1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUSubtarget.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "MCTargetDesc/R600MCTargetDesc.h" 21 #include "R600RegisterInfo.h" 22 #include "SIISelLowering.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/Analysis/UniformityAnalysis.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/IntrinsicsAMDGPU.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Support/ErrorHandling.h" 33 34 #ifdef EXPENSIVE_CHECKS 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #endif 38 39 #define DEBUG_TYPE "amdgpu-isel" 40 41 using namespace llvm; 42 43 //===----------------------------------------------------------------------===// 44 // Instruction Selector Implementation 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 static SDValue stripBitcast(SDValue Val) { 49 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 50 } 51 52 // Figure out if this is really an extract of the high 16-bits of a dword. 53 static bool isExtractHiElt(SDValue In, SDValue &Out) { 54 In = stripBitcast(In); 55 56 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 57 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 58 if (!Idx->isOne()) 59 return false; 60 Out = In.getOperand(0); 61 return true; 62 } 63 } 64 65 if (In.getOpcode() != ISD::TRUNCATE) 66 return false; 67 68 SDValue Srl = In.getOperand(0); 69 if (Srl.getOpcode() == ISD::SRL) { 70 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 71 if (ShiftAmt->getZExtValue() == 16) { 72 Out = stripBitcast(Srl.getOperand(0)); 73 return true; 74 } 75 } 76 } 77 78 return false; 79 } 80 81 // Look through operations that obscure just looking at the low 16-bits of the 82 // same register. 83 static SDValue stripExtractLoElt(SDValue In) { 84 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 85 SDValue Idx = In.getOperand(1); 86 if (isNullConstant(Idx) && In.getValueSizeInBits() <= 32) 87 return In.getOperand(0); 88 } 89 90 if (In.getOpcode() == ISD::TRUNCATE) { 91 SDValue Src = In.getOperand(0); 92 if (Src.getValueType().getSizeInBits() == 32) 93 return stripBitcast(Src); 94 } 95 96 return In; 97 } 98 99 } // end anonymous namespace 100 101 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel", 102 "AMDGPU DAG->DAG Pattern Instruction Selection", false, 103 false) 104 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 105 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 106 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 107 #ifdef EXPENSIVE_CHECKS 108 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 110 #endif 111 INITIALIZE_PASS_END(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel", 112 "AMDGPU DAG->DAG Pattern Instruction Selection", false, 113 false) 114 115 /// This pass converts a legalized DAG into a AMDGPU-specific 116 // DAG, ready for instruction scheduling. 117 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM, 118 CodeGenOptLevel OptLevel) { 119 return new AMDGPUDAGToDAGISelLegacy(TM, OptLevel); 120 } 121 122 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM, 123 CodeGenOptLevel OptLevel) 124 : SelectionDAGISel(TM, OptLevel) { 125 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 126 } 127 128 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 129 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 130 Subtarget->checkSubtargetFeatures(MF.getFunction()); 131 Mode = SIModeRegisterDefaults(MF.getFunction(), *Subtarget); 132 return SelectionDAGISel::runOnMachineFunction(MF); 133 } 134 135 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 136 // XXX - only need to list legal operations. 137 switch (Opc) { 138 case ISD::FADD: 139 case ISD::FSUB: 140 case ISD::FMUL: 141 case ISD::FDIV: 142 case ISD::FREM: 143 case ISD::FCANONICALIZE: 144 case ISD::UINT_TO_FP: 145 case ISD::SINT_TO_FP: 146 case ISD::FABS: 147 // Fabs is lowered to a bit operation, but it's an and which will clear the 148 // high bits anyway. 149 case ISD::FSQRT: 150 case ISD::FSIN: 151 case ISD::FCOS: 152 case ISD::FPOWI: 153 case ISD::FPOW: 154 case ISD::FLOG: 155 case ISD::FLOG2: 156 case ISD::FLOG10: 157 case ISD::FEXP: 158 case ISD::FEXP2: 159 case ISD::FCEIL: 160 case ISD::FTRUNC: 161 case ISD::FRINT: 162 case ISD::FNEARBYINT: 163 case ISD::FROUNDEVEN: 164 case ISD::FROUND: 165 case ISD::FFLOOR: 166 case ISD::FMINNUM: 167 case ISD::FMAXNUM: 168 case ISD::FLDEXP: 169 case AMDGPUISD::FRACT: 170 case AMDGPUISD::CLAMP: 171 case AMDGPUISD::COS_HW: 172 case AMDGPUISD::SIN_HW: 173 case AMDGPUISD::FMIN3: 174 case AMDGPUISD::FMAX3: 175 case AMDGPUISD::FMED3: 176 case AMDGPUISD::FMAD_FTZ: 177 case AMDGPUISD::RCP: 178 case AMDGPUISD::RSQ: 179 case AMDGPUISD::RCP_IFLAG: 180 // On gfx10, all 16-bit instructions preserve the high bits. 181 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 182 case ISD::FP_ROUND: 183 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 184 // high bits on gfx9. 185 // TODO: If we had the source node we could see if the source was fma/mad 186 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 187 case ISD::FMA: 188 case ISD::FMAD: 189 case AMDGPUISD::DIV_FIXUP: 190 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 191 default: 192 // fcopysign, select and others may be lowered to 32-bit bit operations 193 // which don't zero the high bits. 194 return false; 195 } 196 } 197 198 bool AMDGPUDAGToDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) { 199 #ifdef EXPENSIVE_CHECKS 200 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 201 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 202 for (auto &L : LI->getLoopsInPreorder()) { 203 assert(L->isLCSSAForm(DT)); 204 } 205 #endif 206 return SelectionDAGISelLegacy::runOnMachineFunction(MF); 207 } 208 209 void AMDGPUDAGToDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const { 210 AU.addRequired<AMDGPUArgumentUsageInfo>(); 211 AU.addRequired<UniformityInfoWrapperPass>(); 212 #ifdef EXPENSIVE_CHECKS 213 AU.addRequired<DominatorTreeWrapperPass>(); 214 AU.addRequired<LoopInfoWrapperPass>(); 215 #endif 216 SelectionDAGISelLegacy::getAnalysisUsage(AU); 217 } 218 219 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 220 assert(Subtarget->d16PreservesUnusedBits()); 221 MVT VT = N->getValueType(0).getSimpleVT(); 222 if (VT != MVT::v2i16 && VT != MVT::v2f16) 223 return false; 224 225 SDValue Lo = N->getOperand(0); 226 SDValue Hi = N->getOperand(1); 227 228 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 229 230 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 231 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 232 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 233 234 // Need to check for possible indirect dependencies on the other half of the 235 // vector to avoid introducing a cycle. 236 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 237 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 238 239 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 240 SDValue Ops[] = { 241 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 242 }; 243 244 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 245 if (LdHi->getMemoryVT() == MVT::i8) { 246 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 247 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 248 } else { 249 assert(LdHi->getMemoryVT() == MVT::i16); 250 } 251 252 SDValue NewLoadHi = 253 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 254 Ops, LdHi->getMemoryVT(), 255 LdHi->getMemOperand()); 256 257 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 258 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 259 return true; 260 } 261 262 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 263 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 264 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 265 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 266 if (LdLo && Lo.hasOneUse()) { 267 SDValue TiedIn = getHi16Elt(Hi); 268 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 269 return false; 270 271 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 272 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 273 if (LdLo->getMemoryVT() == MVT::i8) { 274 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 275 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 276 } else { 277 assert(LdLo->getMemoryVT() == MVT::i16); 278 } 279 280 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 281 282 SDValue Ops[] = { 283 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 284 }; 285 286 SDValue NewLoadLo = 287 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 288 Ops, LdLo->getMemoryVT(), 289 LdLo->getMemOperand()); 290 291 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 292 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 293 return true; 294 } 295 296 return false; 297 } 298 299 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 300 if (!Subtarget->d16PreservesUnusedBits()) 301 return; 302 303 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 304 305 bool MadeChange = false; 306 while (Position != CurDAG->allnodes_begin()) { 307 SDNode *N = &*--Position; 308 if (N->use_empty()) 309 continue; 310 311 switch (N->getOpcode()) { 312 case ISD::BUILD_VECTOR: 313 // TODO: Match load d16 from shl (extload:i16), 16 314 MadeChange |= matchLoadD16FromBuildVector(N); 315 break; 316 default: 317 break; 318 } 319 } 320 321 if (MadeChange) { 322 CurDAG->RemoveDeadNodes(); 323 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 324 CurDAG->dump();); 325 } 326 } 327 328 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const { 329 if (N->isUndef()) 330 return true; 331 332 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 333 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 334 return TII->isInlineConstant(C->getAPIntValue()); 335 336 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 337 return TII->isInlineConstant(C->getValueAPF()); 338 339 return false; 340 } 341 342 /// Determine the register class for \p OpNo 343 /// \returns The register class of the virtual register that will be used for 344 /// the given operand number \OpNo or NULL if the register class cannot be 345 /// determined. 346 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 347 unsigned OpNo) const { 348 if (!N->isMachineOpcode()) { 349 if (N->getOpcode() == ISD::CopyToReg) { 350 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 351 if (Reg.isVirtual()) { 352 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 353 return MRI.getRegClass(Reg); 354 } 355 356 const SIRegisterInfo *TRI 357 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 358 return TRI->getPhysRegBaseClass(Reg); 359 } 360 361 return nullptr; 362 } 363 364 switch (N->getMachineOpcode()) { 365 default: { 366 const MCInstrDesc &Desc = 367 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 368 unsigned OpIdx = Desc.getNumDefs() + OpNo; 369 if (OpIdx >= Desc.getNumOperands()) 370 return nullptr; 371 int RegClass = Desc.operands()[OpIdx].RegClass; 372 if (RegClass == -1) 373 return nullptr; 374 375 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 376 } 377 case AMDGPU::REG_SEQUENCE: { 378 unsigned RCID = N->getConstantOperandVal(0); 379 const TargetRegisterClass *SuperRC = 380 Subtarget->getRegisterInfo()->getRegClass(RCID); 381 382 SDValue SubRegOp = N->getOperand(OpNo + 1); 383 unsigned SubRegIdx = SubRegOp->getAsZExtVal(); 384 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 385 SubRegIdx); 386 } 387 } 388 } 389 390 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 391 SDValue Glue) const { 392 SmallVector <SDValue, 8> Ops; 393 Ops.push_back(NewChain); // Replace the chain. 394 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 395 Ops.push_back(N->getOperand(i)); 396 397 Ops.push_back(Glue); 398 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 399 } 400 401 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 402 const SITargetLowering& Lowering = 403 *static_cast<const SITargetLowering*>(getTargetLowering()); 404 405 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 406 407 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 408 return glueCopyToOp(N, M0, M0.getValue(1)); 409 } 410 411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 412 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 413 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 414 if (Subtarget->ldsRequiresM0Init()) 415 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 416 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 417 MachineFunction &MF = CurDAG->getMachineFunction(); 418 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 419 return 420 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 421 } 422 return N; 423 } 424 425 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 426 EVT VT) const { 427 SDNode *Lo = CurDAG->getMachineNode( 428 AMDGPU::S_MOV_B32, DL, MVT::i32, 429 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 430 SDNode *Hi = 431 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 432 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 433 const SDValue Ops[] = { 434 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 435 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 436 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 437 438 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 439 } 440 441 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 442 EVT VT = N->getValueType(0); 443 unsigned NumVectorElts = VT.getVectorNumElements(); 444 EVT EltVT = VT.getVectorElementType(); 445 SDLoc DL(N); 446 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 447 448 if (NumVectorElts == 1) { 449 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 450 RegClass); 451 return; 452 } 453 454 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 455 "supported yet"); 456 // 32 = Max Num Vector Elements 457 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 458 // 1 = Vector Register Class 459 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 460 461 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 462 Triple::amdgcn; 463 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 464 bool IsRegSeq = true; 465 unsigned NOps = N->getNumOperands(); 466 for (unsigned i = 0; i < NOps; i++) { 467 // XXX: Why is this here? 468 if (isa<RegisterSDNode>(N->getOperand(i))) { 469 IsRegSeq = false; 470 break; 471 } 472 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 473 : R600RegisterInfo::getSubRegFromChannel(i); 474 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 475 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 476 } 477 if (NOps != NumVectorElts) { 478 // Fill in the missing undef elements if this was a scalar_to_vector. 479 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 480 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 481 DL, EltVT); 482 for (unsigned i = NOps; i < NumVectorElts; ++i) { 483 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 484 : R600RegisterInfo::getSubRegFromChannel(i); 485 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 486 RegSeqArgs[1 + (2 * i) + 1] = 487 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 488 } 489 } 490 491 if (!IsRegSeq) 492 SelectCode(N); 493 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 494 } 495 496 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 497 unsigned int Opc = N->getOpcode(); 498 if (N->isMachineOpcode()) { 499 N->setNodeId(-1); 500 return; // Already selected. 501 } 502 503 // isa<MemSDNode> almost works but is slightly too permissive for some DS 504 // intrinsics. 505 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N)) { 506 N = glueCopyToM0LDSInit(N); 507 SelectCode(N); 508 return; 509 } 510 511 switch (Opc) { 512 default: 513 break; 514 // We are selecting i64 ADD here instead of custom lower it during 515 // DAG legalization, so we can fold some i64 ADDs used for address 516 // calculation into the LOAD and STORE instructions. 517 case ISD::ADDC: 518 case ISD::ADDE: 519 case ISD::SUBC: 520 case ISD::SUBE: { 521 if (N->getValueType(0) != MVT::i64) 522 break; 523 524 SelectADD_SUB_I64(N); 525 return; 526 } 527 case ISD::UADDO_CARRY: 528 case ISD::USUBO_CARRY: 529 if (N->getValueType(0) != MVT::i32) 530 break; 531 532 SelectAddcSubb(N); 533 return; 534 case ISD::UADDO: 535 case ISD::USUBO: { 536 SelectUADDO_USUBO(N); 537 return; 538 } 539 case AMDGPUISD::FMUL_W_CHAIN: { 540 SelectFMUL_W_CHAIN(N); 541 return; 542 } 543 case AMDGPUISD::FMA_W_CHAIN: { 544 SelectFMA_W_CHAIN(N); 545 return; 546 } 547 548 case ISD::SCALAR_TO_VECTOR: 549 case ISD::BUILD_VECTOR: { 550 EVT VT = N->getValueType(0); 551 unsigned NumVectorElts = VT.getVectorNumElements(); 552 if (VT.getScalarSizeInBits() == 16) { 553 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 554 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 555 ReplaceNode(N, Packed); 556 return; 557 } 558 } 559 560 break; 561 } 562 563 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 564 unsigned RegClassID = 565 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 566 SelectBuildVector(N, RegClassID); 567 return; 568 } 569 case ISD::BUILD_PAIR: { 570 SDValue RC, SubReg0, SubReg1; 571 SDLoc DL(N); 572 if (N->getValueType(0) == MVT::i128) { 573 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 574 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 575 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 576 } else if (N->getValueType(0) == MVT::i64) { 577 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 578 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 579 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 580 } else { 581 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 582 } 583 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 584 N->getOperand(1), SubReg1 }; 585 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 586 N->getValueType(0), Ops)); 587 return; 588 } 589 590 case ISD::Constant: 591 case ISD::ConstantFP: { 592 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 593 break; 594 595 uint64_t Imm; 596 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) { 597 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 598 if (AMDGPU::isValid32BitLiteral(Imm, true)) 599 break; 600 } else { 601 ConstantSDNode *C = cast<ConstantSDNode>(N); 602 Imm = C->getZExtValue(); 603 if (AMDGPU::isValid32BitLiteral(Imm, false)) 604 break; 605 } 606 607 SDLoc DL(N); 608 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 609 return; 610 } 611 case AMDGPUISD::BFE_I32: 612 case AMDGPUISD::BFE_U32: { 613 // There is a scalar version available, but unlike the vector version which 614 // has a separate operand for the offset and width, the scalar version packs 615 // the width and offset into a single operand. Try to move to the scalar 616 // version if the offsets are constant, so that we can try to keep extended 617 // loads of kernel arguments in SGPRs. 618 619 // TODO: Technically we could try to pattern match scalar bitshifts of 620 // dynamic values, but it's probably not useful. 621 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 622 if (!Offset) 623 break; 624 625 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 626 if (!Width) 627 break; 628 629 bool Signed = Opc == AMDGPUISD::BFE_I32; 630 631 uint32_t OffsetVal = Offset->getZExtValue(); 632 uint32_t WidthVal = Width->getZExtValue(); 633 634 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, 635 WidthVal)); 636 return; 637 } 638 case AMDGPUISD::DIV_SCALE: { 639 SelectDIV_SCALE(N); 640 return; 641 } 642 case AMDGPUISD::MAD_I64_I32: 643 case AMDGPUISD::MAD_U64_U32: { 644 SelectMAD_64_32(N); 645 return; 646 } 647 case ISD::SMUL_LOHI: 648 case ISD::UMUL_LOHI: 649 return SelectMUL_LOHI(N); 650 case ISD::CopyToReg: { 651 const SITargetLowering& Lowering = 652 *static_cast<const SITargetLowering*>(getTargetLowering()); 653 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 654 break; 655 } 656 case ISD::AND: 657 case ISD::SRL: 658 case ISD::SRA: 659 case ISD::SIGN_EXTEND_INREG: 660 if (N->getValueType(0) != MVT::i32) 661 break; 662 663 SelectS_BFE(N); 664 return; 665 case ISD::BRCOND: 666 SelectBRCOND(N); 667 return; 668 case ISD::FP_EXTEND: 669 SelectFP_EXTEND(N); 670 return; 671 case AMDGPUISD::CVT_PKRTZ_F16_F32: 672 case AMDGPUISD::CVT_PKNORM_I16_F32: 673 case AMDGPUISD::CVT_PKNORM_U16_F32: 674 case AMDGPUISD::CVT_PK_U16_U32: 675 case AMDGPUISD::CVT_PK_I16_I32: { 676 // Hack around using a legal type if f16 is illegal. 677 if (N->getValueType(0) == MVT::i32) { 678 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 679 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 680 { N->getOperand(0), N->getOperand(1) }); 681 SelectCode(N); 682 return; 683 } 684 685 break; 686 } 687 case ISD::INTRINSIC_W_CHAIN: { 688 SelectINTRINSIC_W_CHAIN(N); 689 return; 690 } 691 case ISD::INTRINSIC_WO_CHAIN: { 692 SelectINTRINSIC_WO_CHAIN(N); 693 return; 694 } 695 case ISD::INTRINSIC_VOID: { 696 SelectINTRINSIC_VOID(N); 697 return; 698 } 699 case AMDGPUISD::WAVE_ADDRESS: { 700 SelectWAVE_ADDRESS(N); 701 return; 702 } 703 case ISD::STACKRESTORE: { 704 SelectSTACKRESTORE(N); 705 return; 706 } 707 } 708 709 SelectCode(N); 710 } 711 712 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 713 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 714 const Instruction *Term = BB->getTerminator(); 715 return Term->getMetadata("amdgpu.uniform") || 716 Term->getMetadata("structurizecfg.uniform"); 717 } 718 719 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, 720 unsigned ShAmtBits) const { 721 assert(N->getOpcode() == ISD::AND); 722 723 const APInt &RHS = N->getConstantOperandAPInt(1); 724 if (RHS.countr_one() >= ShAmtBits) 725 return true; 726 727 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; 728 return (LHSKnownZeros | RHS).countr_one() >= ShAmtBits; 729 } 730 731 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 732 SDValue &N0, SDValue &N1) { 733 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 734 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 735 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 736 // (i64 (bitcast (v2i32 (build_vector 737 // (or (extract_vector_elt V, 0), OFFSET), 738 // (extract_vector_elt V, 1))))) 739 SDValue Lo = Addr.getOperand(0).getOperand(0); 740 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 741 SDValue BaseLo = Lo.getOperand(0); 742 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 743 // Check that split base (Lo and Hi) are extracted from the same one. 744 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 745 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 746 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 747 // Lo is statically extracted from index 0. 748 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 749 BaseLo.getConstantOperandVal(1) == 0 && 750 // Hi is statically extracted from index 0. 751 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 752 BaseHi.getConstantOperandVal(1) == 1) { 753 N0 = BaseLo.getOperand(0).getOperand(0); 754 N1 = Lo.getOperand(1); 755 return true; 756 } 757 } 758 } 759 return false; 760 } 761 762 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 763 SDValue &RHS) const { 764 if (CurDAG->isBaseWithConstantOffset(Addr)) { 765 LHS = Addr.getOperand(0); 766 RHS = Addr.getOperand(1); 767 return true; 768 } 769 770 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 771 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 772 return true; 773 } 774 775 return false; 776 } 777 778 StringRef AMDGPUDAGToDAGISelLegacy::getPassName() const { 779 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 780 } 781 782 AMDGPUISelDAGToDAGPass::AMDGPUISelDAGToDAGPass(TargetMachine &TM) 783 : SelectionDAGISelPass( 784 std::make_unique<AMDGPUDAGToDAGISel>(TM, TM.getOptLevel())) {} 785 786 PreservedAnalyses 787 AMDGPUISelDAGToDAGPass::run(MachineFunction &MF, 788 MachineFunctionAnalysisManager &MFAM) { 789 #ifdef EXPENSIVE_CHECKS 790 auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(MF) 791 .getManager(); 792 auto &F = MF.getFunction(); 793 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 794 LoopInfo &LI = FAM.getResult<LoopAnalysis>(F); 795 for (auto &L : LI.getLoopsInPreorder()) 796 assert(L->isLCSSAForm(DT) && "Loop is not in LCSSA form!"); 797 #endif 798 return SelectionDAGISelPass::run(MF, MFAM); 799 } 800 801 //===----------------------------------------------------------------------===// 802 // Complex Patterns 803 //===----------------------------------------------------------------------===// 804 805 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 806 SDValue &Offset) { 807 return false; 808 } 809 810 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 811 SDValue &Offset) { 812 ConstantSDNode *C; 813 SDLoc DL(Addr); 814 815 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 816 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 817 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 818 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 819 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 820 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 821 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 822 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 823 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 824 Base = Addr.getOperand(0); 825 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 826 } else { 827 Base = Addr; 828 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 829 } 830 831 return true; 832 } 833 834 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 835 const SDLoc &DL) const { 836 SDNode *Mov = CurDAG->getMachineNode( 837 AMDGPU::S_MOV_B32, DL, MVT::i32, 838 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 839 return SDValue(Mov, 0); 840 } 841 842 // FIXME: Should only handle uaddo_carry/usubo_carry 843 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 844 SDLoc DL(N); 845 SDValue LHS = N->getOperand(0); 846 SDValue RHS = N->getOperand(1); 847 848 unsigned Opcode = N->getOpcode(); 849 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 850 bool ProduceCarry = 851 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 852 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 853 854 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 855 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 856 857 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 858 DL, MVT::i32, LHS, Sub0); 859 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 860 DL, MVT::i32, LHS, Sub1); 861 862 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 863 DL, MVT::i32, RHS, Sub0); 864 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 865 DL, MVT::i32, RHS, Sub1); 866 867 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 868 869 static const unsigned OpcMap[2][2][2] = { 870 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 871 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 872 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 873 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 874 875 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 876 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 877 878 SDNode *AddLo; 879 if (!ConsumeCarry) { 880 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 881 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 882 } else { 883 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 884 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 885 } 886 SDValue AddHiArgs[] = { 887 SDValue(Hi0, 0), 888 SDValue(Hi1, 0), 889 SDValue(AddLo, 1) 890 }; 891 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 892 893 SDValue RegSequenceArgs[] = { 894 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 895 SDValue(AddLo,0), 896 Sub0, 897 SDValue(AddHi,0), 898 Sub1, 899 }; 900 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 901 MVT::i64, RegSequenceArgs); 902 903 if (ProduceCarry) { 904 // Replace the carry-use 905 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 906 } 907 908 // Replace the remaining uses. 909 ReplaceNode(N, RegSequence); 910 } 911 912 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 913 SDLoc DL(N); 914 SDValue LHS = N->getOperand(0); 915 SDValue RHS = N->getOperand(1); 916 SDValue CI = N->getOperand(2); 917 918 if (N->isDivergent()) { 919 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::V_ADDC_U32_e64 920 : AMDGPU::V_SUBB_U32_e64; 921 CurDAG->SelectNodeTo( 922 N, Opc, N->getVTList(), 923 {LHS, RHS, CI, 924 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 925 } else { 926 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::S_ADD_CO_PSEUDO 927 : AMDGPU::S_SUB_CO_PSEUDO; 928 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 929 } 930 } 931 932 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 933 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 934 // carry out despite the _i32 name. These were renamed in VI to _U32. 935 // FIXME: We should probably rename the opcodes here. 936 bool IsAdd = N->getOpcode() == ISD::UADDO; 937 bool IsVALU = N->isDivergent(); 938 939 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 940 ++UI) 941 if (UI.getUse().getResNo() == 1) { 942 if ((IsAdd && (UI->getOpcode() != ISD::UADDO_CARRY)) || 943 (!IsAdd && (UI->getOpcode() != ISD::USUBO_CARRY))) { 944 IsVALU = true; 945 break; 946 } 947 } 948 949 if (IsVALU) { 950 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 951 952 CurDAG->SelectNodeTo( 953 N, Opc, N->getVTList(), 954 {N->getOperand(0), N->getOperand(1), 955 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 956 } else { 957 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 958 : AMDGPU::S_USUBO_PSEUDO; 959 960 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 961 {N->getOperand(0), N->getOperand(1)}); 962 } 963 } 964 965 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 966 SDLoc SL(N); 967 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 968 SDValue Ops[10]; 969 970 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 971 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 972 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 973 Ops[8] = N->getOperand(0); 974 Ops[9] = N->getOperand(4); 975 976 // If there are no source modifiers, prefer fmac over fma because it can use 977 // the smaller VOP2 encoding. 978 bool UseFMAC = Subtarget->hasDLInsts() && 979 cast<ConstantSDNode>(Ops[0])->isZero() && 980 cast<ConstantSDNode>(Ops[2])->isZero() && 981 cast<ConstantSDNode>(Ops[4])->isZero(); 982 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 983 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 984 } 985 986 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 987 SDLoc SL(N); 988 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 989 SDValue Ops[8]; 990 991 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 992 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 993 Ops[6] = N->getOperand(0); 994 Ops[7] = N->getOperand(3); 995 996 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 997 } 998 999 // We need to handle this here because tablegen doesn't support matching 1000 // instructions with multiple outputs. 1001 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1002 SDLoc SL(N); 1003 EVT VT = N->getValueType(0); 1004 1005 assert(VT == MVT::f32 || VT == MVT::f64); 1006 1007 unsigned Opc 1008 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 1009 1010 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 1011 // omod 1012 SDValue Ops[8]; 1013 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1014 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 1015 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1016 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1017 } 1018 1019 // We need to handle this here because tablegen doesn't support matching 1020 // instructions with multiple outputs. 1021 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1022 SDLoc SL(N); 1023 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1024 unsigned Opc; 1025 if (Subtarget->hasMADIntraFwdBug()) 1026 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1027 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1028 else 1029 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1030 1031 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1032 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1033 Clamp }; 1034 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1035 } 1036 1037 // We need to handle this here because tablegen doesn't support matching 1038 // instructions with multiple outputs. 1039 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { 1040 SDLoc SL(N); 1041 bool Signed = N->getOpcode() == ISD::SMUL_LOHI; 1042 unsigned Opc; 1043 if (Subtarget->hasMADIntraFwdBug()) 1044 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1045 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1046 else 1047 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1048 1049 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); 1050 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1051 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; 1052 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); 1053 if (!SDValue(N, 0).use_empty()) { 1054 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); 1055 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1056 MVT::i32, SDValue(Mad, 0), Sub0); 1057 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); 1058 } 1059 if (!SDValue(N, 1).use_empty()) { 1060 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); 1061 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1062 MVT::i32, SDValue(Mad, 0), Sub1); 1063 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); 1064 } 1065 CurDAG->RemoveDeadNode(N); 1066 } 1067 1068 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1069 if (!isUInt<16>(Offset)) 1070 return false; 1071 1072 if (!Base || Subtarget->hasUsableDSOffset() || 1073 Subtarget->unsafeDSOffsetFoldingEnabled()) 1074 return true; 1075 1076 // On Southern Islands instruction with a negative base value and an offset 1077 // don't seem to work. 1078 return CurDAG->SignBitIsZero(Base); 1079 } 1080 1081 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1082 SDValue &Offset) const { 1083 SDLoc DL(Addr); 1084 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1085 SDValue N0 = Addr.getOperand(0); 1086 SDValue N1 = Addr.getOperand(1); 1087 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1088 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1089 // (add n0, c0) 1090 Base = N0; 1091 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1092 return true; 1093 } 1094 } else if (Addr.getOpcode() == ISD::SUB) { 1095 // sub C, x -> add (sub 0, x), C 1096 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1097 int64_t ByteOffset = C->getSExtValue(); 1098 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1099 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1100 1101 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1102 // the known bits in isDSOffsetLegal. We need to emit the selected node 1103 // here, so this is thrown away. 1104 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1105 Zero, Addr.getOperand(1)); 1106 1107 if (isDSOffsetLegal(Sub, ByteOffset)) { 1108 SmallVector<SDValue, 3> Opnds; 1109 Opnds.push_back(Zero); 1110 Opnds.push_back(Addr.getOperand(1)); 1111 1112 // FIXME: Select to VOP3 version for with-carry. 1113 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1114 if (Subtarget->hasAddNoCarry()) { 1115 SubOp = AMDGPU::V_SUB_U32_e64; 1116 Opnds.push_back( 1117 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1118 } 1119 1120 MachineSDNode *MachineSub = 1121 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1122 1123 Base = SDValue(MachineSub, 0); 1124 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1125 return true; 1126 } 1127 } 1128 } 1129 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1130 // If we have a constant address, prefer to put the constant into the 1131 // offset. This can save moves to load the constant address since multiple 1132 // operations can share the zero base address register, and enables merging 1133 // into read2 / write2 instructions. 1134 1135 SDLoc DL(Addr); 1136 1137 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1138 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1139 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1140 DL, MVT::i32, Zero); 1141 Base = SDValue(MovZero, 0); 1142 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1143 return true; 1144 } 1145 } 1146 1147 // default case 1148 Base = Addr; 1149 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1150 return true; 1151 } 1152 1153 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1154 unsigned Offset1, 1155 unsigned Size) const { 1156 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1157 return false; 1158 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1159 return false; 1160 1161 if (!Base || Subtarget->hasUsableDSOffset() || 1162 Subtarget->unsafeDSOffsetFoldingEnabled()) 1163 return true; 1164 1165 // On Southern Islands instruction with a negative base value and an offset 1166 // don't seem to work. 1167 return CurDAG->SignBitIsZero(Base); 1168 } 1169 1170 // Return whether the operation has NoUnsignedWrap property. 1171 static bool isNoUnsignedWrap(SDValue Addr) { 1172 return (Addr.getOpcode() == ISD::ADD && 1173 Addr->getFlags().hasNoUnsignedWrap()) || 1174 Addr->getOpcode() == ISD::OR; 1175 } 1176 1177 // Check that the base address of flat scratch load/store in the form of `base + 1178 // offset` is legal to be put in SGPR/VGPR (i.e. unsigned per hardware 1179 // requirement). We always treat the first operand as the base address here. 1180 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegal(SDValue Addr) const { 1181 if (isNoUnsignedWrap(Addr)) 1182 return true; 1183 1184 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative 1185 // values. 1186 if (Subtarget->hasSignedScratchOffsets()) 1187 return true; 1188 1189 auto LHS = Addr.getOperand(0); 1190 auto RHS = Addr.getOperand(1); 1191 1192 // If the immediate offset is negative and within certain range, the base 1193 // address cannot also be negative. If the base is also negative, the sum 1194 // would be either negative or much larger than the valid range of scratch 1195 // memory a thread can access. 1196 ConstantSDNode *ImmOp = nullptr; 1197 if (Addr.getOpcode() == ISD::ADD && (ImmOp = dyn_cast<ConstantSDNode>(RHS))) { 1198 if (ImmOp->getSExtValue() < 0 && ImmOp->getSExtValue() > -0x40000000) 1199 return true; 1200 } 1201 1202 return CurDAG->SignBitIsZero(LHS); 1203 } 1204 1205 // Check address value in SGPR/VGPR are legal for flat scratch in the form 1206 // of: SGPR + VGPR. 1207 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSV(SDValue Addr) const { 1208 if (isNoUnsignedWrap(Addr)) 1209 return true; 1210 1211 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative 1212 // values. 1213 if (Subtarget->hasSignedScratchOffsets()) 1214 return true; 1215 1216 auto LHS = Addr.getOperand(0); 1217 auto RHS = Addr.getOperand(1); 1218 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS); 1219 } 1220 1221 // Check address value in SGPR/VGPR are legal for flat scratch in the form 1222 // of: SGPR + VGPR + Imm. 1223 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSVImm(SDValue Addr) const { 1224 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative 1225 // values. 1226 if (AMDGPU::isGFX12Plus(*Subtarget)) 1227 return true; 1228 1229 auto Base = Addr.getOperand(0); 1230 auto *RHSImm = cast<ConstantSDNode>(Addr.getOperand(1)); 1231 // If the immediate offset is negative and within certain range, the base 1232 // address cannot also be negative. If the base is also negative, the sum 1233 // would be either negative or much larger than the valid range of scratch 1234 // memory a thread can access. 1235 if (isNoUnsignedWrap(Base) && 1236 (isNoUnsignedWrap(Addr) || 1237 (RHSImm->getSExtValue() < 0 && RHSImm->getSExtValue() > -0x40000000))) 1238 return true; 1239 1240 auto LHS = Base.getOperand(0); 1241 auto RHS = Base.getOperand(1); 1242 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS); 1243 } 1244 1245 // TODO: If offset is too big, put low 16-bit into offset. 1246 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1247 SDValue &Offset0, 1248 SDValue &Offset1) const { 1249 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1250 } 1251 1252 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1253 SDValue &Offset0, 1254 SDValue &Offset1) const { 1255 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1256 } 1257 1258 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1259 SDValue &Offset0, SDValue &Offset1, 1260 unsigned Size) const { 1261 SDLoc DL(Addr); 1262 1263 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1264 SDValue N0 = Addr.getOperand(0); 1265 SDValue N1 = Addr.getOperand(1); 1266 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1267 unsigned OffsetValue0 = C1->getZExtValue(); 1268 unsigned OffsetValue1 = OffsetValue0 + Size; 1269 1270 // (add n0, c0) 1271 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1272 Base = N0; 1273 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1274 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1275 return true; 1276 } 1277 } else if (Addr.getOpcode() == ISD::SUB) { 1278 // sub C, x -> add (sub 0, x), C 1279 if (const ConstantSDNode *C = 1280 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1281 unsigned OffsetValue0 = C->getZExtValue(); 1282 unsigned OffsetValue1 = OffsetValue0 + Size; 1283 1284 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1285 SDLoc DL(Addr); 1286 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1287 1288 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1289 // the known bits in isDSOffsetLegal. We need to emit the selected node 1290 // here, so this is thrown away. 1291 SDValue Sub = 1292 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1293 1294 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1295 SmallVector<SDValue, 3> Opnds; 1296 Opnds.push_back(Zero); 1297 Opnds.push_back(Addr.getOperand(1)); 1298 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1299 if (Subtarget->hasAddNoCarry()) { 1300 SubOp = AMDGPU::V_SUB_U32_e64; 1301 Opnds.push_back( 1302 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1303 } 1304 1305 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1306 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1307 1308 Base = SDValue(MachineSub, 0); 1309 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1310 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1311 return true; 1312 } 1313 } 1314 } 1315 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1316 unsigned OffsetValue0 = CAddr->getZExtValue(); 1317 unsigned OffsetValue1 = OffsetValue0 + Size; 1318 1319 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1320 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1321 MachineSDNode *MovZero = 1322 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1323 Base = SDValue(MovZero, 0); 1324 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1325 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1326 return true; 1327 } 1328 } 1329 1330 // default case 1331 1332 Base = Addr; 1333 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1334 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1335 return true; 1336 } 1337 1338 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1339 SDValue &SOffset, SDValue &Offset, 1340 SDValue &Offen, SDValue &Idxen, 1341 SDValue &Addr64) const { 1342 // Subtarget prefers to use flat instruction 1343 // FIXME: This should be a pattern predicate and not reach here 1344 if (Subtarget->useFlatForGlobal()) 1345 return false; 1346 1347 SDLoc DL(Addr); 1348 1349 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1350 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1351 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1352 SOffset = Subtarget->hasRestrictedSOffset() 1353 ? CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32) 1354 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1355 1356 ConstantSDNode *C1 = nullptr; 1357 SDValue N0 = Addr; 1358 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1359 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1360 if (isUInt<32>(C1->getZExtValue())) 1361 N0 = Addr.getOperand(0); 1362 else 1363 C1 = nullptr; 1364 } 1365 1366 if (N0.getOpcode() == ISD::ADD) { 1367 // (add N2, N3) -> addr64, or 1368 // (add (add N2, N3), C1) -> addr64 1369 SDValue N2 = N0.getOperand(0); 1370 SDValue N3 = N0.getOperand(1); 1371 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1372 1373 if (N2->isDivergent()) { 1374 if (N3->isDivergent()) { 1375 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1376 // addr64, and construct the resource from a 0 address. 1377 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1378 VAddr = N0; 1379 } else { 1380 // N2 is divergent, N3 is not. 1381 Ptr = N3; 1382 VAddr = N2; 1383 } 1384 } else { 1385 // N2 is not divergent. 1386 Ptr = N2; 1387 VAddr = N3; 1388 } 1389 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1390 } else if (N0->isDivergent()) { 1391 // N0 is divergent. Use it as the addr64, and construct the resource from a 1392 // 0 address. 1393 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1394 VAddr = N0; 1395 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1396 } else { 1397 // N0 -> offset, or 1398 // (N0 + C1) -> offset 1399 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1400 Ptr = N0; 1401 } 1402 1403 if (!C1) { 1404 // No offset. 1405 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1406 return true; 1407 } 1408 1409 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1410 if (TII->isLegalMUBUFImmOffset(C1->getZExtValue())) { 1411 // Legal offset for instruction. 1412 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1413 return true; 1414 } 1415 1416 // Illegal offset, store it in soffset. 1417 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1418 SOffset = 1419 SDValue(CurDAG->getMachineNode( 1420 AMDGPU::S_MOV_B32, DL, MVT::i32, 1421 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1422 0); 1423 return true; 1424 } 1425 1426 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1427 SDValue &VAddr, SDValue &SOffset, 1428 SDValue &Offset) const { 1429 SDValue Ptr, Offen, Idxen, Addr64; 1430 1431 // addr64 bit was removed for volcanic islands. 1432 // FIXME: This should be a pattern predicate and not reach here 1433 if (!Subtarget->hasAddr64()) 1434 return false; 1435 1436 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1437 return false; 1438 1439 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1440 if (C->getSExtValue()) { 1441 SDLoc DL(Addr); 1442 1443 const SITargetLowering& Lowering = 1444 *static_cast<const SITargetLowering*>(getTargetLowering()); 1445 1446 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1447 return true; 1448 } 1449 1450 return false; 1451 } 1452 1453 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1454 SDLoc DL(N); 1455 1456 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1457 SDValue TFI = 1458 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1459 1460 // We rebase the base address into an absolute stack address and hence 1461 // use constant 0 for soffset. This value must be retained until 1462 // frame elimination and eliminateFrameIndex will choose the appropriate 1463 // frame register if need be. 1464 return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1465 } 1466 1467 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1468 SDValue Addr, SDValue &Rsrc, 1469 SDValue &VAddr, SDValue &SOffset, 1470 SDValue &ImmOffset) const { 1471 1472 SDLoc DL(Addr); 1473 MachineFunction &MF = CurDAG->getMachineFunction(); 1474 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1475 1476 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1477 1478 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1479 int64_t Imm = CAddr->getSExtValue(); 1480 const int64_t NullPtr = 1481 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1482 // Don't fold null pointer. 1483 if (Imm != NullPtr) { 1484 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget); 1485 SDValue HighBits = 1486 CurDAG->getTargetConstant(Imm & ~MaxOffset, DL, MVT::i32); 1487 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1488 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1489 VAddr = SDValue(MovHighBits, 0); 1490 1491 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1492 ImmOffset = CurDAG->getTargetConstant(Imm & MaxOffset, DL, MVT::i32); 1493 return true; 1494 } 1495 } 1496 1497 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1498 // (add n0, c1) 1499 1500 SDValue N0 = Addr.getOperand(0); 1501 uint64_t C1 = Addr.getConstantOperandVal(1); 1502 1503 // Offsets in vaddr must be positive if range checking is enabled. 1504 // 1505 // The total computation of vaddr + soffset + offset must not overflow. If 1506 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1507 // overflowing. 1508 // 1509 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1510 // always perform a range check. If a negative vaddr base index was used, 1511 // this would fail the range check. The overall address computation would 1512 // compute a valid address, but this doesn't happen due to the range 1513 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1514 // 1515 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1516 // MUBUF vaddr, but not on older subtargets which can only do this if the 1517 // sign bit is known 0. 1518 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1519 if (TII->isLegalMUBUFImmOffset(C1) && 1520 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1521 CurDAG->SignBitIsZero(N0))) { 1522 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1523 ImmOffset = CurDAG->getTargetConstant(C1, DL, MVT::i32); 1524 return true; 1525 } 1526 } 1527 1528 // (node) 1529 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1530 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1531 return true; 1532 } 1533 1534 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1535 if (Val.getOpcode() != ISD::CopyFromReg) 1536 return false; 1537 auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg(); 1538 if (!Reg.isPhysical()) 1539 return false; 1540 auto RC = TRI.getPhysRegBaseClass(Reg); 1541 return RC && TRI.isSGPRClass(RC); 1542 } 1543 1544 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1545 SDValue Addr, 1546 SDValue &SRsrc, 1547 SDValue &SOffset, 1548 SDValue &Offset) const { 1549 const SIRegisterInfo *TRI = 1550 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1551 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1552 MachineFunction &MF = CurDAG->getMachineFunction(); 1553 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1554 SDLoc DL(Addr); 1555 1556 // CopyFromReg <sgpr> 1557 if (IsCopyFromSGPR(*TRI, Addr)) { 1558 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1559 SOffset = Addr; 1560 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1561 return true; 1562 } 1563 1564 ConstantSDNode *CAddr; 1565 if (Addr.getOpcode() == ISD::ADD) { 1566 // Add (CopyFromReg <sgpr>) <constant> 1567 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1568 if (!CAddr || !TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1569 return false; 1570 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1571 return false; 1572 1573 SOffset = Addr.getOperand(0); 1574 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1575 TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1576 // <constant> 1577 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1578 } else { 1579 return false; 1580 } 1581 1582 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1583 1584 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i32); 1585 return true; 1586 } 1587 1588 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1589 SDValue &SOffset, SDValue &Offset 1590 ) const { 1591 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1592 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1593 1594 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1595 return false; 1596 1597 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1598 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1599 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1600 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1601 APInt::getAllOnes(32).getZExtValue(); // Size 1602 SDLoc DL(Addr); 1603 1604 const SITargetLowering& Lowering = 1605 *static_cast<const SITargetLowering*>(getTargetLowering()); 1606 1607 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1608 return true; 1609 } 1610 return false; 1611 } 1612 1613 bool AMDGPUDAGToDAGISel::SelectBUFSOffset(SDValue ByteOffsetNode, 1614 SDValue &SOffset) const { 1615 if (Subtarget->hasRestrictedSOffset() && isNullConstant(ByteOffsetNode)) { 1616 SOffset = CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32); 1617 return true; 1618 } 1619 1620 SOffset = ByteOffsetNode; 1621 return true; 1622 } 1623 1624 // Find a load or store from corresponding pattern root. 1625 // Roots may be build_vector, bitconvert or their combinations. 1626 static MemSDNode* findMemSDNode(SDNode *N) { 1627 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1628 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1629 return MN; 1630 assert(isa<BuildVectorSDNode>(N)); 1631 for (SDValue V : N->op_values()) 1632 if (MemSDNode *MN = 1633 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1634 return MN; 1635 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1636 } 1637 1638 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1639 SDValue &VAddr, SDValue &Offset, 1640 uint64_t FlatVariant) const { 1641 int64_t OffsetVal = 0; 1642 1643 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1644 1645 bool CanHaveFlatSegmentOffsetBug = 1646 Subtarget->hasFlatSegmentOffsetBug() && 1647 FlatVariant == SIInstrFlags::FLAT && 1648 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1649 1650 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1651 SDValue N0, N1; 1652 if (isBaseWithConstantOffset64(Addr, N0, N1) && 1653 (FlatVariant != SIInstrFlags::FlatScratch || 1654 isFlatScratchBaseLegal(Addr))) { 1655 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1656 1657 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1658 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1659 Addr = N0; 1660 OffsetVal = COffsetVal; 1661 } else { 1662 // If the offset doesn't fit, put the low bits into the offset field and 1663 // add the rest. 1664 // 1665 // For a FLAT instruction the hardware decides whether to access 1666 // global/scratch/shared memory based on the high bits of vaddr, 1667 // ignoring the offset field, so we have to ensure that when we add 1668 // remainder to vaddr it still points into the same underlying object. 1669 // The easiest way to do that is to make sure that we split the offset 1670 // into two pieces that are both >= 0 or both <= 0. 1671 1672 SDLoc DL(N); 1673 uint64_t RemainderOffset; 1674 1675 std::tie(OffsetVal, RemainderOffset) = 1676 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1677 1678 SDValue AddOffsetLo = 1679 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1680 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1681 1682 if (Addr.getValueType().getSizeInBits() == 32) { 1683 SmallVector<SDValue, 3> Opnds; 1684 Opnds.push_back(N0); 1685 Opnds.push_back(AddOffsetLo); 1686 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1687 if (Subtarget->hasAddNoCarry()) { 1688 AddOp = AMDGPU::V_ADD_U32_e64; 1689 Opnds.push_back(Clamp); 1690 } 1691 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1692 } else { 1693 // TODO: Should this try to use a scalar add pseudo if the base address 1694 // is uniform and saddr is usable? 1695 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1696 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1697 1698 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1699 DL, MVT::i32, N0, Sub0); 1700 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1701 DL, MVT::i32, N0, Sub1); 1702 1703 SDValue AddOffsetHi = 1704 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1705 1706 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1707 1708 SDNode *Add = 1709 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1710 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1711 1712 SDNode *Addc = CurDAG->getMachineNode( 1713 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1714 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1715 1716 SDValue RegSequenceArgs[] = { 1717 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1718 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1719 1720 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1721 MVT::i64, RegSequenceArgs), 1722 0); 1723 } 1724 } 1725 } 1726 } 1727 1728 VAddr = Addr; 1729 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 1730 return true; 1731 } 1732 1733 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1734 SDValue &VAddr, 1735 SDValue &Offset) const { 1736 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1737 } 1738 1739 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1740 SDValue &VAddr, 1741 SDValue &Offset) const { 1742 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1743 } 1744 1745 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1746 SDValue &VAddr, 1747 SDValue &Offset) const { 1748 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1749 SIInstrFlags::FlatScratch); 1750 } 1751 1752 // If this matches zero_extend i32:x, return x 1753 static SDValue matchZExtFromI32(SDValue Op) { 1754 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1755 return SDValue(); 1756 1757 SDValue ExtSrc = Op.getOperand(0); 1758 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1759 } 1760 1761 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1762 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1763 SDValue Addr, 1764 SDValue &SAddr, 1765 SDValue &VOffset, 1766 SDValue &Offset) const { 1767 int64_t ImmOffset = 0; 1768 1769 // Match the immediate offset first, which canonically is moved as low as 1770 // possible. 1771 1772 SDValue LHS, RHS; 1773 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1774 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1775 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1776 1777 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1778 SIInstrFlags::FlatGlobal)) { 1779 Addr = LHS; 1780 ImmOffset = COffsetVal; 1781 } else if (!LHS->isDivergent()) { 1782 if (COffsetVal > 0) { 1783 SDLoc SL(N); 1784 // saddr + large_offset -> saddr + 1785 // (voffset = large_offset & ~MaxOffset) + 1786 // (large_offset & MaxOffset); 1787 int64_t SplitImmOffset, RemainderOffset; 1788 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1789 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1790 1791 if (isUInt<32>(RemainderOffset)) { 1792 SDNode *VMov = CurDAG->getMachineNode( 1793 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1794 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1795 VOffset = SDValue(VMov, 0); 1796 SAddr = LHS; 1797 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i32); 1798 return true; 1799 } 1800 } 1801 1802 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1803 // is 1 we would need to perform 1 or 2 extra moves for each half of 1804 // the constant and it is better to do a scalar add and then issue a 1805 // single VALU instruction to materialize zero. Otherwise it is less 1806 // instructions to perform VALU adds with immediates or inline literals. 1807 unsigned NumLiterals = 1808 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1809 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1810 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1811 return false; 1812 } 1813 } 1814 1815 // Match the variable offset. 1816 if (Addr.getOpcode() == ISD::ADD) { 1817 LHS = Addr.getOperand(0); 1818 RHS = Addr.getOperand(1); 1819 1820 if (!LHS->isDivergent()) { 1821 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1822 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1823 SAddr = LHS; 1824 VOffset = ZextRHS; 1825 } 1826 } 1827 1828 if (!SAddr && !RHS->isDivergent()) { 1829 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1830 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1831 SAddr = RHS; 1832 VOffset = ZextLHS; 1833 } 1834 } 1835 1836 if (SAddr) { 1837 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 1838 return true; 1839 } 1840 } 1841 1842 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1843 isa<ConstantSDNode>(Addr)) 1844 return false; 1845 1846 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1847 // moves required to copy a 64-bit SGPR to VGPR. 1848 SAddr = Addr; 1849 SDNode *VMov = 1850 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1851 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1852 VOffset = SDValue(VMov, 0); 1853 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 1854 return true; 1855 } 1856 1857 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1858 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1859 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1860 } else if (SAddr.getOpcode() == ISD::ADD && 1861 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1862 // Materialize this into a scalar move for scalar address to avoid 1863 // readfirstlane. 1864 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1865 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1866 FI->getValueType(0)); 1867 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1868 MVT::i32, TFI, SAddr.getOperand(1)), 1869 0); 1870 } 1871 1872 return SAddr; 1873 } 1874 1875 // Match (32-bit SGPR base) + sext(imm offset) 1876 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1877 SDValue &SAddr, 1878 SDValue &Offset) const { 1879 if (Addr->isDivergent()) 1880 return false; 1881 1882 SDLoc DL(Addr); 1883 1884 int64_t COffsetVal = 0; 1885 1886 if (CurDAG->isBaseWithConstantOffset(Addr) && isFlatScratchBaseLegal(Addr)) { 1887 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1888 SAddr = Addr.getOperand(0); 1889 } else { 1890 SAddr = Addr; 1891 } 1892 1893 SAddr = SelectSAddrFI(CurDAG, SAddr); 1894 1895 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1896 1897 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1898 SIInstrFlags::FlatScratch)) { 1899 int64_t SplitImmOffset, RemainderOffset; 1900 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1901 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1902 1903 COffsetVal = SplitImmOffset; 1904 1905 SDValue AddOffset = 1906 SAddr.getOpcode() == ISD::TargetFrameIndex 1907 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1908 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1909 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1910 SAddr, AddOffset), 1911 0); 1912 } 1913 1914 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i32); 1915 1916 return true; 1917 } 1918 1919 // Check whether the flat scratch SVS swizzle bug affects this access. 1920 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( 1921 SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { 1922 if (!Subtarget->hasFlatScratchSVSSwizzleBug()) 1923 return false; 1924 1925 // The bug affects the swizzling of SVS accesses if there is any carry out 1926 // from the two low order bits (i.e. from bit 1 into bit 2) when adding 1927 // voffset to (soffset + inst_offset). 1928 KnownBits VKnown = CurDAG->computeKnownBits(VAddr); 1929 KnownBits SKnown = KnownBits::computeForAddSub( 1930 /*Add=*/true, /*NSW=*/false, /*NUW=*/false, 1931 CurDAG->computeKnownBits(SAddr), 1932 KnownBits::makeConstant(APInt(32, ImmOffset))); 1933 uint64_t VMax = VKnown.getMaxValue().getZExtValue(); 1934 uint64_t SMax = SKnown.getMaxValue().getZExtValue(); 1935 return (VMax & 3) + (SMax & 3) >= 4; 1936 } 1937 1938 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, 1939 SDValue &VAddr, SDValue &SAddr, 1940 SDValue &Offset) const { 1941 int64_t ImmOffset = 0; 1942 1943 SDValue LHS, RHS; 1944 SDValue OrigAddr = Addr; 1945 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1946 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1947 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1948 1949 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1950 Addr = LHS; 1951 ImmOffset = COffsetVal; 1952 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1953 SDLoc SL(N); 1954 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + 1955 // (large_offset & MaxOffset); 1956 int64_t SplitImmOffset, RemainderOffset; 1957 std::tie(SplitImmOffset, RemainderOffset) 1958 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true); 1959 1960 if (isUInt<32>(RemainderOffset)) { 1961 SDNode *VMov = CurDAG->getMachineNode( 1962 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1963 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1964 VAddr = SDValue(VMov, 0); 1965 SAddr = LHS; 1966 if (!isFlatScratchBaseLegal(Addr)) 1967 return false; 1968 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset)) 1969 return false; 1970 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i32); 1971 return true; 1972 } 1973 } 1974 } 1975 1976 if (Addr.getOpcode() != ISD::ADD) 1977 return false; 1978 1979 LHS = Addr.getOperand(0); 1980 RHS = Addr.getOperand(1); 1981 1982 if (!LHS->isDivergent() && RHS->isDivergent()) { 1983 SAddr = LHS; 1984 VAddr = RHS; 1985 } else if (!RHS->isDivergent() && LHS->isDivergent()) { 1986 SAddr = RHS; 1987 VAddr = LHS; 1988 } else { 1989 return false; 1990 } 1991 1992 if (OrigAddr != Addr) { 1993 if (!isFlatScratchBaseLegalSVImm(OrigAddr)) 1994 return false; 1995 } else { 1996 if (!isFlatScratchBaseLegalSV(OrigAddr)) 1997 return false; 1998 } 1999 2000 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) 2001 return false; 2002 SAddr = SelectSAddrFI(CurDAG, SAddr); 2003 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 2004 return true; 2005 } 2006 2007 // For unbuffered smem loads, it is illegal for the Immediate Offset to be 2008 // negative if the resulting (Offset + (M0 or SOffset or zero) is negative. 2009 // Handle the case where the Immediate Offset + SOffset is negative. 2010 bool AMDGPUDAGToDAGISel::isSOffsetLegalWithImmOffset(SDValue *SOffset, 2011 bool Imm32Only, 2012 bool IsBuffer, 2013 int64_t ImmOffset) const { 2014 if (!IsBuffer && !Imm32Only && ImmOffset < 0 && 2015 AMDGPU::hasSMRDSignedImmOffset(*Subtarget)) { 2016 KnownBits SKnown = CurDAG->computeKnownBits(*SOffset); 2017 if (ImmOffset + SKnown.getMinValue().getSExtValue() < 0) 2018 return false; 2019 } 2020 2021 return true; 2022 } 2023 2024 // Match an immediate (if Offset is not null) or an SGPR (if SOffset is 2025 // not null) offset. If Imm32Only is true, match only 32-bit immediate 2026 // offsets available on CI. 2027 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 2028 SDValue *SOffset, SDValue *Offset, 2029 bool Imm32Only, bool IsBuffer, 2030 bool HasSOffset, 2031 int64_t ImmOffset) const { 2032 assert((!SOffset || !Offset) && 2033 "Cannot match both soffset and offset at the same time!"); 2034 2035 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 2036 if (!C) { 2037 if (!SOffset) 2038 return false; 2039 2040 if (ByteOffsetNode.getValueType().isScalarInteger() && 2041 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 2042 *SOffset = ByteOffsetNode; 2043 return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer, 2044 ImmOffset); 2045 } 2046 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 2047 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 2048 *SOffset = ByteOffsetNode.getOperand(0); 2049 return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer, 2050 ImmOffset); 2051 } 2052 } 2053 return false; 2054 } 2055 2056 SDLoc SL(ByteOffsetNode); 2057 2058 // GFX9 and GFX10 have signed byte immediate offsets. The immediate 2059 // offset for S_BUFFER instructions is unsigned. 2060 int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue(); 2061 std::optional<int64_t> EncodedOffset = AMDGPU::getSMRDEncodedOffset( 2062 *Subtarget, ByteOffset, IsBuffer, HasSOffset); 2063 if (EncodedOffset && Offset && !Imm32Only) { 2064 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 2065 return true; 2066 } 2067 2068 // SGPR and literal offsets are unsigned. 2069 if (ByteOffset < 0) 2070 return false; 2071 2072 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 2073 if (EncodedOffset && Offset && Imm32Only) { 2074 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 2075 return true; 2076 } 2077 2078 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 2079 return false; 2080 2081 if (SOffset) { 2082 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 2083 *SOffset = SDValue( 2084 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 2085 return true; 2086 } 2087 2088 return false; 2089 } 2090 2091 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 2092 if (Addr.getValueType() != MVT::i32) 2093 return Addr; 2094 2095 // Zero-extend a 32-bit address. 2096 SDLoc SL(Addr); 2097 2098 const MachineFunction &MF = CurDAG->getMachineFunction(); 2099 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2100 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 2101 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 2102 2103 const SDValue Ops[] = { 2104 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 2105 Addr, 2106 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2107 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 2108 0), 2109 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 2110 }; 2111 2112 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 2113 Ops), 0); 2114 } 2115 2116 // Match a base and an immediate (if Offset is not null) or an SGPR (if 2117 // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is 2118 // true, match only 32-bit immediate offsets available on CI. 2119 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase, 2120 SDValue *SOffset, SDValue *Offset, 2121 bool Imm32Only, bool IsBuffer, 2122 bool HasSOffset, 2123 int64_t ImmOffset) const { 2124 if (SOffset && Offset) { 2125 assert(!Imm32Only && !IsBuffer); 2126 SDValue B; 2127 2128 if (!SelectSMRDBaseOffset(Addr, B, nullptr, Offset, false, false, true)) 2129 return false; 2130 2131 int64_t ImmOff = 0; 2132 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(*Offset)) 2133 ImmOff = C->getSExtValue(); 2134 2135 return SelectSMRDBaseOffset(B, SBase, SOffset, nullptr, false, false, true, 2136 ImmOff); 2137 } 2138 2139 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2140 // wraparound, because s_load instructions perform the addition in 64 bits. 2141 if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD && 2142 !Addr->getFlags().hasNoUnsignedWrap()) 2143 return false; 2144 2145 SDValue N0, N1; 2146 // Extract the base and offset if possible. 2147 if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) { 2148 N0 = Addr.getOperand(0); 2149 N1 = Addr.getOperand(1); 2150 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2151 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2152 } 2153 if (!N0 || !N1) 2154 return false; 2155 2156 if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset, 2157 ImmOffset)) { 2158 SBase = N0; 2159 return true; 2160 } 2161 if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset, 2162 ImmOffset)) { 2163 SBase = N1; 2164 return true; 2165 } 2166 return false; 2167 } 2168 2169 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2170 SDValue *SOffset, SDValue *Offset, 2171 bool Imm32Only) const { 2172 if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) { 2173 SBase = Expand32BitAddress(SBase); 2174 return true; 2175 } 2176 2177 if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) { 2178 SBase = Expand32BitAddress(Addr); 2179 *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2180 return true; 2181 } 2182 2183 return false; 2184 } 2185 2186 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2187 SDValue &Offset) const { 2188 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset); 2189 } 2190 2191 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2192 SDValue &Offset) const { 2193 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2194 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset, 2195 /* Imm32Only */ true); 2196 } 2197 2198 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2199 SDValue &SOffset) const { 2200 return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr); 2201 } 2202 2203 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase, 2204 SDValue &SOffset, 2205 SDValue &Offset) const { 2206 return SelectSMRD(Addr, SBase, &SOffset, &Offset); 2207 } 2208 2209 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const { 2210 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2211 /* Imm32Only */ false, /* IsBuffer */ true); 2212 } 2213 2214 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N, 2215 SDValue &Offset) const { 2216 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2217 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2218 /* Imm32Only */ true, /* IsBuffer */ true); 2219 } 2220 2221 bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset, 2222 SDValue &Offset) const { 2223 // Match the (soffset + offset) pair as a 32-bit register base and 2224 // an immediate offset. 2225 return N.getValueType() == MVT::i32 && 2226 SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr, 2227 &Offset, /* Imm32Only */ false, 2228 /* IsBuffer */ true); 2229 } 2230 2231 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2232 SDValue &Base, 2233 SDValue &Offset) const { 2234 SDLoc DL(Index); 2235 2236 if (CurDAG->isBaseWithConstantOffset(Index)) { 2237 SDValue N0 = Index.getOperand(0); 2238 SDValue N1 = Index.getOperand(1); 2239 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2240 2241 // (add n0, c0) 2242 // Don't peel off the offset (c0) if doing so could possibly lead 2243 // the base (n0) to be negative. 2244 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2245 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2246 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2247 Base = N0; 2248 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2249 return true; 2250 } 2251 } 2252 2253 if (isa<ConstantSDNode>(Index)) 2254 return false; 2255 2256 Base = Index; 2257 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2258 return true; 2259 } 2260 2261 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, 2262 SDValue Val, uint32_t Offset, 2263 uint32_t Width) { 2264 if (Val->isDivergent()) { 2265 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; 2266 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); 2267 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); 2268 2269 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); 2270 } 2271 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2272 // Transformation function, pack the offset and width of a BFE into 2273 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2274 // source, bits [5:0] contain the offset and bits [22:16] the width. 2275 uint32_t PackedVal = Offset | (Width << 16); 2276 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2277 2278 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2279 } 2280 2281 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2282 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2283 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2284 // Predicate: 0 < b <= c < 32 2285 2286 const SDValue &Shl = N->getOperand(0); 2287 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2288 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2289 2290 if (B && C) { 2291 uint32_t BVal = B->getZExtValue(); 2292 uint32_t CVal = C->getZExtValue(); 2293 2294 if (0 < BVal && BVal <= CVal && CVal < 32) { 2295 bool Signed = N->getOpcode() == ISD::SRA; 2296 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2297 32 - CVal)); 2298 return; 2299 } 2300 } 2301 SelectCode(N); 2302 } 2303 2304 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2305 switch (N->getOpcode()) { 2306 case ISD::AND: 2307 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2308 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2309 // Predicate: isMask(mask) 2310 const SDValue &Srl = N->getOperand(0); 2311 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2312 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2313 2314 if (Shift && Mask) { 2315 uint32_t ShiftVal = Shift->getZExtValue(); 2316 uint32_t MaskVal = Mask->getZExtValue(); 2317 2318 if (isMask_32(MaskVal)) { 2319 uint32_t WidthVal = llvm::popcount(MaskVal); 2320 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, 2321 WidthVal)); 2322 return; 2323 } 2324 } 2325 } 2326 break; 2327 case ISD::SRL: 2328 if (N->getOperand(0).getOpcode() == ISD::AND) { 2329 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2330 // Predicate: isMask(mask >> b) 2331 const SDValue &And = N->getOperand(0); 2332 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2333 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2334 2335 if (Shift && Mask) { 2336 uint32_t ShiftVal = Shift->getZExtValue(); 2337 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2338 2339 if (isMask_32(MaskVal)) { 2340 uint32_t WidthVal = llvm::popcount(MaskVal); 2341 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, 2342 WidthVal)); 2343 return; 2344 } 2345 } 2346 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2347 SelectS_BFEFromShifts(N); 2348 return; 2349 } 2350 break; 2351 case ISD::SRA: 2352 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2353 SelectS_BFEFromShifts(N); 2354 return; 2355 } 2356 break; 2357 2358 case ISD::SIGN_EXTEND_INREG: { 2359 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2360 SDValue Src = N->getOperand(0); 2361 if (Src.getOpcode() != ISD::SRL) 2362 break; 2363 2364 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2365 if (!Amt) 2366 break; 2367 2368 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2369 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), 2370 Amt->getZExtValue(), Width)); 2371 return; 2372 } 2373 } 2374 2375 SelectCode(N); 2376 } 2377 2378 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2379 assert(N->getOpcode() == ISD::BRCOND); 2380 if (!N->hasOneUse()) 2381 return false; 2382 2383 SDValue Cond = N->getOperand(1); 2384 if (Cond.getOpcode() == ISD::CopyToReg) 2385 Cond = Cond.getOperand(2); 2386 2387 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2388 return false; 2389 2390 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2391 if (VT == MVT::i32) 2392 return true; 2393 2394 if (VT == MVT::i64) { 2395 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2396 2397 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2398 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2399 } 2400 2401 return false; 2402 } 2403 2404 static SDValue combineBallotPattern(SDValue VCMP, bool &Negate) { 2405 assert(VCMP->getOpcode() == AMDGPUISD::SETCC); 2406 // Special case for amdgcn.ballot: 2407 // %Cond = i1 (and/or combination of i1 ISD::SETCCs) 2408 // %VCMP = i(WaveSize) AMDGPUISD::SETCC (ext %Cond), 0, setne/seteq 2409 // => 2410 // Use i1 %Cond value instead of i(WaveSize) %VCMP. 2411 // This is possible because divergent ISD::SETCC is selected as V_CMP and 2412 // Cond becomes a i(WaveSize) full mask value. 2413 // Note that ballot doesn't use SETEQ condition but its easy to support it 2414 // here for completeness, so in this case Negate is set true on return. 2415 auto VCMP_CC = cast<CondCodeSDNode>(VCMP.getOperand(2))->get(); 2416 if ((VCMP_CC == ISD::SETEQ || VCMP_CC == ISD::SETNE) && 2417 isNullConstant(VCMP.getOperand(1))) { 2418 2419 auto Cond = VCMP.getOperand(0); 2420 if (ISD::isExtOpcode(Cond->getOpcode())) // Skip extension. 2421 Cond = Cond.getOperand(0); 2422 2423 if (isBoolSGPR(Cond)) { 2424 Negate = VCMP_CC == ISD::SETEQ; 2425 return Cond; 2426 } 2427 } 2428 return SDValue(); 2429 } 2430 2431 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2432 SDValue Cond = N->getOperand(1); 2433 2434 if (Cond.isUndef()) { 2435 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2436 N->getOperand(2), N->getOperand(0)); 2437 return; 2438 } 2439 2440 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2441 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2442 2443 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2444 bool AndExec = !UseSCCBr; 2445 bool Negate = false; 2446 2447 if (Cond.getOpcode() == ISD::SETCC && 2448 Cond->getOperand(0)->getOpcode() == AMDGPUISD::SETCC) { 2449 SDValue VCMP = Cond->getOperand(0); 2450 auto CC = cast<CondCodeSDNode>(Cond->getOperand(2))->get(); 2451 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 2452 isNullConstant(Cond->getOperand(1)) && 2453 // We may encounter ballot.i64 in wave32 mode on -O0. 2454 VCMP.getValueType().getSizeInBits() == ST->getWavefrontSize()) { 2455 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... 2456 // %C = i1 ISD::SETCC %VCMP, 0, setne/seteq 2457 // BRCOND i1 %C, %BB 2458 // => 2459 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... 2460 // VCC = COPY i(WaveSize) %VCMP 2461 // S_CBRANCH_VCCNZ/VCCZ %BB 2462 Negate = CC == ISD::SETEQ; 2463 bool NegatedBallot = false; 2464 if (auto BallotCond = combineBallotPattern(VCMP, NegatedBallot)) { 2465 Cond = BallotCond; 2466 UseSCCBr = !BallotCond->isDivergent(); 2467 Negate = Negate ^ NegatedBallot; 2468 } else { 2469 // TODO: don't use SCC here assuming that AMDGPUISD::SETCC is always 2470 // selected as V_CMP, but this may change for uniform condition. 2471 Cond = VCMP; 2472 UseSCCBr = false; 2473 } 2474 } 2475 // Cond is either V_CMP resulted from AMDGPUISD::SETCC or a combination of 2476 // V_CMPs resulted from ballot or ballot has uniform condition and SCC is 2477 // used. 2478 AndExec = false; 2479 } 2480 2481 unsigned BrOp = 2482 UseSCCBr ? (Negate ? AMDGPU::S_CBRANCH_SCC0 : AMDGPU::S_CBRANCH_SCC1) 2483 : (Negate ? AMDGPU::S_CBRANCH_VCCZ : AMDGPU::S_CBRANCH_VCCNZ); 2484 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2485 SDLoc SL(N); 2486 2487 if (AndExec) { 2488 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2489 // analyzed what generates the vcc value, so we do not know whether vcc 2490 // bits for disabled lanes are 0. Thus we need to mask out bits for 2491 // disabled lanes. 2492 // 2493 // For the case that we select S_CBRANCH_SCC1 and it gets 2494 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2495 // SIInstrInfo::moveToVALU which inserts the S_AND). 2496 // 2497 // We could add an analysis of what generates the vcc value here and omit 2498 // the S_AND when is unnecessary. But it would be better to add a separate 2499 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2500 // catches both cases. 2501 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2502 : AMDGPU::S_AND_B64, 2503 SL, MVT::i1, 2504 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2505 : AMDGPU::EXEC, 2506 MVT::i1), 2507 Cond), 2508 0); 2509 } 2510 2511 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2512 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2513 N->getOperand(2), // Basic Block 2514 VCC.getValue(0)); 2515 } 2516 2517 void AMDGPUDAGToDAGISel::SelectFP_EXTEND(SDNode *N) { 2518 if (Subtarget->hasSALUFloatInsts() && N->getValueType(0) == MVT::f32 && 2519 !N->isDivergent()) { 2520 SDValue Src = N->getOperand(0); 2521 if (Src.getValueType() == MVT::f16) { 2522 if (isExtractHiElt(Src, Src)) { 2523 CurDAG->SelectNodeTo(N, AMDGPU::S_CVT_HI_F32_F16, N->getVTList(), 2524 {Src}); 2525 return; 2526 } 2527 } 2528 } 2529 2530 SelectCode(N); 2531 } 2532 2533 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2534 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2535 // be copied to an SGPR with readfirstlane. 2536 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2537 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2538 2539 SDValue Chain = N->getOperand(0); 2540 SDValue Ptr = N->getOperand(2); 2541 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2542 MachineMemOperand *MMO = M->getMemOperand(); 2543 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2544 2545 SDValue Offset; 2546 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2547 SDValue PtrBase = Ptr.getOperand(0); 2548 SDValue PtrOffset = Ptr.getOperand(1); 2549 2550 const APInt &OffsetVal = PtrOffset->getAsAPIntVal(); 2551 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2552 N = glueCopyToM0(N, PtrBase); 2553 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2554 } 2555 } 2556 2557 if (!Offset) { 2558 N = glueCopyToM0(N, Ptr); 2559 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2560 } 2561 2562 SDValue Ops[] = { 2563 Offset, 2564 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2565 Chain, 2566 N->getOperand(N->getNumOperands() - 1) // New glue 2567 }; 2568 2569 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2570 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2571 } 2572 2573 // We need to handle this here because tablegen doesn't support matching 2574 // instructions with multiple outputs. 2575 void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) { 2576 unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32; 2577 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4), 2578 N->getOperand(5), N->getOperand(0)}; 2579 2580 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2581 MachineMemOperand *MMO = M->getMemOperand(); 2582 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2583 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2584 } 2585 2586 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2587 switch (IntrID) { 2588 case Intrinsic::amdgcn_ds_gws_init: 2589 return AMDGPU::DS_GWS_INIT; 2590 case Intrinsic::amdgcn_ds_gws_barrier: 2591 return AMDGPU::DS_GWS_BARRIER; 2592 case Intrinsic::amdgcn_ds_gws_sema_v: 2593 return AMDGPU::DS_GWS_SEMA_V; 2594 case Intrinsic::amdgcn_ds_gws_sema_br: 2595 return AMDGPU::DS_GWS_SEMA_BR; 2596 case Intrinsic::amdgcn_ds_gws_sema_p: 2597 return AMDGPU::DS_GWS_SEMA_P; 2598 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2599 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2600 default: 2601 llvm_unreachable("not a gws intrinsic"); 2602 } 2603 } 2604 2605 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2606 if (!Subtarget->hasGWS() || 2607 (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2608 !Subtarget->hasGWSSemaReleaseAll())) { 2609 // Let this error. 2610 SelectCode(N); 2611 return; 2612 } 2613 2614 // Chain, intrinsic ID, vsrc, offset 2615 const bool HasVSrc = N->getNumOperands() == 4; 2616 assert(HasVSrc || N->getNumOperands() == 3); 2617 2618 SDLoc SL(N); 2619 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2620 int ImmOffset = 0; 2621 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2622 MachineMemOperand *MMO = M->getMemOperand(); 2623 2624 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2625 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2626 2627 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2628 // offset field) % 64. Some versions of the programming guide omit the m0 2629 // part, or claim it's from offset 0. 2630 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2631 // If we have a constant offset, try to use the 0 in m0 as the base. 2632 // TODO: Look into changing the default m0 initialization value. If the 2633 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2634 // the immediate offset. 2635 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2636 ImmOffset = ConstOffset->getZExtValue(); 2637 } else { 2638 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2639 ImmOffset = BaseOffset.getConstantOperandVal(1); 2640 BaseOffset = BaseOffset.getOperand(0); 2641 } 2642 2643 // Prefer to do the shift in an SGPR since it should be possible to use m0 2644 // as the result directly. If it's already an SGPR, it will be eliminated 2645 // later. 2646 SDNode *SGPROffset 2647 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2648 BaseOffset); 2649 // Shift to offset in m0 2650 SDNode *M0Base 2651 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2652 SDValue(SGPROffset, 0), 2653 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2654 glueCopyToM0(N, SDValue(M0Base, 0)); 2655 } 2656 2657 SDValue Chain = N->getOperand(0); 2658 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2659 2660 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2661 SmallVector<SDValue, 5> Ops; 2662 if (HasVSrc) 2663 Ops.push_back(N->getOperand(2)); 2664 Ops.push_back(OffsetField); 2665 Ops.push_back(Chain); 2666 2667 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2668 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2669 } 2670 2671 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2672 if (Subtarget->getLDSBankCount() != 16) { 2673 // This is a single instruction with a pattern. 2674 SelectCode(N); 2675 return; 2676 } 2677 2678 SDLoc DL(N); 2679 2680 // This requires 2 instructions. It is possible to write a pattern to support 2681 // this, but the generated isel emitter doesn't correctly deal with multiple 2682 // output instructions using the same physical register input. The copy to m0 2683 // is incorrectly placed before the second instruction. 2684 // 2685 // TODO: Match source modifiers. 2686 // 2687 // def : Pat < 2688 // (int_amdgcn_interp_p1_f16 2689 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2690 // (i32 timm:$attrchan), (i32 timm:$attr), 2691 // (i1 timm:$high), M0), 2692 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2693 // timm:$attrchan, 0, 2694 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2695 // let Predicates = [has16BankLDS]; 2696 // } 2697 2698 // 16 bank LDS 2699 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2700 N->getOperand(5), SDValue()); 2701 2702 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2703 2704 SDNode *InterpMov = 2705 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2706 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2707 N->getOperand(3), // Attr 2708 N->getOperand(2), // Attrchan 2709 ToM0.getValue(1) // In glue 2710 }); 2711 2712 SDNode *InterpP1LV = 2713 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2714 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2715 N->getOperand(1), // Src0 2716 N->getOperand(3), // Attr 2717 N->getOperand(2), // Attrchan 2718 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2719 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2720 N->getOperand(4), // high 2721 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2722 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2723 SDValue(InterpMov, 1) 2724 }); 2725 2726 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2727 } 2728 2729 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2730 unsigned IntrID = N->getConstantOperandVal(1); 2731 switch (IntrID) { 2732 case Intrinsic::amdgcn_ds_append: 2733 case Intrinsic::amdgcn_ds_consume: { 2734 if (N->getValueType(0) != MVT::i32) 2735 break; 2736 SelectDSAppendConsume(N, IntrID); 2737 return; 2738 } 2739 case Intrinsic::amdgcn_ds_bvh_stack_rtn: 2740 SelectDSBvhStackIntrinsic(N); 2741 return; 2742 } 2743 2744 SelectCode(N); 2745 } 2746 2747 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2748 unsigned IntrID = N->getConstantOperandVal(0); 2749 unsigned Opcode = AMDGPU::INSTRUCTION_LIST_END; 2750 SDNode *ConvGlueNode = N->getGluedNode(); 2751 if (ConvGlueNode) { 2752 // FIXME: Possibly iterate over multiple glue nodes? 2753 assert(ConvGlueNode->getOpcode() == ISD::CONVERGENCECTRL_GLUE); 2754 ConvGlueNode = ConvGlueNode->getOperand(0).getNode(); 2755 ConvGlueNode = 2756 CurDAG->getMachineNode(TargetOpcode::CONVERGENCECTRL_GLUE, {}, 2757 MVT::Glue, SDValue(ConvGlueNode, 0)); 2758 } else { 2759 ConvGlueNode = nullptr; 2760 } 2761 switch (IntrID) { 2762 case Intrinsic::amdgcn_wqm: 2763 Opcode = AMDGPU::WQM; 2764 break; 2765 case Intrinsic::amdgcn_softwqm: 2766 Opcode = AMDGPU::SOFT_WQM; 2767 break; 2768 case Intrinsic::amdgcn_wwm: 2769 case Intrinsic::amdgcn_strict_wwm: 2770 Opcode = AMDGPU::STRICT_WWM; 2771 break; 2772 case Intrinsic::amdgcn_strict_wqm: 2773 Opcode = AMDGPU::STRICT_WQM; 2774 break; 2775 case Intrinsic::amdgcn_interp_p1_f16: 2776 SelectInterpP1F16(N); 2777 return; 2778 default: 2779 SelectCode(N); 2780 break; 2781 } 2782 2783 if (Opcode != AMDGPU::INSTRUCTION_LIST_END) { 2784 SDValue Src = N->getOperand(1); 2785 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2786 } 2787 2788 if (ConvGlueNode) { 2789 SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end()); 2790 NewOps.push_back(SDValue(ConvGlueNode, 0)); 2791 CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), NewOps); 2792 } 2793 } 2794 2795 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2796 unsigned IntrID = N->getConstantOperandVal(1); 2797 switch (IntrID) { 2798 case Intrinsic::amdgcn_ds_gws_init: 2799 case Intrinsic::amdgcn_ds_gws_barrier: 2800 case Intrinsic::amdgcn_ds_gws_sema_v: 2801 case Intrinsic::amdgcn_ds_gws_sema_br: 2802 case Intrinsic::amdgcn_ds_gws_sema_p: 2803 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2804 SelectDS_GWS(N, IntrID); 2805 return; 2806 default: 2807 break; 2808 } 2809 2810 SelectCode(N); 2811 } 2812 2813 void AMDGPUDAGToDAGISel::SelectWAVE_ADDRESS(SDNode *N) { 2814 SDValue Log2WaveSize = 2815 CurDAG->getTargetConstant(Subtarget->getWavefrontSizeLog2(), SDLoc(N), MVT::i32); 2816 CurDAG->SelectNodeTo(N, AMDGPU::S_LSHR_B32, N->getVTList(), 2817 {N->getOperand(0), Log2WaveSize}); 2818 } 2819 2820 void AMDGPUDAGToDAGISel::SelectSTACKRESTORE(SDNode *N) { 2821 SDValue SrcVal = N->getOperand(1); 2822 if (SrcVal.getValueType() != MVT::i32) { 2823 SelectCode(N); // Emit default error 2824 return; 2825 } 2826 2827 SDValue CopyVal; 2828 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 2829 SDLoc SL(N); 2830 2831 if (SrcVal.getOpcode() == AMDGPUISD::WAVE_ADDRESS) { 2832 CopyVal = SrcVal.getOperand(0); 2833 } else { 2834 SDValue Log2WaveSize = CurDAG->getTargetConstant( 2835 Subtarget->getWavefrontSizeLog2(), SL, MVT::i32); 2836 2837 if (N->isDivergent()) { 2838 SrcVal = SDValue(CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, 2839 MVT::i32, SrcVal), 2840 0); 2841 } 2842 2843 CopyVal = SDValue(CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2844 {SrcVal, Log2WaveSize}), 2845 0); 2846 } 2847 2848 SDValue CopyToSP = CurDAG->getCopyToReg(N->getOperand(0), SL, SP, CopyVal); 2849 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyToSP); 2850 } 2851 2852 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2853 unsigned &Mods, 2854 bool IsCanonicalizing, 2855 bool AllowAbs) const { 2856 Mods = SISrcMods::NONE; 2857 Src = In; 2858 2859 if (Src.getOpcode() == ISD::FNEG) { 2860 Mods |= SISrcMods::NEG; 2861 Src = Src.getOperand(0); 2862 } else if (Src.getOpcode() == ISD::FSUB && IsCanonicalizing) { 2863 // Fold fsub [+-]0 into fneg. This may not have folded depending on the 2864 // denormal mode, but we're implicitly canonicalizing in a source operand. 2865 auto *LHS = dyn_cast<ConstantFPSDNode>(Src.getOperand(0)); 2866 if (LHS && LHS->isZero()) { 2867 Mods |= SISrcMods::NEG; 2868 Src = Src.getOperand(1); 2869 } 2870 } 2871 2872 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2873 Mods |= SISrcMods::ABS; 2874 Src = Src.getOperand(0); 2875 } 2876 2877 return true; 2878 } 2879 2880 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2881 SDValue &SrcMods) const { 2882 unsigned Mods; 2883 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/true, 2884 /*AllowAbs=*/true)) { 2885 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2886 return true; 2887 } 2888 2889 return false; 2890 } 2891 2892 bool AMDGPUDAGToDAGISel::SelectVOP3ModsNonCanonicalizing( 2893 SDValue In, SDValue &Src, SDValue &SrcMods) const { 2894 unsigned Mods; 2895 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/false, 2896 /*AllowAbs=*/true)) { 2897 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2898 return true; 2899 } 2900 2901 return false; 2902 } 2903 2904 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2905 SDValue &SrcMods) const { 2906 unsigned Mods; 2907 if (SelectVOP3ModsImpl(In, Src, Mods, 2908 /*IsCanonicalizing=*/true, 2909 /*AllowAbs=*/false)) { 2910 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2911 return true; 2912 } 2913 2914 return false; 2915 } 2916 2917 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2918 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2919 return false; 2920 2921 Src = In; 2922 return true; 2923 } 2924 2925 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src, 2926 SDValue &SrcMods, 2927 bool OpSel) const { 2928 unsigned Mods; 2929 if (SelectVOP3ModsImpl(In, Src, Mods, 2930 /*IsCanonicalizing=*/true, 2931 /*AllowAbs=*/false)) { 2932 if (OpSel) 2933 Mods |= SISrcMods::OP_SEL_0; 2934 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2935 return true; 2936 } 2937 2938 return false; 2939 } 2940 2941 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src, 2942 SDValue &SrcMods) const { 2943 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false); 2944 } 2945 2946 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src, 2947 SDValue &SrcMods) const { 2948 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true); 2949 } 2950 2951 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2952 SDValue &SrcMods, SDValue &Clamp, 2953 SDValue &Omod) const { 2954 SDLoc DL(In); 2955 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2956 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2957 2958 return SelectVOP3Mods(In, Src, SrcMods); 2959 } 2960 2961 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2962 SDValue &SrcMods, SDValue &Clamp, 2963 SDValue &Omod) const { 2964 SDLoc DL(In); 2965 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2966 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2967 2968 return SelectVOP3BMods(In, Src, SrcMods); 2969 } 2970 2971 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2972 SDValue &Clamp, SDValue &Omod) const { 2973 Src = In; 2974 2975 SDLoc DL(In); 2976 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2977 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2978 2979 return true; 2980 } 2981 2982 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2983 SDValue &SrcMods, bool IsDOT) const { 2984 unsigned Mods = SISrcMods::NONE; 2985 Src = In; 2986 2987 // TODO: Handle G_FSUB 0 as fneg 2988 if (Src.getOpcode() == ISD::FNEG) { 2989 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2990 Src = Src.getOperand(0); 2991 } 2992 2993 if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 && 2994 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { 2995 unsigned VecMods = Mods; 2996 2997 SDValue Lo = stripBitcast(Src.getOperand(0)); 2998 SDValue Hi = stripBitcast(Src.getOperand(1)); 2999 3000 if (Lo.getOpcode() == ISD::FNEG) { 3001 Lo = stripBitcast(Lo.getOperand(0)); 3002 Mods ^= SISrcMods::NEG; 3003 } 3004 3005 if (Hi.getOpcode() == ISD::FNEG) { 3006 Hi = stripBitcast(Hi.getOperand(0)); 3007 Mods ^= SISrcMods::NEG_HI; 3008 } 3009 3010 if (isExtractHiElt(Lo, Lo)) 3011 Mods |= SISrcMods::OP_SEL_0; 3012 3013 if (isExtractHiElt(Hi, Hi)) 3014 Mods |= SISrcMods::OP_SEL_1; 3015 3016 unsigned VecSize = Src.getValueSizeInBits(); 3017 Lo = stripExtractLoElt(Lo); 3018 Hi = stripExtractLoElt(Hi); 3019 3020 if (Lo.getValueSizeInBits() > VecSize) { 3021 Lo = CurDAG->getTargetExtractSubreg( 3022 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 3023 MVT::getIntegerVT(VecSize), Lo); 3024 } 3025 3026 if (Hi.getValueSizeInBits() > VecSize) { 3027 Hi = CurDAG->getTargetExtractSubreg( 3028 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 3029 MVT::getIntegerVT(VecSize), Hi); 3030 } 3031 3032 assert(Lo.getValueSizeInBits() <= VecSize && 3033 Hi.getValueSizeInBits() <= VecSize); 3034 3035 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 3036 // Really a scalar input. Just select from the low half of the register to 3037 // avoid packing. 3038 3039 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 3040 Src = Lo; 3041 } else { 3042 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 3043 3044 SDLoc SL(In); 3045 SDValue Undef = SDValue( 3046 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 3047 Lo.getValueType()), 0); 3048 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 3049 : AMDGPU::SReg_64RegClassID; 3050 const SDValue Ops[] = { 3051 CurDAG->getTargetConstant(RC, SL, MVT::i32), 3052 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 3053 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 3054 3055 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 3056 Src.getValueType(), Ops), 0); 3057 } 3058 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3059 return true; 3060 } 3061 3062 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 3063 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 3064 .bitcastToAPInt().getZExtValue(); 3065 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 3066 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64); 3067 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3068 return true; 3069 } 3070 } 3071 3072 Mods = VecMods; 3073 } 3074 3075 // Packed instructions do not have abs modifiers. 3076 Mods |= SISrcMods::OP_SEL_1; 3077 3078 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3079 return true; 3080 } 3081 3082 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, 3083 SDValue &SrcMods) const { 3084 return SelectVOP3PMods(In, Src, SrcMods, true); 3085 } 3086 3087 bool AMDGPUDAGToDAGISel::SelectVOP3PModsNeg(SDValue In, SDValue &Src) const { 3088 const ConstantSDNode *C = cast<ConstantSDNode>(In); 3089 // Literal i1 value set in intrinsic, represents SrcMods for the next operand. 3090 // 1 promotes packed values to signed, 0 treats them as unsigned. 3091 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 3092 3093 unsigned Mods = SISrcMods::OP_SEL_1; 3094 unsigned SrcSign = C->getZExtValue(); 3095 if (SrcSign == 1) 3096 Mods ^= SISrcMods::NEG; 3097 3098 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3099 return true; 3100 } 3101 3102 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In, 3103 SDValue &Src) const { 3104 const ConstantSDNode *C = cast<ConstantSDNode>(In); 3105 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 3106 3107 unsigned Mods = SISrcMods::OP_SEL_1; 3108 unsigned SrcVal = C->getZExtValue(); 3109 if (SrcVal == 1) 3110 Mods |= SISrcMods::OP_SEL_0; 3111 3112 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3113 return true; 3114 } 3115 3116 static MachineSDNode *buildRegSequence32(SmallVectorImpl<SDValue> &Elts, 3117 llvm::SelectionDAG *CurDAG, 3118 const SDLoc &DL) { 3119 unsigned DstRegClass; 3120 EVT DstTy; 3121 switch (Elts.size()) { 3122 case 8: 3123 DstRegClass = AMDGPU::VReg_256RegClassID; 3124 DstTy = MVT::v8i32; 3125 break; 3126 case 4: 3127 DstRegClass = AMDGPU::VReg_128RegClassID; 3128 DstTy = MVT::v4i32; 3129 break; 3130 case 2: 3131 DstRegClass = AMDGPU::VReg_64RegClassID; 3132 DstTy = MVT::v2i32; 3133 break; 3134 default: 3135 llvm_unreachable("unhandled Reg sequence size"); 3136 } 3137 3138 SmallVector<SDValue, 17> Ops; 3139 Ops.push_back(CurDAG->getTargetConstant(DstRegClass, DL, MVT::i32)); 3140 for (unsigned i = 0; i < Elts.size(); ++i) { 3141 Ops.push_back(Elts[i]); 3142 Ops.push_back(CurDAG->getTargetConstant( 3143 SIRegisterInfo::getSubRegFromChannel(i), DL, MVT::i32)); 3144 } 3145 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, DstTy, Ops); 3146 } 3147 3148 static MachineSDNode *buildRegSequence16(SmallVectorImpl<SDValue> &Elts, 3149 llvm::SelectionDAG *CurDAG, 3150 const SDLoc &DL) { 3151 SmallVector<SDValue, 8> PackedElts; 3152 assert("unhandled Reg sequence size" && 3153 (Elts.size() == 8 || Elts.size() == 16)); 3154 3155 // Pack 16-bit elements in pairs into 32-bit register. If both elements are 3156 // unpacked from 32-bit source use it, otherwise pack them using v_perm. 3157 for (unsigned i = 0; i < Elts.size(); i += 2) { 3158 SDValue LoSrc = stripExtractLoElt(stripBitcast(Elts[i])); 3159 SDValue HiSrc; 3160 if (isExtractHiElt(Elts[i + 1], HiSrc) && LoSrc == HiSrc) { 3161 PackedElts.push_back(HiSrc); 3162 } else { 3163 SDValue PackLoLo = CurDAG->getTargetConstant(0x05040100, DL, MVT::i32); 3164 MachineSDNode *Packed = 3165 CurDAG->getMachineNode(AMDGPU::V_PERM_B32_e64, DL, MVT::i32, 3166 {Elts[i + 1], Elts[i], PackLoLo}); 3167 PackedElts.push_back(SDValue(Packed, 0)); 3168 } 3169 } 3170 3171 return buildRegSequence32(PackedElts, CurDAG, DL); 3172 } 3173 3174 static MachineSDNode *buildRegSequence(SmallVectorImpl<SDValue> &Elts, 3175 llvm::SelectionDAG *CurDAG, 3176 const SDLoc &DL, unsigned ElementSize) { 3177 if (ElementSize == 16) 3178 return buildRegSequence16(Elts, CurDAG, DL); 3179 if (ElementSize == 32) 3180 return buildRegSequence32(Elts, CurDAG, DL); 3181 llvm_unreachable("Unhandled element size"); 3182 } 3183 3184 static void selectWMMAModsNegAbs(unsigned ModOpcode, unsigned &Mods, 3185 SmallVectorImpl<SDValue> &Elts, SDValue &Src, 3186 llvm::SelectionDAG *CurDAG, const SDLoc &DL, 3187 unsigned ElementSize) { 3188 if (ModOpcode == ISD::FNEG) { 3189 Mods |= SISrcMods::NEG; 3190 // Check if all elements also have abs modifier 3191 SmallVector<SDValue, 8> NegAbsElts; 3192 for (auto El : Elts) { 3193 if (El.getOpcode() != ISD::FABS) 3194 break; 3195 NegAbsElts.push_back(El->getOperand(0)); 3196 } 3197 if (Elts.size() != NegAbsElts.size()) { 3198 // Neg 3199 Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0); 3200 } else { 3201 // Neg and Abs 3202 Mods |= SISrcMods::NEG_HI; 3203 Src = SDValue(buildRegSequence(NegAbsElts, CurDAG, DL, ElementSize), 0); 3204 } 3205 } else { 3206 assert(ModOpcode == ISD::FABS); 3207 // Abs 3208 Mods |= SISrcMods::NEG_HI; 3209 Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0); 3210 } 3211 } 3212 3213 // Check all f16 elements for modifiers while looking through b32 and v2b16 3214 // build vector, stop if element does not satisfy ModifierCheck. 3215 static void 3216 checkWMMAElementsModifiersF16(BuildVectorSDNode *BV, 3217 std::function<bool(SDValue)> ModifierCheck) { 3218 for (unsigned i = 0; i < BV->getNumOperands(); ++i) { 3219 if (auto *F16Pair = 3220 dyn_cast<BuildVectorSDNode>(stripBitcast(BV->getOperand(i)))) { 3221 for (unsigned i = 0; i < F16Pair->getNumOperands(); ++i) { 3222 SDValue ElF16 = stripBitcast(F16Pair->getOperand(i)); 3223 if (!ModifierCheck(ElF16)) 3224 break; 3225 } 3226 } 3227 } 3228 } 3229 3230 bool AMDGPUDAGToDAGISel::SelectWMMAModsF16Neg(SDValue In, SDValue &Src, 3231 SDValue &SrcMods) const { 3232 Src = In; 3233 unsigned Mods = SISrcMods::OP_SEL_1; 3234 3235 // mods are on f16 elements 3236 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3237 SmallVector<SDValue, 8> EltsF16; 3238 3239 checkWMMAElementsModifiersF16(BV, [&](SDValue Element) -> bool { 3240 if (Element.getOpcode() != ISD::FNEG) 3241 return false; 3242 EltsF16.push_back(Element.getOperand(0)); 3243 return true; 3244 }); 3245 3246 // All elements have neg modifier 3247 if (BV->getNumOperands() * 2 == EltsF16.size()) { 3248 Src = SDValue(buildRegSequence16(EltsF16, CurDAG, SDLoc(In)), 0); 3249 Mods |= SISrcMods::NEG; 3250 Mods |= SISrcMods::NEG_HI; 3251 } 3252 } 3253 3254 // mods are on v2f16 elements 3255 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3256 SmallVector<SDValue, 8> EltsV2F16; 3257 for (unsigned i = 0; i < BV->getNumOperands(); ++i) { 3258 SDValue ElV2f16 = stripBitcast(BV->getOperand(i)); 3259 // Based on first element decide which mod we match, neg or abs 3260 if (ElV2f16.getOpcode() != ISD::FNEG) 3261 break; 3262 EltsV2F16.push_back(ElV2f16.getOperand(0)); 3263 } 3264 3265 // All pairs of elements have neg modifier 3266 if (BV->getNumOperands() == EltsV2F16.size()) { 3267 Src = SDValue(buildRegSequence32(EltsV2F16, CurDAG, SDLoc(In)), 0); 3268 Mods |= SISrcMods::NEG; 3269 Mods |= SISrcMods::NEG_HI; 3270 } 3271 } 3272 3273 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3274 return true; 3275 } 3276 3277 bool AMDGPUDAGToDAGISel::SelectWMMAModsF16NegAbs(SDValue In, SDValue &Src, 3278 SDValue &SrcMods) const { 3279 Src = In; 3280 unsigned Mods = SISrcMods::OP_SEL_1; 3281 unsigned ModOpcode; 3282 3283 // mods are on f16 elements 3284 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3285 SmallVector<SDValue, 8> EltsF16; 3286 checkWMMAElementsModifiersF16(BV, [&](SDValue ElF16) -> bool { 3287 // Based on first element decide which mod we match, neg or abs 3288 if (EltsF16.empty()) 3289 ModOpcode = (ElF16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; 3290 if (ElF16.getOpcode() != ModOpcode) 3291 return false; 3292 EltsF16.push_back(ElF16.getOperand(0)); 3293 return true; 3294 }); 3295 3296 // All elements have ModOpcode modifier 3297 if (BV->getNumOperands() * 2 == EltsF16.size()) 3298 selectWMMAModsNegAbs(ModOpcode, Mods, EltsF16, Src, CurDAG, SDLoc(In), 3299 16); 3300 } 3301 3302 // mods are on v2f16 elements 3303 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3304 SmallVector<SDValue, 8> EltsV2F16; 3305 3306 for (unsigned i = 0; i < BV->getNumOperands(); ++i) { 3307 SDValue ElV2f16 = stripBitcast(BV->getOperand(i)); 3308 // Based on first element decide which mod we match, neg or abs 3309 if (EltsV2F16.empty()) 3310 ModOpcode = (ElV2f16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; 3311 if (ElV2f16->getOpcode() != ModOpcode) 3312 break; 3313 EltsV2F16.push_back(ElV2f16->getOperand(0)); 3314 } 3315 3316 // All elements have ModOpcode modifier 3317 if (BV->getNumOperands() == EltsV2F16.size()) 3318 selectWMMAModsNegAbs(ModOpcode, Mods, EltsV2F16, Src, CurDAG, SDLoc(In), 3319 32); 3320 } 3321 3322 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3323 return true; 3324 } 3325 3326 bool AMDGPUDAGToDAGISel::SelectWMMAModsF32NegAbs(SDValue In, SDValue &Src, 3327 SDValue &SrcMods) const { 3328 Src = In; 3329 unsigned Mods = SISrcMods::OP_SEL_1; 3330 SmallVector<SDValue, 8> EltsF32; 3331 3332 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3333 assert(BV->getNumOperands() > 0); 3334 // Based on first element decide which mod we match, neg or abs 3335 SDValue ElF32 = stripBitcast(BV->getOperand(0)); 3336 unsigned ModOpcode = 3337 (ElF32.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; 3338 for (unsigned i = 0; i < BV->getNumOperands(); ++i) { 3339 SDValue ElF32 = stripBitcast(BV->getOperand(i)); 3340 if (ElF32.getOpcode() != ModOpcode) 3341 break; 3342 EltsF32.push_back(ElF32.getOperand(0)); 3343 } 3344 3345 // All elements had ModOpcode modifier 3346 if (BV->getNumOperands() == EltsF32.size()) 3347 selectWMMAModsNegAbs(ModOpcode, Mods, EltsF32, Src, CurDAG, SDLoc(In), 3348 32); 3349 } 3350 3351 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3352 return true; 3353 } 3354 3355 bool AMDGPUDAGToDAGISel::SelectWMMAVISrc(SDValue In, SDValue &Src) const { 3356 if (auto *BV = dyn_cast<BuildVectorSDNode>(In)) { 3357 BitVector UndefElements; 3358 if (SDValue Splat = BV->getSplatValue(&UndefElements)) 3359 if (isInlineImmediate(Splat.getNode())) { 3360 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Splat)) { 3361 unsigned Imm = C->getAPIntValue().getSExtValue(); 3362 Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32); 3363 return true; 3364 } 3365 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Splat)) { 3366 unsigned Imm = C->getValueAPF().bitcastToAPInt().getSExtValue(); 3367 Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32); 3368 return true; 3369 } 3370 llvm_unreachable("unhandled Constant node"); 3371 } 3372 } 3373 3374 // 16 bit splat 3375 SDValue SplatSrc32 = stripBitcast(In); 3376 if (auto *SplatSrc32BV = dyn_cast<BuildVectorSDNode>(SplatSrc32)) 3377 if (SDValue Splat32 = SplatSrc32BV->getSplatValue()) { 3378 SDValue SplatSrc16 = stripBitcast(Splat32); 3379 if (auto *SplatSrc16BV = dyn_cast<BuildVectorSDNode>(SplatSrc16)) 3380 if (SDValue Splat = SplatSrc16BV->getSplatValue()) { 3381 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 3382 std::optional<APInt> RawValue; 3383 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Splat)) 3384 RawValue = C->getValueAPF().bitcastToAPInt(); 3385 else if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Splat)) 3386 RawValue = C->getAPIntValue(); 3387 3388 if (RawValue.has_value()) { 3389 EVT VT = In.getValueType().getScalarType(); 3390 if (VT.getSimpleVT() == MVT::f16 || VT.getSimpleVT() == MVT::bf16) { 3391 APFloat FloatVal(VT.getSimpleVT() == MVT::f16 3392 ? APFloatBase::IEEEhalf() 3393 : APFloatBase::BFloat(), 3394 RawValue.value()); 3395 if (TII->isInlineConstant(FloatVal)) { 3396 Src = CurDAG->getTargetConstant(RawValue.value(), SDLoc(In), 3397 MVT::i16); 3398 return true; 3399 } 3400 } else if (VT.getSimpleVT() == MVT::i16) { 3401 if (TII->isInlineConstant(RawValue.value())) { 3402 Src = CurDAG->getTargetConstant(RawValue.value(), SDLoc(In), 3403 MVT::i16); 3404 return true; 3405 } 3406 } else 3407 llvm_unreachable("unknown 16-bit type"); 3408 } 3409 } 3410 } 3411 3412 return false; 3413 } 3414 3415 bool AMDGPUDAGToDAGISel::SelectSWMMACIndex8(SDValue In, SDValue &Src, 3416 SDValue &IndexKey) const { 3417 unsigned Key = 0; 3418 Src = In; 3419 3420 if (In.getOpcode() == ISD::SRL) { 3421 const llvm::SDValue &ShiftSrc = In.getOperand(0); 3422 ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 3423 if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt && 3424 ShiftAmt->getZExtValue() % 8 == 0) { 3425 Key = ShiftAmt->getZExtValue() / 8; 3426 Src = ShiftSrc; 3427 } 3428 } 3429 3430 IndexKey = CurDAG->getTargetConstant(Key, SDLoc(In), MVT::i32); 3431 return true; 3432 } 3433 3434 bool AMDGPUDAGToDAGISel::SelectSWMMACIndex16(SDValue In, SDValue &Src, 3435 SDValue &IndexKey) const { 3436 unsigned Key = 0; 3437 Src = In; 3438 3439 if (In.getOpcode() == ISD::SRL) { 3440 const llvm::SDValue &ShiftSrc = In.getOperand(0); 3441 ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 3442 if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt && 3443 ShiftAmt->getZExtValue() == 16) { 3444 Key = 1; 3445 Src = ShiftSrc; 3446 } 3447 } 3448 3449 IndexKey = CurDAG->getTargetConstant(Key, SDLoc(In), MVT::i32); 3450 return true; 3451 } 3452 3453 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 3454 SDValue &SrcMods) const { 3455 Src = In; 3456 // FIXME: Handle op_sel 3457 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 3458 return true; 3459 } 3460 3461 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 3462 SDValue &SrcMods) const { 3463 // FIXME: Handle op_sel 3464 return SelectVOP3Mods(In, Src, SrcMods); 3465 } 3466 3467 // The return value is not whether the match is possible (which it always is), 3468 // but whether or not it a conversion is really used. 3469 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 3470 unsigned &Mods) const { 3471 Mods = 0; 3472 SelectVOP3ModsImpl(In, Src, Mods); 3473 3474 if (Src.getOpcode() == ISD::FP_EXTEND) { 3475 Src = Src.getOperand(0); 3476 assert(Src.getValueType() == MVT::f16); 3477 Src = stripBitcast(Src); 3478 3479 // Be careful about folding modifiers if we already have an abs. fneg is 3480 // applied last, so we don't want to apply an earlier fneg. 3481 if ((Mods & SISrcMods::ABS) == 0) { 3482 unsigned ModsTmp; 3483 SelectVOP3ModsImpl(Src, Src, ModsTmp); 3484 3485 if ((ModsTmp & SISrcMods::NEG) != 0) 3486 Mods ^= SISrcMods::NEG; 3487 3488 if ((ModsTmp & SISrcMods::ABS) != 0) 3489 Mods |= SISrcMods::ABS; 3490 } 3491 3492 // op_sel/op_sel_hi decide the source type and source. 3493 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 3494 // If the sources's op_sel is set, it picks the high half of the source 3495 // register. 3496 3497 Mods |= SISrcMods::OP_SEL_1; 3498 if (isExtractHiElt(Src, Src)) { 3499 Mods |= SISrcMods::OP_SEL_0; 3500 3501 // TODO: Should we try to look for neg/abs here? 3502 } 3503 3504 return true; 3505 } 3506 3507 return false; 3508 } 3509 3510 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsExt(SDValue In, SDValue &Src, 3511 SDValue &SrcMods) const { 3512 unsigned Mods = 0; 3513 if (!SelectVOP3PMadMixModsImpl(In, Src, Mods)) 3514 return false; 3515 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3516 return true; 3517 } 3518 3519 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 3520 SDValue &SrcMods) const { 3521 unsigned Mods = 0; 3522 SelectVOP3PMadMixModsImpl(In, Src, Mods); 3523 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3524 return true; 3525 } 3526 3527 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 3528 if (In.isUndef()) 3529 return CurDAG->getUNDEF(MVT::i32); 3530 3531 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 3532 SDLoc SL(In); 3533 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 3534 } 3535 3536 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 3537 SDLoc SL(In); 3538 return CurDAG->getConstant( 3539 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 3540 } 3541 3542 SDValue Src; 3543 if (isExtractHiElt(In, Src)) 3544 return Src; 3545 3546 return SDValue(); 3547 } 3548 3549 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 3550 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 3551 3552 const SIRegisterInfo *SIRI = 3553 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 3554 const SIInstrInfo * SII = 3555 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 3556 3557 unsigned Limit = 0; 3558 bool AllUsesAcceptSReg = true; 3559 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 3560 Limit < 10 && U != E; ++U, ++Limit) { 3561 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 3562 3563 // If the register class is unknown, it could be an unknown 3564 // register class that needs to be an SGPR, e.g. an inline asm 3565 // constraint 3566 if (!RC || SIRI->isSGPRClass(RC)) 3567 return false; 3568 3569 if (RC != &AMDGPU::VS_32RegClass && RC != &AMDGPU::VS_64RegClass) { 3570 AllUsesAcceptSReg = false; 3571 SDNode * User = *U; 3572 if (User->isMachineOpcode()) { 3573 unsigned Opc = User->getMachineOpcode(); 3574 const MCInstrDesc &Desc = SII->get(Opc); 3575 if (Desc.isCommutable()) { 3576 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 3577 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 3578 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 3579 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 3580 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 3581 if (CommutedRC == &AMDGPU::VS_32RegClass || 3582 CommutedRC == &AMDGPU::VS_64RegClass) 3583 AllUsesAcceptSReg = true; 3584 } 3585 } 3586 } 3587 // If "AllUsesAcceptSReg == false" so far we haven't succeeded 3588 // commuting current user. This means have at least one use 3589 // that strictly require VGPR. Thus, we will not attempt to commute 3590 // other user instructions. 3591 if (!AllUsesAcceptSReg) 3592 break; 3593 } 3594 } 3595 return !AllUsesAcceptSReg && (Limit < 10); 3596 } 3597 3598 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode *N) const { 3599 auto Ld = cast<LoadSDNode>(N); 3600 3601 const MachineMemOperand *MMO = Ld->getMemOperand(); 3602 if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(MMO)) 3603 return false; 3604 3605 return MMO->getSize().hasValue() && 3606 Ld->getAlign() >= 3607 Align(std::min(MMO->getSize().getValue().getKnownMinValue(), 3608 uint64_t(4))) && 3609 ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3610 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) || 3611 (Subtarget->getScalarizeGlobalBehavior() && 3612 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 3613 Ld->isSimple() && 3614 static_cast<const SITargetLowering *>(getTargetLowering()) 3615 ->isMemOpHasNoClobberedMemOperand(N))); 3616 } 3617 3618 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 3619 const AMDGPUTargetLowering& Lowering = 3620 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 3621 bool IsModified = false; 3622 do { 3623 IsModified = false; 3624 3625 // Go over all selected nodes and try to fold them a bit more 3626 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 3627 while (Position != CurDAG->allnodes_end()) { 3628 SDNode *Node = &*Position++; 3629 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 3630 if (!MachineNode) 3631 continue; 3632 3633 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 3634 if (ResNode != Node) { 3635 if (ResNode) 3636 ReplaceUses(Node, ResNode); 3637 IsModified = true; 3638 } 3639 } 3640 CurDAG->RemoveDeadNodes(); 3641 } while (IsModified); 3642 } 3643 3644 AMDGPUDAGToDAGISelLegacy::AMDGPUDAGToDAGISelLegacy(TargetMachine &TM, 3645 CodeGenOptLevel OptLevel) 3646 : SelectionDAGISelLegacy( 3647 ID, std::make_unique<AMDGPUDAGToDAGISel>(TM, OptLevel)) {} 3648 3649 char AMDGPUDAGToDAGISelLegacy::ID = 0; 3650