1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUArgumentUsageInfo.h" 16 #include "AMDGPUISelLowering.h" // For AMDGPUISD 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUPerfHintAnalysis.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 22 #include "SIDefines.h" 23 #include "SIISelLowering.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIRegisterInfo.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/FunctionLoweringInfo.h" 34 #include "llvm/CodeGen/ISDOpcodes.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGISel.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/InitializePasses.h" 43 #ifdef EXPENSIVE_CHECKS 44 #include "llvm/IR/Dominators.h" 45 #endif 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MachineValueType.h" 52 #include "llvm/Support/MathExtras.h" 53 #include <cassert> 54 #include <cstdint> 55 #include <new> 56 #include <vector> 57 58 #define DEBUG_TYPE "isel" 59 60 using namespace llvm; 61 62 namespace llvm { 63 64 class R600InstrInfo; 65 66 } // end namespace llvm 67 68 //===----------------------------------------------------------------------===// 69 // Instruction Selector Implementation 70 //===----------------------------------------------------------------------===// 71 72 namespace { 73 74 static bool isNullConstantOrUndef(SDValue V) { 75 if (V.isUndef()) 76 return true; 77 78 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 79 return Const != nullptr && Const->isNullValue(); 80 } 81 82 static bool getConstantValue(SDValue N, uint32_t &Out) { 83 // This is only used for packed vectors, where ussing 0 for undef should 84 // always be good. 85 if (N.isUndef()) { 86 Out = 0; 87 return true; 88 } 89 90 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 91 Out = C->getAPIntValue().getSExtValue(); 92 return true; 93 } 94 95 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 96 Out = C->getValueAPF().bitcastToAPInt().getSExtValue(); 97 return true; 98 } 99 100 return false; 101 } 102 103 // TODO: Handle undef as zero 104 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG, 105 bool Negate = false) { 106 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2); 107 uint32_t LHSVal, RHSVal; 108 if (getConstantValue(N->getOperand(0), LHSVal) && 109 getConstantValue(N->getOperand(1), RHSVal)) { 110 SDLoc SL(N); 111 uint32_t K = Negate ? 112 (-LHSVal & 0xffff) | (-RHSVal << 16) : 113 (LHSVal & 0xffff) | (RHSVal << 16); 114 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0), 115 DAG.getTargetConstant(K, SL, MVT::i32)); 116 } 117 118 return nullptr; 119 } 120 121 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) { 122 return packConstantV2I16(N, DAG, true); 123 } 124 125 /// AMDGPU specific code to select AMDGPU machine instructions for 126 /// SelectionDAG operations. 127 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 128 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 129 // make the right decision when generating code for different targets. 130 const GCNSubtarget *Subtarget; 131 132 // Default FP mode for the current function. 133 AMDGPU::SIModeRegisterDefaults Mode; 134 135 bool EnableLateStructurizeCFG; 136 137 public: 138 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 139 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 140 : SelectionDAGISel(*TM, OptLevel) { 141 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 142 } 143 ~AMDGPUDAGToDAGISel() override = default; 144 145 void getAnalysisUsage(AnalysisUsage &AU) const override { 146 AU.addRequired<AMDGPUArgumentUsageInfo>(); 147 AU.addRequired<LegacyDivergenceAnalysis>(); 148 #ifdef EXPENSIVE_CHECKS 149 AU.addRequired<DominatorTreeWrapperPass>(); 150 AU.addRequired<LoopInfoWrapperPass>(); 151 #endif 152 SelectionDAGISel::getAnalysisUsage(AU); 153 } 154 155 bool matchLoadD16FromBuildVector(SDNode *N) const; 156 157 bool runOnMachineFunction(MachineFunction &MF) override; 158 void PreprocessISelDAG() override; 159 void Select(SDNode *N) override; 160 StringRef getPassName() const override; 161 void PostprocessISelDAG() override; 162 163 protected: 164 void SelectBuildVector(SDNode *N, unsigned RegClassID); 165 166 private: 167 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 168 bool isNoNanSrc(SDValue N) const; 169 bool isInlineImmediate(const SDNode *N, bool Negated = false) const; 170 bool isNegInlineImmediate(const SDNode *N) const { 171 return isInlineImmediate(N, true); 172 } 173 174 bool isInlineImmediate16(int64_t Imm) const { 175 return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm()); 176 } 177 178 bool isInlineImmediate32(int64_t Imm) const { 179 return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm()); 180 } 181 182 bool isInlineImmediate64(int64_t Imm) const { 183 return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm()); 184 } 185 186 bool isInlineImmediate(const APFloat &Imm) const { 187 return Subtarget->getInstrInfo()->isInlineConstant(Imm); 188 } 189 190 bool isVGPRImm(const SDNode *N) const; 191 bool isUniformLoad(const SDNode *N) const; 192 bool isUniformBr(const SDNode *N) const; 193 194 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 195 196 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const; 197 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const; 198 SDNode *glueCopyToM0LDSInit(SDNode *N) const; 199 200 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 201 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 202 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 203 bool isDSOffsetLegal(SDValue Base, unsigned Offset, 204 unsigned OffsetBits) const; 205 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 206 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 207 SDValue &Offset1) const; 208 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 209 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 210 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, 211 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 212 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 213 SDValue &SOffset, SDValue &Offset, SDValue &GLC, 214 SDValue &SLC, SDValue &TFE, SDValue &DLC, 215 SDValue &SWZ) const; 216 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 217 SDValue &VAddr, SDValue &SOffset, SDValue &Offset, 218 SDValue &SLC) const; 219 bool SelectMUBUFScratchOffen(SDNode *Parent, 220 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 221 SDValue &SOffset, SDValue &ImmOffset) const; 222 bool SelectMUBUFScratchOffset(SDNode *Parent, 223 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 224 SDValue &Offset) const; 225 226 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, 227 SDValue &Offset, SDValue &GLC, SDValue &SLC, 228 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 229 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 230 SDValue &Offset, SDValue &SLC) const; 231 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 232 SDValue &Offset) const; 233 234 template <bool IsSigned> 235 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 236 SDValue &Offset, SDValue &SLC) const; 237 bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr, 238 SDValue &Offset, SDValue &SLC) const; 239 bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr, 240 SDValue &Offset, SDValue &SLC) const; 241 242 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 243 bool &Imm) const; 244 SDValue Expand32BitAddress(SDValue Addr) const; 245 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 246 bool &Imm) const; 247 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 248 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 249 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 250 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 251 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 252 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 253 254 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 255 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const; 256 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 257 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 258 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 259 SDValue &Clamp, SDValue &Omod) const; 260 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 261 SDValue &Clamp, SDValue &Omod) const; 262 263 bool SelectVOP3OMods(SDValue In, SDValue &Src, 264 SDValue &Clamp, SDValue &Omod) const; 265 266 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 267 268 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 269 270 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 271 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 272 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 273 274 SDValue getHi16Elt(SDValue In) const; 275 276 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const; 277 278 void SelectADD_SUB_I64(SDNode *N); 279 void SelectAddcSubb(SDNode *N); 280 void SelectUADDO_USUBO(SDNode *N); 281 void SelectDIV_SCALE(SDNode *N); 282 void SelectMAD_64_32(SDNode *N); 283 void SelectFMA_W_CHAIN(SDNode *N); 284 void SelectFMUL_W_CHAIN(SDNode *N); 285 286 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 287 uint32_t Offset, uint32_t Width); 288 void SelectS_BFEFromShifts(SDNode *N); 289 void SelectS_BFE(SDNode *N); 290 bool isCBranchSCC(const SDNode *N) const; 291 void SelectBRCOND(SDNode *N); 292 void SelectFMAD_FMA(SDNode *N); 293 void SelectATOMIC_CMP_SWAP(SDNode *N); 294 void SelectDSAppendConsume(SDNode *N, unsigned IntrID); 295 void SelectDS_GWS(SDNode *N, unsigned IntrID); 296 void SelectInterpP1F16(SDNode *N); 297 void SelectINTRINSIC_W_CHAIN(SDNode *N); 298 void SelectINTRINSIC_WO_CHAIN(SDNode *N); 299 void SelectINTRINSIC_VOID(SDNode *N); 300 301 protected: 302 // Include the pieces autogenerated from the target description. 303 #include "AMDGPUGenDAGISel.inc" 304 }; 305 306 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 307 const R600Subtarget *Subtarget; 308 309 bool isConstantLoad(const MemSDNode *N, int cbID) const; 310 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 311 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 312 SDValue& Offset); 313 public: 314 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 315 AMDGPUDAGToDAGISel(TM, OptLevel) {} 316 317 void Select(SDNode *N) override; 318 319 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 320 SDValue &Offset) override; 321 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 322 SDValue &Offset) override; 323 324 bool runOnMachineFunction(MachineFunction &MF) override; 325 326 void PreprocessISelDAG() override {} 327 328 protected: 329 // Include the pieces autogenerated from the target description. 330 #include "R600GenDAGISel.inc" 331 }; 332 333 static SDValue stripBitcast(SDValue Val) { 334 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 335 } 336 337 // Figure out if this is really an extract of the high 16-bits of a dword. 338 static bool isExtractHiElt(SDValue In, SDValue &Out) { 339 In = stripBitcast(In); 340 if (In.getOpcode() != ISD::TRUNCATE) 341 return false; 342 343 SDValue Srl = In.getOperand(0); 344 if (Srl.getOpcode() == ISD::SRL) { 345 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 346 if (ShiftAmt->getZExtValue() == 16) { 347 Out = stripBitcast(Srl.getOperand(0)); 348 return true; 349 } 350 } 351 } 352 353 return false; 354 } 355 356 // Look through operations that obscure just looking at the low 16-bits of the 357 // same register. 358 static SDValue stripExtractLoElt(SDValue In) { 359 if (In.getOpcode() == ISD::TRUNCATE) { 360 SDValue Src = In.getOperand(0); 361 if (Src.getValueType().getSizeInBits() == 32) 362 return stripBitcast(Src); 363 } 364 365 return In; 366 } 367 368 } // end anonymous namespace 369 370 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 371 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 372 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 373 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 374 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 375 #ifdef EXPENSIVE_CHECKS 376 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 377 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 378 #endif 379 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 380 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 381 382 /// This pass converts a legalized DAG into a AMDGPU-specific 383 // DAG, ready for instruction scheduling. 384 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 385 CodeGenOpt::Level OptLevel) { 386 return new AMDGPUDAGToDAGISel(TM, OptLevel); 387 } 388 389 /// This pass converts a legalized DAG into a R600-specific 390 // DAG, ready for instruction scheduling. 391 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 392 CodeGenOpt::Level OptLevel) { 393 return new R600DAGToDAGISel(TM, OptLevel); 394 } 395 396 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 397 #ifdef EXPENSIVE_CHECKS 398 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 399 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 400 for (auto &L : LI->getLoopsInPreorder()) { 401 assert(L->isLCSSAForm(DT)); 402 } 403 #endif 404 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 405 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 406 return SelectionDAGISel::runOnMachineFunction(MF); 407 } 408 409 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 410 assert(Subtarget->d16PreservesUnusedBits()); 411 MVT VT = N->getValueType(0).getSimpleVT(); 412 if (VT != MVT::v2i16 && VT != MVT::v2f16) 413 return false; 414 415 SDValue Lo = N->getOperand(0); 416 SDValue Hi = N->getOperand(1); 417 418 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 419 420 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 421 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 422 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 423 424 // Need to check for possible indirect dependencies on the other half of the 425 // vector to avoid introducing a cycle. 426 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 427 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 428 429 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 430 SDValue Ops[] = { 431 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 432 }; 433 434 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 435 if (LdHi->getMemoryVT() == MVT::i8) { 436 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 437 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 438 } else { 439 assert(LdHi->getMemoryVT() == MVT::i16); 440 } 441 442 SDValue NewLoadHi = 443 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 444 Ops, LdHi->getMemoryVT(), 445 LdHi->getMemOperand()); 446 447 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 448 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 449 return true; 450 } 451 452 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 453 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 454 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 455 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 456 if (LdLo && Lo.hasOneUse()) { 457 SDValue TiedIn = getHi16Elt(Hi); 458 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 459 return false; 460 461 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 462 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 463 if (LdLo->getMemoryVT() == MVT::i8) { 464 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 465 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 466 } else { 467 assert(LdLo->getMemoryVT() == MVT::i16); 468 } 469 470 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 471 472 SDValue Ops[] = { 473 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 474 }; 475 476 SDValue NewLoadLo = 477 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 478 Ops, LdLo->getMemoryVT(), 479 LdLo->getMemOperand()); 480 481 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 482 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 483 return true; 484 } 485 486 return false; 487 } 488 489 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 490 if (!Subtarget->d16PreservesUnusedBits()) 491 return; 492 493 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 494 495 bool MadeChange = false; 496 while (Position != CurDAG->allnodes_begin()) { 497 SDNode *N = &*--Position; 498 if (N->use_empty()) 499 continue; 500 501 switch (N->getOpcode()) { 502 case ISD::BUILD_VECTOR: 503 MadeChange |= matchLoadD16FromBuildVector(N); 504 break; 505 default: 506 break; 507 } 508 } 509 510 if (MadeChange) { 511 CurDAG->RemoveDeadNodes(); 512 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 513 CurDAG->dump();); 514 } 515 } 516 517 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 518 if (TM.Options.NoNaNsFPMath) 519 return true; 520 521 // TODO: Move into isKnownNeverNaN 522 if (N->getFlags().isDefined()) 523 return N->getFlags().hasNoNaNs(); 524 525 return CurDAG->isKnownNeverNaN(N); 526 } 527 528 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 529 bool Negated) const { 530 if (N->isUndef()) 531 return true; 532 533 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 534 if (Negated) { 535 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 536 return TII->isInlineConstant(-C->getAPIntValue()); 537 538 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 539 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 540 541 } else { 542 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 543 return TII->isInlineConstant(C->getAPIntValue()); 544 545 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 546 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 547 } 548 549 return false; 550 } 551 552 /// Determine the register class for \p OpNo 553 /// \returns The register class of the virtual register that will be used for 554 /// the given operand number \OpNo or NULL if the register class cannot be 555 /// determined. 556 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 557 unsigned OpNo) const { 558 if (!N->isMachineOpcode()) { 559 if (N->getOpcode() == ISD::CopyToReg) { 560 unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 561 if (Register::isVirtualRegister(Reg)) { 562 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 563 return MRI.getRegClass(Reg); 564 } 565 566 const SIRegisterInfo *TRI 567 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 568 return TRI->getPhysRegClass(Reg); 569 } 570 571 return nullptr; 572 } 573 574 switch (N->getMachineOpcode()) { 575 default: { 576 const MCInstrDesc &Desc = 577 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 578 unsigned OpIdx = Desc.getNumDefs() + OpNo; 579 if (OpIdx >= Desc.getNumOperands()) 580 return nullptr; 581 int RegClass = Desc.OpInfo[OpIdx].RegClass; 582 if (RegClass == -1) 583 return nullptr; 584 585 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 586 } 587 case AMDGPU::REG_SEQUENCE: { 588 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 589 const TargetRegisterClass *SuperRC = 590 Subtarget->getRegisterInfo()->getRegClass(RCID); 591 592 SDValue SubRegOp = N->getOperand(OpNo + 1); 593 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 594 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 595 SubRegIdx); 596 } 597 } 598 } 599 600 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 601 SDValue Glue) const { 602 SmallVector <SDValue, 8> Ops; 603 Ops.push_back(NewChain); // Replace the chain. 604 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 605 Ops.push_back(N->getOperand(i)); 606 607 Ops.push_back(Glue); 608 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 609 } 610 611 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 612 const SITargetLowering& Lowering = 613 *static_cast<const SITargetLowering*>(getTargetLowering()); 614 615 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 616 617 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 618 return glueCopyToOp(N, M0, M0.getValue(1)); 619 } 620 621 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 622 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 623 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 624 if (Subtarget->ldsRequiresM0Init()) 625 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 626 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 627 MachineFunction &MF = CurDAG->getMachineFunction(); 628 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 629 return 630 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 631 } 632 return N; 633 } 634 635 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 636 EVT VT) const { 637 SDNode *Lo = CurDAG->getMachineNode( 638 AMDGPU::S_MOV_B32, DL, MVT::i32, 639 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 640 SDNode *Hi = 641 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 642 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 643 const SDValue Ops[] = { 644 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 645 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 646 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 647 648 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 649 } 650 651 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 652 EVT VT = N->getValueType(0); 653 unsigned NumVectorElts = VT.getVectorNumElements(); 654 EVT EltVT = VT.getVectorElementType(); 655 SDLoc DL(N); 656 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 657 658 if (NumVectorElts == 1) { 659 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 660 RegClass); 661 return; 662 } 663 664 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 665 "supported yet"); 666 // 32 = Max Num Vector Elements 667 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 668 // 1 = Vector Register Class 669 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 670 671 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 672 Triple::amdgcn; 673 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 674 bool IsRegSeq = true; 675 unsigned NOps = N->getNumOperands(); 676 for (unsigned i = 0; i < NOps; i++) { 677 // XXX: Why is this here? 678 if (isa<RegisterSDNode>(N->getOperand(i))) { 679 IsRegSeq = false; 680 break; 681 } 682 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 683 : R600RegisterInfo::getSubRegFromChannel(i); 684 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 685 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 686 } 687 if (NOps != NumVectorElts) { 688 // Fill in the missing undef elements if this was a scalar_to_vector. 689 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 690 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 691 DL, EltVT); 692 for (unsigned i = NOps; i < NumVectorElts; ++i) { 693 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 694 : R600RegisterInfo::getSubRegFromChannel(i); 695 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 696 RegSeqArgs[1 + (2 * i) + 1] = 697 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 698 } 699 } 700 701 if (!IsRegSeq) 702 SelectCode(N); 703 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 704 } 705 706 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 707 unsigned int Opc = N->getOpcode(); 708 if (N->isMachineOpcode()) { 709 N->setNodeId(-1); 710 return; // Already selected. 711 } 712 713 // isa<MemSDNode> almost works but is slightly too permissive for some DS 714 // intrinsics. 715 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 716 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 717 Opc == ISD::ATOMIC_LOAD_FADD || 718 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 719 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX || 720 Opc == AMDGPUISD::ATOMIC_LOAD_CSUB)) { 721 N = glueCopyToM0LDSInit(N); 722 SelectCode(N); 723 return; 724 } 725 726 switch (Opc) { 727 default: 728 break; 729 // We are selecting i64 ADD here instead of custom lower it during 730 // DAG legalization, so we can fold some i64 ADDs used for address 731 // calculation into the LOAD and STORE instructions. 732 case ISD::ADDC: 733 case ISD::ADDE: 734 case ISD::SUBC: 735 case ISD::SUBE: { 736 if (N->getValueType(0) != MVT::i64) 737 break; 738 739 SelectADD_SUB_I64(N); 740 return; 741 } 742 case ISD::ADDCARRY: 743 case ISD::SUBCARRY: 744 if (N->getValueType(0) != MVT::i32) 745 break; 746 747 SelectAddcSubb(N); 748 return; 749 case ISD::UADDO: 750 case ISD::USUBO: { 751 SelectUADDO_USUBO(N); 752 return; 753 } 754 case AMDGPUISD::FMUL_W_CHAIN: { 755 SelectFMUL_W_CHAIN(N); 756 return; 757 } 758 case AMDGPUISD::FMA_W_CHAIN: { 759 SelectFMA_W_CHAIN(N); 760 return; 761 } 762 763 case ISD::SCALAR_TO_VECTOR: 764 case ISD::BUILD_VECTOR: { 765 EVT VT = N->getValueType(0); 766 unsigned NumVectorElts = VT.getVectorNumElements(); 767 if (VT.getScalarSizeInBits() == 16) { 768 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 769 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 770 ReplaceNode(N, Packed); 771 return; 772 } 773 } 774 775 break; 776 } 777 778 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 779 unsigned RegClassID = 780 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 781 SelectBuildVector(N, RegClassID); 782 return; 783 } 784 case ISD::BUILD_PAIR: { 785 SDValue RC, SubReg0, SubReg1; 786 SDLoc DL(N); 787 if (N->getValueType(0) == MVT::i128) { 788 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 789 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 790 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 791 } else if (N->getValueType(0) == MVT::i64) { 792 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 793 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 794 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 795 } else { 796 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 797 } 798 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 799 N->getOperand(1), SubReg1 }; 800 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 801 N->getValueType(0), Ops)); 802 return; 803 } 804 805 case ISD::Constant: 806 case ISD::ConstantFP: { 807 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 808 break; 809 810 uint64_t Imm; 811 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 812 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 813 else { 814 ConstantSDNode *C = cast<ConstantSDNode>(N); 815 Imm = C->getZExtValue(); 816 } 817 818 SDLoc DL(N); 819 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 820 return; 821 } 822 case AMDGPUISD::BFE_I32: 823 case AMDGPUISD::BFE_U32: { 824 // There is a scalar version available, but unlike the vector version which 825 // has a separate operand for the offset and width, the scalar version packs 826 // the width and offset into a single operand. Try to move to the scalar 827 // version if the offsets are constant, so that we can try to keep extended 828 // loads of kernel arguments in SGPRs. 829 830 // TODO: Technically we could try to pattern match scalar bitshifts of 831 // dynamic values, but it's probably not useful. 832 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 833 if (!Offset) 834 break; 835 836 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 837 if (!Width) 838 break; 839 840 bool Signed = Opc == AMDGPUISD::BFE_I32; 841 842 uint32_t OffsetVal = Offset->getZExtValue(); 843 uint32_t WidthVal = Width->getZExtValue(); 844 845 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 846 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 847 return; 848 } 849 case AMDGPUISD::DIV_SCALE: { 850 SelectDIV_SCALE(N); 851 return; 852 } 853 case AMDGPUISD::MAD_I64_I32: 854 case AMDGPUISD::MAD_U64_U32: { 855 SelectMAD_64_32(N); 856 return; 857 } 858 case ISD::CopyToReg: { 859 const SITargetLowering& Lowering = 860 *static_cast<const SITargetLowering*>(getTargetLowering()); 861 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 862 break; 863 } 864 case ISD::AND: 865 case ISD::SRL: 866 case ISD::SRA: 867 case ISD::SIGN_EXTEND_INREG: 868 if (N->getValueType(0) != MVT::i32) 869 break; 870 871 SelectS_BFE(N); 872 return; 873 case ISD::BRCOND: 874 SelectBRCOND(N); 875 return; 876 case ISD::FMAD: 877 case ISD::FMA: 878 SelectFMAD_FMA(N); 879 return; 880 case AMDGPUISD::ATOMIC_CMP_SWAP: 881 SelectATOMIC_CMP_SWAP(N); 882 return; 883 case AMDGPUISD::CVT_PKRTZ_F16_F32: 884 case AMDGPUISD::CVT_PKNORM_I16_F32: 885 case AMDGPUISD::CVT_PKNORM_U16_F32: 886 case AMDGPUISD::CVT_PK_U16_U32: 887 case AMDGPUISD::CVT_PK_I16_I32: { 888 // Hack around using a legal type if f16 is illegal. 889 if (N->getValueType(0) == MVT::i32) { 890 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 891 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 892 { N->getOperand(0), N->getOperand(1) }); 893 SelectCode(N); 894 return; 895 } 896 897 break; 898 } 899 case ISD::INTRINSIC_W_CHAIN: { 900 SelectINTRINSIC_W_CHAIN(N); 901 return; 902 } 903 case ISD::INTRINSIC_WO_CHAIN: { 904 SelectINTRINSIC_WO_CHAIN(N); 905 return; 906 } 907 case ISD::INTRINSIC_VOID: { 908 SelectINTRINSIC_VOID(N); 909 return; 910 } 911 } 912 913 SelectCode(N); 914 } 915 916 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 917 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 918 const Instruction *Term = BB->getTerminator(); 919 return Term->getMetadata("amdgpu.uniform") || 920 Term->getMetadata("structurizecfg.uniform"); 921 } 922 923 StringRef AMDGPUDAGToDAGISel::getPassName() const { 924 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 925 } 926 927 //===----------------------------------------------------------------------===// 928 // Complex Patterns 929 //===----------------------------------------------------------------------===// 930 931 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 932 SDValue &Offset) { 933 return false; 934 } 935 936 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 937 SDValue &Offset) { 938 ConstantSDNode *C; 939 SDLoc DL(Addr); 940 941 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 942 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 943 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 944 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 945 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 946 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 947 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 948 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 949 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 950 Base = Addr.getOperand(0); 951 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 952 } else { 953 Base = Addr; 954 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 955 } 956 957 return true; 958 } 959 960 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 961 const SDLoc &DL) const { 962 SDNode *Mov = CurDAG->getMachineNode( 963 AMDGPU::S_MOV_B32, DL, MVT::i32, 964 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 965 return SDValue(Mov, 0); 966 } 967 968 // FIXME: Should only handle addcarry/subcarry 969 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 970 SDLoc DL(N); 971 SDValue LHS = N->getOperand(0); 972 SDValue RHS = N->getOperand(1); 973 974 unsigned Opcode = N->getOpcode(); 975 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 976 bool ProduceCarry = 977 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 978 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 979 980 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 981 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 982 983 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 984 DL, MVT::i32, LHS, Sub0); 985 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 986 DL, MVT::i32, LHS, Sub1); 987 988 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 989 DL, MVT::i32, RHS, Sub0); 990 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 991 DL, MVT::i32, RHS, Sub1); 992 993 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 994 995 static const unsigned OpcMap[2][2][2] = { 996 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 997 {AMDGPU::V_SUB_I32_e32, AMDGPU::V_ADD_I32_e32}}, 998 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 999 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 1000 1001 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 1002 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 1003 1004 SDNode *AddLo; 1005 if (!ConsumeCarry) { 1006 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 1007 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 1008 } else { 1009 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 1010 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 1011 } 1012 SDValue AddHiArgs[] = { 1013 SDValue(Hi0, 0), 1014 SDValue(Hi1, 0), 1015 SDValue(AddLo, 1) 1016 }; 1017 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 1018 1019 SDValue RegSequenceArgs[] = { 1020 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 1021 SDValue(AddLo,0), 1022 Sub0, 1023 SDValue(AddHi,0), 1024 Sub1, 1025 }; 1026 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1027 MVT::i64, RegSequenceArgs); 1028 1029 if (ProduceCarry) { 1030 // Replace the carry-use 1031 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 1032 } 1033 1034 // Replace the remaining uses. 1035 ReplaceNode(N, RegSequence); 1036 } 1037 1038 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 1039 SDLoc DL(N); 1040 SDValue LHS = N->getOperand(0); 1041 SDValue RHS = N->getOperand(1); 1042 SDValue CI = N->getOperand(2); 1043 1044 if (N->isDivergent()) { 1045 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 1046 : AMDGPU::V_SUBB_U32_e64; 1047 CurDAG->SelectNodeTo( 1048 N, Opc, N->getVTList(), 1049 {LHS, RHS, CI, 1050 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1051 } else { 1052 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 1053 : AMDGPU::S_SUB_CO_PSEUDO; 1054 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 1055 } 1056 } 1057 1058 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 1059 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 1060 // carry out despite the _i32 name. These were renamed in VI to _U32. 1061 // FIXME: We should probably rename the opcodes here. 1062 bool IsAdd = N->getOpcode() == ISD::UADDO; 1063 bool IsVALU = N->isDivergent(); 1064 1065 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 1066 ++UI) 1067 if (UI.getUse().getResNo() == 1) { 1068 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 1069 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 1070 IsVALU = true; 1071 break; 1072 } 1073 } 1074 1075 if (IsVALU) { 1076 unsigned Opc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64; 1077 1078 CurDAG->SelectNodeTo( 1079 N, Opc, N->getVTList(), 1080 {N->getOperand(0), N->getOperand(1), 1081 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1082 } else { 1083 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 1084 : AMDGPU::S_USUBO_PSEUDO; 1085 1086 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 1087 {N->getOperand(0), N->getOperand(1)}); 1088 } 1089 } 1090 1091 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 1092 SDLoc SL(N); 1093 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 1094 SDValue Ops[10]; 1095 1096 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 1097 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1098 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 1099 Ops[8] = N->getOperand(0); 1100 Ops[9] = N->getOperand(4); 1101 1102 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops); 1103 } 1104 1105 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 1106 SDLoc SL(N); 1107 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 1108 SDValue Ops[8]; 1109 1110 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 1111 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1112 Ops[6] = N->getOperand(0); 1113 Ops[7] = N->getOperand(3); 1114 1115 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 1116 } 1117 1118 // We need to handle this here because tablegen doesn't support matching 1119 // instructions with multiple outputs. 1120 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1121 SDLoc SL(N); 1122 EVT VT = N->getValueType(0); 1123 1124 assert(VT == MVT::f32 || VT == MVT::f64); 1125 1126 unsigned Opc 1127 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32; 1128 1129 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) }; 1130 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1131 } 1132 1133 // We need to handle this here because tablegen doesn't support matching 1134 // instructions with multiple outputs. 1135 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1136 SDLoc SL(N); 1137 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1138 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32; 1139 1140 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1141 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1142 Clamp }; 1143 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1144 } 1145 1146 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset, 1147 unsigned OffsetBits) const { 1148 if ((OffsetBits == 16 && !isUInt<16>(Offset)) || 1149 (OffsetBits == 8 && !isUInt<8>(Offset))) 1150 return false; 1151 1152 if (Subtarget->hasUsableDSOffset() || 1153 Subtarget->unsafeDSOffsetFoldingEnabled()) 1154 return true; 1155 1156 // On Southern Islands instruction with a negative base value and an offset 1157 // don't seem to work. 1158 return CurDAG->SignBitIsZero(Base); 1159 } 1160 1161 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1162 SDValue &Offset) const { 1163 SDLoc DL(Addr); 1164 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1165 SDValue N0 = Addr.getOperand(0); 1166 SDValue N1 = Addr.getOperand(1); 1167 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1168 if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) { 1169 // (add n0, c0) 1170 Base = N0; 1171 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1172 return true; 1173 } 1174 } else if (Addr.getOpcode() == ISD::SUB) { 1175 // sub C, x -> add (sub 0, x), C 1176 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1177 int64_t ByteOffset = C->getSExtValue(); 1178 if (isUInt<16>(ByteOffset)) { 1179 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1180 1181 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1182 // the known bits in isDSOffsetLegal. We need to emit the selected node 1183 // here, so this is thrown away. 1184 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1185 Zero, Addr.getOperand(1)); 1186 1187 if (isDSOffsetLegal(Sub, ByteOffset, 16)) { 1188 SmallVector<SDValue, 3> Opnds; 1189 Opnds.push_back(Zero); 1190 Opnds.push_back(Addr.getOperand(1)); 1191 1192 // FIXME: Select to VOP3 version for with-carry. 1193 unsigned SubOp = AMDGPU::V_SUB_I32_e32; 1194 if (Subtarget->hasAddNoCarry()) { 1195 SubOp = AMDGPU::V_SUB_U32_e64; 1196 Opnds.push_back( 1197 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1198 } 1199 1200 MachineSDNode *MachineSub = 1201 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1202 1203 Base = SDValue(MachineSub, 0); 1204 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1205 return true; 1206 } 1207 } 1208 } 1209 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1210 // If we have a constant address, prefer to put the constant into the 1211 // offset. This can save moves to load the constant address since multiple 1212 // operations can share the zero base address register, and enables merging 1213 // into read2 / write2 instructions. 1214 1215 SDLoc DL(Addr); 1216 1217 if (isUInt<16>(CAddr->getZExtValue())) { 1218 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1219 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1220 DL, MVT::i32, Zero); 1221 Base = SDValue(MovZero, 0); 1222 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1223 return true; 1224 } 1225 } 1226 1227 // default case 1228 Base = Addr; 1229 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1230 return true; 1231 } 1232 1233 // TODO: If offset is too big, put low 16-bit into offset. 1234 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1235 SDValue &Offset0, 1236 SDValue &Offset1) const { 1237 SDLoc DL(Addr); 1238 1239 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1240 SDValue N0 = Addr.getOperand(0); 1241 SDValue N1 = Addr.getOperand(1); 1242 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1243 unsigned DWordOffset0 = C1->getZExtValue() / 4; 1244 unsigned DWordOffset1 = DWordOffset0 + 1; 1245 // (add n0, c0) 1246 if (isDSOffsetLegal(N0, DWordOffset1, 8)) { 1247 Base = N0; 1248 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 1249 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 1250 return true; 1251 } 1252 } else if (Addr.getOpcode() == ISD::SUB) { 1253 // sub C, x -> add (sub 0, x), C 1254 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1255 unsigned DWordOffset0 = C->getZExtValue() / 4; 1256 unsigned DWordOffset1 = DWordOffset0 + 1; 1257 1258 if (isUInt<8>(DWordOffset0)) { 1259 SDLoc DL(Addr); 1260 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1261 1262 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1263 // the known bits in isDSOffsetLegal. We need to emit the selected node 1264 // here, so this is thrown away. 1265 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1266 Zero, Addr.getOperand(1)); 1267 1268 if (isDSOffsetLegal(Sub, DWordOffset1, 8)) { 1269 SmallVector<SDValue, 3> Opnds; 1270 Opnds.push_back(Zero); 1271 Opnds.push_back(Addr.getOperand(1)); 1272 unsigned SubOp = AMDGPU::V_SUB_I32_e32; 1273 if (Subtarget->hasAddNoCarry()) { 1274 SubOp = AMDGPU::V_SUB_U32_e64; 1275 Opnds.push_back( 1276 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1277 } 1278 1279 MachineSDNode *MachineSub 1280 = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1281 1282 Base = SDValue(MachineSub, 0); 1283 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 1284 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 1285 return true; 1286 } 1287 } 1288 } 1289 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1290 unsigned DWordOffset0 = CAddr->getZExtValue() / 4; 1291 unsigned DWordOffset1 = DWordOffset0 + 1; 1292 assert(4 * DWordOffset0 == CAddr->getZExtValue()); 1293 1294 if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) { 1295 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1296 MachineSDNode *MovZero 1297 = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1298 DL, MVT::i32, Zero); 1299 Base = SDValue(MovZero, 0); 1300 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 1301 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 1302 return true; 1303 } 1304 } 1305 1306 // default case 1307 1308 Base = Addr; 1309 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1310 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1311 return true; 1312 } 1313 1314 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, 1315 SDValue &VAddr, SDValue &SOffset, 1316 SDValue &Offset, SDValue &Offen, 1317 SDValue &Idxen, SDValue &Addr64, 1318 SDValue &GLC, SDValue &SLC, 1319 SDValue &TFE, SDValue &DLC, 1320 SDValue &SWZ) const { 1321 // Subtarget prefers to use flat instruction 1322 // FIXME: This should be a pattern predicate and not reach here 1323 if (Subtarget->useFlatForGlobal()) 1324 return false; 1325 1326 SDLoc DL(Addr); 1327 1328 if (!GLC.getNode()) 1329 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1330 if (!SLC.getNode()) 1331 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1332 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); 1333 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1334 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1); 1335 1336 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1337 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1338 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1339 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1340 1341 ConstantSDNode *C1 = nullptr; 1342 SDValue N0 = Addr; 1343 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1344 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1345 if (isUInt<32>(C1->getZExtValue())) 1346 N0 = Addr.getOperand(0); 1347 else 1348 C1 = nullptr; 1349 } 1350 1351 if (N0.getOpcode() == ISD::ADD) { 1352 // (add N2, N3) -> addr64, or 1353 // (add (add N2, N3), C1) -> addr64 1354 SDValue N2 = N0.getOperand(0); 1355 SDValue N3 = N0.getOperand(1); 1356 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1357 1358 if (N2->isDivergent()) { 1359 if (N3->isDivergent()) { 1360 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1361 // addr64, and construct the resource from a 0 address. 1362 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1363 VAddr = N0; 1364 } else { 1365 // N2 is divergent, N3 is not. 1366 Ptr = N3; 1367 VAddr = N2; 1368 } 1369 } else { 1370 // N2 is not divergent. 1371 Ptr = N2; 1372 VAddr = N3; 1373 } 1374 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1375 } else if (N0->isDivergent()) { 1376 // N0 is divergent. Use it as the addr64, and construct the resource from a 1377 // 0 address. 1378 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1379 VAddr = N0; 1380 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1381 } else { 1382 // N0 -> offset, or 1383 // (N0 + C1) -> offset 1384 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1385 Ptr = N0; 1386 } 1387 1388 if (!C1) { 1389 // No offset. 1390 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1391 return true; 1392 } 1393 1394 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1395 // Legal offset for instruction. 1396 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1397 return true; 1398 } 1399 1400 // Illegal offset, store it in soffset. 1401 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1402 SOffset = 1403 SDValue(CurDAG->getMachineNode( 1404 AMDGPU::S_MOV_B32, DL, MVT::i32, 1405 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1406 0); 1407 return true; 1408 } 1409 1410 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1411 SDValue &VAddr, SDValue &SOffset, 1412 SDValue &Offset, SDValue &GLC, 1413 SDValue &SLC, SDValue &TFE, 1414 SDValue &DLC, SDValue &SWZ) const { 1415 SDValue Ptr, Offen, Idxen, Addr64; 1416 1417 // addr64 bit was removed for volcanic islands. 1418 // FIXME: This should be a pattern predicate and not reach here 1419 if (!Subtarget->hasAddr64()) 1420 return false; 1421 1422 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1423 GLC, SLC, TFE, DLC, SWZ)) 1424 return false; 1425 1426 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1427 if (C->getSExtValue()) { 1428 SDLoc DL(Addr); 1429 1430 const SITargetLowering& Lowering = 1431 *static_cast<const SITargetLowering*>(getTargetLowering()); 1432 1433 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1434 return true; 1435 } 1436 1437 return false; 1438 } 1439 1440 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1441 SDValue &VAddr, SDValue &SOffset, 1442 SDValue &Offset, 1443 SDValue &SLC) const { 1444 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); 1445 SDValue GLC, TFE, DLC, SWZ; 1446 1447 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1448 } 1449 1450 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { 1451 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); 1452 return PSV && PSV->isStack(); 1453 } 1454 1455 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1456 SDLoc DL(N); 1457 const MachineFunction &MF = CurDAG->getMachineFunction(); 1458 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1459 1460 if (auto FI = dyn_cast<FrameIndexSDNode>(N)) { 1461 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1462 FI->getValueType(0)); 1463 1464 // If we can resolve this to a frame index access, this will be relative to 1465 // either the stack or frame pointer SGPR. 1466 return std::make_pair( 1467 TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)); 1468 } 1469 1470 // If we don't know this private access is a local stack object, it needs to 1471 // be relative to the entry point's scratch wave offset. 1472 return std::make_pair(N, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1473 } 1474 1475 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1476 SDValue Addr, SDValue &Rsrc, 1477 SDValue &VAddr, SDValue &SOffset, 1478 SDValue &ImmOffset) const { 1479 1480 SDLoc DL(Addr); 1481 MachineFunction &MF = CurDAG->getMachineFunction(); 1482 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1483 1484 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1485 1486 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1487 int64_t Imm = CAddr->getSExtValue(); 1488 const int64_t NullPtr = 1489 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1490 // Don't fold null pointer. 1491 if (Imm != NullPtr) { 1492 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1493 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1494 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1495 VAddr = SDValue(MovHighBits, 0); 1496 1497 // In a call sequence, stores to the argument stack area are relative to the 1498 // stack pointer. 1499 const MachinePointerInfo &PtrInfo 1500 = cast<MemSDNode>(Parent)->getPointerInfo(); 1501 SOffset = isStackPtrRelative(PtrInfo) 1502 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1503 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1504 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1505 return true; 1506 } 1507 } 1508 1509 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1510 // (add n0, c1) 1511 1512 SDValue N0 = Addr.getOperand(0); 1513 SDValue N1 = Addr.getOperand(1); 1514 1515 // Offsets in vaddr must be positive if range checking is enabled. 1516 // 1517 // The total computation of vaddr + soffset + offset must not overflow. If 1518 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1519 // overflowing. 1520 // 1521 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1522 // always perform a range check. If a negative vaddr base index was used, 1523 // this would fail the range check. The overall address computation would 1524 // compute a valid address, but this doesn't happen due to the range 1525 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1526 // 1527 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1528 // MUBUF vaddr, but not on older subtargets which can only do this if the 1529 // sign bit is known 0. 1530 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1531 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1532 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1533 CurDAG->SignBitIsZero(N0))) { 1534 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1535 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1536 return true; 1537 } 1538 } 1539 1540 // (node) 1541 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1542 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1543 return true; 1544 } 1545 1546 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1547 SDValue Addr, 1548 SDValue &SRsrc, 1549 SDValue &SOffset, 1550 SDValue &Offset) const { 1551 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); 1552 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1553 return false; 1554 1555 SDLoc DL(Addr); 1556 MachineFunction &MF = CurDAG->getMachineFunction(); 1557 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1558 1559 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1560 1561 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1562 1563 // FIXME: Get from MachinePointerInfo? We should only be using the frame 1564 // offset if we know this is in a call sequence. 1565 SOffset = isStackPtrRelative(PtrInfo) 1566 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1567 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1568 1569 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1570 return true; 1571 } 1572 1573 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1574 SDValue &SOffset, SDValue &Offset, 1575 SDValue &GLC, SDValue &SLC, 1576 SDValue &TFE, SDValue &DLC, 1577 SDValue &SWZ) const { 1578 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1579 const SIInstrInfo *TII = 1580 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1581 1582 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1583 GLC, SLC, TFE, DLC, SWZ)) 1584 return false; 1585 1586 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1587 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1588 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1589 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1590 APInt::getAllOnesValue(32).getZExtValue(); // Size 1591 SDLoc DL(Addr); 1592 1593 const SITargetLowering& Lowering = 1594 *static_cast<const SITargetLowering*>(getTargetLowering()); 1595 1596 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1597 return true; 1598 } 1599 return false; 1600 } 1601 1602 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1603 SDValue &Soffset, SDValue &Offset 1604 ) const { 1605 SDValue GLC, SLC, TFE, DLC, SWZ; 1606 1607 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1608 } 1609 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1610 SDValue &Soffset, SDValue &Offset, 1611 SDValue &SLC) const { 1612 SDValue GLC, TFE, DLC, SWZ; 1613 1614 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1615 } 1616 1617 // Find a load or store from corresponding pattern root. 1618 // Roots may be build_vector, bitconvert or their combinations. 1619 static MemSDNode* findMemSDNode(SDNode *N) { 1620 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1621 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1622 return MN; 1623 assert(isa<BuildVectorSDNode>(N)); 1624 for (SDValue V : N->op_values()) 1625 if (MemSDNode *MN = 1626 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1627 return MN; 1628 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1629 } 1630 1631 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 1632 SDValue &N0, SDValue &N1) { 1633 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 1634 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 1635 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 1636 // (i64 (bitcast (v2i32 (build_vector 1637 // (or (extract_vector_elt V, 0), OFFSET), 1638 // (extract_vector_elt V, 1))))) 1639 SDValue Lo = Addr.getOperand(0).getOperand(0); 1640 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 1641 SDValue BaseLo = Lo.getOperand(0); 1642 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 1643 // Check that split base (Lo and Hi) are extracted from the same one. 1644 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 1645 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 1646 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 1647 // Lo is statically extracted from index 0. 1648 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 1649 BaseLo.getConstantOperandVal(1) == 0 && 1650 // Hi is statically extracted from index 0. 1651 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 1652 BaseHi.getConstantOperandVal(1) == 1) { 1653 N0 = BaseLo.getOperand(0).getOperand(0); 1654 N1 = Lo.getOperand(1); 1655 return true; 1656 } 1657 } 1658 } 1659 return false; 1660 } 1661 1662 template <bool IsSigned> 1663 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, 1664 SDValue Addr, 1665 SDValue &VAddr, 1666 SDValue &Offset, 1667 SDValue &SLC) const { 1668 int64_t OffsetVal = 0; 1669 1670 if (Subtarget->hasFlatInstOffsets() && 1671 (!Subtarget->hasFlatSegmentOffsetBug() || 1672 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) { 1673 SDValue N0, N1; 1674 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1675 N0 = Addr.getOperand(0); 1676 N1 = Addr.getOperand(1); 1677 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1678 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1679 } 1680 if (N0 && N1) { 1681 uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1682 1683 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1684 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1685 if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) { 1686 Addr = N0; 1687 OffsetVal = COffsetVal; 1688 } else { 1689 // If the offset doesn't fit, put the low bits into the offset field and 1690 // add the rest. 1691 1692 SDLoc DL(N); 1693 uint64_t ImmField; 1694 const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned); 1695 if (IsSigned) { 1696 ImmField = SignExtend64(COffsetVal, NumBits); 1697 1698 // Don't use a negative offset field if the base offset is positive. 1699 // Since the scheduler currently relies on the offset field, doing so 1700 // could result in strange scheduling decisions. 1701 1702 // TODO: Should we not do this in the opposite direction as well? 1703 if (static_cast<int64_t>(COffsetVal) > 0) { 1704 if (static_cast<int64_t>(ImmField) < 0) { 1705 const uint64_t OffsetMask = 1706 maskTrailingOnes<uint64_t>(NumBits - 1); 1707 ImmField = COffsetVal & OffsetMask; 1708 } 1709 } 1710 } else { 1711 // TODO: Should we do this for a negative offset? 1712 const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits); 1713 ImmField = COffsetVal & OffsetMask; 1714 } 1715 1716 uint64_t RemainderOffset = COffsetVal - ImmField; 1717 1718 assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned)); 1719 assert(RemainderOffset + ImmField == COffsetVal); 1720 1721 OffsetVal = ImmField; 1722 1723 // TODO: Should this try to use a scalar add pseudo if the base address 1724 // is uniform and saddr is usable? 1725 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1726 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1727 1728 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 1729 MVT::i32, N0, Sub0); 1730 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 1731 MVT::i32, N0, Sub1); 1732 1733 SDValue AddOffsetLo = 1734 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1735 SDValue AddOffsetHi = 1736 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1737 1738 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1739 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1740 1741 SDNode *Add = 1742 CurDAG->getMachineNode(AMDGPU::V_ADD_I32_e64, DL, VTs, 1743 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1744 1745 SDNode *Addc = CurDAG->getMachineNode( 1746 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1747 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1748 1749 SDValue RegSequenceArgs[] = { 1750 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1751 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1752 1753 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1754 MVT::i64, RegSequenceArgs), 1755 0); 1756 } 1757 } 1758 } 1759 1760 VAddr = Addr; 1761 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1762 SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1); 1763 return true; 1764 } 1765 1766 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N, 1767 SDValue Addr, 1768 SDValue &VAddr, 1769 SDValue &Offset, 1770 SDValue &SLC) const { 1771 return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC); 1772 } 1773 1774 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N, 1775 SDValue Addr, 1776 SDValue &VAddr, 1777 SDValue &Offset, 1778 SDValue &SLC) const { 1779 return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC); 1780 } 1781 1782 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1783 SDValue &Offset, bool &Imm) const { 1784 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1785 if (!C) { 1786 if (ByteOffsetNode.getValueType().isScalarInteger() && 1787 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1788 Offset = ByteOffsetNode; 1789 Imm = false; 1790 return true; 1791 } 1792 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1793 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1794 Offset = ByteOffsetNode.getOperand(0); 1795 Imm = false; 1796 return true; 1797 } 1798 } 1799 return false; 1800 } 1801 1802 SDLoc SL(ByteOffsetNode); 1803 // GFX9 and GFX10 have signed byte immediate offsets. 1804 int64_t ByteOffset = C->getSExtValue(); 1805 Optional<int64_t> EncodedOffset = 1806 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1807 if (EncodedOffset) { 1808 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1809 Imm = true; 1810 return true; 1811 } 1812 1813 // SGPR and literal offsets are unsigned. 1814 if (ByteOffset < 0) 1815 return false; 1816 1817 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1818 if (EncodedOffset) { 1819 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1820 return true; 1821 } 1822 1823 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1824 return false; 1825 1826 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1827 Offset = SDValue( 1828 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1829 1830 return true; 1831 } 1832 1833 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1834 if (Addr.getValueType() != MVT::i32) 1835 return Addr; 1836 1837 // Zero-extend a 32-bit address. 1838 SDLoc SL(Addr); 1839 1840 const MachineFunction &MF = CurDAG->getMachineFunction(); 1841 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1842 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1843 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1844 1845 const SDValue Ops[] = { 1846 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1847 Addr, 1848 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1849 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1850 0), 1851 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1852 }; 1853 1854 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1855 Ops), 0); 1856 } 1857 1858 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 1859 SDValue &Offset, bool &Imm) const { 1860 SDLoc SL(Addr); 1861 1862 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1863 // wraparound, because s_load instructions perform the addition in 64 bits. 1864 if ((Addr.getValueType() != MVT::i32 || 1865 Addr->getFlags().hasNoUnsignedWrap())) { 1866 SDValue N0, N1; 1867 // Extract the base and offset if possible. 1868 if (CurDAG->isBaseWithConstantOffset(Addr) || 1869 Addr.getOpcode() == ISD::ADD) { 1870 N0 = Addr.getOperand(0); 1871 N1 = Addr.getOperand(1); 1872 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1873 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1874 } 1875 if (N0 && N1) { 1876 if (SelectSMRDOffset(N1, Offset, Imm)) { 1877 SBase = Expand32BitAddress(N0); 1878 return true; 1879 } 1880 } 1881 } 1882 SBase = Expand32BitAddress(Addr); 1883 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 1884 Imm = true; 1885 return true; 1886 } 1887 1888 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 1889 SDValue &Offset) const { 1890 bool Imm = false; 1891 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 1892 } 1893 1894 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 1895 SDValue &Offset) const { 1896 1897 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1898 1899 bool Imm = false; 1900 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 1901 return false; 1902 1903 return !Imm && isa<ConstantSDNode>(Offset); 1904 } 1905 1906 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 1907 SDValue &Offset) const { 1908 bool Imm = false; 1909 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 1910 !isa<ConstantSDNode>(Offset); 1911 } 1912 1913 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 1914 SDValue &Offset) const { 1915 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1916 // The immediate offset for S_BUFFER instructions is unsigned. 1917 if (auto Imm = 1918 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 1919 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1920 return true; 1921 } 1922 } 1923 1924 return false; 1925 } 1926 1927 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 1928 SDValue &Offset) const { 1929 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1930 1931 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1932 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 1933 C->getZExtValue())) { 1934 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1935 return true; 1936 } 1937 } 1938 1939 return false; 1940 } 1941 1942 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 1943 SDValue &Base, 1944 SDValue &Offset) const { 1945 SDLoc DL(Index); 1946 1947 if (CurDAG->isBaseWithConstantOffset(Index)) { 1948 SDValue N0 = Index.getOperand(0); 1949 SDValue N1 = Index.getOperand(1); 1950 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1951 1952 // (add n0, c0) 1953 // Don't peel off the offset (c0) if doing so could possibly lead 1954 // the base (n0) to be negative. 1955 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 1956 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 1957 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 1958 Base = N0; 1959 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1960 return true; 1961 } 1962 } 1963 1964 if (isa<ConstantSDNode>(Index)) 1965 return false; 1966 1967 Base = Index; 1968 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1969 return true; 1970 } 1971 1972 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 1973 SDValue Val, uint32_t Offset, 1974 uint32_t Width) { 1975 // Transformation function, pack the offset and width of a BFE into 1976 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 1977 // source, bits [5:0] contain the offset and bits [22:16] the width. 1978 uint32_t PackedVal = Offset | (Width << 16); 1979 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 1980 1981 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 1982 } 1983 1984 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 1985 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 1986 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 1987 // Predicate: 0 < b <= c < 32 1988 1989 const SDValue &Shl = N->getOperand(0); 1990 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 1991 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1992 1993 if (B && C) { 1994 uint32_t BVal = B->getZExtValue(); 1995 uint32_t CVal = C->getZExtValue(); 1996 1997 if (0 < BVal && BVal <= CVal && CVal < 32) { 1998 bool Signed = N->getOpcode() == ISD::SRA; 1999 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2000 2001 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2002 32 - CVal)); 2003 return; 2004 } 2005 } 2006 SelectCode(N); 2007 } 2008 2009 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2010 switch (N->getOpcode()) { 2011 case ISD::AND: 2012 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2013 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2014 // Predicate: isMask(mask) 2015 const SDValue &Srl = N->getOperand(0); 2016 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2017 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2018 2019 if (Shift && Mask) { 2020 uint32_t ShiftVal = Shift->getZExtValue(); 2021 uint32_t MaskVal = Mask->getZExtValue(); 2022 2023 if (isMask_32(MaskVal)) { 2024 uint32_t WidthVal = countPopulation(MaskVal); 2025 2026 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2027 Srl.getOperand(0), ShiftVal, WidthVal)); 2028 return; 2029 } 2030 } 2031 } 2032 break; 2033 case ISD::SRL: 2034 if (N->getOperand(0).getOpcode() == ISD::AND) { 2035 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2036 // Predicate: isMask(mask >> b) 2037 const SDValue &And = N->getOperand(0); 2038 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2039 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2040 2041 if (Shift && Mask) { 2042 uint32_t ShiftVal = Shift->getZExtValue(); 2043 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2044 2045 if (isMask_32(MaskVal)) { 2046 uint32_t WidthVal = countPopulation(MaskVal); 2047 2048 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2049 And.getOperand(0), ShiftVal, WidthVal)); 2050 return; 2051 } 2052 } 2053 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2054 SelectS_BFEFromShifts(N); 2055 return; 2056 } 2057 break; 2058 case ISD::SRA: 2059 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2060 SelectS_BFEFromShifts(N); 2061 return; 2062 } 2063 break; 2064 2065 case ISD::SIGN_EXTEND_INREG: { 2066 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2067 SDValue Src = N->getOperand(0); 2068 if (Src.getOpcode() != ISD::SRL) 2069 break; 2070 2071 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2072 if (!Amt) 2073 break; 2074 2075 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2076 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2077 Amt->getZExtValue(), Width)); 2078 return; 2079 } 2080 } 2081 2082 SelectCode(N); 2083 } 2084 2085 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2086 assert(N->getOpcode() == ISD::BRCOND); 2087 if (!N->hasOneUse()) 2088 return false; 2089 2090 SDValue Cond = N->getOperand(1); 2091 if (Cond.getOpcode() == ISD::CopyToReg) 2092 Cond = Cond.getOperand(2); 2093 2094 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2095 return false; 2096 2097 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2098 if (VT == MVT::i32) 2099 return true; 2100 2101 if (VT == MVT::i64) { 2102 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2103 2104 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2105 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2106 } 2107 2108 return false; 2109 } 2110 2111 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2112 SDValue Cond = N->getOperand(1); 2113 2114 if (Cond.isUndef()) { 2115 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2116 N->getOperand(2), N->getOperand(0)); 2117 return; 2118 } 2119 2120 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2121 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2122 2123 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2124 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2125 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2126 SDLoc SL(N); 2127 2128 if (!UseSCCBr) { 2129 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2130 // analyzed what generates the vcc value, so we do not know whether vcc 2131 // bits for disabled lanes are 0. Thus we need to mask out bits for 2132 // disabled lanes. 2133 // 2134 // For the case that we select S_CBRANCH_SCC1 and it gets 2135 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2136 // SIInstrInfo::moveToVALU which inserts the S_AND). 2137 // 2138 // We could add an analysis of what generates the vcc value here and omit 2139 // the S_AND when is unnecessary. But it would be better to add a separate 2140 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2141 // catches both cases. 2142 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2143 : AMDGPU::S_AND_B64, 2144 SL, MVT::i1, 2145 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2146 : AMDGPU::EXEC, 2147 MVT::i1), 2148 Cond), 2149 0); 2150 } 2151 2152 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2153 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2154 N->getOperand(2), // Basic Block 2155 VCC.getValue(0)); 2156 } 2157 2158 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2159 MVT VT = N->getSimpleValueType(0); 2160 bool IsFMA = N->getOpcode() == ISD::FMA; 2161 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2162 !Subtarget->hasFmaMixInsts()) || 2163 ((IsFMA && Subtarget->hasMadMixInsts()) || 2164 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2165 SelectCode(N); 2166 return; 2167 } 2168 2169 SDValue Src0 = N->getOperand(0); 2170 SDValue Src1 = N->getOperand(1); 2171 SDValue Src2 = N->getOperand(2); 2172 unsigned Src0Mods, Src1Mods, Src2Mods; 2173 2174 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2175 // using the conversion from f16. 2176 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2177 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2178 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2179 2180 assert((IsFMA || !Mode.allFP32Denormals()) && 2181 "fmad selected with denormals enabled"); 2182 // TODO: We can select this with f32 denormals enabled if all the sources are 2183 // converted from f16 (in which case fmad isn't legal). 2184 2185 if (Sel0 || Sel1 || Sel2) { 2186 // For dummy operands. 2187 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2188 SDValue Ops[] = { 2189 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2190 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2191 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2192 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2193 Zero, Zero 2194 }; 2195 2196 CurDAG->SelectNodeTo(N, 2197 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2198 MVT::f32, Ops); 2199 } else { 2200 SelectCode(N); 2201 } 2202 } 2203 2204 // This is here because there isn't a way to use the generated sub0_sub1 as the 2205 // subreg index to EXTRACT_SUBREG in tablegen. 2206 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2207 MemSDNode *Mem = cast<MemSDNode>(N); 2208 unsigned AS = Mem->getAddressSpace(); 2209 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2210 SelectCode(N); 2211 return; 2212 } 2213 2214 MVT VT = N->getSimpleValueType(0); 2215 bool Is32 = (VT == MVT::i32); 2216 SDLoc SL(N); 2217 2218 MachineSDNode *CmpSwap = nullptr; 2219 if (Subtarget->hasAddr64()) { 2220 SDValue SRsrc, VAddr, SOffset, Offset, SLC; 2221 2222 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) { 2223 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2224 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2225 SDValue CmpVal = Mem->getOperand(2); 2226 2227 // XXX - Do we care about glue operands? 2228 2229 SDValue Ops[] = { 2230 CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain() 2231 }; 2232 2233 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2234 } 2235 } 2236 2237 if (!CmpSwap) { 2238 SDValue SRsrc, SOffset, Offset, SLC; 2239 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) { 2240 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2241 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2242 2243 SDValue CmpVal = Mem->getOperand(2); 2244 SDValue Ops[] = { 2245 CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain() 2246 }; 2247 2248 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2249 } 2250 } 2251 2252 if (!CmpSwap) { 2253 SelectCode(N); 2254 return; 2255 } 2256 2257 MachineMemOperand *MMO = Mem->getMemOperand(); 2258 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2259 2260 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2261 SDValue Extract 2262 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2263 2264 ReplaceUses(SDValue(N, 0), Extract); 2265 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2266 CurDAG->RemoveDeadNode(N); 2267 } 2268 2269 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2270 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2271 // be copied to an SGPR with readfirstlane. 2272 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2273 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2274 2275 SDValue Chain = N->getOperand(0); 2276 SDValue Ptr = N->getOperand(2); 2277 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2278 MachineMemOperand *MMO = M->getMemOperand(); 2279 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2280 2281 SDValue Offset; 2282 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2283 SDValue PtrBase = Ptr.getOperand(0); 2284 SDValue PtrOffset = Ptr.getOperand(1); 2285 2286 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2287 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) { 2288 N = glueCopyToM0(N, PtrBase); 2289 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2290 } 2291 } 2292 2293 if (!Offset) { 2294 N = glueCopyToM0(N, Ptr); 2295 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2296 } 2297 2298 SDValue Ops[] = { 2299 Offset, 2300 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2301 Chain, 2302 N->getOperand(N->getNumOperands() - 1) // New glue 2303 }; 2304 2305 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2306 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2307 } 2308 2309 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2310 switch (IntrID) { 2311 case Intrinsic::amdgcn_ds_gws_init: 2312 return AMDGPU::DS_GWS_INIT; 2313 case Intrinsic::amdgcn_ds_gws_barrier: 2314 return AMDGPU::DS_GWS_BARRIER; 2315 case Intrinsic::amdgcn_ds_gws_sema_v: 2316 return AMDGPU::DS_GWS_SEMA_V; 2317 case Intrinsic::amdgcn_ds_gws_sema_br: 2318 return AMDGPU::DS_GWS_SEMA_BR; 2319 case Intrinsic::amdgcn_ds_gws_sema_p: 2320 return AMDGPU::DS_GWS_SEMA_P; 2321 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2322 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2323 default: 2324 llvm_unreachable("not a gws intrinsic"); 2325 } 2326 } 2327 2328 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2329 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2330 !Subtarget->hasGWSSemaReleaseAll()) { 2331 // Let this error. 2332 SelectCode(N); 2333 return; 2334 } 2335 2336 // Chain, intrinsic ID, vsrc, offset 2337 const bool HasVSrc = N->getNumOperands() == 4; 2338 assert(HasVSrc || N->getNumOperands() == 3); 2339 2340 SDLoc SL(N); 2341 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2342 int ImmOffset = 0; 2343 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2344 MachineMemOperand *MMO = M->getMemOperand(); 2345 2346 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2347 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2348 2349 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2350 // offset field) % 64. Some versions of the programming guide omit the m0 2351 // part, or claim it's from offset 0. 2352 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2353 // If we have a constant offset, try to use the 0 in m0 as the base. 2354 // TODO: Look into changing the default m0 initialization value. If the 2355 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2356 // the immediate offset. 2357 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2358 ImmOffset = ConstOffset->getZExtValue(); 2359 } else { 2360 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2361 ImmOffset = BaseOffset.getConstantOperandVal(1); 2362 BaseOffset = BaseOffset.getOperand(0); 2363 } 2364 2365 // Prefer to do the shift in an SGPR since it should be possible to use m0 2366 // as the result directly. If it's already an SGPR, it will be eliminated 2367 // later. 2368 SDNode *SGPROffset 2369 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2370 BaseOffset); 2371 // Shift to offset in m0 2372 SDNode *M0Base 2373 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2374 SDValue(SGPROffset, 0), 2375 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2376 glueCopyToM0(N, SDValue(M0Base, 0)); 2377 } 2378 2379 SDValue Chain = N->getOperand(0); 2380 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2381 2382 // TODO: Can this just be removed from the instruction? 2383 SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1); 2384 2385 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2386 SmallVector<SDValue, 5> Ops; 2387 if (HasVSrc) 2388 Ops.push_back(N->getOperand(2)); 2389 Ops.push_back(OffsetField); 2390 Ops.push_back(GDS); 2391 Ops.push_back(Chain); 2392 2393 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2394 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2395 } 2396 2397 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2398 if (Subtarget->getLDSBankCount() != 16) { 2399 // This is a single instruction with a pattern. 2400 SelectCode(N); 2401 return; 2402 } 2403 2404 SDLoc DL(N); 2405 2406 // This requires 2 instructions. It is possible to write a pattern to support 2407 // this, but the generated isel emitter doesn't correctly deal with multiple 2408 // output instructions using the same physical register input. The copy to m0 2409 // is incorrectly placed before the second instruction. 2410 // 2411 // TODO: Match source modifiers. 2412 // 2413 // def : Pat < 2414 // (int_amdgcn_interp_p1_f16 2415 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2416 // (i32 timm:$attrchan), (i32 timm:$attr), 2417 // (i1 timm:$high), M0), 2418 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2419 // timm:$attrchan, 0, 2420 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2421 // let Predicates = [has16BankLDS]; 2422 // } 2423 2424 // 16 bank LDS 2425 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2426 N->getOperand(5), SDValue()); 2427 2428 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2429 2430 SDNode *InterpMov = 2431 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2432 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2433 N->getOperand(3), // Attr 2434 N->getOperand(2), // Attrchan 2435 ToM0.getValue(1) // In glue 2436 }); 2437 2438 SDNode *InterpP1LV = 2439 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2440 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2441 N->getOperand(1), // Src0 2442 N->getOperand(3), // Attr 2443 N->getOperand(2), // Attrchan 2444 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2445 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2446 N->getOperand(4), // high 2447 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2448 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2449 SDValue(InterpMov, 1) 2450 }); 2451 2452 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2453 } 2454 2455 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2456 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2457 switch (IntrID) { 2458 case Intrinsic::amdgcn_ds_append: 2459 case Intrinsic::amdgcn_ds_consume: { 2460 if (N->getValueType(0) != MVT::i32) 2461 break; 2462 SelectDSAppendConsume(N, IntrID); 2463 return; 2464 } 2465 } 2466 2467 SelectCode(N); 2468 } 2469 2470 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2471 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2472 unsigned Opcode; 2473 switch (IntrID) { 2474 case Intrinsic::amdgcn_wqm: 2475 Opcode = AMDGPU::WQM; 2476 break; 2477 case Intrinsic::amdgcn_softwqm: 2478 Opcode = AMDGPU::SOFT_WQM; 2479 break; 2480 case Intrinsic::amdgcn_wwm: 2481 Opcode = AMDGPU::WWM; 2482 break; 2483 case Intrinsic::amdgcn_interp_p1_f16: 2484 SelectInterpP1F16(N); 2485 return; 2486 default: 2487 SelectCode(N); 2488 return; 2489 } 2490 2491 SDValue Src = N->getOperand(1); 2492 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2493 } 2494 2495 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2496 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2497 switch (IntrID) { 2498 case Intrinsic::amdgcn_ds_gws_init: 2499 case Intrinsic::amdgcn_ds_gws_barrier: 2500 case Intrinsic::amdgcn_ds_gws_sema_v: 2501 case Intrinsic::amdgcn_ds_gws_sema_br: 2502 case Intrinsic::amdgcn_ds_gws_sema_p: 2503 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2504 SelectDS_GWS(N, IntrID); 2505 return; 2506 default: 2507 break; 2508 } 2509 2510 SelectCode(N); 2511 } 2512 2513 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2514 unsigned &Mods) const { 2515 Mods = 0; 2516 Src = In; 2517 2518 if (Src.getOpcode() == ISD::FNEG) { 2519 Mods |= SISrcMods::NEG; 2520 Src = Src.getOperand(0); 2521 } 2522 2523 if (Src.getOpcode() == ISD::FABS) { 2524 Mods |= SISrcMods::ABS; 2525 Src = Src.getOperand(0); 2526 } 2527 2528 return true; 2529 } 2530 2531 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2532 SDValue &SrcMods) const { 2533 unsigned Mods; 2534 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2535 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2536 return true; 2537 } 2538 2539 return false; 2540 } 2541 2542 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2543 SDValue &SrcMods) const { 2544 SelectVOP3Mods(In, Src, SrcMods); 2545 return isNoNanSrc(Src); 2546 } 2547 2548 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2549 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2550 return false; 2551 2552 Src = In; 2553 return true; 2554 } 2555 2556 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2557 SDValue &SrcMods, SDValue &Clamp, 2558 SDValue &Omod) const { 2559 SDLoc DL(In); 2560 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2561 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2562 2563 return SelectVOP3Mods(In, Src, SrcMods); 2564 } 2565 2566 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2567 SDValue &Clamp, SDValue &Omod) const { 2568 Src = In; 2569 2570 SDLoc DL(In); 2571 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2572 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2573 2574 return true; 2575 } 2576 2577 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2578 SDValue &SrcMods) const { 2579 unsigned Mods = 0; 2580 Src = In; 2581 2582 if (Src.getOpcode() == ISD::FNEG) { 2583 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2584 Src = Src.getOperand(0); 2585 } 2586 2587 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2588 unsigned VecMods = Mods; 2589 2590 SDValue Lo = stripBitcast(Src.getOperand(0)); 2591 SDValue Hi = stripBitcast(Src.getOperand(1)); 2592 2593 if (Lo.getOpcode() == ISD::FNEG) { 2594 Lo = stripBitcast(Lo.getOperand(0)); 2595 Mods ^= SISrcMods::NEG; 2596 } 2597 2598 if (Hi.getOpcode() == ISD::FNEG) { 2599 Hi = stripBitcast(Hi.getOperand(0)); 2600 Mods ^= SISrcMods::NEG_HI; 2601 } 2602 2603 if (isExtractHiElt(Lo, Lo)) 2604 Mods |= SISrcMods::OP_SEL_0; 2605 2606 if (isExtractHiElt(Hi, Hi)) 2607 Mods |= SISrcMods::OP_SEL_1; 2608 2609 Lo = stripExtractLoElt(Lo); 2610 Hi = stripExtractLoElt(Hi); 2611 2612 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2613 // Really a scalar input. Just select from the low half of the register to 2614 // avoid packing. 2615 2616 Src = Lo; 2617 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2618 return true; 2619 } 2620 2621 Mods = VecMods; 2622 } 2623 2624 // Packed instructions do not have abs modifiers. 2625 Mods |= SISrcMods::OP_SEL_1; 2626 2627 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2628 return true; 2629 } 2630 2631 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2632 SDValue &SrcMods) const { 2633 Src = In; 2634 // FIXME: Handle op_sel 2635 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2636 return true; 2637 } 2638 2639 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2640 SDValue &SrcMods) const { 2641 // FIXME: Handle op_sel 2642 return SelectVOP3Mods(In, Src, SrcMods); 2643 } 2644 2645 // The return value is not whether the match is possible (which it always is), 2646 // but whether or not it a conversion is really used. 2647 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2648 unsigned &Mods) const { 2649 Mods = 0; 2650 SelectVOP3ModsImpl(In, Src, Mods); 2651 2652 if (Src.getOpcode() == ISD::FP_EXTEND) { 2653 Src = Src.getOperand(0); 2654 assert(Src.getValueType() == MVT::f16); 2655 Src = stripBitcast(Src); 2656 2657 // Be careful about folding modifiers if we already have an abs. fneg is 2658 // applied last, so we don't want to apply an earlier fneg. 2659 if ((Mods & SISrcMods::ABS) == 0) { 2660 unsigned ModsTmp; 2661 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2662 2663 if ((ModsTmp & SISrcMods::NEG) != 0) 2664 Mods ^= SISrcMods::NEG; 2665 2666 if ((ModsTmp & SISrcMods::ABS) != 0) 2667 Mods |= SISrcMods::ABS; 2668 } 2669 2670 // op_sel/op_sel_hi decide the source type and source. 2671 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2672 // If the sources's op_sel is set, it picks the high half of the source 2673 // register. 2674 2675 Mods |= SISrcMods::OP_SEL_1; 2676 if (isExtractHiElt(Src, Src)) { 2677 Mods |= SISrcMods::OP_SEL_0; 2678 2679 // TODO: Should we try to look for neg/abs here? 2680 } 2681 2682 return true; 2683 } 2684 2685 return false; 2686 } 2687 2688 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2689 SDValue &SrcMods) const { 2690 unsigned Mods = 0; 2691 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2692 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2693 return true; 2694 } 2695 2696 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2697 if (In.isUndef()) 2698 return CurDAG->getUNDEF(MVT::i32); 2699 2700 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2701 SDLoc SL(In); 2702 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2703 } 2704 2705 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2706 SDLoc SL(In); 2707 return CurDAG->getConstant( 2708 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2709 } 2710 2711 SDValue Src; 2712 if (isExtractHiElt(In, Src)) 2713 return Src; 2714 2715 return SDValue(); 2716 } 2717 2718 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2719 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2720 2721 const SIRegisterInfo *SIRI = 2722 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2723 const SIInstrInfo * SII = 2724 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2725 2726 unsigned Limit = 0; 2727 bool AllUsesAcceptSReg = true; 2728 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2729 Limit < 10 && U != E; ++U, ++Limit) { 2730 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2731 2732 // If the register class is unknown, it could be an unknown 2733 // register class that needs to be an SGPR, e.g. an inline asm 2734 // constraint 2735 if (!RC || SIRI->isSGPRClass(RC)) 2736 return false; 2737 2738 if (RC != &AMDGPU::VS_32RegClass) { 2739 AllUsesAcceptSReg = false; 2740 SDNode * User = *U; 2741 if (User->isMachineOpcode()) { 2742 unsigned Opc = User->getMachineOpcode(); 2743 MCInstrDesc Desc = SII->get(Opc); 2744 if (Desc.isCommutable()) { 2745 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2746 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2747 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2748 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2749 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2750 if (CommutedRC == &AMDGPU::VS_32RegClass) 2751 AllUsesAcceptSReg = true; 2752 } 2753 } 2754 } 2755 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2756 // commuting current user. This means have at least one use 2757 // that strictly require VGPR. Thus, we will not attempt to commute 2758 // other user instructions. 2759 if (!AllUsesAcceptSReg) 2760 break; 2761 } 2762 } 2763 return !AllUsesAcceptSReg && (Limit < 10); 2764 } 2765 2766 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2767 auto Ld = cast<LoadSDNode>(N); 2768 2769 return Ld->getAlignment() >= 4 && 2770 ( 2771 ( 2772 ( 2773 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2774 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2775 ) 2776 && 2777 !N->isDivergent() 2778 ) 2779 || 2780 ( 2781 Subtarget->getScalarizeGlobalBehavior() && 2782 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2783 Ld->isSimple() && 2784 !N->isDivergent() && 2785 static_cast<const SITargetLowering *>( 2786 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2787 ) 2788 ); 2789 } 2790 2791 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2792 const AMDGPUTargetLowering& Lowering = 2793 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2794 bool IsModified = false; 2795 do { 2796 IsModified = false; 2797 2798 // Go over all selected nodes and try to fold them a bit more 2799 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2800 while (Position != CurDAG->allnodes_end()) { 2801 SDNode *Node = &*Position++; 2802 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2803 if (!MachineNode) 2804 continue; 2805 2806 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2807 if (ResNode != Node) { 2808 if (ResNode) 2809 ReplaceUses(Node, ResNode); 2810 IsModified = true; 2811 } 2812 } 2813 CurDAG->RemoveDeadNodes(); 2814 } while (IsModified); 2815 } 2816 2817 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 2818 Subtarget = &MF.getSubtarget<R600Subtarget>(); 2819 return SelectionDAGISel::runOnMachineFunction(MF); 2820 } 2821 2822 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 2823 if (!N->readMem()) 2824 return false; 2825 if (CbId == -1) 2826 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2827 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 2828 2829 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 2830 } 2831 2832 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 2833 SDValue& IntPtr) { 2834 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 2835 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 2836 true); 2837 return true; 2838 } 2839 return false; 2840 } 2841 2842 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 2843 SDValue& BaseReg, SDValue &Offset) { 2844 if (!isa<ConstantSDNode>(Addr)) { 2845 BaseReg = Addr; 2846 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 2847 return true; 2848 } 2849 return false; 2850 } 2851 2852 void R600DAGToDAGISel::Select(SDNode *N) { 2853 unsigned int Opc = N->getOpcode(); 2854 if (N->isMachineOpcode()) { 2855 N->setNodeId(-1); 2856 return; // Already selected. 2857 } 2858 2859 switch (Opc) { 2860 default: break; 2861 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 2862 case ISD::SCALAR_TO_VECTOR: 2863 case ISD::BUILD_VECTOR: { 2864 EVT VT = N->getValueType(0); 2865 unsigned NumVectorElts = VT.getVectorNumElements(); 2866 unsigned RegClassID; 2867 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 2868 // that adds a 128 bits reg copy when going through TwoAddressInstructions 2869 // pass. We want to avoid 128 bits copies as much as possible because they 2870 // can't be bundled by our scheduler. 2871 switch(NumVectorElts) { 2872 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 2873 case 4: 2874 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 2875 RegClassID = R600::R600_Reg128VerticalRegClassID; 2876 else 2877 RegClassID = R600::R600_Reg128RegClassID; 2878 break; 2879 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 2880 } 2881 SelectBuildVector(N, RegClassID); 2882 return; 2883 } 2884 } 2885 2886 SelectCode(N); 2887 } 2888 2889 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 2890 SDValue &Offset) { 2891 ConstantSDNode *C; 2892 SDLoc DL(Addr); 2893 2894 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 2895 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 2896 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2897 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 2898 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 2899 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 2900 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2901 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 2902 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 2903 Base = Addr.getOperand(0); 2904 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2905 } else { 2906 Base = Addr; 2907 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2908 } 2909 2910 return true; 2911 } 2912 2913 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 2914 SDValue &Offset) { 2915 ConstantSDNode *IMMOffset; 2916 2917 if (Addr.getOpcode() == ISD::ADD 2918 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 2919 && isInt<16>(IMMOffset->getZExtValue())) { 2920 2921 Base = Addr.getOperand(0); 2922 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 2923 MVT::i32); 2924 return true; 2925 // If the pointer address is constant, we can move it to the offset field. 2926 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 2927 && isInt<16>(IMMOffset->getZExtValue())) { 2928 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 2929 SDLoc(CurDAG->getEntryNode()), 2930 R600::ZERO, MVT::i32); 2931 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 2932 MVT::i32); 2933 return true; 2934 } 2935 2936 // Default case, no offset 2937 Base = Addr; 2938 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2939 return true; 2940 } 2941