnsupported NoCalls(
1195     Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1196   DAG.getContext()->diagnose(NoCalls);
1197 
1198   if (!CLI.IsTailCall) {
1199     for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1200       InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1201   }
1202 
1203   return DAG.getEntryNode();
1204 }
1205 
1206 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1207                                         SmallVectorImpl<SDValue> &InVals) const {
1208   return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1209 }
1210 
1211 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1212                                                       SelectionDAG &DAG) const {
1213   const Function &Fn = DAG.getMachineFunction().getFunction();
1214 
1215   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1216                                             SDLoc(Op).getDebugLoc());
1217   DAG.getContext()->diagnose(NoDynamicAlloca);
1218   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1219   return DAG.getMergeValues(Ops, SDLoc());
1220 }
1221 
1222 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1223                                              SelectionDAG &DAG) const {
1224   switch (Op.getOpcode()) {
1225   default:
1226     Op->print(errs(), &DAG);
1227     llvm_unreachable("Custom lowering code for this"
1228                      "instruction is not implemented yet!");
1229     break;
1230   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1231   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1232   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1233   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1234   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1235   case ISD::FREM: return LowerFREM(Op, DAG);
1236   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1237   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1238   case ISD::FRINT: return LowerFRINT(Op, DAG);
1239   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1240   case ISD::FROUND: return LowerFROUND(Op, DAG);
1241   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1242   case ISD::FLOG:
1243     return LowerFLOG(Op, DAG, numbers::ln2f);
1244   case ISD::FLOG10:
1245     return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1246   case ISD::FEXP:
1247     return lowerFEXP(Op, DAG);
1248   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1249   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1250   case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1251   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1252   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
1253   case ISD::CTTZ:
1254   case ISD::CTTZ_ZERO_UNDEF:
1255   case ISD::CTLZ:
1256   case ISD::CTLZ_ZERO_UNDEF:
1257     return LowerCTLZ_CTTZ(Op, DAG);
1258   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1259   }
1260   return Op;
1261 }
1262 
1263 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1264                                               SmallVectorImpl<SDValue> &Results,
1265                                               SelectionDAG &DAG) const {
1266   switch (N->getOpcode()) {
1267   case ISD::SIGN_EXTEND_INREG:
1268     // Different parts of legalization seem to interpret which type of
1269     // sign_extend_inreg is the one to check for custom lowering. The extended
1270     // from type is what really matters, but some places check for custom
1271     // lowering of the result type. This results in trying to use
1272     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1273     // nothing here and let the illegal result integer be handled normally.
1274     return;
1275   default:
1276     return;
1277   }
1278 }
1279 
1280 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1281   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1282   if (!GVar || !GVar->hasInitializer())
1283     return false;
1284 
1285   return !isa<UndefValue>(GVar->getInitializer());
1286 }
1287 
1288 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1289                                                  SDValue Op,
1290                                                  SelectionDAG &DAG) const {
1291 
1292   const DataLayout &DL = DAG.getDataLayout();
1293   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1294   const GlobalValue *GV = G->getGlobal();
1295 
1296   if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1297       G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1298     if (!MFI->isEntryFunction()) {
1299       SDLoc DL(Op);
1300       const Function &Fn = DAG.getMachineFunction().getFunction();
1301       DiagnosticInfoUnsupported BadLDSDecl(
1302         Fn, "local memory global used by non-kernel function",
1303         DL.getDebugLoc(), DS_Warning);
1304       DAG.getContext()->diagnose(BadLDSDecl);
1305 
1306       // We currently don't have a way to correctly allocate LDS objects that
1307       // aren't directly associated with a kernel. We do force inlining of
1308       // functions that use local objects. However, if these dead functions are
1309       // not eliminated, we don't want a compile time error. Just emit a warning
1310       // and a trap, since there should be no callable path here.
1311       SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1312       SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1313                                         Trap, DAG.getRoot());
1314       DAG.setRoot(OutputChain);
1315       return DAG.getUNDEF(Op.getValueType());
1316     }
1317 
1318     // XXX: What does the value of G->getOffset() mean?
1319     assert(G->getOffset() == 0 &&
1320          "Do not know what to do with an non-zero offset");
1321 
1322     // TODO: We could emit code to handle the initialization somewhere.
1323     if (!hasDefinedInitializer(GV)) {
1324       unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1325       return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1326     }
1327   }
1328 
1329   const Function &Fn = DAG.getMachineFunction().getFunction();
1330   DiagnosticInfoUnsupported BadInit(
1331       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1332   DAG.getContext()->diagnose(BadInit);
1333   return SDValue();
1334 }
1335 
1336 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1337                                                   SelectionDAG &DAG) const {
1338   SmallVector<SDValue, 8> Args;
1339 
1340   EVT VT = Op.getValueType();
1341   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1342     SDLoc SL(Op);
1343     SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1344     SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1345 
1346     SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1347     return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1348   }
1349 
1350   for (const SDUse &U : Op->ops())
1351     DAG.ExtractVectorElements(U.get(), Args);
1352 
1353   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1354 }
1355 
1356 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1357                                                      SelectionDAG &DAG) const {
1358 
1359   SmallVector<SDValue, 8> Args;
1360   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1361   EVT VT = Op.getValueType();
1362   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1363                             VT.getVectorNumElements());
1364 
1365   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1366 }
1367 
1368 /// Generate Min/Max node
1369 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1370                                                    SDValue LHS, SDValue RHS,
1371                                                    SDValue True, SDValue False,
1372                                                    SDValue CC,
1373                                                    DAGCombinerInfo &DCI) const {
1374   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1375     return SDValue();
1376 
1377   SelectionDAG &DAG = DCI.DAG;
1378   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1379   switch (CCOpcode) {
1380   case ISD::SETOEQ:
1381   case ISD::SETONE:
1382   case ISD::SETUNE:
1383   case ISD::SETNE:
1384   case ISD::SETUEQ:
1385   case ISD::SETEQ:
1386   case ISD::SETFALSE:
1387   case ISD::SETFALSE2:
1388   case ISD::SETTRUE:
1389   case ISD::SETTRUE2:
1390   case ISD::SETUO:
1391   case ISD::SETO:
1392     break;
1393   case ISD::SETULE:
1394   case ISD::SETULT: {
1395     if (LHS == True)
1396       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1397     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1398   }
1399   case ISD::SETOLE:
1400   case ISD::SETOLT:
1401   case ISD::SETLE:
1402   case ISD::SETLT: {
1403     // Ordered. Assume ordered for undefined.
1404 
1405     // Only do this after legalization to avoid interfering with other combines
1406     // which might occur.
1407     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1408         !DCI.isCalledByLegalizer())
1409       return SDValue();
1410 
1411     // We need to permute the operands to get the correct NaN behavior. The
1412     // selected operand is the second one based on the failing compare with NaN,
1413     // so permute it based on the compare type the hardware uses.
1414     if (LHS == True)
1415       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1416     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1417   }
1418   case ISD::SETUGE:
1419   case ISD::SETUGT: {
1420     if (LHS == True)
1421       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1422     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1423   }
1424   case ISD::SETGT:
1425   case ISD::SETGE:
1426   case ISD::SETOGE:
1427   case ISD::SETOGT: {
1428     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1429         !DCI.isCalledByLegalizer())
1430       return SDValue();
1431 
1432     if (LHS == True)
1433       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1434     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1435   }
1436   case ISD::SETCC_INVALID:
1437     llvm_unreachable("Invalid setcc condcode!");
1438   }
1439   return SDValue();
1440 }
1441 
1442 std::pair<SDValue, SDValue>
1443 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1444   SDLoc SL(Op);
1445 
1446   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1447 
1448   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1449   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1450 
1451   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1452   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1453 
1454   return std::make_pair(Lo, Hi);
1455 }
1456 
1457 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1458   SDLoc SL(Op);
1459 
1460   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1461   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1462   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1463 }
1464 
1465 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1466   SDLoc SL(Op);
1467 
1468   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1469   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1470   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1471 }
1472 
1473 // Split a vector type into two parts. The first part is a power of two vector.
1474 // The second part is whatever is left over, and is a scalar if it would
1475 // otherwise be a 1-vector.
1476 std::pair<EVT, EVT>
1477 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1478   EVT LoVT, HiVT;
1479   EVT EltVT = VT.getVectorElementType();
1480   unsigned NumElts = VT.getVectorNumElements();
1481   unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1482   LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1483   HiVT = NumElts - LoNumElts == 1
1484              ? EltVT
1485              : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1486   return std::make_pair(LoVT, HiVT);
1487 }
1488 
1489 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1490 // scalar.
1491 std::pair<SDValue, SDValue>
1492 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1493                                   const EVT &LoVT, const EVT &HiVT,
1494                                   SelectionDAG &DAG) const {
1495   assert(LoVT.getVectorNumElements() +
1496                  (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1497              N.getValueType().getVectorNumElements() &&
1498          "More vector elements requested than available!");
1499   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1500                            DAG.getVectorIdxConstant(0, DL));
1501   SDValue Hi = DAG.getNode(
1502       HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1503       HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1504   return std::make_pair(Lo, Hi);
1505 }
1506 
1507 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1508                                               SelectionDAG &DAG) const {
1509   LoadSDNode *Load = cast<LoadSDNode>(Op);
1510   EVT VT = Op.getValueType();
1511   SDLoc SL(Op);
1512 
1513 
1514   // If this is a 2 element vector, we really want to scalarize and not create
1515   // weird 1 element vectors.
1516   if (VT.getVectorNumElements() == 2) {
1517     SDValue Ops[2];
1518     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1519     return DAG.getMergeValues(Ops, SL);
1520   }
1521 
1522   SDValue BasePtr = Load->getBasePtr();
1523   EVT MemVT = Load->getMemoryVT();
1524 
1525   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1526 
1527   EVT LoVT, HiVT;
1528   EVT LoMemVT, HiMemVT;
1529   SDValue Lo, Hi;
1530 
1531   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1532   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1533   std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1534 
1535   unsigned Size = LoMemVT.getStoreSize();
1536   unsigned BaseAlign = Load->getAlignment();
1537   unsigned HiAlign = MinAlign(BaseAlign, Size);
1538 
1539   SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1540                                   Load->getChain(), BasePtr, SrcValue, LoMemVT,
1541                                   BaseAlign, Load->getMemOperand()->getFlags());
1542   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
1543   SDValue HiLoad =
1544       DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1545                      HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1546                      HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1547 
1548   SDValue Join;
1549   if (LoVT == HiVT) {
1550     // This is the case that the vector is power of two so was evenly split.
1551     Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1552   } else {
1553     Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1554                        DAG.getVectorIdxConstant(0, SL));
1555     Join = DAG.getNode(
1556         HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1557         VT, Join, HiLoad,
1558         DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1559   }
1560 
1561   SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1562                                      LoLoad.getValue(1), HiLoad.getValue(1))};
1563 
1564   return DAG.getMergeValues(Ops, SL);
1565 }
1566 
1567 // Widen a vector load from vec3 to vec4.
1568 SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
1569                                               SelectionDAG &DAG) const {
1570   LoadSDNode *Load = cast<LoadSDNode>(Op);
1571   EVT VT = Op.getValueType();
1572   assert(VT.getVectorNumElements() == 3);
1573   SDValue BasePtr = Load->getBasePtr();
1574   EVT MemVT = Load->getMemoryVT();
1575   SDLoc SL(Op);
1576   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1577   unsigned BaseAlign = Load->getAlignment();
1578 
1579   EVT WideVT =
1580       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1581   EVT WideMemVT =
1582       EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1583   SDValue WideLoad = DAG.getExtLoad(
1584       Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1585       WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1586   return DAG.getMergeValues(
1587       {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1588                    DAG.getVectorIdxConstant(0, SL)),
1589        WideLoad.getValue(1)},
1590       SL);
1591 }
1592 
1593 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1594                                                SelectionDAG &DAG) const {
1595   StoreSDNode *Store = cast<StoreSDNode>(Op);
1596   SDValue Val = Store->getValue();
1597   EVT VT = Val.getValueType();
1598 
1599   // If this is a 2 element vector, we really want to scalarize and not create
1600   // weird 1 element vectors.
1601   if (VT.getVectorNumElements() == 2)
1602     return scalarizeVectorStore(Store, DAG);
1603 
1604   EVT MemVT = Store->getMemoryVT();
1605   SDValue Chain = Store->getChain();
1606   SDValue BasePtr = Store->getBasePtr();
1607   SDLoc SL(Op);
1608 
1609   EVT LoVT, HiVT;
1610   EVT LoMemVT, HiMemVT;
1611   SDValue Lo, Hi;
1612 
1613   std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1614   std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1615   std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1616 
1617   SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1618 
1619   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1620   unsigned BaseAlign = Store->getAlignment();
1621   unsigned Size = LoMemVT.getStoreSize();
1622   unsigned HiAlign = MinAlign(BaseAlign, Size);
1623 
1624   SDValue LoStore =
1625       DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1626                         Store->getMemOperand()->getFlags());
1627   SDValue HiStore =
1628       DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1629                         HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1630 
1631   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1632 }
1633 
1634 // This is a shortcut for integer division because we have fast i32<->f32
1635 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1636 // float is enough to accurately represent up to a 24-bit signed integer.
1637 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1638                                             bool Sign) const {
1639   SDLoc DL(Op);
1640   EVT VT = Op.getValueType();
1641   SDValue LHS = Op.getOperand(0);
1642   SDValue RHS = Op.getOperand(1);
1643   MVT IntVT = MVT::i32;
1644   MVT FltVT = MVT::f32;
1645 
1646   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1647   if (LHSSignBits < 9)
1648     return SDValue();
1649 
1650   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1651   if (RHSSignBits < 9)
1652     return SDValue();
1653 
1654   unsigned BitSize = VT.getSizeInBits();
1655   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1656   unsigned DivBits = BitSize - SignBits;
1657   if (Sign)
1658     ++DivBits;
1659 
1660   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1661   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1662 
1663   SDValue jq = DAG.getConstant(1, DL, IntVT);
1664 
1665   if (Sign) {
1666     // char|short jq = ia ^ ib;
1667     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1668 
1669     // jq = jq >> (bitsize - 2)
1670     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1671                      DAG.getConstant(BitSize - 2, DL, VT));
1672 
1673     // jq = jq | 0x1
1674     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1675   }
1676 
1677   // int ia = (int)LHS;
1678   SDValue ia = LHS;
1679 
1680   // int ib, (int)RHS;
1681   SDValue ib = RHS;
1682 
1683   // float fa = (float)ia;
1684   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1685 
1686   // float fb = (float)ib;
1687   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1688 
1689   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1690                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1691 
1692   // fq = trunc(fq);
1693   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1694 
1695   // float fqneg = -fq;
1696   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1697 
1698   MachineFunction &MF = DAG.getMachineFunction();
1699   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1700 
1701   // float fr = mad(fqneg, fb, fa);
1702   unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
1703                     (unsigned)ISD::FMA :
1704                     !MFI->getMode().allFP32Denormals() ?
1705                     (unsigned)ISD::FMAD :
1706                     (unsigned)AMDGPUISD::FMAD_FTZ;
1707   SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1708 
1709   // int iq = (int)fq;
1710   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1711 
1712   // fr = fabs(fr);
1713   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1714 
1715   // fb = fabs(fb);
1716   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1717 
1718   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1719 
1720   // int cv = fr >= fb;
1721   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1722 
1723   // jq = (cv ? jq : 0);
1724   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1725 
1726   // dst = iq + jq;
1727   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1728 
1729   // Rem needs compensation, it's easier to recompute it
1730   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1731   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1732 
1733   // Truncate to number of bits this divide really is.
1734   if (Sign) {
1735     SDValue InRegSize
1736       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1737     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1738     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1739   } else {
1740     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1741     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1742     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1743   }
1744 
1745   return DAG.getMergeValues({ Div, Rem }, DL);
1746 }
1747 
1748 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1749                                       SelectionDAG &DAG,
1750                                       SmallVectorImpl<SDValue> &Results) const {
1751   SDLoc DL(Op);
1752   EVT VT = Op.getValueType();
1753 
1754   assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1755 
1756   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1757 
1758   SDValue One = DAG.getConstant(1, DL, HalfVT);
1759   SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1760 
1761   //HiLo split
1762   SDValue LHS = Op.getOperand(0);
1763   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1764   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1765 
1766   SDValue RHS = Op.getOperand(1);
1767   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1768   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1769 
1770   if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1771       DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1772 
1773     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1774                               LHS_Lo, RHS_Lo);
1775 
1776     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1777     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1778 
1779     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1780     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1781     return;
1782   }
1783 
1784   if (isTypeLegal(MVT::i64)) {
1785     MachineFunction &MF = DAG.getMachineFunction();
1786     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1787 
1788     // Compute denominator reciprocal.
1789     unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1790                     (unsigned)ISD::FMA :
1791                     !MFI->getMode().allFP32Denormals() ?
1792                     (unsigned)ISD::FMAD :
1793                     (unsigned)AMDGPUISD::FMAD_FTZ;
1794 
1795     SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1796     SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1797     SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1798       DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1799       Cvt_Lo);
1800     SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1801     SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1802       DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1803     SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1804       DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1805     SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1806     SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1807       DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1808       Mul1);
1809     SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1810     SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1811     SDValue Rcp64 = DAG.getBitcast(VT,
1812                         DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1813 
1814     SDValue Zero64 = DAG.getConstant(0, DL, VT);
1815     SDValue One64  = DAG.getConstant(1, DL, VT);
1816     SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1817     SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1818 
1819     SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1820     SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1821     SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1822     SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1823                                     Zero);
1824     SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1825                                     One);
1826 
1827     SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1828                                   Mulhi1_Lo, Zero1);
1829     SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1830                                   Mulhi1_Hi, Add1_Lo.getValue(1));
1831     SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1832     SDValue Add1 = DAG.getBitcast(VT,
1833                         DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1834 
1835     SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1836     SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1837     SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1838                                     Zero);
1839     SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1840                                     One);
1841 
1842     SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1843                                   Mulhi2_Lo, Zero1);
1844     SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1845                                    Mulhi2_Hi, Add1_Lo.getValue(1));
1846     SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1847                                   Zero, Add2_Lo.getValue(1));
1848     SDValue Add2 = DAG.getBitcast(VT,
1849                         DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1850     SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1851 
1852     SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1853 
1854     SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1855     SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1856     SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1857                                   Mul3_Lo, Zero1);
1858     SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1859                                   Mul3_Hi, Sub1_Lo.getValue(1));
1860     SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1861     SDValue Sub1 = DAG.getBitcast(VT,
1862                         DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1863 
1864     SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1865     SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1866                                  ISD::SETUGE);
1867     SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1868                                  ISD::SETUGE);
1869     SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1870 
1871     // TODO: Here and below portions of the code can be enclosed into if/endif.
1872     // Currently control flow is unconditional and we have 4 selects after
1873     // potential endif to substitute PHIs.
1874 
1875     // if C3 != 0 ...
1876     SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1877                                   RHS_Lo, Zero1);
1878     SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1879                                   RHS_Hi, Sub1_Lo.getValue(1));
1880     SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1881                                   Zero, Sub2_Lo.getValue(1));
1882     SDValue Sub2 = DAG.getBitcast(VT,
1883                         DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1884 
1885     SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1886 
1887     SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1888                                  ISD::SETUGE);
1889     SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1890                                  ISD::SETUGE);
1891     SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1892 
1893     // if (C6 != 0)
1894     SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1895 
1896     SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1897                                   RHS_Lo, Zero1);
1898     SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1899                                   RHS_Hi, Sub2_Lo.getValue(1));
1900     SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1901                                   Zero, Sub3_Lo.getValue(1));
1902     SDValue Sub3 = DAG.getBitcast(VT,
1903                         DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1904 
1905     // endif C6
1906     // endif C3
1907 
1908     SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1909     SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1910 
1911     SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1912     SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1913 
1914     Results.push_back(Div);
1915     Results.push_back(Rem);
1916 
1917     return;
1918   }
1919 
1920   // r600 expandion.
1921   // Get Speculative values
1922   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1923   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1924 
1925   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1926   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1927   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1928 
1929   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1930   SDValue DIV_Lo = Zero;
1931 
1932   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1933 
1934   for (unsigned i = 0; i < halfBitWidth; ++i) {
1935     const unsigned bitPos = halfBitWidth - i - 1;
1936     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1937     // Get value of high bit
1938     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1939     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1940     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1941 
1942     // Shift
1943     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1944     // Add LHS high bit
1945     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1946 
1947     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1948     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
1949 
1950     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1951 
1952     // Update REM
1953     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1954     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1955   }
1956 
1957   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1958   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1959   Results.push_back(DIV);
1960   Results.push_back(REM);
1961 }
1962 
1963 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1964                                            SelectionDAG &DAG) const {
1965   SDLoc DL(Op);
1966   EVT VT = Op.getValueType();
1967 
1968   if (VT == MVT::i64) {
1969     SmallVector<SDValue, 2> Results;
1970     LowerUDIVREM64(Op, DAG, Results);
1971     return DAG.getMergeValues(Results, DL);
1972   }
1973 
1974   if (VT == MVT::i32) {
1975     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1976       return Res;
1977   }
1978 
1979   SDValue X = Op.getOperand(0);
1980   SDValue Y = Op.getOperand(1);
1981 
1982   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
1983   // algorithm used here.
1984 
1985   // Initial estimate of inv(y).
1986   SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
1987 
1988   // One round of UNR.
1989   SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
1990   SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
1991   Z = DAG.getNode(ISD::ADD, DL, VT, Z,
1992                   DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
1993 
1994   // Quotient/remainder estimate.
1995   SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
1996   SDValue R =
1997       DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
1998 
1999   // First quotient/remainder refinement.
2000   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2001   SDValue One = DAG.getConstant(1, DL, VT);
2002   SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2003   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2004                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2005   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2006                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2007 
2008   // Second quotient/remainder refinement.
2009   Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2010   Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2011                   DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2012   R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2013                   DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2014 
2015   return DAG.getMergeValues({Q, R}, DL);
2016 }
2017 
2018 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2019                                            SelectionDAG &DAG) const {
2020   SDLoc DL(Op);
2021   EVT VT = Op.getValueType();
2022 
2023   SDValue LHS = Op.getOperand(0);
2024   SDValue RHS = Op.getOperand(1);
2025 
2026   SDValue Zero = DAG.getConstant(0, DL, VT);
2027   SDValue NegOne = DAG.getConstant(-1, DL, VT);
2028 
2029   if (VT == MVT::i32) {
2030     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2031       return Res;
2032   }
2033 
2034   if (VT == MVT::i64 &&
2035       DAG.ComputeNumSignBits(LHS) > 32 &&
2036       DAG.ComputeNumSignBits(RHS) > 32) {
2037     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2038 
2039     //HiLo split
2040     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2041     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2042     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2043                                  LHS_Lo, RHS_Lo);
2044     SDValue Res[2] = {
2045       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2046       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2047     };
2048     return DAG.getMergeValues(Res, DL);
2049   }
2050 
2051   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2052   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2053   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2054   SDValue RSign = LHSign; // Remainder sign is the same as LHS
2055 
2056   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2057   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2058 
2059   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2060   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2061 
2062   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2063   SDValue Rem = Div.getValue(1);
2064 
2065   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2066   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2067 
2068   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2069   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2070 
2071   SDValue Res[2] = {
2072     Div,
2073     Rem
2074   };
2075   return DAG.getMergeValues(Res, DL);
2076 }
2077 
2078 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2079 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2080   SDLoc SL(Op);
2081   EVT VT = Op.getValueType();
2082   SDValue X = Op.getOperand(0);
2083   SDValue Y = Op.getOperand(1);
2084 
2085   // TODO: Should this propagate fast-math-flags?
2086 
2087   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
2088   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
2089   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
2090 
2091   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
2092 }
2093 
2094 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2095   SDLoc SL(Op);
2096   SDValue Src = Op.getOperand(0);
2097 
2098   // result = trunc(src)
2099   // if (src > 0.0 && src != result)
2100   //   result += 1.0
2101 
2102   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2103 
2104   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2105   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2106 
2107   EVT SetCCVT =
2108       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2109 
2110   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2111   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2112   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2113 
2114   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2115   // TODO: Should this propagate fast-math-flags?
2116   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2117 }
2118 
2119 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2120                                   SelectionDAG &DAG) {
2121   const unsigned FractBits = 52;
2122   const unsigned ExpBits = 11;
2123 
2124   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2125                                 Hi,
2126                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2127                                 DAG.getConstant(ExpBits, SL, MVT::i32));
2128   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2129                             DAG.getConstant(1023, SL, MVT::i32));
2130 
2131   return Exp;
2132 }
2133 
2134 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2135   SDLoc SL(Op);
2136   SDValue Src = Op.getOperand(0);
2137 
2138   assert(Op.getValueType() == MVT::f64);
2139 
2140   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2141   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2142 
2143   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2144 
2145   // Extract the upper half, since this is where we will find the sign and
2146   // exponent.
2147   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2148 
2149   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2150 
2151   const unsigned FractBits = 52;
2152 
2153   // Extract the sign bit.
2154   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2155   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2156 
2157   // Extend back to 64-bits.
2158   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2159   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2160 
2161   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2162   const SDValue FractMask
2163     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2164 
2165   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2166   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2167   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2168 
2169   EVT SetCCVT =
2170       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2171 
2172   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2173 
2174   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2175   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2176 
2177   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2178   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2179 
2180   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2181 }
2182 
2183 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2184   SDLoc SL(Op);
2185   SDValue Src = Op.getOperand(0);
2186 
2187   assert(Op.getValueType() == MVT::f64);
2188 
2189   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2190   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2191   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2192 
2193   // TODO: Should this propagate fast-math-flags?
2194 
2195   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2196   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2197 
2198   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2199 
2200   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2201   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2202 
2203   EVT SetCCVT =
2204       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2205   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2206 
2207   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2208 }
2209 
2210 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2211   // FNEARBYINT and FRINT are the same, except in their handling of FP
2212   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2213   // rint, so just treat them as equivalent.
2214   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2215 }
2216 
2217 // XXX - May require not supporting f32 denormals?
2218 
2219 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2220 // compare and vselect end up producing worse code than scalarizing the whole
2221 // operation.
2222 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2223   SDLoc SL(Op);
2224   SDValue X = Op.getOperand(0);
2225   EVT VT = Op.getValueType();
2226 
2227   SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2228 
2229   // TODO: Should this propagate fast-math-flags?
2230 
2231   SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2232 
2233   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2234 
2235   const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2236   const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2237   const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2238 
2239   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2240 
2241   EVT SetCCVT =
2242       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2243 
2244   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2245 
2246   SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2247 
2248   return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2249 }
2250 
2251 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2252   SDLoc SL(Op);
2253   SDValue Src = Op.getOperand(0);
2254 
2255   // result = trunc(src);
2256   // if (src < 0.0 && src != result)
2257   //   result += -1.0.
2258 
2259   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2260 
2261   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2262   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2263 
2264   EVT SetCCVT =
2265       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2266 
2267   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2268   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2269   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2270 
2271   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2272   // TODO: Should this propagate fast-math-flags?
2273   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2274 }
2275 
2276 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2277                                         double Log2BaseInverted) const {
2278   EVT VT = Op.getValueType();
2279 
2280   SDLoc SL(Op);
2281   SDValue Operand = Op.getOperand(0);
2282   SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2283   SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2284 
2285   return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2286 }
2287 
2288 // exp2(M_LOG2E_F * f);
2289 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2290   EVT VT = Op.getValueType();
2291   SDLoc SL(Op);
2292   SDValue Src = Op.getOperand(0);
2293 
2294   const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2295   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2296   return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2297 }
2298 
2299 static bool isCtlzOpc(unsigned Opc) {
2300   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2301 }
2302 
2303 static bool isCttzOpc(unsigned Opc) {
2304   return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2305 }
2306 
2307 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2308   SDLoc SL(Op);
2309   SDValue Src = Op.getOperand(0);
2310   bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2311                    Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2312 
2313   unsigned ISDOpc, NewOpc;
2314   if (isCtlzOpc(Op.getOpcode())) {
2315     ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2316     NewOpc = AMDGPUISD::FFBH_U32;
2317   } else if (isCttzOpc(Op.getOpcode())) {
2318     ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2319     NewOpc = AMDGPUISD::FFBL_B32;
2320   } else
2321     llvm_unreachable("Unexpected OPCode!!!");
2322 
2323 
2324   if (ZeroUndef && Src.getValueType() == MVT::i32)
2325     return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2326 
2327   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2328 
2329   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2330   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2331 
2332   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2333   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2334 
2335   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2336                                    *DAG.getContext(), MVT::i32);
2337 
2338   SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2339   SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2340 
2341   SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2342   SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2343 
2344   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2345   SDValue Add, NewOpr;
2346   if (isCtlzOpc(Op.getOpcode())) {
2347     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2348     // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2349     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2350   } else {
2351     Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2352     // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2353     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2354   }
2355 
2356   if (!ZeroUndef) {
2357     // Test if the full 64-bit input is zero.
2358 
2359     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2360     // which we probably don't want.
2361     SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2362     SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2363     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2364 
2365     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2366     // with the same cycles, otherwise it is slower.
2367     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2368     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2369 
2370     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2371 
2372     // The instruction returns -1 for 0 input, but the defined intrinsic
2373     // behavior is to return the number of bits.
2374     NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2375                          SrcIsZero, Bits32, NewOpr);
2376   }
2377 
2378   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2379 }
2380 
2381 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2382                                                bool Signed) const {
2383   // Unsigned
2384   // cul2f(ulong u)
2385   //{
2386   //  uint lz = clz(u);
2387   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
2388   //  u = (u << lz) & 0x7fffffffffffffffUL;
2389   //  ulong t = u & 0xffffffffffUL;
2390   //  uint v = (e << 23) | (uint)(u >> 40);
2391   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2392   //  return as_float(v + r);
2393   //}
2394   // Signed
2395   // cl2f(long l)
2396   //{
2397   //  long s = l >> 63;
2398   //  float r = cul2f((l + s) ^ s);
2399   //  return s ? -r : r;
2400   //}
2401 
2402   SDLoc SL(Op);
2403   SDValue Src = Op.getOperand(0);
2404   SDValue L = Src;
2405 
2406   SDValue S;
2407   if (Signed) {
2408     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2409     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2410 
2411     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2412     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2413   }
2414 
2415   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2416                                    *DAG.getContext(), MVT::f32);
2417 
2418 
2419   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2420   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2421   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2422   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2423 
2424   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2425   SDValue E = DAG.getSelect(SL, MVT::i32,
2426     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2427     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2428     ZeroI32);
2429 
2430   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2431     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2432     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2433 
2434   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2435                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2436 
2437   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2438                              U, DAG.getConstant(40, SL, MVT::i64));
2439 
2440   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2441     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2442     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
2443 
2444   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2445   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2446   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2447 
2448   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2449 
2450   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2451 
2452   SDValue R = DAG.getSelect(SL, MVT::i32,
2453     RCmp,
2454     One,
2455     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2456   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2457   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2458 
2459   if (!Signed)
2460     return R;
2461 
2462   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2463   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2464 }
2465 
2466 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2467                                                bool Signed) const {
2468   SDLoc SL(Op);
2469   SDValue Src = Op.getOperand(0);
2470 
2471   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2472 
2473   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2474                            DAG.getConstant(0, SL, MVT::i32));
2475   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2476                            DAG.getConstant(1, SL, MVT::i32));
2477 
2478   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2479                               SL, MVT::f64, Hi);
2480 
2481   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2482 
2483   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2484                               DAG.getConstant(32, SL, MVT::i32));
2485   // TODO: Should this propagate fast-math-flags?
2486   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2487 }
2488 
2489 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2490                                                SelectionDAG &DAG) const {
2491   // TODO: Factor out code common with LowerSINT_TO_FP.
2492   EVT DestVT = Op.getValueType();
2493   SDValue Src = Op.getOperand(0);
2494   EVT SrcVT = Src.getValueType();
2495 
2496   if (SrcVT == MVT::i16) {
2497     if (DestVT == MVT::f16)
2498       return Op;
2499     SDLoc DL(Op);
2500 
2501     // Promote src to i32
2502     SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2503     return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2504   }
2505 
2506   assert(SrcVT == MVT::i64 && "operation should be legal");
2507 
2508   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2509     SDLoc DL(Op);
2510 
2511     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2512     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2513     SDValue FPRound =
2514         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2515 
2516     return FPRound;
2517   }
2518 
2519   if (DestVT == MVT::f32)
2520     return LowerINT_TO_FP32(Op, DAG, false);
2521 
2522   assert(DestVT == MVT::f64);
2523   return LowerINT_TO_FP64(Op, DAG, false);
2524 }
2525 
2526 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2527                                               SelectionDAG &DAG) const {
2528   EVT DestVT = Op.getValueType();
2529 
2530   SDValue Src = Op.getOperand(0);
2531   EVT SrcVT = Src.getValueType();
2532 
2533   if (SrcVT == MVT::i16) {
2534     if (DestVT == MVT::f16)
2535       return Op;
2536 
2537     SDLoc DL(Op);
2538     // Promote src to i32
2539     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2540     return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2541   }
2542 
2543   assert(SrcVT == MVT::i64 && "operation should be legal");
2544 
2545   // TODO: Factor out code common with LowerUINT_TO_FP.
2546 
2547   if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2548     SDLoc DL(Op);
2549     SDValue Src = Op.getOperand(0);
2550 
2551     SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2552     SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2553     SDValue FPRound =
2554         DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2555 
2556     return FPRound;
2557   }
2558 
2559   if (DestVT == MVT::f32)
2560     return LowerINT_TO_FP32(Op, DAG, true);
2561 
2562   assert(DestVT == MVT::f64);
2563   return LowerINT_TO_FP64(Op, DAG, true);
2564 }
2565 
2566 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2567                                                bool Signed) const {
2568   SDLoc SL(Op);
2569 
2570   SDValue Src = Op.getOperand(0);
2571 
2572   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2573 
2574   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2575                                  MVT::f64);
2576   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2577                                  MVT::f64);
2578   // TODO: Should this propagate fast-math-flags?
2579   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2580 
2581   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2582 
2583 
2584   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2585 
2586   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2587                            MVT::i32, FloorMul);
2588   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2589 
2590   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2591 
2592   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2593 }
2594 
2595 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2596   SDLoc DL(Op);
2597   SDValue N0 = Op.getOperand(0);
2598 
2599   // Convert to target node to get known bits
2600   if (N0.getValueType() == MVT::f32)
2601     return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2602 
2603   if (getTargetMachine().Options.UnsafeFPMath) {
2604     // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2605     return SDValue();
2606   }
2607 
2608   assert(N0.getSimpleValueType() == MVT::f64);
2609 
2610   // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2611   const unsigned ExpMask = 0x7ff;
2612   const unsigned ExpBiasf64 = 1023;
2613   const unsigned ExpBiasf16 = 15;
2614   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2615   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2616   SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2617   SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2618                            DAG.getConstant(32, DL, MVT::i64));
2619   UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2620   U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2621   SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2622                           DAG.getConstant(20, DL, MVT::i64));
2623   E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2624                   DAG.getConstant(ExpMask, DL, MVT::i32));
2625   // Subtract the fp64 exponent bias (1023) to get the real exponent and
2626   // add the f16 bias (15) to get the biased exponent for the f16 format.
2627   E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2628                   DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2629 
2630   SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2631                           DAG.getConstant(8, DL, MVT::i32));
2632   M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2633                   DAG.getConstant(0xffe, DL, MVT::i32));
2634 
2635   SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2636                                   DAG.getConstant(0x1ff, DL, MVT::i32));
2637   MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2638 
2639   SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2640   M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2641 
2642   // (M != 0 ? 0x0200 : 0) | 0x7c00;
2643   SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2644       DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2645                       Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2646 
2647   // N = M | (E << 12);
2648   SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2649       DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2650                   DAG.getConstant(12, DL, MVT::i32)));
2651 
2652   // B = clamp(1-E, 0, 13);
2653   SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2654                                   One, E);
2655   SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2656   B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2657                   DAG.getConstant(13, DL, MVT::i32));
2658 
2659   SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2660                                    DAG.getConstant(0x1000, DL, MVT::i32));
2661 
2662   SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2663   SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2664   SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2665   D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2666 
2667   SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2668   SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2669                               DAG.getConstant(0x7, DL, MVT::i32));
2670   V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2671                   DAG.getConstant(2, DL, MVT::i32));
2672   SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2673                                One, Zero, ISD::SETEQ);
2674   SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2675                                One, Zero, ISD::SETGT);
2676   V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2677   V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2678 
2679   V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2680                       DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2681   V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2682                       I, V, ISD::SETEQ);
2683 
2684   // Extract the sign bit.
2685   SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2686                             DAG.getConstant(16, DL, MVT::i32));
2687   Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2688                      DAG.getConstant(0x8000, DL, MVT::i32));
2689 
2690   V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2691   return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2692 }
2693 
2694 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2695                                               SelectionDAG &DAG) const {
2696   SDValue Src = Op.getOperand(0);
2697 
2698   // TODO: Factor out code common with LowerFP_TO_UINT.
2699 
2700   EVT SrcVT = Src.getValueType();
2701   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2702     SDLoc DL(Op);
2703 
2704     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2705     SDValue FpToInt32 =
2706         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2707 
2708     return FpToInt32;
2709   }
2710 
2711   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2712     return LowerFP64_TO_INT(Op, DAG, true);
2713 
2714   return SDValue();
2715 }
2716 
2717 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2718                                               SelectionDAG &DAG) const {
2719   SDValue Src = Op.getOperand(0);
2720 
2721   // TODO: Factor out code common with LowerFP_TO_SINT.
2722 
2723   EVT SrcVT = Src.getValueType();
2724   if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
2725     SDLoc DL(Op);
2726 
2727     SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
2728     SDValue FpToInt32 =
2729         DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
2730 
2731     return FpToInt32;
2732   }
2733 
2734   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2735     return LowerFP64_TO_INT(Op, DAG, false);
2736 
2737   return SDValue();
2738 }
2739 
2740 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2741                                                      SelectionDAG &DAG) const {
2742   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2743   MVT VT = Op.getSimpleValueType();
2744   MVT ScalarVT = VT.getScalarType();
2745 
2746   assert(VT.isVector());
2747 
2748   SDValue Src = Op.getOperand(0);
2749   SDLoc DL(Op);
2750 
2751   // TODO: Don't scalarize on Evergreen?
2752   unsigned NElts = VT.getVectorNumElements();
2753   SmallVector<SDValue, 8> Args;
2754   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2755 
2756   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2757   for (unsigned I = 0; I < NElts; ++I)
2758     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2759 
2760   return DAG.getBuildVector(VT, DL, Args);
2761 }
2762 
2763 //===----------------------------------------------------------------------===//
2764 // Custom DAG optimizations
2765 //===----------------------------------------------------------------------===//
2766 
2767 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2768   return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2769 }
2770 
2771 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2772   EVT VT = Op.getValueType();
2773   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2774                                      // as unsigned 24-bit values.
2775     AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2776 }
2777 
2778 static SDValue simplifyI24(SDNode *Node24,
2779                            TargetLowering::DAGCombinerInfo &DCI) {
2780   SelectionDAG &DAG = DCI.DAG;
2781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2782   bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2783 
2784   SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2785   SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2786   unsigned NewOpcode = Node24->getOpcode();
2787   if (IsIntrin) {
2788     unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2789     NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2790       AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2791   }
2792 
2793   APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2794 
2795   // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2796   // the operands to have other uses, but will only perform simplifications that
2797   // involve bypassing some nodes for this user.
2798   SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2799   SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2800   if (DemandedLHS || DemandedRHS)
2801     return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2802                        DemandedLHS ? DemandedLHS : LHS,
2803                        DemandedRHS ? DemandedRHS : RHS);
2804 
2805   // Now try SimplifyDemandedBits which can simplify the nodes used by our
2806   // operands if this node is the only user.
2807   if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2808     return SDValue(Node24, 0);
2809   if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2810     return SDValue(Node24, 0);
2811 
2812   return SDValue();
2813 }
2814 
2815 template <typename IntTy>
2816 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2817                                uint32_t Width, const SDLoc &DL) {
2818   if (Width + Offset < 32) {
2819     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2820     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2821     return DAG.getConstant(Result, DL, MVT::i32);
2822   }
2823 
2824   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2825 }
2826 
2827 static bool hasVolatileUser(SDNode *Val) {
2828   for (SDNode *U : Val->uses()) {
2829     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2830       if (M->isVolatile())
2831         return true;
2832     }
2833   }
2834 
2835   return false;
2836 }
2837 
2838 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2839   // i32 vectors are the canonical memory type.
2840   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2841     return false;
2842 
2843   if (!VT.isByteSized())
2844     return false;
2845 
2846   unsigned Size = VT.getStoreSize();
2847 
2848   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2849     return false;
2850 
2851   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2852     return false;
2853 
2854   return true;
2855 }
2856 
2857 // Replace load of an illegal type with a store of a bitcast to a friendlier
2858 // type.
2859 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2860                                                  DAGCombinerInfo &DCI) const {
2861   if (!DCI.isBeforeLegalize())
2862     return SDValue();
2863 
2864   LoadSDNode *LN = cast<LoadSDNode>(N);
2865   if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2866     return SDValue();
2867 
2868   SDLoc SL(N);
2869   SelectionDAG &DAG = DCI.DAG;
2870   EVT VT = LN->getMemoryVT();
2871 
2872   unsigned Size = VT.getStoreSize();
2873   Align Alignment = LN->getAlign();
2874   if (Alignment < Size && isTypeLegal(VT)) {
2875     bool IsFast;
2876     unsigned AS = LN->getAddressSpace();
2877 
2878     // Expand unaligned loads earlier than legalization. Due to visitation order
2879     // problems during legalization, the emitted instructions to pack and unpack
2880     // the bytes again are not eliminated in the case of an unaligned copy.
2881     if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(),
2882                                         LN->getMemOperand()->getFlags(),
2883                                         &IsFast)) {
2884       SDValue Ops[2];
2885 
2886       if (VT.isVector())
2887         std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2888       else
2889         std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2890 
2891       return DAG.getMergeValues(Ops, SDLoc(N));
2892     }
2893 
2894     if (!IsFast)
2895       return SDValue();
2896   }
2897 
2898   if (!shouldCombineMemoryType(VT))
2899     return SDValue();
2900 
2901   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2902 
2903   SDValue NewLoad
2904     = DAG.getLoad(NewVT, SL, LN->getChain(),
2905                   LN->getBasePtr(), LN->getMemOperand());
2906 
2907   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2908   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2909   return SDValue(N, 0);
2910 }
2911 
2912 // Replace store of an illegal type with a store of a bitcast to a friendlier
2913 // type.
2914 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2915                                                   DAGCombinerInfo &DCI) const {
2916   if (!DCI.isBeforeLegalize())
2917     return SDValue();
2918 
2919   StoreSDNode *SN = cast<StoreSDNode>(N);
2920   if (!SN->isSimple() || !ISD::isNormalStore(SN))
2921     return SDValue();
2922 
2923   EVT VT = SN->getMemoryVT();
2924   unsigned Size = VT.getStoreSize();
2925 
2926   SDLoc SL(N);
2927   SelectionDAG &DAG = DCI.DAG;
2928   Align Alignment = SN->getAlign();
2929   if (Alignment < Size && isTypeLegal(VT)) {
2930     bool IsFast;
2931     unsigned AS = SN->getAddressSpace();
2932 
2933     // Expand unaligned stores earlier than legalization. Due to visitation
2934     // order problems during legalization, the emitted instructions to pack and
2935     // unpack the bytes again are not eliminated in the case of an unaligned
2936     // copy.
2937     if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(),
2938                                         SN->getMemOperand()->getFlags(),
2939                                         &IsFast)) {
2940       if (VT.isVector())
2941         return scalarizeVectorStore(SN, DAG);
2942 
2943       return expandUnalignedStore(SN, DAG);
2944     }
2945 
2946     if (!IsFast)
2947       return SDValue();
2948   }
2949 
2950   if (!shouldCombineMemoryType(VT))
2951     return SDValue();
2952 
2953   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2954   SDValue Val = SN->getValue();
2955 
2956   //DCI.AddToWorklist(Val.getNode());
2957 
2958   bool OtherUses = !Val.hasOneUse();
2959   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2960   if (OtherUses) {
2961     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2962     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2963   }
2964 
2965   return DAG.getStore(SN->getChain(), SL, CastVal,
2966                       SN->getBasePtr(), SN->getMemOperand());
2967 }
2968 
2969 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
2970 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
2971 // issues.
2972 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
2973                                                         DAGCombinerInfo &DCI) const {
2974   SelectionDAG &DAG = DCI.DAG;
2975   SDValue N0 = N->getOperand(0);
2976 
2977   // (vt2 (assertzext (truncate vt0:x), vt1)) ->
2978   //     (vt2 (truncate (assertzext vt0:x, vt1)))
2979   if (N0.getOpcode() == ISD::TRUNCATE) {
2980     SDValue N1 = N->getOperand(1);
2981     EVT ExtVT = cast<VTSDNode>(N1)->getVT();
2982     SDLoc SL(N);
2983 
2984     SDValue Src = N0.getOperand(0);
2985     EVT SrcVT = Src.getValueType();
2986     if (SrcVT.bitsGE(ExtVT)) {
2987       SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
2988       return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
2989     }
2990   }
2991 
2992   return SDValue();
2993 }
2994 
2995 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
2996   SDNode *N, DAGCombinerInfo &DCI) const {
2997   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2998   switch (IID) {
2999   case Intrinsic::amdgcn_mul_i24:
3000   case Intrinsic::amdgcn_mul_u24:
3001     return simplifyI24(N, DCI);
3002   case Intrinsic::amdgcn_fract:
3003   case Intrinsic::amdgcn_rsq:
3004   case Intrinsic::amdgcn_rcp_legacy:
3005   case Intrinsic::amdgcn_rsq_legacy:
3006   case Intrinsic::amdgcn_rsq_clamp:
3007   case Intrinsic::amdgcn_ldexp: {
3008     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3009     SDValue Src = N->getOperand(1);
3010     return Src.isUndef() ? Src : SDValue();
3011   }
3012   default:
3013     return SDValue();
3014   }
3015 }
3016 
3017 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3018 /// binary operation \p Opc to it with the corresponding constant operands.
3019 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3020   DAGCombinerInfo &DCI, const SDLoc &SL,
3021   unsigned Opc, SDValue LHS,
3022   uint32_t ValLo, uint32_t ValHi) const {
3023   SelectionDAG &DAG = DCI.DAG;
3024   SDValue Lo, Hi;
3025   std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3026 
3027   SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3028   SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3029 
3030   SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3031   SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3032 
3033   // Re-visit the ands. It's possible we eliminated one of them and it could
3034   // simplify the vector.
3035   DCI.AddToWorklist(Lo.getNode());
3036   DCI.AddToWorklist(Hi.getNode());
3037 
3038   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3039   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3040 }
3041 
3042 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3043                                                 DAGCombinerInfo &DCI) const {
3044   EVT VT = N->getValueType(0);
3045 
3046   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3047   if (!RHS)
3048     return SDValue();
3049 
3050   SDValue LHS = N->getOperand(0);
3051   unsigned RHSVal = RHS->getZExtValue();
3052   if (!RHSVal)
3053     return LHS;
3054 
3055   SDLoc SL(N);
3056   SelectionDAG &DAG = DCI.DAG;
3057 
3058   switch (LHS->getOpcode()) {
3059   default:
3060     break;
3061   case ISD::ZERO_EXTEND:
3062   case ISD::SIGN_EXTEND:
3063   case ISD::ANY_EXTEND: {
3064     SDValue X = LHS->getOperand(0);
3065 
3066     if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3067         isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3068       // Prefer build_vector as the canonical form if packed types are legal.
3069       // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3070       SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3071        { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3072       return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3073     }
3074 
3075     // shl (ext x) => zext (shl x), if shift does not overflow int
3076     if (VT != MVT::i64)
3077       break;
3078     KnownBits Known = DAG.computeKnownBits(X);
3079     unsigned LZ = Known.countMinLeadingZeros();
3080     if (LZ < RHSVal)
3081       break;
3082     EVT XVT = X.getValueType();
3083     SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3084     return DAG.getZExtOrTrunc(Shl, SL, VT);
3085   }
3086   }
3087 
3088   if (VT != MVT::i64)
3089     return SDValue();
3090 
3091   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3092 
3093   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3094   // common case, splitting this into a move and a 32-bit shift is faster and
3095   // the same code size.
3096   if (RHSVal < 32)
3097     return SDValue();
3098 
3099   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3100 
3101   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3102   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3103 
3104   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3105 
3106   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3107   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3108 }
3109 
3110 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3111                                                 DAGCombinerInfo &DCI) const {
3112   if (N->getValueType(0) != MVT::i64)
3113     return SDValue();
3114 
3115   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3116   if (!RHS)
3117     return SDValue();
3118 
3119   SelectionDAG &DAG = DCI.DAG;
3120   SDLoc SL(N);
3121   unsigned RHSVal = RHS->getZExtValue();
3122 
3123   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3124   if (RHSVal == 32) {
3125     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3126     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3127                                    DAG.getConstant(31, SL, MVT::i32));
3128 
3129     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3130     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3131   }
3132 
3133   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3134   if (RHSVal == 63) {
3135     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3136     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3137                                    DAG.getConstant(31, SL, MVT::i32));
3138     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3139     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3140   }
3141 
3142   return SDValue();
3143 }
3144 
3145 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3146                                                 DAGCombinerInfo &DCI) const {
3147   auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3148   if (!RHS)
3149     return SDValue();
3150 
3151   EVT VT = N->getValueType(0);
3152   SDValue LHS = N->getOperand(0);
3153   unsigned ShiftAmt = RHS->getZExtValue();
3154   SelectionDAG &DAG = DCI.DAG;
3155   SDLoc SL(N);
3156 
3157   // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3158   // this improves the ability to match BFE patterns in isel.
3159   if (LHS.getOpcode() == ISD::AND) {
3160     if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3161       if (Mask->getAPIntValue().isShiftedMask() &&
3162           Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3163         return DAG.getNode(
3164             ISD::AND, SL, VT,
3165             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3166             DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3167       }
3168     }
3169   }
3170 
3171   if (VT != MVT::i64)
3172     return SDValue();
3173 
3174   if (ShiftAmt < 32)
3175     return SDValue();
3176 
3177   // srl i64:x, C for C >= 32
3178   // =>
3179   //   build_pair (srl hi_32(x), C - 32), 0
3180   SDValue One = DAG.getConstant(1, SL, MVT::i32);
3181   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3182 
3183   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3184   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3185 
3186   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3187   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3188 
3189   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3190 
3191   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3192 }
3193 
3194 SDValue AMDGPUTargetLowering::performTruncateCombine(
3195   SDNode *N, DAGCombinerInfo &DCI) const {
3196   SDLoc SL(N);
3197   SelectionDAG &DAG = DCI.DAG;
3198   EVT VT = N->getValueType(0);
3199   SDValue Src = N->getOperand(0);
3200 
3201   // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3202   if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3203     SDValue Vec = Src.getOperand(0);
3204     if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3205       SDValue Elt0 = Vec.getOperand(0);
3206       EVT EltVT = Elt0.getValueType();
3207       if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
3208         if (EltVT.isFloatingPoint()) {
3209           Elt0 = DAG.getNode(ISD::BITCAST, SL,
3210                              EltVT.changeTypeToInteger(), Elt0);
3211         }
3212 
3213         return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3214       }
3215     }
3216   }
3217 
3218   // Equivalent of above for accessing the high element of a vector as an
3219   // integer operation.
3220   // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3221   if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3222     if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3223       if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3224         SDValue BV = stripBitcast(Src.getOperand(0));
3225         if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3226             BV.getValueType().getVectorNumElements() == 2) {
3227           SDValue SrcElt = BV.getOperand(1);
3228           EVT SrcEltVT = SrcElt.getValueType();
3229           if (SrcEltVT.isFloatingPoint()) {
3230             SrcElt = DAG.getNode(ISD::BITCAST, SL,
3231                                  SrcEltVT.changeTypeToInteger(), SrcElt);
3232           }
3233 
3234           return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3235         }
3236       }
3237     }
3238   }
3239 
3240   // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3241   //
3242   // i16 (trunc (srl i64:x, K)), K <= 16 ->
3243   //     i16 (trunc (srl (i32 (trunc x), K)))
3244   if (VT.getScalarSizeInBits() < 32) {
3245     EVT SrcVT = Src.getValueType();
3246     if (SrcVT.getScalarSizeInBits() > 32 &&
3247         (Src.getOpcode() == ISD::SRL ||
3248          Src.getOpcode() == ISD::SRA ||
3249          Src.getOpcode() == ISD::SHL)) {
3250       SDValue Amt = Src.getOperand(1);
3251       KnownBits Known = DAG.computeKnownBits(Amt);
3252       unsigned Size = VT.getScalarSizeInBits();
3253       if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3254           (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3255         EVT MidVT = VT.isVector() ?
3256           EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3257                            VT.getVectorNumElements()) : MVT::i32;
3258 
3259         EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3260         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3261                                     Src.getOperand(0));
3262         DCI.AddToWorklist(Trunc.getNode());
3263 
3264         if (Amt.getValueType() != NewShiftVT) {
3265           Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3266           DCI.AddToWorklist(Amt.getNode());
3267         }
3268 
3269         SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3270                                           Trunc, Amt);
3271         return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3272       }
3273     }
3274   }
3275 
3276   return SDValue();
3277 }
3278 
3279 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3280 // instructions. If we only match on the legalized i64 mul expansion,
3281 // SimplifyDemandedBits will be unable to remove them because there will be
3282 // multiple uses due to the separate mul + mulh[su].
3283 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3284                         SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3285   if (Size <= 32) {
3286     unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3287     return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3288   }
3289 
3290   // Because we want to eliminate extension instructions before the
3291   // operation, we need to create a single user here (i.e. not the separate
3292   // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3293 
3294   unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
3295 
3296   SDValue Mul = DAG.getNode(MulOpc, SL,
3297                             DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
3298 
3299   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
3300                      Mul.getValue(0), Mul.getValue(1));
3301 }
3302 
3303 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3304                                                 DAGCombinerInfo &DCI) const {
3305   EVT VT = N->getValueType(0);
3306 
3307   unsigned Size = VT.getSizeInBits();
3308   if (VT.isVector() || Size > 64)
3309     return SDValue();
3310 
3311   // There are i16 integer mul/mad.
3312   if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3313     return SDValue();
3314 
3315   SelectionDAG &DAG = DCI.DAG;
3316   SDLoc DL(N);
3317 
3318   SDValue N0 = N->getOperand(0);
3319   SDValue N1 = N->getOperand(1);
3320 
3321   // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3322   // in the source into any_extends if the result of the mul is truncated. Since
3323   // we can assume the high bits are whatever we want, use the underlying value
3324   // to avoid the unknown high bits from interfering.
3325   if (N0.getOpcode() == ISD::ANY_EXTEND)
3326     N0 = N0.getOperand(0);
3327 
3328   if (N1.getOpcode() == ISD::ANY_EXTEND)
3329     N1 = N1.getOperand(0);
3330 
3331   SDValue Mul;
3332 
3333   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3334     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3335     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3336     Mul = getMul24(DAG, DL, N0, N1, Size, false);
3337   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3338     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3339     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3340     Mul = getMul24(DAG, DL, N0, N1, Size, true);
3341   } else {
3342     return SDValue();
3343   }
3344 
3345   // We need to use sext even for MUL_U24, because MUL_U24 is used
3346   // for signed multiply of 8 and 16-bit types.
3347   return DAG.getSExtOrTrunc(Mul, DL, VT);
3348 }
3349 
3350 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3351                                                   DAGCombinerInfo &DCI) const {
3352   EVT VT = N->getValueType(0);
3353 
3354   if (!Subtarget->hasMulI24() || VT.isVector())
3355     return SDValue();
3356 
3357   SelectionDAG &DAG = DCI.DAG;
3358   SDLoc DL(N);
3359 
3360   SDValue N0 = N->getOperand(0);
3361   SDValue N1 = N->getOperand(1);
3362 
3363   if (!isI24(N0, DAG) || !isI24(N1, DAG))
3364     return SDValue();
3365 
3366   N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3367   N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3368 
3369   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3370   DCI.AddToWorklist(Mulhi.getNode());
3371   return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3372 }
3373 
3374 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3375                                                   DAGCombinerInfo &DCI) const {
3376   EVT VT = N->getValueType(0);
3377 
3378   if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3379     return SDValue();
3380 
3381   SelectionDAG &DAG = DCI.DAG;
3382   SDLoc DL(N);
3383 
3384   SDValue N0 = N->getOperand(0);
3385   SDValue N1 = N->getOperand(1);
3386 
3387   if (!isU24(N0, DAG) || !isU24(N1, DAG))
3388     return SDValue();
3389 
3390   N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3391   N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3392 
3393   SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3394   DCI.AddToWorklist(Mulhi.getNode());
3395   return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3396 }
3397 
3398 SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
3399   SDNode *N, DAGCombinerInfo &DCI) const {
3400   SelectionDAG &DAG = DCI.DAG;
3401 
3402   // Simplify demanded bits before splitting into multiple users.
3403   if (SDValue V = simplifyI24(N, DCI))
3404     return V;
3405 
3406   SDValue N0 = N->getOperand(0);
3407   SDValue N1 = N->getOperand(1);
3408 
3409   bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
3410 
3411   unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3412   unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3413 
3414   SDLoc SL(N);
3415 
3416   SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3417   SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3418   return DAG.getMergeValues({ MulLo, MulHi }, SL);
3419 }
3420 
3421 static bool isNegativeOne(SDValue Val) {
3422   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3423     return C->isAllOnesValue();
3424   return false;
3425 }
3426 
3427 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3428                                           SDValue Op,
3429                                           const SDLoc &DL,
3430                                           unsigned Opc) const {
3431   EVT VT = Op.getValueType();
3432   EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3433   if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3434                               LegalVT != MVT::i16))
3435     return SDValue();
3436 
3437   if (VT != MVT::i32)
3438     Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3439 
3440   SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3441   if (VT != MVT::i32)
3442     FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3443 
3444   return FFBX;
3445 }
3446 
3447 // The native instructions return -1 on 0 input. Optimize out a select that
3448 // produces -1 on 0.
3449 //
3450 // TODO: If zero is not undef, we could also do this if the output is compared
3451 // against the bitwidth.
3452 //
3453 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3454 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3455                                                  SDValue LHS, SDValue RHS,
3456                                                  DAGCombinerInfo &DCI) const {
3457   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3458   if (!CmpRhs || !CmpRhs->isNullValue())
3459     return SDValue();
3460 
3461   SelectionDAG &DAG = DCI.DAG;
3462   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3463   SDValue CmpLHS = Cond.getOperand(0);
3464 
3465   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3466   // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3467   if (CCOpcode == ISD::SETEQ &&
3468       (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3469       RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3470     unsigned Opc =
3471         isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3472     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3473   }
3474 
3475   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3476   // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3477   if (CCOpcode == ISD::SETNE &&
3478       (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3479       LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3480     unsigned Opc =
3481         isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3482 
3483     return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3484   }
3485 
3486   return SDValue();
3487 }
3488 
3489 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3490                                          unsigned Op,
3491                                          const SDLoc &SL,
3492                                          SDValue Cond,
3493                                          SDValue N1,
3494                                          SDValue N2) {
3495   SelectionDAG &DAG = DCI.DAG;
3496   EVT VT = N1.getValueType();
3497 
3498   SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3499                                   N1.getOperand(0), N2.getOperand(0));
3500   DCI.AddToWorklist(NewSelect.getNode());
3501   return DAG.getNode(Op, SL, VT, NewSelect);
3502 }
3503 
3504 // Pull a free FP operation out of a select so it may fold into uses.
3505 //
3506 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3507 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3508 //
3509 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3510 // select c, (fabs x), +k -> fabs (select c, x, k)
3511 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3512                                     SDValue N) {
3513   SelectionDAG &DAG = DCI.DAG;
3514   SDValue Cond = N.getOperand(0);
3515   SDValue LHS = N.getOperand(1);
3516   SDValue RHS = N.getOperand(2);
3517 
3518   EVT VT = N.getValueType();
3519   if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3520       (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3521     return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3522                                      SDLoc(N), Cond, LHS, RHS);
3523   }
3524 
3525   bool Inv = false;
3526   if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3527     std::swap(LHS, RHS);
3528     Inv = true;
3529   }
3530 
3531   // TODO: Support vector constants.
3532   ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3533   if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3534     SDLoc SL(N);
3535     // If one side is an fneg/fabs and the other is a constant, we can push the
3536     // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3537     SDValue NewLHS = LHS.getOperand(0);
3538     SDValue NewRHS = RHS;
3539 
3540     // Careful: if the neg can be folded up, don't try to pull it back down.
3541     bool ShouldFoldNeg = true;
3542 
3543     if (NewLHS.hasOneUse()) {
3544       unsigned Opc = NewLHS.getOpcode();
3545       if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3546         ShouldFoldNeg = false;
3547       if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3548         ShouldFoldNeg = false;
3549     }
3550 
3551     if (ShouldFoldNeg) {
3552       if (LHS.getOpcode() == ISD::FNEG)
3553         NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3554       else if (CRHS->isNegative())
3555         return SDValue();
3556 
3557       if (Inv)
3558         std::swap(NewLHS, NewRHS);
3559 
3560       SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3561                                       Cond, NewLHS, NewRHS);
3562       DCI.AddToWorklist(NewSelect.getNode());
3563       return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3564     }
3565   }
3566 
3567   return SDValue();
3568 }
3569 
3570 
3571 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3572                                                    DAGCombinerInfo &DCI) const {
3573   if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3574     return Folded;
3575 
3576   SDValue Cond = N->getOperand(0);
3577   if (Cond.getOpcode() != ISD::SETCC)
3578     return SDValue();
3579 
3580   EVT VT = N->getValueType(0);
3581   SDValue LHS = Cond.getOperand(0);
3582   SDValue RHS = Cond.getOperand(1);
3583   SDValue CC = Cond.getOperand(2);
3584 
3585   SDValue True = N->getOperand(1);
3586   SDValue False = N->getOperand(2);
3587 
3588   if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3589     SelectionDAG &DAG = DCI.DAG;
3590     if (DAG.isConstantValueOfAnyType(True) &&
3591         !DAG.isConstantValueOfAnyType(False)) {
3592       // Swap cmp + select pair to move constant to false input.
3593       // This will allow using VOPC cndmasks more often.
3594       // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3595 
3596       SDLoc SL(N);
3597       ISD::CondCode NewCC =
3598           getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3599 
3600       SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3601       return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3602     }
3603 
3604     if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3605       SDValue MinMax
3606         = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3607       // Revisit this node so we can catch min3/max3/med3 patterns.
3608       //DCI.AddToWorklist(MinMax.getNode());
3609       return MinMax;
3610     }
3611   }
3612 
3613   // There's no reason to not do this if the condition has other uses.
3614   return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3615 }
3616 
3617 static bool isInv2Pi(const APFloat &APF) {
3618   static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3619   static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3620   static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3621 
3622   return APF.bitwiseIsEqual(KF16) ||
3623          APF.bitwiseIsEqual(KF32) ||
3624          APF.bitwiseIsEqual(KF64);
3625 }
3626 
3627 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3628 // additional cost to negate them.
3629 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3630   if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3631     if (C->isZero() && !C->isNegative())
3632       return true;
3633 
3634     if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3635       return true;
3636   }
3637 
3638   return false;
3639 }
3640 
3641 static unsigned inverseMinMax(unsigned Opc) {
3642   switch (Opc) {
3643   case ISD::FMAXNUM:
3644     return ISD::FMINNUM;
3645   case ISD::FMINNUM:
3646     return ISD::FMAXNUM;
3647   case ISD::FMAXNUM_IEEE:
3648     return ISD::FMINNUM_IEEE;
3649   case ISD::FMINNUM_IEEE:
3650     return ISD::FMAXNUM_IEEE;
3651   case AMDGPUISD::FMAX_LEGACY:
3652     return AMDGPUISD::FMIN_LEGACY;
3653   case AMDGPUISD::FMIN_LEGACY:
3654     return  AMDGPUISD::FMAX_LEGACY;
3655   default:
3656     llvm_unreachable("invalid min/max opcode");
3657   }
3658 }
3659 
3660 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3661                                                  DAGCombinerInfo &DCI) const {
3662   SelectionDAG &DAG = DCI.DAG;
3663   SDValue N0 = N->getOperand(0);
3664   EVT VT = N->getValueType(0);
3665 
3666   unsigned Opc = N0.getOpcode();
3667 
3668   // If the input has multiple uses and we can either fold the negate down, or
3669   // the other uses cannot, give up. This both prevents unprofitable
3670   // transformations and infinite loops: we won't repeatedly try to fold around
3671   // a negate that has no 'good' form.
3672   if (N0.hasOneUse()) {
3673     // This may be able to fold into the source, but at a code size cost. Don't
3674     // fold if the fold into the user is free.
3675     if (allUsesHaveSourceMods(N, 0))
3676       return SDValue();
3677   } else {
3678     if (fnegFoldsIntoOp(Opc) &&
3679         (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3680       return SDValue();
3681   }
3682 
3683   SDLoc SL(N);
3684   switch (Opc) {
3685   case ISD::FADD: {
3686     if (!mayIgnoreSignedZero(N0))
3687       return SDValue();
3688 
3689     // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3690     SDValue LHS = N0.getOperand(0);
3691     SDValue RHS = N0.getOperand(1);
3692 
3693     if (LHS.getOpcode() != ISD::FNEG)
3694       LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3695     else
3696       LHS = LHS.getOperand(0);
3697 
3698     if (RHS.getOpcode() != ISD::FNEG)
3699       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3700     else
3701       RHS = RHS.getOperand(0);
3702 
3703     SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3704     if (Res.getOpcode() != ISD::FADD)
3705       return SDValue(); // Op got folded away.
3706     if (!N0.hasOneUse())
3707       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3708     return Res;
3709   }
3710   case ISD::FMUL:
3711   case AMDGPUISD::FMUL_LEGACY: {
3712     // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3713     // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3714     SDValue LHS = N0.getOperand(0);
3715     SDValue RHS = N0.getOperand(1);
3716 
3717     if (LHS.getOpcode() == ISD::FNEG)
3718       LHS = LHS.getOperand(0);
3719     else if (RHS.getOpcode() == ISD::FNEG)
3720       RHS = RHS.getOperand(0);
3721     else
3722       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3723 
3724     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3725     if (Res.getOpcode() != Opc)
3726       return SDValue(); // Op got folded away.
3727     if (!N0.hasOneUse())
3728       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3729     return Res;
3730   }
3731   case ISD::FMA:
3732   case ISD::FMAD: {
3733     if (!mayIgnoreSignedZero(N0))
3734       return SDValue();
3735 
3736     // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3737     SDValue LHS = N0.getOperand(0);
3738     SDValue MHS = N0.getOperand(1);
3739     SDValue RHS = N0.getOperand(2);
3740 
3741     if (LHS.getOpcode() == ISD::FNEG)
3742       LHS = LHS.getOperand(0);
3743     else if (MHS.getOpcode() == ISD::FNEG)
3744       MHS = MHS.getOperand(0);
3745     else
3746       MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3747 
3748     if (RHS.getOpcode() != ISD::FNEG)
3749       RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3750     else
3751       RHS = RHS.getOperand(0);
3752 
3753     SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3754     if (Res.getOpcode() != Opc)
3755       return SDValue(); // Op got folded away.
3756     if (!N0.hasOneUse())
3757       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3758     return Res;
3759   }
3760   case ISD::FMAXNUM:
3761   case ISD::FMINNUM:
3762   case ISD::FMAXNUM_IEEE:
3763   case ISD::FMINNUM_IEEE:
3764   case AMDGPUISD::FMAX_LEGACY:
3765   case AMDGPUISD::FMIN_LEGACY: {
3766     // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3767     // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3768     // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3769     // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3770 
3771     SDValue LHS = N0.getOperand(0);
3772     SDValue RHS = N0.getOperand(1);
3773 
3774     // 0 doesn't have a negated inline immediate.
3775     // TODO: This constant check should be generalized to other operations.
3776     if (isConstantCostlierToNegate(RHS))
3777       return SDValue();
3778 
3779     SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3780     SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3781     unsigned Opposite = inverseMinMax(Opc);
3782 
3783     SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3784     if (Res.getOpcode() != Opposite)
3785       return SDValue(); // Op got folded away.
3786     if (!N0.hasOneUse())
3787       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3788     return Res;
3789   }
3790   case AMDGPUISD::FMED3: {
3791     SDValue Ops[3];
3792     for (unsigned I = 0; I < 3; ++I)
3793       Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3794 
3795     SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3796     if (Res.getOpcode() != AMDGPUISD::FMED3)
3797       return SDValue(); // Op got folded away.
3798     if (!N0.hasOneUse())
3799       DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3800     return Res;
3801   }
3802   case ISD::FP_EXTEND:
3803   case ISD::FTRUNC:
3804   case ISD::FRINT:
3805   case ISD::FNEARBYINT: // XXX - Should fround be handled?
3806   case ISD::FSIN:
3807   case ISD::FCANONICALIZE:
3808   case AMDGPUISD::RCP:
3809   case AMDGPUISD::RCP_LEGACY:
3810   case AMDGPUISD::RCP_IFLAG:
3811   case AMDGPUISD::SIN_HW: {
3812     SDValue CvtSrc = N0.getOperand(0);
3813     if (CvtSrc.getOpcode() == ISD::FNEG) {
3814       // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3815       // (fneg (rcp (fneg x))) -> (rcp x)
3816       return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3817     }
3818 
3819     if (!N0.hasOneUse())
3820       return SDValue();
3821 
3822     // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3823     // (fneg (rcp x)) -> (rcp (fneg x))
3824     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3825     return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3826   }
3827   case ISD::FP_ROUND: {
3828     SDValue CvtSrc = N0.getOperand(0);
3829 
3830     if (CvtSrc.getOpcode() == ISD::FNEG) {
3831       // (fneg (fp_round (fneg x))) -> (fp_round x)
3832       return DAG.getNode(ISD::FP_ROUND, SL, VT,
3833                          CvtSrc.getOperand(0), N0.getOperand(1));
3834     }
3835 
3836     if (!N0.hasOneUse())
3837       return SDValue();
3838 
3839     // (fneg (fp_round x)) -> (fp_round (fneg x))
3840     SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3841     return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3842   }
3843   case ISD::FP16_TO_FP: {
3844     // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3845     // f16, but legalization of f16 fneg ends up pulling it out of the source.
3846     // Put the fneg back as a legal source operation that can be matched later.
3847     SDLoc SL(N);
3848 
3849     SDValue Src = N0.getOperand(0);
3850     EVT SrcVT = Src.getValueType();
3851 
3852     // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3853     SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3854                                   DAG.getConstant(0x8000, SL, SrcVT));
3855     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3856   }
3857   default:
3858     return SDValue();
3859   }
3860 }
3861 
3862 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3863                                                  DAGCombinerInfo &DCI) const {
3864   SelectionDAG &DAG = DCI.DAG;
3865   SDValue N0 = N->getOperand(0);
3866 
3867   if (!N0.hasOneUse())
3868     return SDValue();
3869 
3870   switch (N0.getOpcode()) {
3871   case ISD::FP16_TO_FP: {
3872     assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3873     SDLoc SL(N);
3874     SDValue Src = N0.getOperand(0);
3875     EVT SrcVT = Src.getValueType();
3876 
3877     // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3878     SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3879                                   DAG.getConstant(0x7fff, SL, SrcVT));
3880     return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3881   }
3882   default:
3883     return SDValue();
3884   }
3885 }
3886 
3887 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3888                                                 DAGCombinerInfo &DCI) const {
3889   const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3890   if (!CFP)
3891     return SDValue();
3892 
3893   // XXX - Should this flush denormals?
3894   const APFloat &Val = CFP->getValueAPF();
3895   APFloat One(Val.getSemantics(), "1.0");
3896   return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
3897 }
3898 
3899 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
3900                                                 DAGCombinerInfo &DCI) const {
3901   SelectionDAG &DAG = DCI.DAG;
3902   SDLoc DL(N);
3903 
3904   switch(N->getOpcode()) {
3905   default:
3906     break;
3907   case ISD::BITCAST: {
3908     EVT DestVT = N->getValueType(0);
3909 
3910     // Push casts through vector builds. This helps avoid emitting a large
3911     // number of copies when materializing floating point vector constants.
3912     //
3913     // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3914     //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3915     if (DestVT.isVector()) {
3916       SDValue Src = N->getOperand(0);
3917       if (Src.getOpcode() == ISD::BUILD_VECTOR) {
3918         EVT SrcVT = Src.getValueType();
3919         unsigned NElts = DestVT.getVectorNumElements();
3920 
3921         if (SrcVT.getVectorNumElements() == NElts) {
3922           EVT DestEltVT = DestVT.getVectorElementType();
3923 
3924           SmallVector<SDValue, 8> CastedElts;
3925           SDLoc SL(N);
3926           for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
3927             SDValue Elt = Src.getOperand(I);
3928             CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
3929           }
3930 
3931           return DAG.getBuildVector(DestVT, SL, CastedElts);
3932         }
3933       }
3934     }
3935 
3936     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
3937       break;
3938 
3939     // Fold bitcasts of constants.
3940     //
3941     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3942     // TODO: Generalize and move to DAGCombiner
3943     SDValue Src = N->getOperand(0);
3944     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
3945       if (Src.getValueType() == MVT::i64) {
3946         SDLoc SL(N);
3947         uint64_t CVal = C->getZExtValue();
3948         SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3949                                  DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3950                                  DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3951         return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
3952       }
3953     }
3954 
3955     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
3956       const APInt &Val = C->getValueAPF().bitcastToAPInt();
3957       SDLoc SL(N);
3958       uint64_t CVal = Val.getZExtValue();
3959       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3960                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
3961                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
3962 
3963       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
3964     }
3965 
3966     break;
3967   }
3968   case ISD::SHL: {
3969     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3970       break;
3971 
3972     return performShlCombine(N, DCI);
3973   }
3974   case ISD::SRL: {
3975     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3976       break;
3977 
3978     return performSrlCombine(N, DCI);
3979   }
3980   case ISD::SRA: {
3981     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3982       break;
3983 
3984     return performSraCombine(N, DCI);
3985   }
3986   case ISD::TRUNCATE:
3987     return performTruncateCombine(N, DCI);
3988   case ISD::MUL:
3989     return performMulCombine(N, DCI);
3990   case ISD::MULHS:
3991     return performMulhsCombine(N, DCI);
3992   case ISD::MULHU:
3993     return performMulhuCombine(N, DCI);
3994   case AMDGPUISD::MUL_I24:
3995   case AMDGPUISD::MUL_U24:
3996   case AMDGPUISD::MULHI_I24:
3997   case AMDGPUISD::MULHI_U24: {
3998     if (SDValue V = simplifyI24(N, DCI))
3999       return V;
4000     return SDValue();
4001   }
4002   case AMDGPUISD::MUL_LOHI_I24:
4003   case AMDGPUISD::MUL_LOHI_U24:
4004     return performMulLoHi24Combine(N, DCI);
4005   case ISD::SELECT:
4006     return performSelectCombine(N, DCI);
4007   case ISD::FNEG:
4008     return performFNegCombine(N, DCI);
4009   case ISD::FABS:
4010     return performFAbsCombine(N, DCI);
4011   case AMDGPUISD::BFE_I32:
4012   case AMDGPUISD::BFE_U32: {
4013     assert(!N->getValueType(0).isVector() &&
4014            "Vector handling of BFE not implemented");
4015     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4016     if (!Width)
4017       break;
4018 
4019     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4020     if (WidthVal == 0)
4021       return DAG.getConstant(0, DL, MVT::i32);
4022 
4023     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4024     if (!Offset)
4025       break;
4026 
4027     SDValue BitsFrom = N->getOperand(0);
4028     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4029 
4030     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4031 
4032     if (OffsetVal == 0) {
4033       // This is already sign / zero extended, so try to fold away extra BFEs.
4034       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4035 
4036       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4037       if (OpSignBits >= SignBits)
4038         return BitsFrom;
4039 
4040       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4041       if (Signed) {
4042         // This is a sign_extend_inreg. Replace it to take advantage of existing
4043         // DAG Combines. If not eliminated, we will match back to BFE during
4044         // selection.
4045 
4046         // TODO: The sext_inreg of extended types ends, although we can could
4047         // handle them in a single BFE.
4048         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4049                            DAG.getValueType(SmallVT));
4050       }
4051 
4052       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4053     }
4054 
4055     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4056       if (Signed) {
4057         return constantFoldBFE<int32_t>(DAG,
4058                                         CVal->getSExtValue(),
4059                                         OffsetVal,
4060                                         WidthVal,
4061                                         DL);
4062       }
4063 
4064       return constantFoldBFE<uint32_t>(DAG,
4065                                        CVal->getZExtValue(),
4066                                        OffsetVal,
4067                                        WidthVal,
4068                                        DL);
4069     }
4070 
4071     if ((OffsetVal + WidthVal) >= 32 &&
4072         !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4073       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4074       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4075                          BitsFrom, ShiftVal);
4076     }
4077 
4078     if (BitsFrom.hasOneUse()) {
4079       APInt Demanded = APInt::getBitsSet(32,
4080                                          OffsetVal,
4081                                          OffsetVal + WidthVal);
4082 
4083       KnownBits Known;
4084       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4085                                             !DCI.isBeforeLegalizeOps());
4086       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4087       if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4088           TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4089         DCI.CommitTargetLoweringOpt(TLO);
4090       }
4091     }
4092 
4093     break;
4094   }
4095   case ISD::LOAD:
4096     return performLoadCombine(N, DCI);
4097   case ISD::STORE:
4098     return performStoreCombine(N, DCI);
4099   case AMDGPUISD::RCP:
4100   case AMDGPUISD::RCP_IFLAG:
4101     return performRcpCombine(N, DCI);
4102   case ISD::AssertZext:
4103   case ISD::AssertSext:
4104     return performAssertSZExtCombine(N, DCI);
4105   case ISD::INTRINSIC_WO_CHAIN:
4106     return performIntrinsicWOChainCombine(N, DCI);
4107   }
4108   return SDValue();
4109 }
4110 
4111 //===----------------------------------------------------------------------===//
4112 // Helper functions
4113 //===----------------------------------------------------------------------===//
4114 
4115 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4116                                                    const TargetRegisterClass *RC,
4117                                                    Register Reg, EVT VT,
4118                                                    const SDLoc &SL,
4119                                                    bool RawReg) const {
4120   MachineFunction &MF = DAG.getMachineFunction();
4121   MachineRegisterInfo &MRI = MF.getRegInfo();
4122   Register VReg;
4123 
4124   if (!MRI.isLiveIn(Reg)) {
4125     VReg = MRI.createVirtualRegister(RC);
4126     MRI.addLiveIn(Reg, VReg);
4127   } else {
4128     VReg = MRI.getLiveInVirtReg(Reg);
4129   }
4130 
4131   if (RawReg)
4132     return DAG.getRegister(VReg, VT);
4133 
4134   return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4135 }
4136 
4137 // This may be called multiple times, and nothing prevents creating multiple
4138 // objects at the same offset. See if we already defined this object.
4139 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4140                                        int64_t Offset) {
4141   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4142     if (MFI.getObjectOffset(I) == Offset) {
4143       assert(MFI.getObjectSize(I) == Size);
4144       return I;
4145     }
4146   }
4147 
4148   return MFI.CreateFixedObject(Size, Offset, true);
4149 }
4150 
4151 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4152                                                   EVT VT,
4153                                                   const SDLoc &SL,
4154                                                   int64_t Offset) const {
4155   MachineFunction &MF = DAG.getMachineFunction();
4156   MachineFrameInfo &MFI = MF.getFrameInfo();
4157   int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4158 
4159   auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4160   SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4161 
4162   return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
4163                      MachineMemOperand::MODereferenceable |
4164                      MachineMemOperand::MOInvariant);
4165 }
4166 
4167 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4168                                                    const SDLoc &SL,
4169                                                    SDValue Chain,
4170                                                    SDValue ArgVal,
4171                                                    int64_t Offset) const {
4172   MachineFunction &MF = DAG.getMachineFunction();
4173   MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4174 
4175   SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4176   SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
4177                                MachineMemOperand::MODereferenceable);
4178   return Store;
4179 }
4180 
4181 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4182                                              const TargetRegisterClass *RC,
4183                                              EVT VT, const SDLoc &SL,
4184                                              const ArgDescriptor &Arg) const {
4185   assert(Arg && "Attempting to load missing argument");
4186 
4187   SDValue V = Arg.isRegister() ?
4188     CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4189     loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4190 
4191   if (!Arg.isMasked())
4192     return V;
4193 
4194   unsigned Mask = Arg.getMask();
4195   unsigned Shift = countTrailingZeros<unsigned>(Mask);
4196   V = DAG.getNode(ISD::SRL, SL, VT, V,
4197                   DAG.getShiftAmountConstant(Shift, VT, SL));
4198   return DAG.getNode(ISD::AND, SL, VT, V,
4199                      DAG.getConstant(Mask >> Shift, SL, VT));
4200 }
4201 
4202 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4203     const MachineFunction &MF, const ImplicitParameter Param) const {
4204   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4205   const AMDGPUSubtarget &ST =
4206       AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4207   unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4208   const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4209   uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4210                        ExplicitArgOffset;
4211   switch (Param) {
4212   case GRID_DIM:
4213     return ArgOffset;
4214   case GRID_OFFSET:
4215     return ArgOffset + 4;
4216   }
4217   llvm_unreachable("unexpected implicit parameter type");
4218 }
4219 
4220 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4221 
4222 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4223   switch ((AMDGPUISD::NodeType)Opcode) {
4224   case AMDGPUISD::FIRST_NUMBER: break;
4225   // AMDIL DAG nodes
4226   NODE_NAME_CASE(UMUL);
4227   NODE_NAME_CASE(BRANCH_COND);
4228 
4229   // AMDGPU DAG nodes
4230   NODE_NAME_CASE(IF)
4231   NODE_NAME_CASE(ELSE)
4232   NODE_NAME_CASE(LOOP)
4233   NODE_NAME_CASE(CALL)
4234   NODE_NAME_CASE(TC_RETURN)
4235   NODE_NAME_CASE(TRAP)
4236   NODE_NAME_CASE(RET_FLAG)
4237   NODE_NAME_CASE(RETURN_TO_EPILOG)
4238   NODE_NAME_CASE(ENDPGM)
4239   NODE_NAME_CASE(DWORDADDR)
4240   NODE_NAME_CASE(FRACT)
4241   NODE_NAME_CASE(SETCC)
4242   NODE_NAME_CASE(SETREG)
4243   NODE_NAME_CASE(DENORM_MODE)
4244   NODE_NAME_CASE(FMA_W_CHAIN)
4245   NODE_NAME_CASE(FMUL_W_CHAIN)
4246   NODE_NAME_CASE(CLAMP)
4247   NODE_NAME_CASE(COS_HW)
4248   NODE_NAME_CASE(SIN_HW)
4249   NODE_NAME_CASE(FMAX_LEGACY)
4250   NODE_NAME_CASE(FMIN_LEGACY)
4251   NODE_NAME_CASE(FMAX3)
4252   NODE_NAME_CASE(SMAX3)
4253   NODE_NAME_CASE(UMAX3)
4254   NODE_NAME_CASE(FMIN3)
4255   NODE_NAME_CASE(SMIN3)
4256   NODE_NAME_CASE(UMIN3)
4257   NODE_NAME_CASE(FMED3)
4258   NODE_NAME_CASE(SMED3)
4259   NODE_NAME_CASE(UMED3)
4260   NODE_NAME_CASE(FDOT2)
4261   NODE_NAME_CASE(URECIP)
4262   NODE_NAME_CASE(DIV_SCALE)
4263   NODE_NAME_CASE(DIV_FMAS)
4264   NODE_NAME_CASE(DIV_FIXUP)
4265   NODE_NAME_CASE(FMAD_FTZ)
4266   NODE_NAME_CASE(RCP)
4267   NODE_NAME_CASE(RSQ)
4268   NODE_NAME_CASE(RCP_LEGACY)
4269   NODE_NAME_CASE(RCP_IFLAG)
4270   NODE_NAME_CASE(FMUL_LEGACY)
4271   NODE_NAME_CASE(RSQ_CLAMP)
4272   NODE_NAME_CASE(LDEXP)
4273   NODE_NAME_CASE(FP_CLASS)
4274   NODE_NAME_CASE(DOT4)
4275   NODE_NAME_CASE(CARRY)
4276   NODE_NAME_CASE(BORROW)
4277   NODE_NAME_CASE(BFE_U32)
4278   NODE_NAME_CASE(BFE_I32)
4279   NODE_NAME_CASE(BFI)
4280   NODE_NAME_CASE(BFM)
4281   NODE_NAME_CASE(FFBH_U32)
4282   NODE_NAME_CASE(FFBH_I32)
4283   NODE_NAME_CASE(FFBL_B32)
4284   NODE_NAME_CASE(MUL_U24)
4285   NODE_NAME_CASE(MUL_I24)
4286   NODE_NAME_CASE(MULHI_U24)
4287   NODE_NAME_CASE(MULHI_I24)
4288   NODE_NAME_CASE(MUL_LOHI_U24)
4289   NODE_NAME_CASE(MUL_LOHI_I24)
4290   NODE_NAME_CASE(MAD_U24)
4291   NODE_NAME_CASE(MAD_I24)
4292   NODE_NAME_CASE(MAD_I64_I32)
4293   NODE_NAME_CASE(MAD_U64_U32)
4294   NODE_NAME_CASE(PERM)
4295   NODE_NAME_CASE(TEXTURE_FETCH)
4296   NODE_NAME_CASE(R600_EXPORT)
4297   NODE_NAME_CASE(CONST_ADDRESS)
4298   NODE_NAME_CASE(REGISTER_LOAD)
4299   NODE_NAME_CASE(REGISTER_STORE)
4300   NODE_NAME_CASE(SAMPLE)
4301   NODE_NAME_CASE(SAMPLEB)
4302   NODE_NAME_CASE(SAMPLED)
4303   NODE_NAME_CASE(SAMPLEL)
4304   NODE_NAME_CASE(CVT_F32_UBYTE0)
4305   NODE_NAME_CASE(CVT_F32_UBYTE1)
4306   NODE_NAME_CASE(CVT_F32_UBYTE2)
4307   NODE_NAME_CASE(CVT_F32_UBYTE3)
4308   NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4309   NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4310   NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4311   NODE_NAME_CASE(CVT_PK_I16_I32)
4312   NODE_NAME_CASE(CVT_PK_U16_U32)
4313   NODE_NAME_CASE(FP_TO_FP16)
4314   NODE_NAME_CASE(FP16_ZEXT)
4315   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4316   NODE_NAME_CASE(CONST_DATA_PTR)
4317   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4318   NODE_NAME_CASE(LDS)
4319   NODE_NAME_CASE(DUMMY_CHAIN)
4320   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4321   NODE_NAME_CASE(LOAD_D16_HI)
4322   NODE_NAME_CASE(LOAD_D16_LO)
4323   NODE_NAME_CASE(LOAD_D16_HI_I8)
4324   NODE_NAME_CASE(LOAD_D16_HI_U8)
4325   NODE_NAME_CASE(LOAD_D16_LO_I8)
4326   NODE_NAME_CASE(LOAD_D16_LO_U8)
4327   NODE_NAME_CASE(STORE_MSKOR)
4328   NODE_NAME_CASE(LOAD_CONSTANT)
4329   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4330   NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4331   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4332   NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4333   NODE_NAME_CASE(DS_ORDERED_COUNT)
4334   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4335   NODE_NAME_CASE(ATOMIC_INC)
4336   NODE_NAME_CASE(ATOMIC_DEC)
4337   NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4338   NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4339   NODE_NAME_CASE(ATOMIC_LOAD_CSUB)
4340   NODE_NAME_CASE(BUFFER_LOAD)
4341   NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4342   NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4343   NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4344   NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4345   NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4346   NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4347   NODE_NAME_CASE(SBUFFER_LOAD)
4348   NODE_NAME_CASE(BUFFER_STORE)
4349   NODE_NAME_CASE(BUFFER_STORE_BYTE)
4350   NODE_NAME_CASE(BUFFER_STORE_SHORT)
4351   NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4352   NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4353   NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4354   NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4355   NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4356   NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4357   NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4358   NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4359   NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4360   NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4361   NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4362   NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4363   NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4364   NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4365   NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4366   NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
4367   NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4368   NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
4369   NODE_NAME_CASE(ATOMIC_PK_FADD)
4370 
4371   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4372   }
4373   return nullptr;
4374 }
4375 
4376 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4377                                               SelectionDAG &DAG, int Enabled,
4378                                               int &RefinementSteps,
4379                                               bool &UseOneConstNR,
4380                                               bool Reciprocal) const {
4381   EVT VT = Operand.getValueType();
4382 
4383   if (VT == MVT::f32) {
4384     RefinementSteps = 0;
4385     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4386   }
4387 
4388   // TODO: There is also f64 rsq instruction, but the documentation is less
4389   // clear on its precision.
4390 
4391   return SDValue();
4392 }
4393 
4394 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4395                                                SelectionDAG &DAG, int Enabled,
4396                                                int &RefinementSteps) const {
4397   EVT VT = Operand.getValueType();
4398 
4399   if (VT == MVT::f32) {
4400     // Reciprocal, < 1 ulp error.
4401     //
4402     // This reciprocal approximation converges to < 0.5 ulp error with one
4403     // newton rhapson performed with two fused multiple adds (FMAs).
4404 
4405     RefinementSteps = 0;
4406     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4407   }
4408 
4409   // TODO: There is also f64 rcp instruction, but the documentation is less
4410   // clear on its precision.
4411 
4412   return SDValue();
4413 }
4414 
4415 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4416     const SDValue Op, KnownBits &Known,
4417     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4418 
4419   Known.resetAll(); // Don't know anything.
4420 
4421   unsigned Opc = Op.getOpcode();
4422 
4423   switch (Opc) {
4424   default:
4425     break;
4426   case AMDGPUISD::CARRY:
4427   case AMDGPUISD::BORROW: {
4428     Known.Zero = APInt::getHighBitsSet(32, 31);
4429     break;
4430   }
4431 
4432   case AMDGPUISD::BFE_I32:
4433   case AMDGPUISD::BFE_U32: {
4434     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4435     if (!CWidth)
4436       return;
4437 
4438     uint32_t Width = CWidth->getZExtValue() & 0x1f;
4439 
4440     if (Opc == AMDGPUISD::BFE_U32)
4441       Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4442 
4443     break;
4444   }
4445   case AMDGPUISD::FP_TO_FP16:
4446   case AMDGPUISD::FP16_ZEXT: {
4447     unsigned BitWidth = Known.getBitWidth();
4448 
4449     // High bits are zero.
4450     Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4451     break;
4452   }
4453   case AMDGPUISD::MUL_U24:
4454   case AMDGPUISD::MUL_I24: {
4455     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4456     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4457     unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4458                       RHSKnown.countMinTrailingZeros();
4459     Known.Zero.setLowBits(std::min(TrailZ, 32u));
4460     // Skip extra check if all bits are known zeros.
4461     if (TrailZ >= 32)
4462       break;
4463 
4464     // Truncate to 24 bits.
4465     LHSKnown = LHSKnown.trunc(24);
4466     RHSKnown = RHSKnown.trunc(24);
4467 
4468     if (Opc == AMDGPUISD::MUL_I24) {
4469       unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4470       unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4471       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4472       if (MaxValBits >= 32)
4473         break;
4474       bool LHSNegative = LHSKnown.isNegative();
4475       bool LHSNonNegative = LHSKnown.isNonNegative();
4476       bool LHSPositive = LHSKnown.isStrictlyPositive();
4477       bool RHSNegative = RHSKnown.isNegative();
4478       bool RHSNonNegative = RHSKnown.isNonNegative();
4479       bool RHSPositive = RHSKnown.isStrictlyPositive();
4480 
4481       if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4482         Known.Zero.setHighBits(32 - MaxValBits);
4483       else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4484         Known.One.setHighBits(32 - MaxValBits);
4485     } else {
4486       unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4487       unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4488       unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4489       if (MaxValBits >= 32)
4490         break;
4491       Known.Zero.setHighBits(32 - MaxValBits);
4492     }
4493     break;
4494   }
4495   case AMDGPUISD::PERM: {
4496     ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4497     if (!CMask)
4498       return;
4499 
4500     KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4501     KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4502     unsigned Sel = CMask->getZExtValue();
4503 
4504     for (unsigned I = 0; I < 32; I += 8) {
4505       unsigned SelBits = Sel & 0xff;
4506       if (SelBits < 4) {
4507         SelBits *= 8;
4508         Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4509         Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4510       } else if (SelBits < 7) {
4511         SelBits = (SelBits & 3) * 8;
4512         Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4513         Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4514       } else if (SelBits == 0x0c) {
4515         Known.Zero |= 0xFFull << I;
4516       } else if (SelBits > 0x0c) {
4517         Known.One |= 0xFFull << I;
4518       }
4519       Sel >>= 8;
4520     }
4521     break;
4522   }
4523   case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
4524     Known.Zero.setHighBits(24);
4525     break;
4526   }
4527   case AMDGPUISD::BUFFER_LOAD_USHORT: {
4528     Known.Zero.setHighBits(16);
4529     break;
4530   }
4531   case AMDGPUISD::LDS: {
4532     auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4533     Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4534 
4535     Known.Zero.setHighBits(16);
4536     Known.Zero.setLowBits(Log2(Alignment));
4537     break;
4538   }
4539   case ISD::INTRINSIC_WO_CHAIN: {
4540     unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4541     switch (IID) {
4542     case Intrinsic::amdgcn_mbcnt_lo:
4543     case Intrinsic::amdgcn_mbcnt_hi: {
4544       const GCNSubtarget &ST =
4545           DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4546       // These return at most the wavefront size - 1.
4547       unsigned Size = Op.getValueType().getSizeInBits();
4548       Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4549       break;
4550     }
4551     default:
4552       break;
4553     }
4554   }
4555   }
4556 }
4557 
4558 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4559     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4560     unsigned Depth) const {
4561   switch (Op.getOpcode()) {
4562   case AMDGPUISD::BFE_I32: {
4563     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4564     if (!Width)
4565       return 1;
4566 
4567     unsigned SignBits = 32 - Width->getZExtValue() + 1;
4568     if (!isNullConstant(Op.getOperand(1)))
4569       return SignBits;
4570 
4571     // TODO: Could probably figure something out with non-0 offsets.
4572     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4573     return std::max(SignBits, Op0SignBits);
4574   }
4575 
4576   case AMDGPUISD::BFE_U32: {
4577     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4578     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4579   }
4580 
4581   case AMDGPUISD::CARRY:
4582   case AMDGPUISD::BORROW:
4583     return 31;
4584   case AMDGPUISD::BUFFER_LOAD_BYTE:
4585     return 25;
4586   case AMDGPUISD::BUFFER_LOAD_SHORT:
4587     return 17;
4588   case AMDGPUISD::BUFFER_LOAD_UBYTE:
4589     return 24;
4590   case AMDGPUISD::BUFFER_LOAD_USHORT:
4591     return 16;
4592   case AMDGPUISD::FP_TO_FP16:
4593   case AMDGPUISD::FP16_ZEXT:
4594     return 16;
4595   default:
4596     return 1;
4597   }
4598 }
4599 
4600 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4601   GISelKnownBits &Analysis, Register R,
4602   const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4603   unsigned Depth) const {
4604   const MachineInstr *MI = MRI.getVRegDef(R);
4605   if (!MI)
4606     return 1;
4607 
4608   // TODO: Check range metadata on MMO.
4609   switch (MI->getOpcode()) {
4610   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4611     return 25;
4612   case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4613     return 17;
4614   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4615     return 24;
4616   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4617     return 16;
4618   default:
4619     return 1;
4620   }
4621 }
4622 
4623 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4624                                                         const SelectionDAG &DAG,
4625                                                         bool SNaN,
4626                                                         unsigned Depth) const {
4627   unsigned Opcode = Op.getOpcode();
4628   switch (Opcode) {
4629   case AMDGPUISD::FMIN_LEGACY:
4630   case AMDGPUISD::FMAX_LEGACY: {
4631     if (SNaN)
4632       return true;
4633 
4634     // TODO: Can check no nans on one of the operands for each one, but which
4635     // one?
4636     return false;
4637   }
4638   case AMDGPUISD::FMUL_LEGACY:
4639   case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4640     if (SNaN)
4641       return true;
4642     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4643            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4644   }
4645   case AMDGPUISD::FMED3:
4646   case AMDGPUISD::FMIN3:
4647   case AMDGPUISD::FMAX3:
4648   case AMDGPUISD::FMAD_FTZ: {
4649     if (SNaN)
4650       return true;
4651     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4652            DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4653            DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4654   }
4655   case AMDGPUISD::CVT_F32_UBYTE0:
4656   case AMDGPUISD::CVT_F32_UBYTE1:
4657   case AMDGPUISD::CVT_F32_UBYTE2:
4658   case AMDGPUISD::CVT_F32_UBYTE3:
4659     return true;
4660 
4661   case AMDGPUISD::RCP:
4662   case AMDGPUISD::RSQ:
4663   case AMDGPUISD::RCP_LEGACY:
4664   case AMDGPUISD::RSQ_CLAMP: {
4665     if (SNaN)
4666       return true;
4667 
4668     // TODO: Need is known positive check.
4669     return false;
4670   }
4671   case AMDGPUISD::LDEXP:
4672   case AMDGPUISD::FRACT: {
4673     if (SNaN)
4674       return true;
4675     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4676   }
4677   case AMDGPUISD::DIV_SCALE:
4678   case AMDGPUISD::DIV_FMAS:
4679   case AMDGPUISD::DIV_FIXUP:
4680     // TODO: Refine on operands.
4681     return SNaN;
4682   case AMDGPUISD::SIN_HW:
4683   case AMDGPUISD::COS_HW: {
4684     // TODO: Need check for infinity
4685     return SNaN;
4686   }
4687   case ISD::INTRINSIC_WO_CHAIN: {
4688     unsigned IntrinsicID
4689       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4690     // TODO: Handle more intrinsics
4691     switch (IntrinsicID) {
4692     case Intrinsic::amdgcn_cubeid:
4693       return true;
4694 
4695     case Intrinsic::amdgcn_frexp_mant: {
4696       if (SNaN)
4697         return true;
4698       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4699     }
4700     case Intrinsic::amdgcn_cvt_pkrtz: {
4701       if (SNaN)
4702         return true;
4703       return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4704              DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4705     }
4706     case Intrinsic::amdgcn_rcp:
4707     case Intrinsic::amdgcn_rsq:
4708     case Intrinsic::amdgcn_rcp_legacy:
4709     case Intrinsic::amdgcn_rsq_legacy:
4710     case Intrinsic::amdgcn_rsq_clamp: {
4711       if (SNaN)
4712         return true;
4713 
4714       // TODO: Need is known positive check.
4715       return false;
4716     }
4717     case Intrinsic::amdgcn_trig_preop:
4718     case Intrinsic::amdgcn_fdot2:
4719       // TODO: Refine on operand
4720       return SNaN;
4721     default:
4722       return false;
4723     }
4724   }
4725   default:
4726     return false;
4727   }
4728 }
4729 
4730 TargetLowering::AtomicExpansionKind
4731 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4732   switch (RMW->getOperation()) {
4733   case AtomicRMWInst::Nand:
4734   case AtomicRMWInst::FAdd:
4735   case AtomicRMWInst::FSub:
4736     return AtomicExpansionKind::CmpXChg;
4737   default:
4738     return AtomicExpansionKind::None;
4739   }
4740 }
4741