xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelDAGToDAG.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPUISelDAGToDAG.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUSubtarget.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "MCTargetDesc/R600MCTargetDesc.h"
21 #include "R600RegisterInfo.h"
22 #include "SIISelLowering.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/Analysis/UniformityAnalysis.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/IntrinsicsAMDGPU.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/ErrorHandling.h"
33 
34 #ifdef EXPENSIVE_CHECKS
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #endif
38 
39 #define DEBUG_TYPE "amdgpu-isel"
40 
41 using namespace llvm;
42 
43 //===----------------------------------------------------------------------===//
44 // Instruction Selector Implementation
45 //===----------------------------------------------------------------------===//
46 
47 namespace {
48 static SDValue stripBitcast(SDValue Val) {
49   return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
50 }
51 
52 // Figure out if this is really an extract of the high 16-bits of a dword.
53 static bool isExtractHiElt(SDValue In, SDValue &Out) {
54   In = stripBitcast(In);
55 
56   if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
57     if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
58       if (!Idx->isOne())
59         return false;
60       Out = In.getOperand(0);
61       return true;
62     }
63   }
64 
65   if (In.getOpcode() != ISD::TRUNCATE)
66     return false;
67 
68   SDValue Srl = In.getOperand(0);
69   if (Srl.getOpcode() == ISD::SRL) {
70     if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
71       if (ShiftAmt->getZExtValue() == 16) {
72         Out = stripBitcast(Srl.getOperand(0));
73         return true;
74       }
75     }
76   }
77 
78   return false;
79 }
80 
81 // Look through operations that obscure just looking at the low 16-bits of the
82 // same register.
83 static SDValue stripExtractLoElt(SDValue In) {
84   if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
85     SDValue Idx = In.getOperand(1);
86     if (isNullConstant(Idx) && In.getValueSizeInBits() <= 32)
87       return In.getOperand(0);
88   }
89 
90   if (In.getOpcode() == ISD::TRUNCATE) {
91     SDValue Src = In.getOperand(0);
92     if (Src.getValueType().getSizeInBits() == 32)
93       return stripBitcast(Src);
94   }
95 
96   return In;
97 }
98 
99 } // end anonymous namespace
100 
101 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel",
102                       "AMDGPU DAG->DAG Pattern Instruction Selection", false,
103                       false)
104 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
105 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
106 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
107 #ifdef EXPENSIVE_CHECKS
108 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
109 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
110 #endif
111 INITIALIZE_PASS_END(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel",
112                     "AMDGPU DAG->DAG Pattern Instruction Selection", false,
113                     false)
114 
115 /// This pass converts a legalized DAG into a AMDGPU-specific
116 // DAG, ready for instruction scheduling.
117 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM,
118                                         CodeGenOptLevel OptLevel) {
119   return new AMDGPUDAGToDAGISelLegacy(TM, OptLevel);
120 }
121 
122 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM,
123                                        CodeGenOptLevel OptLevel)
124     : SelectionDAGISel(TM, OptLevel) {
125   EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
126 }
127 
128 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
129   Subtarget = &MF.getSubtarget<GCNSubtarget>();
130   Subtarget->checkSubtargetFeatures(MF.getFunction());
131   Mode = SIModeRegisterDefaults(MF.getFunction(), *Subtarget);
132   return SelectionDAGISel::runOnMachineFunction(MF);
133 }
134 
135 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const {
136   // XXX - only need to list legal operations.
137   switch (Opc) {
138   case ISD::FADD:
139   case ISD::FSUB:
140   case ISD::FMUL:
141   case ISD::FDIV:
142   case ISD::FREM:
143   case ISD::FCANONICALIZE:
144   case ISD::UINT_TO_FP:
145   case ISD::SINT_TO_FP:
146   case ISD::FABS:
147     // Fabs is lowered to a bit operation, but it's an and which will clear the
148     // high bits anyway.
149   case ISD::FSQRT:
150   case ISD::FSIN:
151   case ISD::FCOS:
152   case ISD::FPOWI:
153   case ISD::FPOW:
154   case ISD::FLOG:
155   case ISD::FLOG2:
156   case ISD::FLOG10:
157   case ISD::FEXP:
158   case ISD::FEXP2:
159   case ISD::FCEIL:
160   case ISD::FTRUNC:
161   case ISD::FRINT:
162   case ISD::FNEARBYINT:
163   case ISD::FROUNDEVEN:
164   case ISD::FROUND:
165   case ISD::FFLOOR:
166   case ISD::FMINNUM:
167   case ISD::FMAXNUM:
168   case ISD::FLDEXP:
169   case AMDGPUISD::FRACT:
170   case AMDGPUISD::CLAMP:
171   case AMDGPUISD::COS_HW:
172   case AMDGPUISD::SIN_HW:
173   case AMDGPUISD::FMIN3:
174   case AMDGPUISD::FMAX3:
175   case AMDGPUISD::FMED3:
176   case AMDGPUISD::FMAD_FTZ:
177   case AMDGPUISD::RCP:
178   case AMDGPUISD::RSQ:
179   case AMDGPUISD::RCP_IFLAG:
180     // On gfx10, all 16-bit instructions preserve the high bits.
181     return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9;
182   case ISD::FP_ROUND:
183     // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the
184     // high bits on gfx9.
185     // TODO: If we had the source node we could see if the source was fma/mad
186     return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
187   case ISD::FMA:
188   case ISD::FMAD:
189   case AMDGPUISD::DIV_FIXUP:
190     return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
191   default:
192     // fcopysign, select and others may be lowered to 32-bit bit operations
193     // which don't zero the high bits.
194     return false;
195   }
196 }
197 
198 bool AMDGPUDAGToDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) {
199 #ifdef EXPENSIVE_CHECKS
200   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
201   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
202   for (auto &L : LI->getLoopsInPreorder()) {
203     assert(L->isLCSSAForm(DT));
204   }
205 #endif
206   return SelectionDAGISelLegacy::runOnMachineFunction(MF);
207 }
208 
209 void AMDGPUDAGToDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
210   AU.addRequired<AMDGPUArgumentUsageInfo>();
211   AU.addRequired<UniformityInfoWrapperPass>();
212 #ifdef EXPENSIVE_CHECKS
213   AU.addRequired<DominatorTreeWrapperPass>();
214   AU.addRequired<LoopInfoWrapperPass>();
215 #endif
216   SelectionDAGISelLegacy::getAnalysisUsage(AU);
217 }
218 
219 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
220   assert(Subtarget->d16PreservesUnusedBits());
221   MVT VT = N->getValueType(0).getSimpleVT();
222   if (VT != MVT::v2i16 && VT != MVT::v2f16)
223     return false;
224 
225   SDValue Lo = N->getOperand(0);
226   SDValue Hi = N->getOperand(1);
227 
228   LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
229 
230   // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
231   // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
232   // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
233 
234   // Need to check for possible indirect dependencies on the other half of the
235   // vector to avoid introducing a cycle.
236   if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
237     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
238 
239     SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
240     SDValue Ops[] = {
241       LdHi->getChain(), LdHi->getBasePtr(), TiedIn
242     };
243 
244     unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
245     if (LdHi->getMemoryVT() == MVT::i8) {
246       LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
247         AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
248     } else {
249       assert(LdHi->getMemoryVT() == MVT::i16);
250     }
251 
252     SDValue NewLoadHi =
253       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
254                                   Ops, LdHi->getMemoryVT(),
255                                   LdHi->getMemOperand());
256 
257     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
258     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
259     return true;
260   }
261 
262   // build_vector (load ptr), hi -> load_d16_lo ptr, hi
263   // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
264   // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
265   LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
266   if (LdLo && Lo.hasOneUse()) {
267     SDValue TiedIn = getHi16Elt(Hi);
268     if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
269       return false;
270 
271     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
272     unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
273     if (LdLo->getMemoryVT() == MVT::i8) {
274       LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
275         AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
276     } else {
277       assert(LdLo->getMemoryVT() == MVT::i16);
278     }
279 
280     TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
281 
282     SDValue Ops[] = {
283       LdLo->getChain(), LdLo->getBasePtr(), TiedIn
284     };
285 
286     SDValue NewLoadLo =
287       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
288                                   Ops, LdLo->getMemoryVT(),
289                                   LdLo->getMemOperand());
290 
291     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
292     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
293     return true;
294   }
295 
296   return false;
297 }
298 
299 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
300   if (!Subtarget->d16PreservesUnusedBits())
301     return;
302 
303   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
304 
305   bool MadeChange = false;
306   while (Position != CurDAG->allnodes_begin()) {
307     SDNode *N = &*--Position;
308     if (N->use_empty())
309       continue;
310 
311     switch (N->getOpcode()) {
312     case ISD::BUILD_VECTOR:
313       // TODO: Match load d16 from shl (extload:i16), 16
314       MadeChange |= matchLoadD16FromBuildVector(N);
315       break;
316     default:
317       break;
318     }
319   }
320 
321   if (MadeChange) {
322     CurDAG->RemoveDeadNodes();
323     LLVM_DEBUG(dbgs() << "After PreProcess:\n";
324                CurDAG->dump(););
325   }
326 }
327 
328 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const {
329   if (N->isUndef())
330     return true;
331 
332   const SIInstrInfo *TII = Subtarget->getInstrInfo();
333   if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
334     return TII->isInlineConstant(C->getAPIntValue());
335 
336   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
337     return TII->isInlineConstant(C->getValueAPF());
338 
339   return false;
340 }
341 
342 /// Determine the register class for \p OpNo
343 /// \returns The register class of the virtual register that will be used for
344 /// the given operand number \OpNo or NULL if the register class cannot be
345 /// determined.
346 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
347                                                           unsigned OpNo) const {
348   if (!N->isMachineOpcode()) {
349     if (N->getOpcode() == ISD::CopyToReg) {
350       Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
351       if (Reg.isVirtual()) {
352         MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
353         return MRI.getRegClass(Reg);
354       }
355 
356       const SIRegisterInfo *TRI
357         = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
358       return TRI->getPhysRegBaseClass(Reg);
359     }
360 
361     return nullptr;
362   }
363 
364   switch (N->getMachineOpcode()) {
365   default: {
366     const MCInstrDesc &Desc =
367         Subtarget->getInstrInfo()->get(N->getMachineOpcode());
368     unsigned OpIdx = Desc.getNumDefs() + OpNo;
369     if (OpIdx >= Desc.getNumOperands())
370       return nullptr;
371     int RegClass = Desc.operands()[OpIdx].RegClass;
372     if (RegClass == -1)
373       return nullptr;
374 
375     return Subtarget->getRegisterInfo()->getRegClass(RegClass);
376   }
377   case AMDGPU::REG_SEQUENCE: {
378     unsigned RCID = N->getConstantOperandVal(0);
379     const TargetRegisterClass *SuperRC =
380         Subtarget->getRegisterInfo()->getRegClass(RCID);
381 
382     SDValue SubRegOp = N->getOperand(OpNo + 1);
383     unsigned SubRegIdx = SubRegOp->getAsZExtVal();
384     return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
385                                                               SubRegIdx);
386   }
387   }
388 }
389 
390 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
391                                          SDValue Glue) const {
392   SmallVector <SDValue, 8> Ops;
393   Ops.push_back(NewChain); // Replace the chain.
394   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
395     Ops.push_back(N->getOperand(i));
396 
397   Ops.push_back(Glue);
398   return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
399 }
400 
401 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
402   const SITargetLowering& Lowering =
403     *static_cast<const SITargetLowering*>(getTargetLowering());
404 
405   assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
406 
407   SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
408   return glueCopyToOp(N, M0, M0.getValue(1));
409 }
410 
411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
412   unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
413   if (AS == AMDGPUAS::LOCAL_ADDRESS) {
414     if (Subtarget->ldsRequiresM0Init())
415       return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
416   } else if (AS == AMDGPUAS::REGION_ADDRESS) {
417     MachineFunction &MF = CurDAG->getMachineFunction();
418     unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
419     return
420         glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
421   }
422   return N;
423 }
424 
425 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
426                                                   EVT VT) const {
427   SDNode *Lo = CurDAG->getMachineNode(
428       AMDGPU::S_MOV_B32, DL, MVT::i32,
429       CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
430   SDNode *Hi =
431       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
432                              CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
433   const SDValue Ops[] = {
434       CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
435       SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
436       SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
437 
438   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
439 }
440 
441 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
442   EVT VT = N->getValueType(0);
443   unsigned NumVectorElts = VT.getVectorNumElements();
444   EVT EltVT = VT.getVectorElementType();
445   SDLoc DL(N);
446   SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
447 
448   if (NumVectorElts == 1) {
449     CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
450                          RegClass);
451     return;
452   }
453 
454   assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
455                                   "supported yet");
456   // 32 = Max Num Vector Elements
457   // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
458   // 1 = Vector Register Class
459   SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
460 
461   bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
462                Triple::amdgcn;
463   RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
464   bool IsRegSeq = true;
465   unsigned NOps = N->getNumOperands();
466   for (unsigned i = 0; i < NOps; i++) {
467     // XXX: Why is this here?
468     if (isa<RegisterSDNode>(N->getOperand(i))) {
469       IsRegSeq = false;
470       break;
471     }
472     unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
473                          : R600RegisterInfo::getSubRegFromChannel(i);
474     RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
475     RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
476   }
477   if (NOps != NumVectorElts) {
478     // Fill in the missing undef elements if this was a scalar_to_vector.
479     assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
480     MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
481                                                    DL, EltVT);
482     for (unsigned i = NOps; i < NumVectorElts; ++i) {
483       unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
484                            : R600RegisterInfo::getSubRegFromChannel(i);
485       RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
486       RegSeqArgs[1 + (2 * i) + 1] =
487           CurDAG->getTargetConstant(Sub, DL, MVT::i32);
488     }
489   }
490 
491   if (!IsRegSeq)
492     SelectCode(N);
493   CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
494 }
495 
496 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
497   unsigned int Opc = N->getOpcode();
498   if (N->isMachineOpcode()) {
499     N->setNodeId(-1);
500     return;   // Already selected.
501   }
502 
503   // isa<MemSDNode> almost works but is slightly too permissive for some DS
504   // intrinsics.
505   if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N)) {
506     N = glueCopyToM0LDSInit(N);
507     SelectCode(N);
508     return;
509   }
510 
511   switch (Opc) {
512   default:
513     break;
514   // We are selecting i64 ADD here instead of custom lower it during
515   // DAG legalization, so we can fold some i64 ADDs used for address
516   // calculation into the LOAD and STORE instructions.
517   case ISD::ADDC:
518   case ISD::ADDE:
519   case ISD::SUBC:
520   case ISD::SUBE: {
521     if (N->getValueType(0) != MVT::i64)
522       break;
523 
524     SelectADD_SUB_I64(N);
525     return;
526   }
527   case ISD::UADDO_CARRY:
528   case ISD::USUBO_CARRY:
529     if (N->getValueType(0) != MVT::i32)
530       break;
531 
532     SelectAddcSubb(N);
533     return;
534   case ISD::UADDO:
535   case ISD::USUBO: {
536     SelectUADDO_USUBO(N);
537     return;
538   }
539   case AMDGPUISD::FMUL_W_CHAIN: {
540     SelectFMUL_W_CHAIN(N);
541     return;
542   }
543   case AMDGPUISD::FMA_W_CHAIN: {
544     SelectFMA_W_CHAIN(N);
545     return;
546   }
547 
548   case ISD::SCALAR_TO_VECTOR:
549   case ISD::BUILD_VECTOR: {
550     EVT VT = N->getValueType(0);
551     unsigned NumVectorElts = VT.getVectorNumElements();
552     if (VT.getScalarSizeInBits() == 16) {
553       if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
554         if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
555           ReplaceNode(N, Packed);
556           return;
557         }
558       }
559 
560       break;
561     }
562 
563     assert(VT.getVectorElementType().bitsEq(MVT::i32));
564     unsigned RegClassID =
565         SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
566     SelectBuildVector(N, RegClassID);
567     return;
568   }
569   case ISD::BUILD_PAIR: {
570     SDValue RC, SubReg0, SubReg1;
571     SDLoc DL(N);
572     if (N->getValueType(0) == MVT::i128) {
573       RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
574       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
575       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
576     } else if (N->getValueType(0) == MVT::i64) {
577       RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
578       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
579       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
580     } else {
581       llvm_unreachable("Unhandled value type for BUILD_PAIR");
582     }
583     const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
584                             N->getOperand(1), SubReg1 };
585     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
586                                           N->getValueType(0), Ops));
587     return;
588   }
589 
590   case ISD::Constant:
591   case ISD::ConstantFP: {
592     if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
593       break;
594 
595     uint64_t Imm;
596     if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) {
597       Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
598       if (AMDGPU::isValid32BitLiteral(Imm, true))
599         break;
600     } else {
601       ConstantSDNode *C = cast<ConstantSDNode>(N);
602       Imm = C->getZExtValue();
603       if (AMDGPU::isValid32BitLiteral(Imm, false))
604         break;
605     }
606 
607     SDLoc DL(N);
608     ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
609     return;
610   }
611   case AMDGPUISD::BFE_I32:
612   case AMDGPUISD::BFE_U32: {
613     // There is a scalar version available, but unlike the vector version which
614     // has a separate operand for the offset and width, the scalar version packs
615     // the width and offset into a single operand. Try to move to the scalar
616     // version if the offsets are constant, so that we can try to keep extended
617     // loads of kernel arguments in SGPRs.
618 
619     // TODO: Technically we could try to pattern match scalar bitshifts of
620     // dynamic values, but it's probably not useful.
621     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
622     if (!Offset)
623       break;
624 
625     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
626     if (!Width)
627       break;
628 
629     bool Signed = Opc == AMDGPUISD::BFE_I32;
630 
631     uint32_t OffsetVal = Offset->getZExtValue();
632     uint32_t WidthVal = Width->getZExtValue();
633 
634     ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal,
635                             WidthVal));
636     return;
637   }
638   case AMDGPUISD::DIV_SCALE: {
639     SelectDIV_SCALE(N);
640     return;
641   }
642   case AMDGPUISD::MAD_I64_I32:
643   case AMDGPUISD::MAD_U64_U32: {
644     SelectMAD_64_32(N);
645     return;
646   }
647   case ISD::SMUL_LOHI:
648   case ISD::UMUL_LOHI:
649     return SelectMUL_LOHI(N);
650   case ISD::CopyToReg: {
651     const SITargetLowering& Lowering =
652       *static_cast<const SITargetLowering*>(getTargetLowering());
653     N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
654     break;
655   }
656   case ISD::AND:
657   case ISD::SRL:
658   case ISD::SRA:
659   case ISD::SIGN_EXTEND_INREG:
660     if (N->getValueType(0) != MVT::i32)
661       break;
662 
663     SelectS_BFE(N);
664     return;
665   case ISD::BRCOND:
666     SelectBRCOND(N);
667     return;
668   case ISD::FP_EXTEND:
669     SelectFP_EXTEND(N);
670     return;
671   case AMDGPUISD::CVT_PKRTZ_F16_F32:
672   case AMDGPUISD::CVT_PKNORM_I16_F32:
673   case AMDGPUISD::CVT_PKNORM_U16_F32:
674   case AMDGPUISD::CVT_PK_U16_U32:
675   case AMDGPUISD::CVT_PK_I16_I32: {
676     // Hack around using a legal type if f16 is illegal.
677     if (N->getValueType(0) == MVT::i32) {
678       MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
679       N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
680                               { N->getOperand(0), N->getOperand(1) });
681       SelectCode(N);
682       return;
683     }
684 
685     break;
686   }
687   case ISD::INTRINSIC_W_CHAIN: {
688     SelectINTRINSIC_W_CHAIN(N);
689     return;
690   }
691   case ISD::INTRINSIC_WO_CHAIN: {
692     SelectINTRINSIC_WO_CHAIN(N);
693     return;
694   }
695   case ISD::INTRINSIC_VOID: {
696     SelectINTRINSIC_VOID(N);
697     return;
698   }
699   case AMDGPUISD::WAVE_ADDRESS: {
700     SelectWAVE_ADDRESS(N);
701     return;
702   }
703   case ISD::STACKRESTORE: {
704     SelectSTACKRESTORE(N);
705     return;
706   }
707   }
708 
709   SelectCode(N);
710 }
711 
712 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
713   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
714   const Instruction *Term = BB->getTerminator();
715   return Term->getMetadata("amdgpu.uniform") ||
716          Term->getMetadata("structurizecfg.uniform");
717 }
718 
719 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N,
720                                              unsigned ShAmtBits) const {
721   assert(N->getOpcode() == ISD::AND);
722 
723   const APInt &RHS = N->getConstantOperandAPInt(1);
724   if (RHS.countr_one() >= ShAmtBits)
725     return true;
726 
727   const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero;
728   return (LHSKnownZeros | RHS).countr_one() >= ShAmtBits;
729 }
730 
731 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
732                                           SDValue &N0, SDValue &N1) {
733   if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
734       Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
735     // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
736     // (i64 (bitcast (v2i32 (build_vector
737     //                        (or (extract_vector_elt V, 0), OFFSET),
738     //                        (extract_vector_elt V, 1)))))
739     SDValue Lo = Addr.getOperand(0).getOperand(0);
740     if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
741       SDValue BaseLo = Lo.getOperand(0);
742       SDValue BaseHi = Addr.getOperand(0).getOperand(1);
743       // Check that split base (Lo and Hi) are extracted from the same one.
744       if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
745           BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
746           BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
747           // Lo is statically extracted from index 0.
748           isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
749           BaseLo.getConstantOperandVal(1) == 0 &&
750           // Hi is statically extracted from index 0.
751           isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
752           BaseHi.getConstantOperandVal(1) == 1) {
753         N0 = BaseLo.getOperand(0).getOperand(0);
754         N1 = Lo.getOperand(1);
755         return true;
756       }
757     }
758   }
759   return false;
760 }
761 
762 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS,
763                                                     SDValue &RHS) const {
764   if (CurDAG->isBaseWithConstantOffset(Addr)) {
765     LHS = Addr.getOperand(0);
766     RHS = Addr.getOperand(1);
767     return true;
768   }
769 
770   if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) {
771     assert(LHS && RHS && isa<ConstantSDNode>(RHS));
772     return true;
773   }
774 
775   return false;
776 }
777 
778 StringRef AMDGPUDAGToDAGISelLegacy::getPassName() const {
779   return "AMDGPU DAG->DAG Pattern Instruction Selection";
780 }
781 
782 AMDGPUISelDAGToDAGPass::AMDGPUISelDAGToDAGPass(TargetMachine &TM)
783     : SelectionDAGISelPass(
784           std::make_unique<AMDGPUDAGToDAGISel>(TM, TM.getOptLevel())) {}
785 
786 PreservedAnalyses
787 AMDGPUISelDAGToDAGPass::run(MachineFunction &MF,
788                             MachineFunctionAnalysisManager &MFAM) {
789 #ifdef EXPENSIVE_CHECKS
790   auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(MF)
791                   .getManager();
792   auto &F = MF.getFunction();
793   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
794   LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
795   for (auto &L : LI.getLoopsInPreorder())
796     assert(L->isLCSSAForm(DT) && "Loop is not in LCSSA form!");
797 #endif
798   return SelectionDAGISelPass::run(MF, MFAM);
799 }
800 
801 //===----------------------------------------------------------------------===//
802 // Complex Patterns
803 //===----------------------------------------------------------------------===//
804 
805 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
806                                             SDValue &Offset) {
807   return false;
808 }
809 
810 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
811                                             SDValue &Offset) {
812   ConstantSDNode *C;
813   SDLoc DL(Addr);
814 
815   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
816     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
817     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
818   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
819              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
820     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
821     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
822   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
823             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
824     Base = Addr.getOperand(0);
825     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
826   } else {
827     Base = Addr;
828     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
829   }
830 
831   return true;
832 }
833 
834 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
835                                                        const SDLoc &DL) const {
836   SDNode *Mov = CurDAG->getMachineNode(
837     AMDGPU::S_MOV_B32, DL, MVT::i32,
838     CurDAG->getTargetConstant(Val, DL, MVT::i32));
839   return SDValue(Mov, 0);
840 }
841 
842 // FIXME: Should only handle uaddo_carry/usubo_carry
843 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
844   SDLoc DL(N);
845   SDValue LHS = N->getOperand(0);
846   SDValue RHS = N->getOperand(1);
847 
848   unsigned Opcode = N->getOpcode();
849   bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
850   bool ProduceCarry =
851       ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
852   bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
853 
854   SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
855   SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
856 
857   SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
858                                        DL, MVT::i32, LHS, Sub0);
859   SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
860                                        DL, MVT::i32, LHS, Sub1);
861 
862   SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
863                                        DL, MVT::i32, RHS, Sub0);
864   SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
865                                        DL, MVT::i32, RHS, Sub1);
866 
867   SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
868 
869   static const unsigned OpcMap[2][2][2] = {
870       {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
871        {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}},
872       {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
873        {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
874 
875   unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
876   unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
877 
878   SDNode *AddLo;
879   if (!ConsumeCarry) {
880     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
881     AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
882   } else {
883     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
884     AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
885   }
886   SDValue AddHiArgs[] = {
887     SDValue(Hi0, 0),
888     SDValue(Hi1, 0),
889     SDValue(AddLo, 1)
890   };
891   SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
892 
893   SDValue RegSequenceArgs[] = {
894     CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
895     SDValue(AddLo,0),
896     Sub0,
897     SDValue(AddHi,0),
898     Sub1,
899   };
900   SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
901                                                MVT::i64, RegSequenceArgs);
902 
903   if (ProduceCarry) {
904     // Replace the carry-use
905     ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
906   }
907 
908   // Replace the remaining uses.
909   ReplaceNode(N, RegSequence);
910 }
911 
912 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
913   SDLoc DL(N);
914   SDValue LHS = N->getOperand(0);
915   SDValue RHS = N->getOperand(1);
916   SDValue CI = N->getOperand(2);
917 
918   if (N->isDivergent()) {
919     unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::V_ADDC_U32_e64
920                                                       : AMDGPU::V_SUBB_U32_e64;
921     CurDAG->SelectNodeTo(
922         N, Opc, N->getVTList(),
923         {LHS, RHS, CI,
924          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
925   } else {
926     unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::S_ADD_CO_PSEUDO
927                                                       : AMDGPU::S_SUB_CO_PSEUDO;
928     CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
929   }
930 }
931 
932 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
933   // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
934   // carry out despite the _i32 name. These were renamed in VI to _U32.
935   // FIXME: We should probably rename the opcodes here.
936   bool IsAdd = N->getOpcode() == ISD::UADDO;
937   bool IsVALU = N->isDivergent();
938 
939   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
940        ++UI)
941     if (UI.getUse().getResNo() == 1) {
942       if ((IsAdd && (UI->getOpcode() != ISD::UADDO_CARRY)) ||
943           (!IsAdd && (UI->getOpcode() != ISD::USUBO_CARRY))) {
944         IsVALU = true;
945         break;
946       }
947     }
948 
949   if (IsVALU) {
950     unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
951 
952     CurDAG->SelectNodeTo(
953         N, Opc, N->getVTList(),
954         {N->getOperand(0), N->getOperand(1),
955          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
956   } else {
957     unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
958                                                 : AMDGPU::S_USUBO_PSEUDO;
959 
960     CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
961                          {N->getOperand(0), N->getOperand(1)});
962   }
963 }
964 
965 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
966   SDLoc SL(N);
967   //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
968   SDValue Ops[10];
969 
970   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
971   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
972   SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
973   Ops[8] = N->getOperand(0);
974   Ops[9] = N->getOperand(4);
975 
976   // If there are no source modifiers, prefer fmac over fma because it can use
977   // the smaller VOP2 encoding.
978   bool UseFMAC = Subtarget->hasDLInsts() &&
979                  cast<ConstantSDNode>(Ops[0])->isZero() &&
980                  cast<ConstantSDNode>(Ops[2])->isZero() &&
981                  cast<ConstantSDNode>(Ops[4])->isZero();
982   unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64;
983   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops);
984 }
985 
986 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
987   SDLoc SL(N);
988   //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
989   SDValue Ops[8];
990 
991   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
992   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
993   Ops[6] = N->getOperand(0);
994   Ops[7] = N->getOperand(3);
995 
996   CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
997 }
998 
999 // We need to handle this here because tablegen doesn't support matching
1000 // instructions with multiple outputs.
1001 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1002   SDLoc SL(N);
1003   EVT VT = N->getValueType(0);
1004 
1005   assert(VT == MVT::f32 || VT == MVT::f64);
1006 
1007   unsigned Opc
1008     = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64;
1009 
1010   // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp,
1011   // omod
1012   SDValue Ops[8];
1013   SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1014   SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]);
1015   SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]);
1016   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1017 }
1018 
1019 // We need to handle this here because tablegen doesn't support matching
1020 // instructions with multiple outputs.
1021 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1022   SDLoc SL(N);
1023   bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1024   unsigned Opc;
1025   if (Subtarget->hasMADIntraFwdBug())
1026     Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64
1027                  : AMDGPU::V_MAD_U64_U32_gfx11_e64;
1028   else
1029     Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1030 
1031   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1032   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1033                     Clamp };
1034   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1035 }
1036 
1037 // We need to handle this here because tablegen doesn't support matching
1038 // instructions with multiple outputs.
1039 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) {
1040   SDLoc SL(N);
1041   bool Signed = N->getOpcode() == ISD::SMUL_LOHI;
1042   unsigned Opc;
1043   if (Subtarget->hasMADIntraFwdBug())
1044     Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64
1045                  : AMDGPU::V_MAD_U64_U32_gfx11_e64;
1046   else
1047     Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1048 
1049   SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64);
1050   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1051   SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp};
1052   SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops);
1053   if (!SDValue(N, 0).use_empty()) {
1054     SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32);
1055     SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
1056                                         MVT::i32, SDValue(Mad, 0), Sub0);
1057     ReplaceUses(SDValue(N, 0), SDValue(Lo, 0));
1058   }
1059   if (!SDValue(N, 1).use_empty()) {
1060     SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32);
1061     SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
1062                                         MVT::i32, SDValue(Mad, 0), Sub1);
1063     ReplaceUses(SDValue(N, 1), SDValue(Hi, 0));
1064   }
1065   CurDAG->RemoveDeadNode(N);
1066 }
1067 
1068 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const {
1069   if (!isUInt<16>(Offset))
1070     return false;
1071 
1072   if (!Base || Subtarget->hasUsableDSOffset() ||
1073       Subtarget->unsafeDSOffsetFoldingEnabled())
1074     return true;
1075 
1076   // On Southern Islands instruction with a negative base value and an offset
1077   // don't seem to work.
1078   return CurDAG->SignBitIsZero(Base);
1079 }
1080 
1081 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1082                                               SDValue &Offset) const {
1083   SDLoc DL(Addr);
1084   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1085     SDValue N0 = Addr.getOperand(0);
1086     SDValue N1 = Addr.getOperand(1);
1087     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1088     if (isDSOffsetLegal(N0, C1->getSExtValue())) {
1089       // (add n0, c0)
1090       Base = N0;
1091       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1092       return true;
1093     }
1094   } else if (Addr.getOpcode() == ISD::SUB) {
1095     // sub C, x -> add (sub 0, x), C
1096     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1097       int64_t ByteOffset = C->getSExtValue();
1098       if (isDSOffsetLegal(SDValue(), ByteOffset)) {
1099         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1100 
1101         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1102         // the known bits in isDSOffsetLegal. We need to emit the selected node
1103         // here, so this is thrown away.
1104         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1105                                       Zero, Addr.getOperand(1));
1106 
1107         if (isDSOffsetLegal(Sub, ByteOffset)) {
1108           SmallVector<SDValue, 3> Opnds;
1109           Opnds.push_back(Zero);
1110           Opnds.push_back(Addr.getOperand(1));
1111 
1112           // FIXME: Select to VOP3 version for with-carry.
1113           unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1114           if (Subtarget->hasAddNoCarry()) {
1115             SubOp = AMDGPU::V_SUB_U32_e64;
1116             Opnds.push_back(
1117                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1118           }
1119 
1120           MachineSDNode *MachineSub =
1121               CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1122 
1123           Base = SDValue(MachineSub, 0);
1124           Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1125           return true;
1126         }
1127       }
1128     }
1129   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1130     // If we have a constant address, prefer to put the constant into the
1131     // offset. This can save moves to load the constant address since multiple
1132     // operations can share the zero base address register, and enables merging
1133     // into read2 / write2 instructions.
1134 
1135     SDLoc DL(Addr);
1136 
1137     if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) {
1138       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1139       MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1140                                  DL, MVT::i32, Zero);
1141       Base = SDValue(MovZero, 0);
1142       Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1143       return true;
1144     }
1145   }
1146 
1147   // default case
1148   Base = Addr;
1149   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1150   return true;
1151 }
1152 
1153 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0,
1154                                           unsigned Offset1,
1155                                           unsigned Size) const {
1156   if (Offset0 % Size != 0 || Offset1 % Size != 0)
1157     return false;
1158   if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size))
1159     return false;
1160 
1161   if (!Base || Subtarget->hasUsableDSOffset() ||
1162       Subtarget->unsafeDSOffsetFoldingEnabled())
1163     return true;
1164 
1165   // On Southern Islands instruction with a negative base value and an offset
1166   // don't seem to work.
1167   return CurDAG->SignBitIsZero(Base);
1168 }
1169 
1170 // Return whether the operation has NoUnsignedWrap property.
1171 static bool isNoUnsignedWrap(SDValue Addr) {
1172   return (Addr.getOpcode() == ISD::ADD &&
1173           Addr->getFlags().hasNoUnsignedWrap()) ||
1174          Addr->getOpcode() == ISD::OR;
1175 }
1176 
1177 // Check that the base address of flat scratch load/store in the form of `base +
1178 // offset` is legal to be put in SGPR/VGPR (i.e. unsigned per hardware
1179 // requirement). We always treat the first operand as the base address here.
1180 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegal(SDValue Addr) const {
1181   if (isNoUnsignedWrap(Addr))
1182     return true;
1183 
1184   // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative
1185   // values.
1186   if (Subtarget->hasSignedScratchOffsets())
1187     return true;
1188 
1189   auto LHS = Addr.getOperand(0);
1190   auto RHS = Addr.getOperand(1);
1191 
1192   // If the immediate offset is negative and within certain range, the base
1193   // address cannot also be negative. If the base is also negative, the sum
1194   // would be either negative or much larger than the valid range of scratch
1195   // memory a thread can access.
1196   ConstantSDNode *ImmOp = nullptr;
1197   if (Addr.getOpcode() == ISD::ADD && (ImmOp = dyn_cast<ConstantSDNode>(RHS))) {
1198     if (ImmOp->getSExtValue() < 0 && ImmOp->getSExtValue() > -0x40000000)
1199       return true;
1200   }
1201 
1202   return CurDAG->SignBitIsZero(LHS);
1203 }
1204 
1205 // Check address value in SGPR/VGPR are legal for flat scratch in the form
1206 // of: SGPR + VGPR.
1207 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSV(SDValue Addr) const {
1208   if (isNoUnsignedWrap(Addr))
1209     return true;
1210 
1211   // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative
1212   // values.
1213   if (Subtarget->hasSignedScratchOffsets())
1214     return true;
1215 
1216   auto LHS = Addr.getOperand(0);
1217   auto RHS = Addr.getOperand(1);
1218   return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS);
1219 }
1220 
1221 // Check address value in SGPR/VGPR are legal for flat scratch in the form
1222 // of: SGPR + VGPR + Imm.
1223 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSVImm(SDValue Addr) const {
1224   // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative
1225   // values.
1226   if (AMDGPU::isGFX12Plus(*Subtarget))
1227     return true;
1228 
1229   auto Base = Addr.getOperand(0);
1230   auto *RHSImm = cast<ConstantSDNode>(Addr.getOperand(1));
1231   // If the immediate offset is negative and within certain range, the base
1232   // address cannot also be negative. If the base is also negative, the sum
1233   // would be either negative or much larger than the valid range of scratch
1234   // memory a thread can access.
1235   if (isNoUnsignedWrap(Base) &&
1236       (isNoUnsignedWrap(Addr) ||
1237        (RHSImm->getSExtValue() < 0 && RHSImm->getSExtValue() > -0x40000000)))
1238     return true;
1239 
1240   auto LHS = Base.getOperand(0);
1241   auto RHS = Base.getOperand(1);
1242   return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS);
1243 }
1244 
1245 // TODO: If offset is too big, put low 16-bit into offset.
1246 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1247                                                    SDValue &Offset0,
1248                                                    SDValue &Offset1) const {
1249   return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4);
1250 }
1251 
1252 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base,
1253                                                     SDValue &Offset0,
1254                                                     SDValue &Offset1) const {
1255   return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8);
1256 }
1257 
1258 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base,
1259                                             SDValue &Offset0, SDValue &Offset1,
1260                                             unsigned Size) const {
1261   SDLoc DL(Addr);
1262 
1263   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1264     SDValue N0 = Addr.getOperand(0);
1265     SDValue N1 = Addr.getOperand(1);
1266     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1267     unsigned OffsetValue0 = C1->getZExtValue();
1268     unsigned OffsetValue1 = OffsetValue0 + Size;
1269 
1270     // (add n0, c0)
1271     if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) {
1272       Base = N0;
1273       Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1274       Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1275       return true;
1276     }
1277   } else if (Addr.getOpcode() == ISD::SUB) {
1278     // sub C, x -> add (sub 0, x), C
1279     if (const ConstantSDNode *C =
1280             dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1281       unsigned OffsetValue0 = C->getZExtValue();
1282       unsigned OffsetValue1 = OffsetValue0 + Size;
1283 
1284       if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1285         SDLoc DL(Addr);
1286         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1287 
1288         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1289         // the known bits in isDSOffsetLegal. We need to emit the selected node
1290         // here, so this is thrown away.
1291         SDValue Sub =
1292             CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1));
1293 
1294         if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) {
1295           SmallVector<SDValue, 3> Opnds;
1296           Opnds.push_back(Zero);
1297           Opnds.push_back(Addr.getOperand(1));
1298           unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1299           if (Subtarget->hasAddNoCarry()) {
1300             SubOp = AMDGPU::V_SUB_U32_e64;
1301             Opnds.push_back(
1302                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1303           }
1304 
1305           MachineSDNode *MachineSub = CurDAG->getMachineNode(
1306               SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds);
1307 
1308           Base = SDValue(MachineSub, 0);
1309           Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1310           Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1311           return true;
1312         }
1313       }
1314     }
1315   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1316     unsigned OffsetValue0 = CAddr->getZExtValue();
1317     unsigned OffsetValue1 = OffsetValue0 + Size;
1318 
1319     if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1320       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1321       MachineSDNode *MovZero =
1322           CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero);
1323       Base = SDValue(MovZero, 0);
1324       Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1325       Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1326       return true;
1327     }
1328   }
1329 
1330   // default case
1331 
1332   Base = Addr;
1333   Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1334   Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1335   return true;
1336 }
1337 
1338 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr,
1339                                      SDValue &SOffset, SDValue &Offset,
1340                                      SDValue &Offen, SDValue &Idxen,
1341                                      SDValue &Addr64) const {
1342   // Subtarget prefers to use flat instruction
1343   // FIXME: This should be a pattern predicate and not reach here
1344   if (Subtarget->useFlatForGlobal())
1345     return false;
1346 
1347   SDLoc DL(Addr);
1348 
1349   Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1350   Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1351   Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1352   SOffset = Subtarget->hasRestrictedSOffset()
1353                 ? CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32)
1354                 : CurDAG->getTargetConstant(0, DL, MVT::i32);
1355 
1356   ConstantSDNode *C1 = nullptr;
1357   SDValue N0 = Addr;
1358   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1359     C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1360     if (isUInt<32>(C1->getZExtValue()))
1361       N0 = Addr.getOperand(0);
1362     else
1363       C1 = nullptr;
1364   }
1365 
1366   if (N0.getOpcode() == ISD::ADD) {
1367     // (add N2, N3) -> addr64, or
1368     // (add (add N2, N3), C1) -> addr64
1369     SDValue N2 = N0.getOperand(0);
1370     SDValue N3 = N0.getOperand(1);
1371     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1372 
1373     if (N2->isDivergent()) {
1374       if (N3->isDivergent()) {
1375         // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1376         // addr64, and construct the resource from a 0 address.
1377         Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1378         VAddr = N0;
1379       } else {
1380         // N2 is divergent, N3 is not.
1381         Ptr = N3;
1382         VAddr = N2;
1383       }
1384     } else {
1385       // N2 is not divergent.
1386       Ptr = N2;
1387       VAddr = N3;
1388     }
1389     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1390   } else if (N0->isDivergent()) {
1391     // N0 is divergent. Use it as the addr64, and construct the resource from a
1392     // 0 address.
1393     Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1394     VAddr = N0;
1395     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1396   } else {
1397     // N0 -> offset, or
1398     // (N0 + C1) -> offset
1399     VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1400     Ptr = N0;
1401   }
1402 
1403   if (!C1) {
1404     // No offset.
1405     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1406     return true;
1407   }
1408 
1409   const SIInstrInfo *TII = Subtarget->getInstrInfo();
1410   if (TII->isLegalMUBUFImmOffset(C1->getZExtValue())) {
1411     // Legal offset for instruction.
1412     Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1413     return true;
1414   }
1415 
1416   // Illegal offset, store it in soffset.
1417   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1418   SOffset =
1419       SDValue(CurDAG->getMachineNode(
1420                   AMDGPU::S_MOV_B32, DL, MVT::i32,
1421                   CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1422               0);
1423   return true;
1424 }
1425 
1426 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1427                                            SDValue &VAddr, SDValue &SOffset,
1428                                            SDValue &Offset) const {
1429   SDValue Ptr, Offen, Idxen, Addr64;
1430 
1431   // addr64 bit was removed for volcanic islands.
1432   // FIXME: This should be a pattern predicate and not reach here
1433   if (!Subtarget->hasAddr64())
1434     return false;
1435 
1436   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1437     return false;
1438 
1439   ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1440   if (C->getSExtValue()) {
1441     SDLoc DL(Addr);
1442 
1443     const SITargetLowering& Lowering =
1444       *static_cast<const SITargetLowering*>(getTargetLowering());
1445 
1446     SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1447     return true;
1448   }
1449 
1450   return false;
1451 }
1452 
1453 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1454   SDLoc DL(N);
1455 
1456   auto *FI = dyn_cast<FrameIndexSDNode>(N);
1457   SDValue TFI =
1458       FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N;
1459 
1460   // We rebase the base address into an absolute stack address and hence
1461   // use constant 0 for soffset. This value must be retained until
1462   // frame elimination and eliminateFrameIndex will choose the appropriate
1463   // frame register if need be.
1464   return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32));
1465 }
1466 
1467 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1468                                                  SDValue Addr, SDValue &Rsrc,
1469                                                  SDValue &VAddr, SDValue &SOffset,
1470                                                  SDValue &ImmOffset) const {
1471 
1472   SDLoc DL(Addr);
1473   MachineFunction &MF = CurDAG->getMachineFunction();
1474   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1475 
1476   Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1477 
1478   if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1479     int64_t Imm = CAddr->getSExtValue();
1480     const int64_t NullPtr =
1481         AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
1482     // Don't fold null pointer.
1483     if (Imm != NullPtr) {
1484       const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget);
1485       SDValue HighBits =
1486           CurDAG->getTargetConstant(Imm & ~MaxOffset, DL, MVT::i32);
1487       MachineSDNode *MovHighBits = CurDAG->getMachineNode(
1488         AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
1489       VAddr = SDValue(MovHighBits, 0);
1490 
1491       SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1492       ImmOffset = CurDAG->getTargetConstant(Imm & MaxOffset, DL, MVT::i32);
1493       return true;
1494     }
1495   }
1496 
1497   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1498     // (add n0, c1)
1499 
1500     SDValue N0 = Addr.getOperand(0);
1501     uint64_t C1 = Addr.getConstantOperandVal(1);
1502 
1503     // Offsets in vaddr must be positive if range checking is enabled.
1504     //
1505     // The total computation of vaddr + soffset + offset must not overflow.  If
1506     // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1507     // overflowing.
1508     //
1509     // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1510     // always perform a range check. If a negative vaddr base index was used,
1511     // this would fail the range check. The overall address computation would
1512     // compute a valid address, but this doesn't happen due to the range
1513     // check. For out-of-bounds MUBUF loads, a 0 is returned.
1514     //
1515     // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1516     // MUBUF vaddr, but not on older subtargets which can only do this if the
1517     // sign bit is known 0.
1518     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1519     if (TII->isLegalMUBUFImmOffset(C1) &&
1520         (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1521          CurDAG->SignBitIsZero(N0))) {
1522       std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1523       ImmOffset = CurDAG->getTargetConstant(C1, DL, MVT::i32);
1524       return true;
1525     }
1526   }
1527 
1528   // (node)
1529   std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1530   ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1531   return true;
1532 }
1533 
1534 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) {
1535   if (Val.getOpcode() != ISD::CopyFromReg)
1536     return false;
1537   auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg();
1538   if (!Reg.isPhysical())
1539     return false;
1540   auto RC = TRI.getPhysRegBaseClass(Reg);
1541   return RC && TRI.isSGPRClass(RC);
1542 }
1543 
1544 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1545                                                   SDValue Addr,
1546                                                   SDValue &SRsrc,
1547                                                   SDValue &SOffset,
1548                                                   SDValue &Offset) const {
1549   const SIRegisterInfo *TRI =
1550       static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
1551   const SIInstrInfo *TII = Subtarget->getInstrInfo();
1552   MachineFunction &MF = CurDAG->getMachineFunction();
1553   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1554   SDLoc DL(Addr);
1555 
1556   // CopyFromReg <sgpr>
1557   if (IsCopyFromSGPR(*TRI, Addr)) {
1558     SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1559     SOffset = Addr;
1560     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1561     return true;
1562   }
1563 
1564   ConstantSDNode *CAddr;
1565   if (Addr.getOpcode() == ISD::ADD) {
1566     // Add (CopyFromReg <sgpr>) <constant>
1567     CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
1568     if (!CAddr || !TII->isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1569       return false;
1570     if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0)))
1571       return false;
1572 
1573     SOffset = Addr.getOperand(0);
1574   } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) &&
1575              TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) {
1576     // <constant>
1577     SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1578   } else {
1579     return false;
1580   }
1581 
1582   SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1583 
1584   Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i32);
1585   return true;
1586 }
1587 
1588 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1589                                            SDValue &SOffset, SDValue &Offset
1590                                            ) const {
1591   SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1592   const SIInstrInfo *TII = Subtarget->getInstrInfo();
1593 
1594   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1595     return false;
1596 
1597   if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1598       !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1599       !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1600     uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1601                     APInt::getAllOnes(32).getZExtValue(); // Size
1602     SDLoc DL(Addr);
1603 
1604     const SITargetLowering& Lowering =
1605       *static_cast<const SITargetLowering*>(getTargetLowering());
1606 
1607     SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1608     return true;
1609   }
1610   return false;
1611 }
1612 
1613 bool AMDGPUDAGToDAGISel::SelectBUFSOffset(SDValue ByteOffsetNode,
1614                                           SDValue &SOffset) const {
1615   if (Subtarget->hasRestrictedSOffset() && isNullConstant(ByteOffsetNode)) {
1616     SOffset = CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32);
1617     return true;
1618   }
1619 
1620   SOffset = ByteOffsetNode;
1621   return true;
1622 }
1623 
1624 // Find a load or store from corresponding pattern root.
1625 // Roots may be build_vector, bitconvert or their combinations.
1626 static MemSDNode* findMemSDNode(SDNode *N) {
1627   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1628   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1629     return MN;
1630   assert(isa<BuildVectorSDNode>(N));
1631   for (SDValue V : N->op_values())
1632     if (MemSDNode *MN =
1633           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1634       return MN;
1635   llvm_unreachable("cannot find MemSDNode in the pattern!");
1636 }
1637 
1638 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr,
1639                                               SDValue &VAddr, SDValue &Offset,
1640                                               uint64_t FlatVariant) const {
1641   int64_t OffsetVal = 0;
1642 
1643   unsigned AS = findMemSDNode(N)->getAddressSpace();
1644 
1645   bool CanHaveFlatSegmentOffsetBug =
1646       Subtarget->hasFlatSegmentOffsetBug() &&
1647       FlatVariant == SIInstrFlags::FLAT &&
1648       (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS);
1649 
1650   if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) {
1651     SDValue N0, N1;
1652     if (isBaseWithConstantOffset64(Addr, N0, N1) &&
1653         (FlatVariant != SIInstrFlags::FlatScratch ||
1654          isFlatScratchBaseLegal(Addr))) {
1655       int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1656 
1657       const SIInstrInfo *TII = Subtarget->getInstrInfo();
1658       if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) {
1659         Addr = N0;
1660         OffsetVal = COffsetVal;
1661       } else {
1662         // If the offset doesn't fit, put the low bits into the offset field and
1663         // add the rest.
1664         //
1665         // For a FLAT instruction the hardware decides whether to access
1666         // global/scratch/shared memory based on the high bits of vaddr,
1667         // ignoring the offset field, so we have to ensure that when we add
1668         // remainder to vaddr it still points into the same underlying object.
1669         // The easiest way to do that is to make sure that we split the offset
1670         // into two pieces that are both >= 0 or both <= 0.
1671 
1672         SDLoc DL(N);
1673         uint64_t RemainderOffset;
1674 
1675         std::tie(OffsetVal, RemainderOffset) =
1676             TII->splitFlatOffset(COffsetVal, AS, FlatVariant);
1677 
1678         SDValue AddOffsetLo =
1679             getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1680         SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1681 
1682         if (Addr.getValueType().getSizeInBits() == 32) {
1683           SmallVector<SDValue, 3> Opnds;
1684           Opnds.push_back(N0);
1685           Opnds.push_back(AddOffsetLo);
1686           unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32;
1687           if (Subtarget->hasAddNoCarry()) {
1688             AddOp = AMDGPU::V_ADD_U32_e64;
1689             Opnds.push_back(Clamp);
1690           }
1691           Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0);
1692         } else {
1693           // TODO: Should this try to use a scalar add pseudo if the base address
1694           // is uniform and saddr is usable?
1695           SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1696           SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1697 
1698           SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1699                                                 DL, MVT::i32, N0, Sub0);
1700           SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1701                                                 DL, MVT::i32, N0, Sub1);
1702 
1703           SDValue AddOffsetHi =
1704               getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1705 
1706           SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1707 
1708           SDNode *Add =
1709               CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs,
1710                                      {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1711 
1712           SDNode *Addc = CurDAG->getMachineNode(
1713               AMDGPU::V_ADDC_U32_e64, DL, VTs,
1714               {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1715 
1716           SDValue RegSequenceArgs[] = {
1717               CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1718               SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};
1719 
1720           Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1721                                                 MVT::i64, RegSequenceArgs),
1722                          0);
1723         }
1724       }
1725     }
1726   }
1727 
1728   VAddr = Addr;
1729   Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
1730   return true;
1731 }
1732 
1733 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr,
1734                                           SDValue &VAddr,
1735                                           SDValue &Offset) const {
1736   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT);
1737 }
1738 
1739 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr,
1740                                             SDValue &VAddr,
1741                                             SDValue &Offset) const {
1742   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal);
1743 }
1744 
1745 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr,
1746                                              SDValue &VAddr,
1747                                              SDValue &Offset) const {
1748   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset,
1749                               SIInstrFlags::FlatScratch);
1750 }
1751 
1752 // If this matches zero_extend i32:x, return x
1753 static SDValue matchZExtFromI32(SDValue Op) {
1754   if (Op.getOpcode() != ISD::ZERO_EXTEND)
1755     return SDValue();
1756 
1757   SDValue ExtSrc = Op.getOperand(0);
1758   return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue();
1759 }
1760 
1761 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset)
1762 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N,
1763                                            SDValue Addr,
1764                                            SDValue &SAddr,
1765                                            SDValue &VOffset,
1766                                            SDValue &Offset) const {
1767   int64_t ImmOffset = 0;
1768 
1769   // Match the immediate offset first, which canonically is moved as low as
1770   // possible.
1771 
1772   SDValue LHS, RHS;
1773   if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1774     int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1775     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1776 
1777     if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS,
1778                                SIInstrFlags::FlatGlobal)) {
1779       Addr = LHS;
1780       ImmOffset = COffsetVal;
1781     } else if (!LHS->isDivergent()) {
1782       if (COffsetVal > 0) {
1783         SDLoc SL(N);
1784         // saddr + large_offset -> saddr +
1785         //                         (voffset = large_offset & ~MaxOffset) +
1786         //                         (large_offset & MaxOffset);
1787         int64_t SplitImmOffset, RemainderOffset;
1788         std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1789             COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal);
1790 
1791         if (isUInt<32>(RemainderOffset)) {
1792           SDNode *VMov = CurDAG->getMachineNode(
1793               AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1794               CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1795           VOffset = SDValue(VMov, 0);
1796           SAddr = LHS;
1797           Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i32);
1798           return true;
1799         }
1800       }
1801 
1802       // We are adding a 64 bit SGPR and a constant. If constant bus limit
1803       // is 1 we would need to perform 1 or 2 extra moves for each half of
1804       // the constant and it is better to do a scalar add and then issue a
1805       // single VALU instruction to materialize zero. Otherwise it is less
1806       // instructions to perform VALU adds with immediates or inline literals.
1807       unsigned NumLiterals =
1808           !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) +
1809           !TII->isInlineConstant(APInt(32, COffsetVal >> 32));
1810       if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals)
1811         return false;
1812     }
1813   }
1814 
1815   // Match the variable offset.
1816   if (Addr.getOpcode() == ISD::ADD) {
1817     LHS = Addr.getOperand(0);
1818     RHS = Addr.getOperand(1);
1819 
1820     if (!LHS->isDivergent()) {
1821       // add (i64 sgpr), (zero_extend (i32 vgpr))
1822       if (SDValue ZextRHS = matchZExtFromI32(RHS)) {
1823         SAddr = LHS;
1824         VOffset = ZextRHS;
1825       }
1826     }
1827 
1828     if (!SAddr && !RHS->isDivergent()) {
1829       // add (zero_extend (i32 vgpr)), (i64 sgpr)
1830       if (SDValue ZextLHS = matchZExtFromI32(LHS)) {
1831         SAddr = RHS;
1832         VOffset = ZextLHS;
1833       }
1834     }
1835 
1836     if (SAddr) {
1837       Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32);
1838       return true;
1839     }
1840   }
1841 
1842   if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF ||
1843       isa<ConstantSDNode>(Addr))
1844     return false;
1845 
1846   // It's cheaper to materialize a single 32-bit zero for vaddr than the two
1847   // moves required to copy a 64-bit SGPR to VGPR.
1848   SAddr = Addr;
1849   SDNode *VMov =
1850       CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32,
1851                              CurDAG->getTargetConstant(0, SDLoc(), MVT::i32));
1852   VOffset = SDValue(VMov, 0);
1853   Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32);
1854   return true;
1855 }
1856 
1857 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) {
1858   if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) {
1859     SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0));
1860   } else if (SAddr.getOpcode() == ISD::ADD &&
1861              isa<FrameIndexSDNode>(SAddr.getOperand(0))) {
1862     // Materialize this into a scalar move for scalar address to avoid
1863     // readfirstlane.
1864     auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0));
1865     SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1866                                               FI->getValueType(0));
1867     SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr),
1868                                            MVT::i32, TFI, SAddr.getOperand(1)),
1869                     0);
1870   }
1871 
1872   return SAddr;
1873 }
1874 
1875 // Match (32-bit SGPR base) + sext(imm offset)
1876 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr,
1877                                             SDValue &SAddr,
1878                                             SDValue &Offset) const {
1879   if (Addr->isDivergent())
1880     return false;
1881 
1882   SDLoc DL(Addr);
1883 
1884   int64_t COffsetVal = 0;
1885 
1886   if (CurDAG->isBaseWithConstantOffset(Addr) && isFlatScratchBaseLegal(Addr)) {
1887     COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
1888     SAddr = Addr.getOperand(0);
1889   } else {
1890     SAddr = Addr;
1891   }
1892 
1893   SAddr = SelectSAddrFI(CurDAG, SAddr);
1894 
1895   const SIInstrInfo *TII = Subtarget->getInstrInfo();
1896 
1897   if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS,
1898                               SIInstrFlags::FlatScratch)) {
1899     int64_t SplitImmOffset, RemainderOffset;
1900     std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1901         COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch);
1902 
1903     COffsetVal = SplitImmOffset;
1904 
1905     SDValue AddOffset =
1906         SAddr.getOpcode() == ISD::TargetFrameIndex
1907             ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL)
1908             : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32);
1909     SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32,
1910                                            SAddr, AddOffset),
1911                     0);
1912   }
1913 
1914   Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i32);
1915 
1916   return true;
1917 }
1918 
1919 // Check whether the flat scratch SVS swizzle bug affects this access.
1920 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug(
1921     SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const {
1922   if (!Subtarget->hasFlatScratchSVSSwizzleBug())
1923     return false;
1924 
1925   // The bug affects the swizzling of SVS accesses if there is any carry out
1926   // from the two low order bits (i.e. from bit 1 into bit 2) when adding
1927   // voffset to (soffset + inst_offset).
1928   KnownBits VKnown = CurDAG->computeKnownBits(VAddr);
1929   KnownBits SKnown = KnownBits::computeForAddSub(
1930       /*Add=*/true, /*NSW=*/false, /*NUW=*/false,
1931       CurDAG->computeKnownBits(SAddr),
1932       KnownBits::makeConstant(APInt(32, ImmOffset)));
1933   uint64_t VMax = VKnown.getMaxValue().getZExtValue();
1934   uint64_t SMax = SKnown.getMaxValue().getZExtValue();
1935   return (VMax & 3) + (SMax & 3) >= 4;
1936 }
1937 
1938 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr,
1939                                              SDValue &VAddr, SDValue &SAddr,
1940                                              SDValue &Offset) const  {
1941   int64_t ImmOffset = 0;
1942 
1943   SDValue LHS, RHS;
1944   SDValue OrigAddr = Addr;
1945   if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1946     int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1947     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1948 
1949     if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) {
1950       Addr = LHS;
1951       ImmOffset = COffsetVal;
1952     } else if (!LHS->isDivergent() && COffsetVal > 0) {
1953       SDLoc SL(N);
1954       // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) +
1955       //                         (large_offset & MaxOffset);
1956       int64_t SplitImmOffset, RemainderOffset;
1957       std::tie(SplitImmOffset, RemainderOffset)
1958         = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true);
1959 
1960       if (isUInt<32>(RemainderOffset)) {
1961         SDNode *VMov = CurDAG->getMachineNode(
1962           AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1963           CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1964         VAddr = SDValue(VMov, 0);
1965         SAddr = LHS;
1966         if (!isFlatScratchBaseLegal(Addr))
1967           return false;
1968         if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset))
1969           return false;
1970         Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i32);
1971         return true;
1972       }
1973     }
1974   }
1975 
1976   if (Addr.getOpcode() != ISD::ADD)
1977     return false;
1978 
1979   LHS = Addr.getOperand(0);
1980   RHS = Addr.getOperand(1);
1981 
1982   if (!LHS->isDivergent() && RHS->isDivergent()) {
1983     SAddr = LHS;
1984     VAddr = RHS;
1985   } else if (!RHS->isDivergent() && LHS->isDivergent()) {
1986     SAddr = RHS;
1987     VAddr = LHS;
1988   } else {
1989     return false;
1990   }
1991 
1992   if (OrigAddr != Addr) {
1993     if (!isFlatScratchBaseLegalSVImm(OrigAddr))
1994       return false;
1995   } else {
1996     if (!isFlatScratchBaseLegalSV(OrigAddr))
1997       return false;
1998   }
1999 
2000   if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset))
2001     return false;
2002   SAddr = SelectSAddrFI(CurDAG, SAddr);
2003   Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32);
2004   return true;
2005 }
2006 
2007 // For unbuffered smem loads, it is illegal for the Immediate Offset to be
2008 // negative if the resulting (Offset + (M0 or SOffset or zero) is negative.
2009 // Handle the case where the Immediate Offset + SOffset is negative.
2010 bool AMDGPUDAGToDAGISel::isSOffsetLegalWithImmOffset(SDValue *SOffset,
2011                                                      bool Imm32Only,
2012                                                      bool IsBuffer,
2013                                                      int64_t ImmOffset) const {
2014   if (!IsBuffer && !Imm32Only && ImmOffset < 0 &&
2015       AMDGPU::hasSMRDSignedImmOffset(*Subtarget)) {
2016     KnownBits SKnown = CurDAG->computeKnownBits(*SOffset);
2017     if (ImmOffset + SKnown.getMinValue().getSExtValue() < 0)
2018       return false;
2019   }
2020 
2021   return true;
2022 }
2023 
2024 // Match an immediate (if Offset is not null) or an SGPR (if SOffset is
2025 // not null) offset. If Imm32Only is true, match only 32-bit immediate
2026 // offsets available on CI.
2027 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
2028                                           SDValue *SOffset, SDValue *Offset,
2029                                           bool Imm32Only, bool IsBuffer,
2030                                           bool HasSOffset,
2031                                           int64_t ImmOffset) const {
2032   assert((!SOffset || !Offset) &&
2033          "Cannot match both soffset and offset at the same time!");
2034 
2035   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
2036   if (!C) {
2037     if (!SOffset)
2038       return false;
2039 
2040     if (ByteOffsetNode.getValueType().isScalarInteger() &&
2041         ByteOffsetNode.getValueType().getSizeInBits() == 32) {
2042       *SOffset = ByteOffsetNode;
2043       return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer,
2044                                          ImmOffset);
2045     }
2046     if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
2047       if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
2048         *SOffset = ByteOffsetNode.getOperand(0);
2049         return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer,
2050                                            ImmOffset);
2051       }
2052     }
2053     return false;
2054   }
2055 
2056   SDLoc SL(ByteOffsetNode);
2057 
2058   // GFX9 and GFX10 have signed byte immediate offsets. The immediate
2059   // offset for S_BUFFER instructions is unsigned.
2060   int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue();
2061   std::optional<int64_t> EncodedOffset = AMDGPU::getSMRDEncodedOffset(
2062       *Subtarget, ByteOffset, IsBuffer, HasSOffset);
2063   if (EncodedOffset && Offset && !Imm32Only) {
2064     *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
2065     return true;
2066   }
2067 
2068   // SGPR and literal offsets are unsigned.
2069   if (ByteOffset < 0)
2070     return false;
2071 
2072   EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
2073   if (EncodedOffset && Offset && Imm32Only) {
2074     *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
2075     return true;
2076   }
2077 
2078   if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
2079     return false;
2080 
2081   if (SOffset) {
2082     SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
2083     *SOffset = SDValue(
2084         CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
2085     return true;
2086   }
2087 
2088   return false;
2089 }
2090 
2091 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
2092   if (Addr.getValueType() != MVT::i32)
2093     return Addr;
2094 
2095   // Zero-extend a 32-bit address.
2096   SDLoc SL(Addr);
2097 
2098   const MachineFunction &MF = CurDAG->getMachineFunction();
2099   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2100   unsigned AddrHiVal = Info->get32BitAddressHighBits();
2101   SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
2102 
2103   const SDValue Ops[] = {
2104     CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
2105     Addr,
2106     CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
2107     SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
2108             0),
2109     CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
2110   };
2111 
2112   return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
2113                                         Ops), 0);
2114 }
2115 
2116 // Match a base and an immediate (if Offset is not null) or an SGPR (if
2117 // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is
2118 // true, match only 32-bit immediate offsets available on CI.
2119 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase,
2120                                               SDValue *SOffset, SDValue *Offset,
2121                                               bool Imm32Only, bool IsBuffer,
2122                                               bool HasSOffset,
2123                                               int64_t ImmOffset) const {
2124   if (SOffset && Offset) {
2125     assert(!Imm32Only && !IsBuffer);
2126     SDValue B;
2127 
2128     if (!SelectSMRDBaseOffset(Addr, B, nullptr, Offset, false, false, true))
2129       return false;
2130 
2131     int64_t ImmOff = 0;
2132     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(*Offset))
2133       ImmOff = C->getSExtValue();
2134 
2135     return SelectSMRDBaseOffset(B, SBase, SOffset, nullptr, false, false, true,
2136                                 ImmOff);
2137   }
2138 
2139   // A 32-bit (address + offset) should not cause unsigned 32-bit integer
2140   // wraparound, because s_load instructions perform the addition in 64 bits.
2141   if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD &&
2142       !Addr->getFlags().hasNoUnsignedWrap())
2143     return false;
2144 
2145   SDValue N0, N1;
2146   // Extract the base and offset if possible.
2147   if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) {
2148     N0 = Addr.getOperand(0);
2149     N1 = Addr.getOperand(1);
2150   } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
2151     assert(N0 && N1 && isa<ConstantSDNode>(N1));
2152   }
2153   if (!N0 || !N1)
2154     return false;
2155 
2156   if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset,
2157                        ImmOffset)) {
2158     SBase = N0;
2159     return true;
2160   }
2161   if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset,
2162                        ImmOffset)) {
2163     SBase = N1;
2164     return true;
2165   }
2166   return false;
2167 }
2168 
2169 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
2170                                     SDValue *SOffset, SDValue *Offset,
2171                                     bool Imm32Only) const {
2172   if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) {
2173     SBase = Expand32BitAddress(SBase);
2174     return true;
2175   }
2176 
2177   if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) {
2178     SBase = Expand32BitAddress(Addr);
2179     *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2180     return true;
2181   }
2182 
2183   return false;
2184 }
2185 
2186 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
2187                                        SDValue &Offset) const {
2188   return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset);
2189 }
2190 
2191 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
2192                                          SDValue &Offset) const {
2193   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2194   return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset,
2195                     /* Imm32Only */ true);
2196 }
2197 
2198 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
2199                                         SDValue &SOffset) const {
2200   return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr);
2201 }
2202 
2203 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase,
2204                                            SDValue &SOffset,
2205                                            SDValue &Offset) const {
2206   return SelectSMRD(Addr, SBase, &SOffset, &Offset);
2207 }
2208 
2209 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const {
2210   return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset,
2211                           /* Imm32Only */ false, /* IsBuffer */ true);
2212 }
2213 
2214 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N,
2215                                                SDValue &Offset) const {
2216   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2217   return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset,
2218                           /* Imm32Only */ true, /* IsBuffer */ true);
2219 }
2220 
2221 bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset,
2222                                                  SDValue &Offset) const {
2223   // Match the (soffset + offset) pair as a 32-bit register base and
2224   // an immediate offset.
2225   return N.getValueType() == MVT::i32 &&
2226          SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr,
2227                               &Offset, /* Imm32Only */ false,
2228                               /* IsBuffer */ true);
2229 }
2230 
2231 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
2232                                             SDValue &Base,
2233                                             SDValue &Offset) const {
2234   SDLoc DL(Index);
2235 
2236   if (CurDAG->isBaseWithConstantOffset(Index)) {
2237     SDValue N0 = Index.getOperand(0);
2238     SDValue N1 = Index.getOperand(1);
2239     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
2240 
2241     // (add n0, c0)
2242     // Don't peel off the offset (c0) if doing so could possibly lead
2243     // the base (n0) to be negative.
2244     // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
2245     if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
2246         (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
2247       Base = N0;
2248       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
2249       return true;
2250     }
2251   }
2252 
2253   if (isa<ConstantSDNode>(Index))
2254     return false;
2255 
2256   Base = Index;
2257   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2258   return true;
2259 }
2260 
2261 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL,
2262                                      SDValue Val, uint32_t Offset,
2263                                      uint32_t Width) {
2264   if (Val->isDivergent()) {
2265     unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64;
2266     SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32);
2267     SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32);
2268 
2269     return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W);
2270   }
2271   unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
2272   // Transformation function, pack the offset and width of a BFE into
2273   // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
2274   // source, bits [5:0] contain the offset and bits [22:16] the width.
2275   uint32_t PackedVal = Offset | (Width << 16);
2276   SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
2277 
2278   return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
2279 }
2280 
2281 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
2282   // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
2283   // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
2284   // Predicate: 0 < b <= c < 32
2285 
2286   const SDValue &Shl = N->getOperand(0);
2287   ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
2288   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2289 
2290   if (B && C) {
2291     uint32_t BVal = B->getZExtValue();
2292     uint32_t CVal = C->getZExtValue();
2293 
2294     if (0 < BVal && BVal <= CVal && CVal < 32) {
2295       bool Signed = N->getOpcode() == ISD::SRA;
2296       ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal,
2297                   32 - CVal));
2298       return;
2299     }
2300   }
2301   SelectCode(N);
2302 }
2303 
2304 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
2305   switch (N->getOpcode()) {
2306   case ISD::AND:
2307     if (N->getOperand(0).getOpcode() == ISD::SRL) {
2308       // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
2309       // Predicate: isMask(mask)
2310       const SDValue &Srl = N->getOperand(0);
2311       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
2312       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
2313 
2314       if (Shift && Mask) {
2315         uint32_t ShiftVal = Shift->getZExtValue();
2316         uint32_t MaskVal = Mask->getZExtValue();
2317 
2318         if (isMask_32(MaskVal)) {
2319           uint32_t WidthVal = llvm::popcount(MaskVal);
2320           ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal,
2321                                   WidthVal));
2322           return;
2323         }
2324       }
2325     }
2326     break;
2327   case ISD::SRL:
2328     if (N->getOperand(0).getOpcode() == ISD::AND) {
2329       // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
2330       // Predicate: isMask(mask >> b)
2331       const SDValue &And = N->getOperand(0);
2332       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
2333       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
2334 
2335       if (Shift && Mask) {
2336         uint32_t ShiftVal = Shift->getZExtValue();
2337         uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2338 
2339         if (isMask_32(MaskVal)) {
2340           uint32_t WidthVal = llvm::popcount(MaskVal);
2341           ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal,
2342                       WidthVal));
2343           return;
2344         }
2345       }
2346     } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2347       SelectS_BFEFromShifts(N);
2348       return;
2349     }
2350     break;
2351   case ISD::SRA:
2352     if (N->getOperand(0).getOpcode() == ISD::SHL) {
2353       SelectS_BFEFromShifts(N);
2354       return;
2355     }
2356     break;
2357 
2358   case ISD::SIGN_EXTEND_INREG: {
2359     // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2360     SDValue Src = N->getOperand(0);
2361     if (Src.getOpcode() != ISD::SRL)
2362       break;
2363 
2364     const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2365     if (!Amt)
2366       break;
2367 
2368     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2369     ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0),
2370                             Amt->getZExtValue(), Width));
2371     return;
2372   }
2373   }
2374 
2375   SelectCode(N);
2376 }
2377 
2378 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2379   assert(N->getOpcode() == ISD::BRCOND);
2380   if (!N->hasOneUse())
2381     return false;
2382 
2383   SDValue Cond = N->getOperand(1);
2384   if (Cond.getOpcode() == ISD::CopyToReg)
2385     Cond = Cond.getOperand(2);
2386 
2387   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2388     return false;
2389 
2390   MVT VT = Cond.getOperand(0).getSimpleValueType();
2391   if (VT == MVT::i32)
2392     return true;
2393 
2394   if (VT == MVT::i64) {
2395     auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2396 
2397     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2398     return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2399   }
2400 
2401   return false;
2402 }
2403 
2404 static SDValue combineBallotPattern(SDValue VCMP, bool &Negate) {
2405   assert(VCMP->getOpcode() == AMDGPUISD::SETCC);
2406   // Special case for amdgcn.ballot:
2407   // %Cond = i1 (and/or combination of i1 ISD::SETCCs)
2408   // %VCMP = i(WaveSize) AMDGPUISD::SETCC (ext %Cond), 0, setne/seteq
2409   // =>
2410   // Use i1 %Cond value instead of i(WaveSize) %VCMP.
2411   // This is possible because divergent ISD::SETCC is selected as V_CMP and
2412   // Cond becomes a i(WaveSize) full mask value.
2413   // Note that ballot doesn't use SETEQ condition but its easy to support it
2414   // here for completeness, so in this case Negate is set true on return.
2415   auto VCMP_CC = cast<CondCodeSDNode>(VCMP.getOperand(2))->get();
2416   if ((VCMP_CC == ISD::SETEQ || VCMP_CC == ISD::SETNE) &&
2417       isNullConstant(VCMP.getOperand(1))) {
2418 
2419     auto Cond = VCMP.getOperand(0);
2420     if (ISD::isExtOpcode(Cond->getOpcode())) // Skip extension.
2421       Cond = Cond.getOperand(0);
2422 
2423     if (isBoolSGPR(Cond)) {
2424       Negate = VCMP_CC == ISD::SETEQ;
2425       return Cond;
2426     }
2427   }
2428   return SDValue();
2429 }
2430 
2431 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2432   SDValue Cond = N->getOperand(1);
2433 
2434   if (Cond.isUndef()) {
2435     CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2436                          N->getOperand(2), N->getOperand(0));
2437     return;
2438   }
2439 
2440   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2441   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2442 
2443   bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2444   bool AndExec = !UseSCCBr;
2445   bool Negate = false;
2446 
2447   if (Cond.getOpcode() == ISD::SETCC &&
2448       Cond->getOperand(0)->getOpcode() == AMDGPUISD::SETCC) {
2449     SDValue VCMP = Cond->getOperand(0);
2450     auto CC = cast<CondCodeSDNode>(Cond->getOperand(2))->get();
2451     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
2452         isNullConstant(Cond->getOperand(1)) &&
2453         // We may encounter ballot.i64 in wave32 mode on -O0.
2454         VCMP.getValueType().getSizeInBits() == ST->getWavefrontSize()) {
2455       // %VCMP = i(WaveSize) AMDGPUISD::SETCC ...
2456       // %C = i1 ISD::SETCC %VCMP, 0, setne/seteq
2457       // BRCOND i1 %C, %BB
2458       // =>
2459       // %VCMP = i(WaveSize) AMDGPUISD::SETCC ...
2460       // VCC = COPY i(WaveSize) %VCMP
2461       // S_CBRANCH_VCCNZ/VCCZ %BB
2462       Negate = CC == ISD::SETEQ;
2463       bool NegatedBallot = false;
2464       if (auto BallotCond = combineBallotPattern(VCMP, NegatedBallot)) {
2465         Cond = BallotCond;
2466         UseSCCBr = !BallotCond->isDivergent();
2467         Negate = Negate ^ NegatedBallot;
2468       } else {
2469         // TODO: don't use SCC here assuming that AMDGPUISD::SETCC is always
2470         // selected as V_CMP, but this may change for uniform condition.
2471         Cond = VCMP;
2472         UseSCCBr = false;
2473       }
2474     }
2475     // Cond is either V_CMP resulted from AMDGPUISD::SETCC or a combination of
2476     // V_CMPs resulted from ballot or ballot has uniform condition and SCC is
2477     // used.
2478     AndExec = false;
2479   }
2480 
2481   unsigned BrOp =
2482       UseSCCBr ? (Negate ? AMDGPU::S_CBRANCH_SCC0 : AMDGPU::S_CBRANCH_SCC1)
2483                : (Negate ? AMDGPU::S_CBRANCH_VCCZ : AMDGPU::S_CBRANCH_VCCNZ);
2484   Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
2485   SDLoc SL(N);
2486 
2487   if (AndExec) {
2488     // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
2489     // analyzed what generates the vcc value, so we do not know whether vcc
2490     // bits for disabled lanes are 0.  Thus we need to mask out bits for
2491     // disabled lanes.
2492     //
2493     // For the case that we select S_CBRANCH_SCC1 and it gets
2494     // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2495     // SIInstrInfo::moveToVALU which inserts the S_AND).
2496     //
2497     // We could add an analysis of what generates the vcc value here and omit
2498     // the S_AND when is unnecessary. But it would be better to add a separate
2499     // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2500     // catches both cases.
2501     Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2502                                                          : AMDGPU::S_AND_B64,
2503                      SL, MVT::i1,
2504                      CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2505                                                         : AMDGPU::EXEC,
2506                                          MVT::i1),
2507                     Cond),
2508                    0);
2509   }
2510 
2511   SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2512   CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2513                        N->getOperand(2), // Basic Block
2514                        VCC.getValue(0));
2515 }
2516 
2517 void AMDGPUDAGToDAGISel::SelectFP_EXTEND(SDNode *N) {
2518   if (Subtarget->hasSALUFloatInsts() && N->getValueType(0) == MVT::f32 &&
2519       !N->isDivergent()) {
2520     SDValue Src = N->getOperand(0);
2521     if (Src.getValueType() == MVT::f16) {
2522       if (isExtractHiElt(Src, Src)) {
2523         CurDAG->SelectNodeTo(N, AMDGPU::S_CVT_HI_F32_F16, N->getVTList(),
2524                              {Src});
2525         return;
2526       }
2527     }
2528   }
2529 
2530   SelectCode(N);
2531 }
2532 
2533 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2534   // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2535   // be copied to an SGPR with readfirstlane.
2536   unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2537     AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2538 
2539   SDValue Chain = N->getOperand(0);
2540   SDValue Ptr = N->getOperand(2);
2541   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2542   MachineMemOperand *MMO = M->getMemOperand();
2543   bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2544 
2545   SDValue Offset;
2546   if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2547     SDValue PtrBase = Ptr.getOperand(0);
2548     SDValue PtrOffset = Ptr.getOperand(1);
2549 
2550     const APInt &OffsetVal = PtrOffset->getAsAPIntVal();
2551     if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) {
2552       N = glueCopyToM0(N, PtrBase);
2553       Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2554     }
2555   }
2556 
2557   if (!Offset) {
2558     N = glueCopyToM0(N, Ptr);
2559     Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2560   }
2561 
2562   SDValue Ops[] = {
2563     Offset,
2564     CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2565     Chain,
2566     N->getOperand(N->getNumOperands() - 1) // New glue
2567   };
2568 
2569   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2570   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2571 }
2572 
2573 // We need to handle this here because tablegen doesn't support matching
2574 // instructions with multiple outputs.
2575 void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) {
2576   unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32;
2577   SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4),
2578                    N->getOperand(5), N->getOperand(0)};
2579 
2580   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2581   MachineMemOperand *MMO = M->getMemOperand();
2582   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2583   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2584 }
2585 
2586 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2587   switch (IntrID) {
2588   case Intrinsic::amdgcn_ds_gws_init:
2589     return AMDGPU::DS_GWS_INIT;
2590   case Intrinsic::amdgcn_ds_gws_barrier:
2591     return AMDGPU::DS_GWS_BARRIER;
2592   case Intrinsic::amdgcn_ds_gws_sema_v:
2593     return AMDGPU::DS_GWS_SEMA_V;
2594   case Intrinsic::amdgcn_ds_gws_sema_br:
2595     return AMDGPU::DS_GWS_SEMA_BR;
2596   case Intrinsic::amdgcn_ds_gws_sema_p:
2597     return AMDGPU::DS_GWS_SEMA_P;
2598   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2599     return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2600   default:
2601     llvm_unreachable("not a gws intrinsic");
2602   }
2603 }
2604 
2605 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2606   if (!Subtarget->hasGWS() ||
2607       (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2608        !Subtarget->hasGWSSemaReleaseAll())) {
2609     // Let this error.
2610     SelectCode(N);
2611     return;
2612   }
2613 
2614   // Chain, intrinsic ID, vsrc, offset
2615   const bool HasVSrc = N->getNumOperands() == 4;
2616   assert(HasVSrc || N->getNumOperands() == 3);
2617 
2618   SDLoc SL(N);
2619   SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2620   int ImmOffset = 0;
2621   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2622   MachineMemOperand *MMO = M->getMemOperand();
2623 
2624   // Don't worry if the offset ends up in a VGPR. Only one lane will have
2625   // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2626 
2627   // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2628   // offset field) % 64. Some versions of the programming guide omit the m0
2629   // part, or claim it's from offset 0.
2630   if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2631     // If we have a constant offset, try to use the 0 in m0 as the base.
2632     // TODO: Look into changing the default m0 initialization value. If the
2633     // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2634     // the immediate offset.
2635     glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2636     ImmOffset = ConstOffset->getZExtValue();
2637   } else {
2638     if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2639       ImmOffset = BaseOffset.getConstantOperandVal(1);
2640       BaseOffset = BaseOffset.getOperand(0);
2641     }
2642 
2643     // Prefer to do the shift in an SGPR since it should be possible to use m0
2644     // as the result directly. If it's already an SGPR, it will be eliminated
2645     // later.
2646     SDNode *SGPROffset
2647       = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2648                                BaseOffset);
2649     // Shift to offset in m0
2650     SDNode *M0Base
2651       = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2652                                SDValue(SGPROffset, 0),
2653                                CurDAG->getTargetConstant(16, SL, MVT::i32));
2654     glueCopyToM0(N, SDValue(M0Base, 0));
2655   }
2656 
2657   SDValue Chain = N->getOperand(0);
2658   SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2659 
2660   const unsigned Opc = gwsIntrinToOpcode(IntrID);
2661   SmallVector<SDValue, 5> Ops;
2662   if (HasVSrc)
2663     Ops.push_back(N->getOperand(2));
2664   Ops.push_back(OffsetField);
2665   Ops.push_back(Chain);
2666 
2667   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2668   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2669 }
2670 
2671 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2672   if (Subtarget->getLDSBankCount() != 16) {
2673     // This is a single instruction with a pattern.
2674     SelectCode(N);
2675     return;
2676   }
2677 
2678   SDLoc DL(N);
2679 
2680   // This requires 2 instructions. It is possible to write a pattern to support
2681   // this, but the generated isel emitter doesn't correctly deal with multiple
2682   // output instructions using the same physical register input. The copy to m0
2683   // is incorrectly placed before the second instruction.
2684   //
2685   // TODO: Match source modifiers.
2686   //
2687   // def : Pat <
2688   //   (int_amdgcn_interp_p1_f16
2689   //    (VOP3Mods f32:$src0, i32:$src0_modifiers),
2690   //                             (i32 timm:$attrchan), (i32 timm:$attr),
2691   //                             (i1 timm:$high), M0),
2692   //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2693   //       timm:$attrchan, 0,
2694   //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2695   //   let Predicates = [has16BankLDS];
2696   // }
2697 
2698   // 16 bank LDS
2699   SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2700                                       N->getOperand(5), SDValue());
2701 
2702   SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2703 
2704   SDNode *InterpMov =
2705     CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2706         CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2707         N->getOperand(3),  // Attr
2708         N->getOperand(2),  // Attrchan
2709         ToM0.getValue(1) // In glue
2710   });
2711 
2712   SDNode *InterpP1LV =
2713     CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2714         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2715         N->getOperand(1), // Src0
2716         N->getOperand(3), // Attr
2717         N->getOperand(2), // Attrchan
2718         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2719         SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2720         N->getOperand(4), // high
2721         CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2722         CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2723         SDValue(InterpMov, 1)
2724   });
2725 
2726   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2727 }
2728 
2729 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2730   unsigned IntrID = N->getConstantOperandVal(1);
2731   switch (IntrID) {
2732   case Intrinsic::amdgcn_ds_append:
2733   case Intrinsic::amdgcn_ds_consume: {
2734     if (N->getValueType(0) != MVT::i32)
2735       break;
2736     SelectDSAppendConsume(N, IntrID);
2737     return;
2738   }
2739   case Intrinsic::amdgcn_ds_bvh_stack_rtn:
2740     SelectDSBvhStackIntrinsic(N);
2741     return;
2742   }
2743 
2744   SelectCode(N);
2745 }
2746 
2747 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2748   unsigned IntrID = N->getConstantOperandVal(0);
2749   unsigned Opcode = AMDGPU::INSTRUCTION_LIST_END;
2750   SDNode *ConvGlueNode = N->getGluedNode();
2751   if (ConvGlueNode) {
2752     // FIXME: Possibly iterate over multiple glue nodes?
2753     assert(ConvGlueNode->getOpcode() == ISD::CONVERGENCECTRL_GLUE);
2754     ConvGlueNode = ConvGlueNode->getOperand(0).getNode();
2755     ConvGlueNode =
2756         CurDAG->getMachineNode(TargetOpcode::CONVERGENCECTRL_GLUE, {},
2757                                MVT::Glue, SDValue(ConvGlueNode, 0));
2758   } else {
2759     ConvGlueNode = nullptr;
2760   }
2761   switch (IntrID) {
2762   case Intrinsic::amdgcn_wqm:
2763     Opcode = AMDGPU::WQM;
2764     break;
2765   case Intrinsic::amdgcn_softwqm:
2766     Opcode = AMDGPU::SOFT_WQM;
2767     break;
2768   case Intrinsic::amdgcn_wwm:
2769   case Intrinsic::amdgcn_strict_wwm:
2770     Opcode = AMDGPU::STRICT_WWM;
2771     break;
2772   case Intrinsic::amdgcn_strict_wqm:
2773     Opcode = AMDGPU::STRICT_WQM;
2774     break;
2775   case Intrinsic::amdgcn_interp_p1_f16:
2776     SelectInterpP1F16(N);
2777     return;
2778   default:
2779     SelectCode(N);
2780     break;
2781   }
2782 
2783   if (Opcode != AMDGPU::INSTRUCTION_LIST_END) {
2784     SDValue Src = N->getOperand(1);
2785     CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2786   }
2787 
2788   if (ConvGlueNode) {
2789     SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
2790     NewOps.push_back(SDValue(ConvGlueNode, 0));
2791     CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), NewOps);
2792   }
2793 }
2794 
2795 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2796   unsigned IntrID = N->getConstantOperandVal(1);
2797   switch (IntrID) {
2798   case Intrinsic::amdgcn_ds_gws_init:
2799   case Intrinsic::amdgcn_ds_gws_barrier:
2800   case Intrinsic::amdgcn_ds_gws_sema_v:
2801   case Intrinsic::amdgcn_ds_gws_sema_br:
2802   case Intrinsic::amdgcn_ds_gws_sema_p:
2803   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2804     SelectDS_GWS(N, IntrID);
2805     return;
2806   default:
2807     break;
2808   }
2809 
2810   SelectCode(N);
2811 }
2812 
2813 void AMDGPUDAGToDAGISel::SelectWAVE_ADDRESS(SDNode *N) {
2814   SDValue Log2WaveSize =
2815     CurDAG->getTargetConstant(Subtarget->getWavefrontSizeLog2(), SDLoc(N), MVT::i32);
2816   CurDAG->SelectNodeTo(N, AMDGPU::S_LSHR_B32, N->getVTList(),
2817                        {N->getOperand(0), Log2WaveSize});
2818 }
2819 
2820 void AMDGPUDAGToDAGISel::SelectSTACKRESTORE(SDNode *N) {
2821   SDValue SrcVal = N->getOperand(1);
2822   if (SrcVal.getValueType() != MVT::i32) {
2823     SelectCode(N); // Emit default error
2824     return;
2825   }
2826 
2827   SDValue CopyVal;
2828   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2829   SDLoc SL(N);
2830 
2831   if (SrcVal.getOpcode() == AMDGPUISD::WAVE_ADDRESS) {
2832     CopyVal = SrcVal.getOperand(0);
2833   } else {
2834     SDValue Log2WaveSize = CurDAG->getTargetConstant(
2835         Subtarget->getWavefrontSizeLog2(), SL, MVT::i32);
2836 
2837     if (N->isDivergent()) {
2838       SrcVal = SDValue(CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL,
2839                                               MVT::i32, SrcVal),
2840                        0);
2841     }
2842 
2843     CopyVal = SDValue(CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2844                                              {SrcVal, Log2WaveSize}),
2845                       0);
2846   }
2847 
2848   SDValue CopyToSP = CurDAG->getCopyToReg(N->getOperand(0), SL, SP, CopyVal);
2849   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyToSP);
2850 }
2851 
2852 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2853                                             unsigned &Mods,
2854                                             bool IsCanonicalizing,
2855                                             bool AllowAbs) const {
2856   Mods = SISrcMods::NONE;
2857   Src = In;
2858 
2859   if (Src.getOpcode() == ISD::FNEG) {
2860     Mods |= SISrcMods::NEG;
2861     Src = Src.getOperand(0);
2862   } else if (Src.getOpcode() == ISD::FSUB && IsCanonicalizing) {
2863     // Fold fsub [+-]0 into fneg. This may not have folded depending on the
2864     // denormal mode, but we're implicitly canonicalizing in a source operand.
2865     auto *LHS = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2866     if (LHS && LHS->isZero()) {
2867       Mods |= SISrcMods::NEG;
2868       Src = Src.getOperand(1);
2869     }
2870   }
2871 
2872   if (AllowAbs && Src.getOpcode() == ISD::FABS) {
2873     Mods |= SISrcMods::ABS;
2874     Src = Src.getOperand(0);
2875   }
2876 
2877   return true;
2878 }
2879 
2880 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2881                                         SDValue &SrcMods) const {
2882   unsigned Mods;
2883   if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/true,
2884                          /*AllowAbs=*/true)) {
2885     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2886     return true;
2887   }
2888 
2889   return false;
2890 }
2891 
2892 bool AMDGPUDAGToDAGISel::SelectVOP3ModsNonCanonicalizing(
2893     SDValue In, SDValue &Src, SDValue &SrcMods) const {
2894   unsigned Mods;
2895   if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/false,
2896                          /*AllowAbs=*/true)) {
2897     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2898     return true;
2899   }
2900 
2901   return false;
2902 }
2903 
2904 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src,
2905                                          SDValue &SrcMods) const {
2906   unsigned Mods;
2907   if (SelectVOP3ModsImpl(In, Src, Mods,
2908                          /*IsCanonicalizing=*/true,
2909                          /*AllowAbs=*/false)) {
2910     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2911     return true;
2912   }
2913 
2914   return false;
2915 }
2916 
2917 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2918   if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2919     return false;
2920 
2921   Src = In;
2922   return true;
2923 }
2924 
2925 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src,
2926                                                SDValue &SrcMods,
2927                                                bool OpSel) const {
2928   unsigned Mods;
2929   if (SelectVOP3ModsImpl(In, Src, Mods,
2930                          /*IsCanonicalizing=*/true,
2931                          /*AllowAbs=*/false)) {
2932     if (OpSel)
2933       Mods |= SISrcMods::OP_SEL_0;
2934     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2935     return true;
2936   }
2937 
2938   return false;
2939 }
2940 
2941 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src,
2942                                            SDValue &SrcMods) const {
2943   return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false);
2944 }
2945 
2946 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src,
2947                                              SDValue &SrcMods) const {
2948   return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true);
2949 }
2950 
2951 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2952                                          SDValue &SrcMods, SDValue &Clamp,
2953                                          SDValue &Omod) const {
2954   SDLoc DL(In);
2955   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2956   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2957 
2958   return SelectVOP3Mods(In, Src, SrcMods);
2959 }
2960 
2961 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src,
2962                                           SDValue &SrcMods, SDValue &Clamp,
2963                                           SDValue &Omod) const {
2964   SDLoc DL(In);
2965   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2966   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2967 
2968   return SelectVOP3BMods(In, Src, SrcMods);
2969 }
2970 
2971 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2972                                          SDValue &Clamp, SDValue &Omod) const {
2973   Src = In;
2974 
2975   SDLoc DL(In);
2976   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2977   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2978 
2979   return true;
2980 }
2981 
2982 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2983                                          SDValue &SrcMods, bool IsDOT) const {
2984   unsigned Mods = SISrcMods::NONE;
2985   Src = In;
2986 
2987   // TODO: Handle G_FSUB 0 as fneg
2988   if (Src.getOpcode() == ISD::FNEG) {
2989     Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2990     Src = Src.getOperand(0);
2991   }
2992 
2993   if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 &&
2994       (!IsDOT || !Subtarget->hasDOTOpSelHazard())) {
2995     unsigned VecMods = Mods;
2996 
2997     SDValue Lo = stripBitcast(Src.getOperand(0));
2998     SDValue Hi = stripBitcast(Src.getOperand(1));
2999 
3000     if (Lo.getOpcode() == ISD::FNEG) {
3001       Lo = stripBitcast(Lo.getOperand(0));
3002       Mods ^= SISrcMods::NEG;
3003     }
3004 
3005     if (Hi.getOpcode() == ISD::FNEG) {
3006       Hi = stripBitcast(Hi.getOperand(0));
3007       Mods ^= SISrcMods::NEG_HI;
3008     }
3009 
3010     if (isExtractHiElt(Lo, Lo))
3011       Mods |= SISrcMods::OP_SEL_0;
3012 
3013     if (isExtractHiElt(Hi, Hi))
3014       Mods |= SISrcMods::OP_SEL_1;
3015 
3016     unsigned VecSize = Src.getValueSizeInBits();
3017     Lo = stripExtractLoElt(Lo);
3018     Hi = stripExtractLoElt(Hi);
3019 
3020     if (Lo.getValueSizeInBits() > VecSize) {
3021       Lo = CurDAG->getTargetExtractSubreg(
3022         (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
3023         MVT::getIntegerVT(VecSize), Lo);
3024     }
3025 
3026     if (Hi.getValueSizeInBits() > VecSize) {
3027       Hi = CurDAG->getTargetExtractSubreg(
3028         (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
3029         MVT::getIntegerVT(VecSize), Hi);
3030     }
3031 
3032     assert(Lo.getValueSizeInBits() <= VecSize &&
3033            Hi.getValueSizeInBits() <= VecSize);
3034 
3035     if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
3036       // Really a scalar input. Just select from the low half of the register to
3037       // avoid packing.
3038 
3039       if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) {
3040         Src = Lo;
3041       } else {
3042         assert(Lo.getValueSizeInBits() == 32 && VecSize == 64);
3043 
3044         SDLoc SL(In);
3045         SDValue Undef = SDValue(
3046           CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL,
3047                                  Lo.getValueType()), 0);
3048         auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID
3049                                     : AMDGPU::SReg_64RegClassID;
3050         const SDValue Ops[] = {
3051           CurDAG->getTargetConstant(RC, SL, MVT::i32),
3052           Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
3053           Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) };
3054 
3055         Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL,
3056                                              Src.getValueType(), Ops), 0);
3057       }
3058       SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3059       return true;
3060     }
3061 
3062     if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) {
3063       uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF()
3064                       .bitcastToAPInt().getZExtValue();
3065       if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) {
3066         Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);
3067         SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3068         return true;
3069       }
3070     }
3071 
3072     Mods = VecMods;
3073   }
3074 
3075   // Packed instructions do not have abs modifiers.
3076   Mods |= SISrcMods::OP_SEL_1;
3077 
3078   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3079   return true;
3080 }
3081 
3082 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src,
3083                                             SDValue &SrcMods) const {
3084   return SelectVOP3PMods(In, Src, SrcMods, true);
3085 }
3086 
3087 bool AMDGPUDAGToDAGISel::SelectVOP3PModsNeg(SDValue In, SDValue &Src) const {
3088   const ConstantSDNode *C = cast<ConstantSDNode>(In);
3089   // Literal i1 value set in intrinsic, represents SrcMods for the next operand.
3090   // 1 promotes packed values to signed, 0 treats them as unsigned.
3091   assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value");
3092 
3093   unsigned Mods = SISrcMods::OP_SEL_1;
3094   unsigned SrcSign = C->getZExtValue();
3095   if (SrcSign == 1)
3096     Mods ^= SISrcMods::NEG;
3097 
3098   Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3099   return true;
3100 }
3101 
3102 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In,
3103                                                   SDValue &Src) const {
3104   const ConstantSDNode *C = cast<ConstantSDNode>(In);
3105   assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value");
3106 
3107   unsigned Mods = SISrcMods::OP_SEL_1;
3108   unsigned SrcVal = C->getZExtValue();
3109   if (SrcVal == 1)
3110     Mods |= SISrcMods::OP_SEL_0;
3111 
3112   Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3113   return true;
3114 }
3115 
3116 static MachineSDNode *buildRegSequence32(SmallVectorImpl<SDValue> &Elts,
3117                                          llvm::SelectionDAG *CurDAG,
3118                                          const SDLoc &DL) {
3119   unsigned DstRegClass;
3120   EVT DstTy;
3121   switch (Elts.size()) {
3122   case 8:
3123     DstRegClass = AMDGPU::VReg_256RegClassID;
3124     DstTy = MVT::v8i32;
3125     break;
3126   case 4:
3127     DstRegClass = AMDGPU::VReg_128RegClassID;
3128     DstTy = MVT::v4i32;
3129     break;
3130   case 2:
3131     DstRegClass = AMDGPU::VReg_64RegClassID;
3132     DstTy = MVT::v2i32;
3133     break;
3134   default:
3135     llvm_unreachable("unhandled Reg sequence size");
3136   }
3137 
3138   SmallVector<SDValue, 17> Ops;
3139   Ops.push_back(CurDAG->getTargetConstant(DstRegClass, DL, MVT::i32));
3140   for (unsigned i = 0; i < Elts.size(); ++i) {
3141     Ops.push_back(Elts[i]);
3142     Ops.push_back(CurDAG->getTargetConstant(
3143         SIRegisterInfo::getSubRegFromChannel(i), DL, MVT::i32));
3144   }
3145   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, DstTy, Ops);
3146 }
3147 
3148 static MachineSDNode *buildRegSequence16(SmallVectorImpl<SDValue> &Elts,
3149                                          llvm::SelectionDAG *CurDAG,
3150                                          const SDLoc &DL) {
3151   SmallVector<SDValue, 8> PackedElts;
3152   assert("unhandled Reg sequence size" &&
3153          (Elts.size() == 8 || Elts.size() == 16));
3154 
3155   // Pack 16-bit elements in pairs into 32-bit register. If both elements are
3156   // unpacked from 32-bit source use it, otherwise pack them using v_perm.
3157   for (unsigned i = 0; i < Elts.size(); i += 2) {
3158     SDValue LoSrc = stripExtractLoElt(stripBitcast(Elts[i]));
3159     SDValue HiSrc;
3160     if (isExtractHiElt(Elts[i + 1], HiSrc) && LoSrc == HiSrc) {
3161       PackedElts.push_back(HiSrc);
3162     } else {
3163       SDValue PackLoLo = CurDAG->getTargetConstant(0x05040100, DL, MVT::i32);
3164       MachineSDNode *Packed =
3165           CurDAG->getMachineNode(AMDGPU::V_PERM_B32_e64, DL, MVT::i32,
3166                                  {Elts[i + 1], Elts[i], PackLoLo});
3167       PackedElts.push_back(SDValue(Packed, 0));
3168     }
3169   }
3170 
3171   return buildRegSequence32(PackedElts, CurDAG, DL);
3172 }
3173 
3174 static MachineSDNode *buildRegSequence(SmallVectorImpl<SDValue> &Elts,
3175                                        llvm::SelectionDAG *CurDAG,
3176                                        const SDLoc &DL, unsigned ElementSize) {
3177   if (ElementSize == 16)
3178     return buildRegSequence16(Elts, CurDAG, DL);
3179   if (ElementSize == 32)
3180     return buildRegSequence32(Elts, CurDAG, DL);
3181   llvm_unreachable("Unhandled element size");
3182 }
3183 
3184 static void selectWMMAModsNegAbs(unsigned ModOpcode, unsigned &Mods,
3185                                  SmallVectorImpl<SDValue> &Elts, SDValue &Src,
3186                                  llvm::SelectionDAG *CurDAG, const SDLoc &DL,
3187                                  unsigned ElementSize) {
3188   if (ModOpcode == ISD::FNEG) {
3189     Mods |= SISrcMods::NEG;
3190     // Check if all elements also have abs modifier
3191     SmallVector<SDValue, 8> NegAbsElts;
3192     for (auto El : Elts) {
3193       if (El.getOpcode() != ISD::FABS)
3194         break;
3195       NegAbsElts.push_back(El->getOperand(0));
3196     }
3197     if (Elts.size() != NegAbsElts.size()) {
3198       // Neg
3199       Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0);
3200     } else {
3201       // Neg and Abs
3202       Mods |= SISrcMods::NEG_HI;
3203       Src = SDValue(buildRegSequence(NegAbsElts, CurDAG, DL, ElementSize), 0);
3204     }
3205   } else {
3206     assert(ModOpcode == ISD::FABS);
3207     // Abs
3208     Mods |= SISrcMods::NEG_HI;
3209     Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0);
3210   }
3211 }
3212 
3213 // Check all f16 elements for modifiers while looking through b32 and v2b16
3214 // build vector, stop if element does not satisfy ModifierCheck.
3215 static void
3216 checkWMMAElementsModifiersF16(BuildVectorSDNode *BV,
3217                               std::function<bool(SDValue)> ModifierCheck) {
3218   for (unsigned i = 0; i < BV->getNumOperands(); ++i) {
3219     if (auto *F16Pair =
3220             dyn_cast<BuildVectorSDNode>(stripBitcast(BV->getOperand(i)))) {
3221       for (unsigned i = 0; i < F16Pair->getNumOperands(); ++i) {
3222         SDValue ElF16 = stripBitcast(F16Pair->getOperand(i));
3223         if (!ModifierCheck(ElF16))
3224           break;
3225       }
3226     }
3227   }
3228 }
3229 
3230 bool AMDGPUDAGToDAGISel::SelectWMMAModsF16Neg(SDValue In, SDValue &Src,
3231                                               SDValue &SrcMods) const {
3232   Src = In;
3233   unsigned Mods = SISrcMods::OP_SEL_1;
3234 
3235   // mods are on f16 elements
3236   if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3237     SmallVector<SDValue, 8> EltsF16;
3238 
3239     checkWMMAElementsModifiersF16(BV, [&](SDValue Element) -> bool {
3240       if (Element.getOpcode() != ISD::FNEG)
3241         return false;
3242       EltsF16.push_back(Element.getOperand(0));
3243       return true;
3244     });
3245 
3246     // All elements have neg modifier
3247     if (BV->getNumOperands() * 2 == EltsF16.size()) {
3248       Src = SDValue(buildRegSequence16(EltsF16, CurDAG, SDLoc(In)), 0);
3249       Mods |= SISrcMods::NEG;
3250       Mods |= SISrcMods::NEG_HI;
3251     }
3252   }
3253 
3254   // mods are on v2f16 elements
3255   if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3256     SmallVector<SDValue, 8> EltsV2F16;
3257     for (unsigned i = 0; i < BV->getNumOperands(); ++i) {
3258       SDValue ElV2f16 = stripBitcast(BV->getOperand(i));
3259       // Based on first element decide which mod we match, neg or abs
3260       if (ElV2f16.getOpcode() != ISD::FNEG)
3261         break;
3262       EltsV2F16.push_back(ElV2f16.getOperand(0));
3263     }
3264 
3265     // All pairs of elements have neg modifier
3266     if (BV->getNumOperands() == EltsV2F16.size()) {
3267       Src = SDValue(buildRegSequence32(EltsV2F16, CurDAG, SDLoc(In)), 0);
3268       Mods |= SISrcMods::NEG;
3269       Mods |= SISrcMods::NEG_HI;
3270     }
3271   }
3272 
3273   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3274   return true;
3275 }
3276 
3277 bool AMDGPUDAGToDAGISel::SelectWMMAModsF16NegAbs(SDValue In, SDValue &Src,
3278                                                  SDValue &SrcMods) const {
3279   Src = In;
3280   unsigned Mods = SISrcMods::OP_SEL_1;
3281   unsigned ModOpcode;
3282 
3283   // mods are on f16 elements
3284   if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3285     SmallVector<SDValue, 8> EltsF16;
3286     checkWMMAElementsModifiersF16(BV, [&](SDValue ElF16) -> bool {
3287       // Based on first element decide which mod we match, neg or abs
3288       if (EltsF16.empty())
3289         ModOpcode = (ElF16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS;
3290       if (ElF16.getOpcode() != ModOpcode)
3291         return false;
3292       EltsF16.push_back(ElF16.getOperand(0));
3293       return true;
3294     });
3295 
3296     // All elements have ModOpcode modifier
3297     if (BV->getNumOperands() * 2 == EltsF16.size())
3298       selectWMMAModsNegAbs(ModOpcode, Mods, EltsF16, Src, CurDAG, SDLoc(In),
3299                            16);
3300   }
3301 
3302   // mods are on v2f16 elements
3303   if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3304     SmallVector<SDValue, 8> EltsV2F16;
3305 
3306     for (unsigned i = 0; i < BV->getNumOperands(); ++i) {
3307       SDValue ElV2f16 = stripBitcast(BV->getOperand(i));
3308       // Based on first element decide which mod we match, neg or abs
3309       if (EltsV2F16.empty())
3310         ModOpcode = (ElV2f16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS;
3311       if (ElV2f16->getOpcode() != ModOpcode)
3312         break;
3313       EltsV2F16.push_back(ElV2f16->getOperand(0));
3314     }
3315 
3316     // All elements have ModOpcode modifier
3317     if (BV->getNumOperands() == EltsV2F16.size())
3318       selectWMMAModsNegAbs(ModOpcode, Mods, EltsV2F16, Src, CurDAG, SDLoc(In),
3319                            32);
3320   }
3321 
3322   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3323   return true;
3324 }
3325 
3326 bool AMDGPUDAGToDAGISel::SelectWMMAModsF32NegAbs(SDValue In, SDValue &Src,
3327                                                  SDValue &SrcMods) const {
3328   Src = In;
3329   unsigned Mods = SISrcMods::OP_SEL_1;
3330   SmallVector<SDValue, 8> EltsF32;
3331 
3332   if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) {
3333     assert(BV->getNumOperands() > 0);
3334     // Based on first element decide which mod we match, neg or abs
3335     SDValue ElF32 = stripBitcast(BV->getOperand(0));
3336     unsigned ModOpcode =
3337         (ElF32.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS;
3338     for (unsigned i = 0; i < BV->getNumOperands(); ++i) {
3339       SDValue ElF32 = stripBitcast(BV->getOperand(i));
3340       if (ElF32.getOpcode() != ModOpcode)
3341         break;
3342       EltsF32.push_back(ElF32.getOperand(0));
3343     }
3344 
3345     // All elements had ModOpcode modifier
3346     if (BV->getNumOperands() == EltsF32.size())
3347       selectWMMAModsNegAbs(ModOpcode, Mods, EltsF32, Src, CurDAG, SDLoc(In),
3348                            32);
3349   }
3350 
3351   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3352   return true;
3353 }
3354 
3355 bool AMDGPUDAGToDAGISel::SelectWMMAVISrc(SDValue In, SDValue &Src) const {
3356   if (auto *BV = dyn_cast<BuildVectorSDNode>(In)) {
3357     BitVector UndefElements;
3358     if (SDValue Splat = BV->getSplatValue(&UndefElements))
3359       if (isInlineImmediate(Splat.getNode())) {
3360         if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Splat)) {
3361           unsigned Imm = C->getAPIntValue().getSExtValue();
3362           Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32);
3363           return true;
3364         }
3365         if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Splat)) {
3366           unsigned Imm = C->getValueAPF().bitcastToAPInt().getSExtValue();
3367           Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32);
3368           return true;
3369         }
3370         llvm_unreachable("unhandled Constant node");
3371       }
3372   }
3373 
3374   // 16 bit splat
3375   SDValue SplatSrc32 = stripBitcast(In);
3376   if (auto *SplatSrc32BV = dyn_cast<BuildVectorSDNode>(SplatSrc32))
3377     if (SDValue Splat32 = SplatSrc32BV->getSplatValue()) {
3378       SDValue SplatSrc16 = stripBitcast(Splat32);
3379       if (auto *SplatSrc16BV = dyn_cast<BuildVectorSDNode>(SplatSrc16))
3380         if (SDValue Splat = SplatSrc16BV->getSplatValue()) {
3381           const SIInstrInfo *TII = Subtarget->getInstrInfo();
3382           std::optional<APInt> RawValue;
3383           if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Splat))
3384             RawValue = C->getValueAPF().bitcastToAPInt();
3385           else if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Splat))
3386             RawValue = C->getAPIntValue();
3387 
3388           if (RawValue.has_value()) {
3389             EVT VT = In.getValueType().getScalarType();
3390             if (VT.getSimpleVT() == MVT::f16 || VT.getSimpleVT() == MVT::bf16) {
3391               APFloat FloatVal(VT.getSimpleVT() == MVT::f16
3392                                    ? APFloatBase::IEEEhalf()
3393                                    : APFloatBase::BFloat(),
3394                                RawValue.value());
3395               if (TII->isInlineConstant(FloatVal)) {
3396                 Src = CurDAG->getTargetConstant(RawValue.value(), SDLoc(In),
3397                                                 MVT::i16);
3398                 return true;
3399               }
3400             } else if (VT.getSimpleVT() == MVT::i16) {
3401               if (TII->isInlineConstant(RawValue.value())) {
3402                 Src = CurDAG->getTargetConstant(RawValue.value(), SDLoc(In),
3403                                                 MVT::i16);
3404                 return true;
3405               }
3406             } else
3407               llvm_unreachable("unknown 16-bit type");
3408           }
3409         }
3410     }
3411 
3412   return false;
3413 }
3414 
3415 bool AMDGPUDAGToDAGISel::SelectSWMMACIndex8(SDValue In, SDValue &Src,
3416                                             SDValue &IndexKey) const {
3417   unsigned Key = 0;
3418   Src = In;
3419 
3420   if (In.getOpcode() == ISD::SRL) {
3421     const llvm::SDValue &ShiftSrc = In.getOperand(0);
3422     ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
3423     if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt &&
3424         ShiftAmt->getZExtValue() % 8 == 0) {
3425       Key = ShiftAmt->getZExtValue() / 8;
3426       Src = ShiftSrc;
3427     }
3428   }
3429 
3430   IndexKey = CurDAG->getTargetConstant(Key, SDLoc(In), MVT::i32);
3431   return true;
3432 }
3433 
3434 bool AMDGPUDAGToDAGISel::SelectSWMMACIndex16(SDValue In, SDValue &Src,
3435                                              SDValue &IndexKey) const {
3436   unsigned Key = 0;
3437   Src = In;
3438 
3439   if (In.getOpcode() == ISD::SRL) {
3440     const llvm::SDValue &ShiftSrc = In.getOperand(0);
3441     ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
3442     if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt &&
3443         ShiftAmt->getZExtValue() == 16) {
3444       Key = 1;
3445       Src = ShiftSrc;
3446     }
3447   }
3448 
3449   IndexKey = CurDAG->getTargetConstant(Key, SDLoc(In), MVT::i32);
3450   return true;
3451 }
3452 
3453 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
3454                                          SDValue &SrcMods) const {
3455   Src = In;
3456   // FIXME: Handle op_sel
3457   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
3458   return true;
3459 }
3460 
3461 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
3462                                              SDValue &SrcMods) const {
3463   // FIXME: Handle op_sel
3464   return SelectVOP3Mods(In, Src, SrcMods);
3465 }
3466 
3467 // The return value is not whether the match is possible (which it always is),
3468 // but whether or not it a conversion is really used.
3469 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
3470                                                    unsigned &Mods) const {
3471   Mods = 0;
3472   SelectVOP3ModsImpl(In, Src, Mods);
3473 
3474   if (Src.getOpcode() == ISD::FP_EXTEND) {
3475     Src = Src.getOperand(0);
3476     assert(Src.getValueType() == MVT::f16);
3477     Src = stripBitcast(Src);
3478 
3479     // Be careful about folding modifiers if we already have an abs. fneg is
3480     // applied last, so we don't want to apply an earlier fneg.
3481     if ((Mods & SISrcMods::ABS) == 0) {
3482       unsigned ModsTmp;
3483       SelectVOP3ModsImpl(Src, Src, ModsTmp);
3484 
3485       if ((ModsTmp & SISrcMods::NEG) != 0)
3486         Mods ^= SISrcMods::NEG;
3487 
3488       if ((ModsTmp & SISrcMods::ABS) != 0)
3489         Mods |= SISrcMods::ABS;
3490     }
3491 
3492     // op_sel/op_sel_hi decide the source type and source.
3493     // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
3494     // If the sources's op_sel is set, it picks the high half of the source
3495     // register.
3496 
3497     Mods |= SISrcMods::OP_SEL_1;
3498     if (isExtractHiElt(Src, Src)) {
3499       Mods |= SISrcMods::OP_SEL_0;
3500 
3501       // TODO: Should we try to look for neg/abs here?
3502     }
3503 
3504     return true;
3505   }
3506 
3507   return false;
3508 }
3509 
3510 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsExt(SDValue In, SDValue &Src,
3511                                                   SDValue &SrcMods) const {
3512   unsigned Mods = 0;
3513   if (!SelectVOP3PMadMixModsImpl(In, Src, Mods))
3514     return false;
3515   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3516   return true;
3517 }
3518 
3519 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
3520                                                SDValue &SrcMods) const {
3521   unsigned Mods = 0;
3522   SelectVOP3PMadMixModsImpl(In, Src, Mods);
3523   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
3524   return true;
3525 }
3526 
3527 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
3528   if (In.isUndef())
3529     return CurDAG->getUNDEF(MVT::i32);
3530 
3531   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
3532     SDLoc SL(In);
3533     return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
3534   }
3535 
3536   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
3537     SDLoc SL(In);
3538     return CurDAG->getConstant(
3539       C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
3540   }
3541 
3542   SDValue Src;
3543   if (isExtractHiElt(In, Src))
3544     return Src;
3545 
3546   return SDValue();
3547 }
3548 
3549 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
3550   assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
3551 
3552   const SIRegisterInfo *SIRI =
3553     static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
3554   const SIInstrInfo * SII =
3555     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
3556 
3557   unsigned Limit = 0;
3558   bool AllUsesAcceptSReg = true;
3559   for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
3560     Limit < 10 && U != E; ++U, ++Limit) {
3561     const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
3562 
3563     // If the register class is unknown, it could be an unknown
3564     // register class that needs to be an SGPR, e.g. an inline asm
3565     // constraint
3566     if (!RC || SIRI->isSGPRClass(RC))
3567       return false;
3568 
3569     if (RC != &AMDGPU::VS_32RegClass && RC != &AMDGPU::VS_64RegClass) {
3570       AllUsesAcceptSReg = false;
3571       SDNode * User = *U;
3572       if (User->isMachineOpcode()) {
3573         unsigned Opc = User->getMachineOpcode();
3574         const MCInstrDesc &Desc = SII->get(Opc);
3575         if (Desc.isCommutable()) {
3576           unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
3577           unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
3578           if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
3579             unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
3580             const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
3581             if (CommutedRC == &AMDGPU::VS_32RegClass ||
3582                 CommutedRC == &AMDGPU::VS_64RegClass)
3583               AllUsesAcceptSReg = true;
3584           }
3585         }
3586       }
3587       // If "AllUsesAcceptSReg == false" so far we haven't succeeded
3588       // commuting current user. This means have at least one use
3589       // that strictly require VGPR. Thus, we will not attempt to commute
3590       // other user instructions.
3591       if (!AllUsesAcceptSReg)
3592         break;
3593     }
3594   }
3595   return !AllUsesAcceptSReg && (Limit < 10);
3596 }
3597 
3598 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode *N) const {
3599   auto Ld = cast<LoadSDNode>(N);
3600 
3601   const MachineMemOperand *MMO = Ld->getMemOperand();
3602   if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(MMO))
3603     return false;
3604 
3605   return MMO->getSize().hasValue() &&
3606          Ld->getAlign() >=
3607              Align(std::min(MMO->getSize().getValue().getKnownMinValue(),
3608                             uint64_t(4))) &&
3609          ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
3610            Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ||
3611           (Subtarget->getScalarizeGlobalBehavior() &&
3612            Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
3613            Ld->isSimple() &&
3614            static_cast<const SITargetLowering *>(getTargetLowering())
3615                ->isMemOpHasNoClobberedMemOperand(N)));
3616 }
3617 
3618 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
3619   const AMDGPUTargetLowering& Lowering =
3620     *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
3621   bool IsModified = false;
3622   do {
3623     IsModified = false;
3624 
3625     // Go over all selected nodes and try to fold them a bit more
3626     SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
3627     while (Position != CurDAG->allnodes_end()) {
3628       SDNode *Node = &*Position++;
3629       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
3630       if (!MachineNode)
3631         continue;
3632 
3633       SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
3634       if (ResNode != Node) {
3635         if (ResNode)
3636           ReplaceUses(Node, ResNode);
3637         IsModified = true;
3638       }
3639     }
3640     CurDAG->RemoveDeadNodes();
3641   } while (IsModified);
3642 }
3643 
3644 AMDGPUDAGToDAGISelLegacy::AMDGPUDAGToDAGISelLegacy(TargetMachine &TM,
3645                                                    CodeGenOptLevel OptLevel)
3646     : SelectionDAGISelLegacy(
3647           ID, std::make_unique<AMDGPUDAGToDAGISel>(TM, OptLevel)) {}
3648 
3649 char AMDGPUDAGToDAGISelLegacy::ID = 0;
3650