1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUSubtarget.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "MCTargetDesc/R600MCTargetDesc.h" 21 #include "R600RegisterInfo.h" 22 #include "SIISelLowering.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/Analysis/UniformityAnalysis.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/IntrinsicsAMDGPU.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Support/ErrorHandling.h" 33 34 #ifdef EXPENSIVE_CHECKS 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #endif 38 39 #define DEBUG_TYPE "amdgpu-isel" 40 41 using namespace llvm; 42 43 //===----------------------------------------------------------------------===// 44 // Instruction Selector Implementation 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 static SDValue stripBitcast(SDValue Val) { 49 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 50 } 51 52 // Figure out if this is really an extract of the high 16-bits of a dword. 53 static bool isExtractHiElt(SDValue In, SDValue &Out) { 54 In = stripBitcast(In); 55 56 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 57 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 58 if (!Idx->isOne()) 59 return false; 60 Out = In.getOperand(0); 61 return true; 62 } 63 } 64 65 if (In.getOpcode() != ISD::TRUNCATE) 66 return false; 67 68 SDValue Srl = In.getOperand(0); 69 if (Srl.getOpcode() == ISD::SRL) { 70 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 71 if (ShiftAmt->getZExtValue() == 16) { 72 Out = stripBitcast(Srl.getOperand(0)); 73 return true; 74 } 75 } 76 } 77 78 return false; 79 } 80 81 // Look through operations that obscure just looking at the low 16-bits of the 82 // same register. 83 static SDValue stripExtractLoElt(SDValue In) { 84 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 85 SDValue Idx = In.getOperand(1); 86 if (isNullConstant(Idx) && In.getValueSizeInBits() <= 32) 87 return In.getOperand(0); 88 } 89 90 if (In.getOpcode() == ISD::TRUNCATE) { 91 SDValue Src = In.getOperand(0); 92 if (Src.getValueType().getSizeInBits() == 32) 93 return stripBitcast(Src); 94 } 95 96 return In; 97 } 98 99 } // end anonymous namespace 100 101 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 102 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 103 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 104 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 105 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 106 #ifdef EXPENSIVE_CHECKS 107 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 108 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 109 #endif 110 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 111 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 112 113 /// This pass converts a legalized DAG into a AMDGPU-specific 114 // DAG, ready for instruction scheduling. 115 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM, 116 CodeGenOptLevel OptLevel) { 117 return new AMDGPUDAGToDAGISel(TM, OptLevel); 118 } 119 120 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM, 121 CodeGenOptLevel OptLevel) 122 : SelectionDAGISel(ID, TM, OptLevel) { 123 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 124 } 125 126 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 127 #ifdef EXPENSIVE_CHECKS 128 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 129 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 130 for (auto &L : LI->getLoopsInPreorder()) { 131 assert(L->isLCSSAForm(DT)); 132 } 133 #endif 134 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 135 Mode = SIModeRegisterDefaults(MF.getFunction(), *Subtarget); 136 return SelectionDAGISel::runOnMachineFunction(MF); 137 } 138 139 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 140 // XXX - only need to list legal operations. 141 switch (Opc) { 142 case ISD::FADD: 143 case ISD::FSUB: 144 case ISD::FMUL: 145 case ISD::FDIV: 146 case ISD::FREM: 147 case ISD::FCANONICALIZE: 148 case ISD::UINT_TO_FP: 149 case ISD::SINT_TO_FP: 150 case ISD::FABS: 151 // Fabs is lowered to a bit operation, but it's an and which will clear the 152 // high bits anyway. 153 case ISD::FSQRT: 154 case ISD::FSIN: 155 case ISD::FCOS: 156 case ISD::FPOWI: 157 case ISD::FPOW: 158 case ISD::FLOG: 159 case ISD::FLOG2: 160 case ISD::FLOG10: 161 case ISD::FEXP: 162 case ISD::FEXP2: 163 case ISD::FCEIL: 164 case ISD::FTRUNC: 165 case ISD::FRINT: 166 case ISD::FNEARBYINT: 167 case ISD::FROUNDEVEN: 168 case ISD::FROUND: 169 case ISD::FFLOOR: 170 case ISD::FMINNUM: 171 case ISD::FMAXNUM: 172 case ISD::FLDEXP: 173 case AMDGPUISD::FRACT: 174 case AMDGPUISD::CLAMP: 175 case AMDGPUISD::COS_HW: 176 case AMDGPUISD::SIN_HW: 177 case AMDGPUISD::FMIN3: 178 case AMDGPUISD::FMAX3: 179 case AMDGPUISD::FMED3: 180 case AMDGPUISD::FMAD_FTZ: 181 case AMDGPUISD::RCP: 182 case AMDGPUISD::RSQ: 183 case AMDGPUISD::RCP_IFLAG: 184 // On gfx10, all 16-bit instructions preserve the high bits. 185 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 186 case ISD::FP_ROUND: 187 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 188 // high bits on gfx9. 189 // TODO: If we had the source node we could see if the source was fma/mad 190 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 191 case ISD::FMA: 192 case ISD::FMAD: 193 case AMDGPUISD::DIV_FIXUP: 194 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 195 default: 196 // fcopysign, select and others may be lowered to 32-bit bit operations 197 // which don't zero the high bits. 198 return false; 199 } 200 } 201 202 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 203 AU.addRequired<AMDGPUArgumentUsageInfo>(); 204 AU.addRequired<UniformityInfoWrapperPass>(); 205 #ifdef EXPENSIVE_CHECKS 206 AU.addRequired<DominatorTreeWrapperPass>(); 207 AU.addRequired<LoopInfoWrapperPass>(); 208 #endif 209 SelectionDAGISel::getAnalysisUsage(AU); 210 } 211 212 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 213 assert(Subtarget->d16PreservesUnusedBits()); 214 MVT VT = N->getValueType(0).getSimpleVT(); 215 if (VT != MVT::v2i16 && VT != MVT::v2f16) 216 return false; 217 218 SDValue Lo = N->getOperand(0); 219 SDValue Hi = N->getOperand(1); 220 221 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 222 223 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 224 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 225 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 226 227 // Need to check for possible indirect dependencies on the other half of the 228 // vector to avoid introducing a cycle. 229 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 230 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 231 232 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 233 SDValue Ops[] = { 234 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 235 }; 236 237 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 238 if (LdHi->getMemoryVT() == MVT::i8) { 239 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 240 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 241 } else { 242 assert(LdHi->getMemoryVT() == MVT::i16); 243 } 244 245 SDValue NewLoadHi = 246 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 247 Ops, LdHi->getMemoryVT(), 248 LdHi->getMemOperand()); 249 250 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 251 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 252 return true; 253 } 254 255 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 256 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 257 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 258 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 259 if (LdLo && Lo.hasOneUse()) { 260 SDValue TiedIn = getHi16Elt(Hi); 261 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 262 return false; 263 264 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 265 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 266 if (LdLo->getMemoryVT() == MVT::i8) { 267 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 268 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 269 } else { 270 assert(LdLo->getMemoryVT() == MVT::i16); 271 } 272 273 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 274 275 SDValue Ops[] = { 276 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 277 }; 278 279 SDValue NewLoadLo = 280 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 281 Ops, LdLo->getMemoryVT(), 282 LdLo->getMemOperand()); 283 284 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 285 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 286 return true; 287 } 288 289 return false; 290 } 291 292 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 293 if (!Subtarget->d16PreservesUnusedBits()) 294 return; 295 296 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 297 298 bool MadeChange = false; 299 while (Position != CurDAG->allnodes_begin()) { 300 SDNode *N = &*--Position; 301 if (N->use_empty()) 302 continue; 303 304 switch (N->getOpcode()) { 305 case ISD::BUILD_VECTOR: 306 // TODO: Match load d16 from shl (extload:i16), 16 307 MadeChange |= matchLoadD16FromBuildVector(N); 308 break; 309 default: 310 break; 311 } 312 } 313 314 if (MadeChange) { 315 CurDAG->RemoveDeadNodes(); 316 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 317 CurDAG->dump();); 318 } 319 } 320 321 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const { 322 if (N->isUndef()) 323 return true; 324 325 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 326 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 327 return TII->isInlineConstant(C->getAPIntValue()); 328 329 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 330 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 331 332 return false; 333 } 334 335 /// Determine the register class for \p OpNo 336 /// \returns The register class of the virtual register that will be used for 337 /// the given operand number \OpNo or NULL if the register class cannot be 338 /// determined. 339 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 340 unsigned OpNo) const { 341 if (!N->isMachineOpcode()) { 342 if (N->getOpcode() == ISD::CopyToReg) { 343 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 344 if (Reg.isVirtual()) { 345 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 346 return MRI.getRegClass(Reg); 347 } 348 349 const SIRegisterInfo *TRI 350 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 351 return TRI->getPhysRegBaseClass(Reg); 352 } 353 354 return nullptr; 355 } 356 357 switch (N->getMachineOpcode()) { 358 default: { 359 const MCInstrDesc &Desc = 360 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 361 unsigned OpIdx = Desc.getNumDefs() + OpNo; 362 if (OpIdx >= Desc.getNumOperands()) 363 return nullptr; 364 int RegClass = Desc.operands()[OpIdx].RegClass; 365 if (RegClass == -1) 366 return nullptr; 367 368 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 369 } 370 case AMDGPU::REG_SEQUENCE: { 371 unsigned RCID = N->getConstantOperandVal(0); 372 const TargetRegisterClass *SuperRC = 373 Subtarget->getRegisterInfo()->getRegClass(RCID); 374 375 SDValue SubRegOp = N->getOperand(OpNo + 1); 376 unsigned SubRegIdx = SubRegOp->getAsZExtVal(); 377 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 378 SubRegIdx); 379 } 380 } 381 } 382 383 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 384 SDValue Glue) const { 385 SmallVector <SDValue, 8> Ops; 386 Ops.push_back(NewChain); // Replace the chain. 387 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 388 Ops.push_back(N->getOperand(i)); 389 390 Ops.push_back(Glue); 391 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 392 } 393 394 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 395 const SITargetLowering& Lowering = 396 *static_cast<const SITargetLowering*>(getTargetLowering()); 397 398 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 399 400 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 401 return glueCopyToOp(N, M0, M0.getValue(1)); 402 } 403 404 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 405 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 406 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 407 if (Subtarget->ldsRequiresM0Init()) 408 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 409 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 410 MachineFunction &MF = CurDAG->getMachineFunction(); 411 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 412 return 413 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 414 } 415 return N; 416 } 417 418 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 419 EVT VT) const { 420 SDNode *Lo = CurDAG->getMachineNode( 421 AMDGPU::S_MOV_B32, DL, MVT::i32, 422 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 423 SDNode *Hi = 424 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 425 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 426 const SDValue Ops[] = { 427 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 428 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 429 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 430 431 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 432 } 433 434 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 435 EVT VT = N->getValueType(0); 436 unsigned NumVectorElts = VT.getVectorNumElements(); 437 EVT EltVT = VT.getVectorElementType(); 438 SDLoc DL(N); 439 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 440 441 if (NumVectorElts == 1) { 442 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 443 RegClass); 444 return; 445 } 446 447 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 448 "supported yet"); 449 // 32 = Max Num Vector Elements 450 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 451 // 1 = Vector Register Class 452 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 453 454 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 455 Triple::amdgcn; 456 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 457 bool IsRegSeq = true; 458 unsigned NOps = N->getNumOperands(); 459 for (unsigned i = 0; i < NOps; i++) { 460 // XXX: Why is this here? 461 if (isa<RegisterSDNode>(N->getOperand(i))) { 462 IsRegSeq = false; 463 break; 464 } 465 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 466 : R600RegisterInfo::getSubRegFromChannel(i); 467 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 468 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 469 } 470 if (NOps != NumVectorElts) { 471 // Fill in the missing undef elements if this was a scalar_to_vector. 472 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 473 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 474 DL, EltVT); 475 for (unsigned i = NOps; i < NumVectorElts; ++i) { 476 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 477 : R600RegisterInfo::getSubRegFromChannel(i); 478 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 479 RegSeqArgs[1 + (2 * i) + 1] = 480 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 481 } 482 } 483 484 if (!IsRegSeq) 485 SelectCode(N); 486 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 487 } 488 489 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 490 unsigned int Opc = N->getOpcode(); 491 if (N->isMachineOpcode()) { 492 N->setNodeId(-1); 493 return; // Already selected. 494 } 495 496 // isa<MemSDNode> almost works but is slightly too permissive for some DS 497 // intrinsics. 498 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 499 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 500 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX) { 501 N = glueCopyToM0LDSInit(N); 502 SelectCode(N); 503 return; 504 } 505 506 switch (Opc) { 507 default: 508 break; 509 // We are selecting i64 ADD here instead of custom lower it during 510 // DAG legalization, so we can fold some i64 ADDs used for address 511 // calculation into the LOAD and STORE instructions. 512 case ISD::ADDC: 513 case ISD::ADDE: 514 case ISD::SUBC: 515 case ISD::SUBE: { 516 if (N->getValueType(0) != MVT::i64) 517 break; 518 519 SelectADD_SUB_I64(N); 520 return; 521 } 522 case ISD::UADDO_CARRY: 523 case ISD::USUBO_CARRY: 524 if (N->getValueType(0) != MVT::i32) 525 break; 526 527 SelectAddcSubb(N); 528 return; 529 case ISD::UADDO: 530 case ISD::USUBO: { 531 SelectUADDO_USUBO(N); 532 return; 533 } 534 case AMDGPUISD::FMUL_W_CHAIN: { 535 SelectFMUL_W_CHAIN(N); 536 return; 537 } 538 case AMDGPUISD::FMA_W_CHAIN: { 539 SelectFMA_W_CHAIN(N); 540 return; 541 } 542 543 case ISD::SCALAR_TO_VECTOR: 544 case ISD::BUILD_VECTOR: { 545 EVT VT = N->getValueType(0); 546 unsigned NumVectorElts = VT.getVectorNumElements(); 547 if (VT.getScalarSizeInBits() == 16) { 548 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 549 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 550 ReplaceNode(N, Packed); 551 return; 552 } 553 } 554 555 break; 556 } 557 558 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 559 unsigned RegClassID = 560 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 561 SelectBuildVector(N, RegClassID); 562 return; 563 } 564 case ISD::BUILD_PAIR: { 565 SDValue RC, SubReg0, SubReg1; 566 SDLoc DL(N); 567 if (N->getValueType(0) == MVT::i128) { 568 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 569 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 570 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 571 } else if (N->getValueType(0) == MVT::i64) { 572 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 573 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 574 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 575 } else { 576 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 577 } 578 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 579 N->getOperand(1), SubReg1 }; 580 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 581 N->getValueType(0), Ops)); 582 return; 583 } 584 585 case ISD::Constant: 586 case ISD::ConstantFP: { 587 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 588 break; 589 590 uint64_t Imm; 591 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) { 592 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 593 if (AMDGPU::isValid32BitLiteral(Imm, true)) 594 break; 595 } else { 596 ConstantSDNode *C = cast<ConstantSDNode>(N); 597 Imm = C->getZExtValue(); 598 if (AMDGPU::isValid32BitLiteral(Imm, false)) 599 break; 600 } 601 602 SDLoc DL(N); 603 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 604 return; 605 } 606 case AMDGPUISD::BFE_I32: 607 case AMDGPUISD::BFE_U32: { 608 // There is a scalar version available, but unlike the vector version which 609 // has a separate operand for the offset and width, the scalar version packs 610 // the width and offset into a single operand. Try to move to the scalar 611 // version if the offsets are constant, so that we can try to keep extended 612 // loads of kernel arguments in SGPRs. 613 614 // TODO: Technically we could try to pattern match scalar bitshifts of 615 // dynamic values, but it's probably not useful. 616 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 617 if (!Offset) 618 break; 619 620 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 621 if (!Width) 622 break; 623 624 bool Signed = Opc == AMDGPUISD::BFE_I32; 625 626 uint32_t OffsetVal = Offset->getZExtValue(); 627 uint32_t WidthVal = Width->getZExtValue(); 628 629 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, 630 WidthVal)); 631 return; 632 } 633 case AMDGPUISD::DIV_SCALE: { 634 SelectDIV_SCALE(N); 635 return; 636 } 637 case AMDGPUISD::MAD_I64_I32: 638 case AMDGPUISD::MAD_U64_U32: { 639 SelectMAD_64_32(N); 640 return; 641 } 642 case ISD::SMUL_LOHI: 643 case ISD::UMUL_LOHI: 644 return SelectMUL_LOHI(N); 645 case ISD::CopyToReg: { 646 const SITargetLowering& Lowering = 647 *static_cast<const SITargetLowering*>(getTargetLowering()); 648 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 649 break; 650 } 651 case ISD::AND: 652 case ISD::SRL: 653 case ISD::SRA: 654 case ISD::SIGN_EXTEND_INREG: 655 if (N->getValueType(0) != MVT::i32) 656 break; 657 658 SelectS_BFE(N); 659 return; 660 case ISD::BRCOND: 661 SelectBRCOND(N); 662 return; 663 case ISD::FP_EXTEND: 664 SelectFP_EXTEND(N); 665 return; 666 case AMDGPUISD::CVT_PKRTZ_F16_F32: 667 case AMDGPUISD::CVT_PKNORM_I16_F32: 668 case AMDGPUISD::CVT_PKNORM_U16_F32: 669 case AMDGPUISD::CVT_PK_U16_U32: 670 case AMDGPUISD::CVT_PK_I16_I32: { 671 // Hack around using a legal type if f16 is illegal. 672 if (N->getValueType(0) == MVT::i32) { 673 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 674 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 675 { N->getOperand(0), N->getOperand(1) }); 676 SelectCode(N); 677 return; 678 } 679 680 break; 681 } 682 case ISD::INTRINSIC_W_CHAIN: { 683 SelectINTRINSIC_W_CHAIN(N); 684 return; 685 } 686 case ISD::INTRINSIC_WO_CHAIN: { 687 SelectINTRINSIC_WO_CHAIN(N); 688 return; 689 } 690 case ISD::INTRINSIC_VOID: { 691 SelectINTRINSIC_VOID(N); 692 return; 693 } 694 case AMDGPUISD::WAVE_ADDRESS: { 695 SelectWAVE_ADDRESS(N); 696 return; 697 } 698 case ISD::STACKRESTORE: { 699 SelectSTACKRESTORE(N); 700 return; 701 } 702 } 703 704 SelectCode(N); 705 } 706 707 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 708 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 709 const Instruction *Term = BB->getTerminator(); 710 return Term->getMetadata("amdgpu.uniform") || 711 Term->getMetadata("structurizecfg.uniform"); 712 } 713 714 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, 715 unsigned ShAmtBits) const { 716 assert(N->getOpcode() == ISD::AND); 717 718 const APInt &RHS = N->getConstantOperandAPInt(1); 719 if (RHS.countr_one() >= ShAmtBits) 720 return true; 721 722 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; 723 return (LHSKnownZeros | RHS).countr_one() >= ShAmtBits; 724 } 725 726 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 727 SDValue &N0, SDValue &N1) { 728 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 729 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 730 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 731 // (i64 (bitcast (v2i32 (build_vector 732 // (or (extract_vector_elt V, 0), OFFSET), 733 // (extract_vector_elt V, 1))))) 734 SDValue Lo = Addr.getOperand(0).getOperand(0); 735 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 736 SDValue BaseLo = Lo.getOperand(0); 737 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 738 // Check that split base (Lo and Hi) are extracted from the same one. 739 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 740 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 741 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 742 // Lo is statically extracted from index 0. 743 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 744 BaseLo.getConstantOperandVal(1) == 0 && 745 // Hi is statically extracted from index 0. 746 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 747 BaseHi.getConstantOperandVal(1) == 1) { 748 N0 = BaseLo.getOperand(0).getOperand(0); 749 N1 = Lo.getOperand(1); 750 return true; 751 } 752 } 753 } 754 return false; 755 } 756 757 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 758 SDValue &RHS) const { 759 if (CurDAG->isBaseWithConstantOffset(Addr)) { 760 LHS = Addr.getOperand(0); 761 RHS = Addr.getOperand(1); 762 return true; 763 } 764 765 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 766 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 767 return true; 768 } 769 770 return false; 771 } 772 773 StringRef AMDGPUDAGToDAGISel::getPassName() const { 774 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 775 } 776 777 //===----------------------------------------------------------------------===// 778 // Complex Patterns 779 //===----------------------------------------------------------------------===// 780 781 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 782 SDValue &Offset) { 783 return false; 784 } 785 786 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 787 SDValue &Offset) { 788 ConstantSDNode *C; 789 SDLoc DL(Addr); 790 791 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 792 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 793 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 794 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 795 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 796 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 797 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 798 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 799 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 800 Base = Addr.getOperand(0); 801 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 802 } else { 803 Base = Addr; 804 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 805 } 806 807 return true; 808 } 809 810 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 811 const SDLoc &DL) const { 812 SDNode *Mov = CurDAG->getMachineNode( 813 AMDGPU::S_MOV_B32, DL, MVT::i32, 814 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 815 return SDValue(Mov, 0); 816 } 817 818 // FIXME: Should only handle uaddo_carry/usubo_carry 819 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 820 SDLoc DL(N); 821 SDValue LHS = N->getOperand(0); 822 SDValue RHS = N->getOperand(1); 823 824 unsigned Opcode = N->getOpcode(); 825 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 826 bool ProduceCarry = 827 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 828 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 829 830 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 831 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 832 833 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 834 DL, MVT::i32, LHS, Sub0); 835 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 836 DL, MVT::i32, LHS, Sub1); 837 838 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 839 DL, MVT::i32, RHS, Sub0); 840 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 841 DL, MVT::i32, RHS, Sub1); 842 843 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 844 845 static const unsigned OpcMap[2][2][2] = { 846 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 847 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 848 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 849 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 850 851 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 852 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 853 854 SDNode *AddLo; 855 if (!ConsumeCarry) { 856 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 857 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 858 } else { 859 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 860 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 861 } 862 SDValue AddHiArgs[] = { 863 SDValue(Hi0, 0), 864 SDValue(Hi1, 0), 865 SDValue(AddLo, 1) 866 }; 867 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 868 869 SDValue RegSequenceArgs[] = { 870 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 871 SDValue(AddLo,0), 872 Sub0, 873 SDValue(AddHi,0), 874 Sub1, 875 }; 876 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 877 MVT::i64, RegSequenceArgs); 878 879 if (ProduceCarry) { 880 // Replace the carry-use 881 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 882 } 883 884 // Replace the remaining uses. 885 ReplaceNode(N, RegSequence); 886 } 887 888 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 889 SDLoc DL(N); 890 SDValue LHS = N->getOperand(0); 891 SDValue RHS = N->getOperand(1); 892 SDValue CI = N->getOperand(2); 893 894 if (N->isDivergent()) { 895 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::V_ADDC_U32_e64 896 : AMDGPU::V_SUBB_U32_e64; 897 CurDAG->SelectNodeTo( 898 N, Opc, N->getVTList(), 899 {LHS, RHS, CI, 900 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 901 } else { 902 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::S_ADD_CO_PSEUDO 903 : AMDGPU::S_SUB_CO_PSEUDO; 904 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 905 } 906 } 907 908 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 909 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 910 // carry out despite the _i32 name. These were renamed in VI to _U32. 911 // FIXME: We should probably rename the opcodes here. 912 bool IsAdd = N->getOpcode() == ISD::UADDO; 913 bool IsVALU = N->isDivergent(); 914 915 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 916 ++UI) 917 if (UI.getUse().getResNo() == 1) { 918 if ((IsAdd && (UI->getOpcode() != ISD::UADDO_CARRY)) || 919 (!IsAdd && (UI->getOpcode() != ISD::USUBO_CARRY))) { 920 IsVALU = true; 921 break; 922 } 923 } 924 925 if (IsVALU) { 926 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 927 928 CurDAG->SelectNodeTo( 929 N, Opc, N->getVTList(), 930 {N->getOperand(0), N->getOperand(1), 931 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 932 } else { 933 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 934 : AMDGPU::S_USUBO_PSEUDO; 935 936 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 937 {N->getOperand(0), N->getOperand(1)}); 938 } 939 } 940 941 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 942 SDLoc SL(N); 943 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 944 SDValue Ops[10]; 945 946 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 947 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 948 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 949 Ops[8] = N->getOperand(0); 950 Ops[9] = N->getOperand(4); 951 952 // If there are no source modifiers, prefer fmac over fma because it can use 953 // the smaller VOP2 encoding. 954 bool UseFMAC = Subtarget->hasDLInsts() && 955 cast<ConstantSDNode>(Ops[0])->isZero() && 956 cast<ConstantSDNode>(Ops[2])->isZero() && 957 cast<ConstantSDNode>(Ops[4])->isZero(); 958 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 959 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 960 } 961 962 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 963 SDLoc SL(N); 964 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 965 SDValue Ops[8]; 966 967 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 968 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 969 Ops[6] = N->getOperand(0); 970 Ops[7] = N->getOperand(3); 971 972 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 973 } 974 975 // We need to handle this here because tablegen doesn't support matching 976 // instructions with multiple outputs. 977 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 978 SDLoc SL(N); 979 EVT VT = N->getValueType(0); 980 981 assert(VT == MVT::f32 || VT == MVT::f64); 982 983 unsigned Opc 984 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 985 986 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 987 // omod 988 SDValue Ops[8]; 989 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 990 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 991 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 992 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 993 } 994 995 // We need to handle this here because tablegen doesn't support matching 996 // instructions with multiple outputs. 997 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 998 SDLoc SL(N); 999 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1000 unsigned Opc; 1001 if (Subtarget->hasMADIntraFwdBug()) 1002 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1003 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1004 else 1005 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1006 1007 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1008 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1009 Clamp }; 1010 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1011 } 1012 1013 // We need to handle this here because tablegen doesn't support matching 1014 // instructions with multiple outputs. 1015 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { 1016 SDLoc SL(N); 1017 bool Signed = N->getOpcode() == ISD::SMUL_LOHI; 1018 unsigned Opc; 1019 if (Subtarget->hasMADIntraFwdBug()) 1020 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1021 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1022 else 1023 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1024 1025 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); 1026 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1027 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; 1028 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); 1029 if (!SDValue(N, 0).use_empty()) { 1030 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); 1031 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1032 MVT::i32, SDValue(Mad, 0), Sub0); 1033 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); 1034 } 1035 if (!SDValue(N, 1).use_empty()) { 1036 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); 1037 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1038 MVT::i32, SDValue(Mad, 0), Sub1); 1039 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); 1040 } 1041 CurDAG->RemoveDeadNode(N); 1042 } 1043 1044 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1045 if (!isUInt<16>(Offset)) 1046 return false; 1047 1048 if (!Base || Subtarget->hasUsableDSOffset() || 1049 Subtarget->unsafeDSOffsetFoldingEnabled()) 1050 return true; 1051 1052 // On Southern Islands instruction with a negative base value and an offset 1053 // don't seem to work. 1054 return CurDAG->SignBitIsZero(Base); 1055 } 1056 1057 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1058 SDValue &Offset) const { 1059 SDLoc DL(Addr); 1060 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1061 SDValue N0 = Addr.getOperand(0); 1062 SDValue N1 = Addr.getOperand(1); 1063 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1064 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1065 // (add n0, c0) 1066 Base = N0; 1067 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1068 return true; 1069 } 1070 } else if (Addr.getOpcode() == ISD::SUB) { 1071 // sub C, x -> add (sub 0, x), C 1072 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1073 int64_t ByteOffset = C->getSExtValue(); 1074 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1075 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1076 1077 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1078 // the known bits in isDSOffsetLegal. We need to emit the selected node 1079 // here, so this is thrown away. 1080 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1081 Zero, Addr.getOperand(1)); 1082 1083 if (isDSOffsetLegal(Sub, ByteOffset)) { 1084 SmallVector<SDValue, 3> Opnds; 1085 Opnds.push_back(Zero); 1086 Opnds.push_back(Addr.getOperand(1)); 1087 1088 // FIXME: Select to VOP3 version for with-carry. 1089 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1090 if (Subtarget->hasAddNoCarry()) { 1091 SubOp = AMDGPU::V_SUB_U32_e64; 1092 Opnds.push_back( 1093 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1094 } 1095 1096 MachineSDNode *MachineSub = 1097 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1098 1099 Base = SDValue(MachineSub, 0); 1100 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1101 return true; 1102 } 1103 } 1104 } 1105 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1106 // If we have a constant address, prefer to put the constant into the 1107 // offset. This can save moves to load the constant address since multiple 1108 // operations can share the zero base address register, and enables merging 1109 // into read2 / write2 instructions. 1110 1111 SDLoc DL(Addr); 1112 1113 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1114 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1115 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1116 DL, MVT::i32, Zero); 1117 Base = SDValue(MovZero, 0); 1118 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1119 return true; 1120 } 1121 } 1122 1123 // default case 1124 Base = Addr; 1125 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1126 return true; 1127 } 1128 1129 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1130 unsigned Offset1, 1131 unsigned Size) const { 1132 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1133 return false; 1134 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1135 return false; 1136 1137 if (!Base || Subtarget->hasUsableDSOffset() || 1138 Subtarget->unsafeDSOffsetFoldingEnabled()) 1139 return true; 1140 1141 // On Southern Islands instruction with a negative base value and an offset 1142 // don't seem to work. 1143 return CurDAG->SignBitIsZero(Base); 1144 } 1145 1146 // Return whether the operation has NoUnsignedWrap property. 1147 static bool isNoUnsignedWrap(SDValue Addr) { 1148 return (Addr.getOpcode() == ISD::ADD && 1149 Addr->getFlags().hasNoUnsignedWrap()) || 1150 Addr->getOpcode() == ISD::OR; 1151 } 1152 1153 // Check that the base address of flat scratch load/store in the form of `base + 1154 // offset` is legal to be put in SGPR/VGPR (i.e. unsigned per hardware 1155 // requirement). We always treat the first operand as the base address here. 1156 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegal(SDValue Addr) const { 1157 if (isNoUnsignedWrap(Addr)) 1158 return true; 1159 1160 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative 1161 // values. 1162 if (Subtarget->hasSignedScratchOffsets()) 1163 return true; 1164 1165 auto LHS = Addr.getOperand(0); 1166 auto RHS = Addr.getOperand(1); 1167 1168 // If the immediate offset is negative and within certain range, the base 1169 // address cannot also be negative. If the base is also negative, the sum 1170 // would be either negative or much larger than the valid range of scratch 1171 // memory a thread can access. 1172 ConstantSDNode *ImmOp = nullptr; 1173 if (Addr.getOpcode() == ISD::ADD && (ImmOp = dyn_cast<ConstantSDNode>(RHS))) { 1174 if (ImmOp->getSExtValue() < 0 && ImmOp->getSExtValue() > -0x40000000) 1175 return true; 1176 } 1177 1178 return CurDAG->SignBitIsZero(LHS); 1179 } 1180 1181 // Check address value in SGPR/VGPR are legal for flat scratch in the form 1182 // of: SGPR + VGPR. 1183 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSV(SDValue Addr) const { 1184 if (isNoUnsignedWrap(Addr)) 1185 return true; 1186 1187 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative 1188 // values. 1189 if (Subtarget->hasSignedScratchOffsets()) 1190 return true; 1191 1192 auto LHS = Addr.getOperand(0); 1193 auto RHS = Addr.getOperand(1); 1194 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS); 1195 } 1196 1197 // Check address value in SGPR/VGPR are legal for flat scratch in the form 1198 // of: SGPR + VGPR + Imm. 1199 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSVImm(SDValue Addr) const { 1200 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative 1201 // values. 1202 if (AMDGPU::isGFX12Plus(*Subtarget)) 1203 return true; 1204 1205 auto Base = Addr.getOperand(0); 1206 auto *RHSImm = cast<ConstantSDNode>(Addr.getOperand(1)); 1207 // If the immediate offset is negative and within certain range, the base 1208 // address cannot also be negative. If the base is also negative, the sum 1209 // would be either negative or much larger than the valid range of scratch 1210 // memory a thread can access. 1211 if (isNoUnsignedWrap(Base) && 1212 (isNoUnsignedWrap(Addr) || 1213 (RHSImm->getSExtValue() < 0 && RHSImm->getSExtValue() > -0x40000000))) 1214 return true; 1215 1216 auto LHS = Base.getOperand(0); 1217 auto RHS = Base.getOperand(1); 1218 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS); 1219 } 1220 1221 // TODO: If offset is too big, put low 16-bit into offset. 1222 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1223 SDValue &Offset0, 1224 SDValue &Offset1) const { 1225 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1226 } 1227 1228 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1229 SDValue &Offset0, 1230 SDValue &Offset1) const { 1231 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1232 } 1233 1234 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1235 SDValue &Offset0, SDValue &Offset1, 1236 unsigned Size) const { 1237 SDLoc DL(Addr); 1238 1239 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1240 SDValue N0 = Addr.getOperand(0); 1241 SDValue N1 = Addr.getOperand(1); 1242 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1243 unsigned OffsetValue0 = C1->getZExtValue(); 1244 unsigned OffsetValue1 = OffsetValue0 + Size; 1245 1246 // (add n0, c0) 1247 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1248 Base = N0; 1249 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1250 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1251 return true; 1252 } 1253 } else if (Addr.getOpcode() == ISD::SUB) { 1254 // sub C, x -> add (sub 0, x), C 1255 if (const ConstantSDNode *C = 1256 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1257 unsigned OffsetValue0 = C->getZExtValue(); 1258 unsigned OffsetValue1 = OffsetValue0 + Size; 1259 1260 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1261 SDLoc DL(Addr); 1262 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1263 1264 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1265 // the known bits in isDSOffsetLegal. We need to emit the selected node 1266 // here, so this is thrown away. 1267 SDValue Sub = 1268 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1269 1270 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1271 SmallVector<SDValue, 3> Opnds; 1272 Opnds.push_back(Zero); 1273 Opnds.push_back(Addr.getOperand(1)); 1274 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1275 if (Subtarget->hasAddNoCarry()) { 1276 SubOp = AMDGPU::V_SUB_U32_e64; 1277 Opnds.push_back( 1278 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1279 } 1280 1281 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1282 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1283 1284 Base = SDValue(MachineSub, 0); 1285 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1286 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1287 return true; 1288 } 1289 } 1290 } 1291 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1292 unsigned OffsetValue0 = CAddr->getZExtValue(); 1293 unsigned OffsetValue1 = OffsetValue0 + Size; 1294 1295 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1296 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1297 MachineSDNode *MovZero = 1298 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1299 Base = SDValue(MovZero, 0); 1300 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1301 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1302 return true; 1303 } 1304 } 1305 1306 // default case 1307 1308 Base = Addr; 1309 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1310 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1311 return true; 1312 } 1313 1314 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1315 SDValue &SOffset, SDValue &Offset, 1316 SDValue &Offen, SDValue &Idxen, 1317 SDValue &Addr64) const { 1318 // Subtarget prefers to use flat instruction 1319 // FIXME: This should be a pattern predicate and not reach here 1320 if (Subtarget->useFlatForGlobal()) 1321 return false; 1322 1323 SDLoc DL(Addr); 1324 1325 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1326 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1327 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1328 SOffset = Subtarget->hasRestrictedSOffset() 1329 ? CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32) 1330 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1331 1332 ConstantSDNode *C1 = nullptr; 1333 SDValue N0 = Addr; 1334 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1335 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1336 if (isUInt<32>(C1->getZExtValue())) 1337 N0 = Addr.getOperand(0); 1338 else 1339 C1 = nullptr; 1340 } 1341 1342 if (N0.getOpcode() == ISD::ADD) { 1343 // (add N2, N3) -> addr64, or 1344 // (add (add N2, N3), C1) -> addr64 1345 SDValue N2 = N0.getOperand(0); 1346 SDValue N3 = N0.getOperand(1); 1347 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1348 1349 if (N2->isDivergent()) { 1350 if (N3->isDivergent()) { 1351 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1352 // addr64, and construct the resource from a 0 address. 1353 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1354 VAddr = N0; 1355 } else { 1356 // N2 is divergent, N3 is not. 1357 Ptr = N3; 1358 VAddr = N2; 1359 } 1360 } else { 1361 // N2 is not divergent. 1362 Ptr = N2; 1363 VAddr = N3; 1364 } 1365 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1366 } else if (N0->isDivergent()) { 1367 // N0 is divergent. Use it as the addr64, and construct the resource from a 1368 // 0 address. 1369 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1370 VAddr = N0; 1371 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1372 } else { 1373 // N0 -> offset, or 1374 // (N0 + C1) -> offset 1375 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1376 Ptr = N0; 1377 } 1378 1379 if (!C1) { 1380 // No offset. 1381 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1382 return true; 1383 } 1384 1385 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1386 if (TII->isLegalMUBUFImmOffset(C1->getZExtValue())) { 1387 // Legal offset for instruction. 1388 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1389 return true; 1390 } 1391 1392 // Illegal offset, store it in soffset. 1393 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1394 SOffset = 1395 SDValue(CurDAG->getMachineNode( 1396 AMDGPU::S_MOV_B32, DL, MVT::i32, 1397 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1398 0); 1399 return true; 1400 } 1401 1402 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1403 SDValue &VAddr, SDValue &SOffset, 1404 SDValue &Offset) const { 1405 SDValue Ptr, Offen, Idxen, Addr64; 1406 1407 // addr64 bit was removed for volcanic islands. 1408 // FIXME: This should be a pattern predicate and not reach here 1409 if (!Subtarget->hasAddr64()) 1410 return false; 1411 1412 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1413 return false; 1414 1415 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1416 if (C->getSExtValue()) { 1417 SDLoc DL(Addr); 1418 1419 const SITargetLowering& Lowering = 1420 *static_cast<const SITargetLowering*>(getTargetLowering()); 1421 1422 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1423 return true; 1424 } 1425 1426 return false; 1427 } 1428 1429 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1430 SDLoc DL(N); 1431 1432 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1433 SDValue TFI = 1434 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1435 1436 // We rebase the base address into an absolute stack address and hence 1437 // use constant 0 for soffset. This value must be retained until 1438 // frame elimination and eliminateFrameIndex will choose the appropriate 1439 // frame register if need be. 1440 return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1441 } 1442 1443 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1444 SDValue Addr, SDValue &Rsrc, 1445 SDValue &VAddr, SDValue &SOffset, 1446 SDValue &ImmOffset) const { 1447 1448 SDLoc DL(Addr); 1449 MachineFunction &MF = CurDAG->getMachineFunction(); 1450 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1451 1452 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1453 1454 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1455 int64_t Imm = CAddr->getSExtValue(); 1456 const int64_t NullPtr = 1457 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1458 // Don't fold null pointer. 1459 if (Imm != NullPtr) { 1460 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget); 1461 SDValue HighBits = 1462 CurDAG->getTargetConstant(Imm & ~MaxOffset, DL, MVT::i32); 1463 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1464 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1465 VAddr = SDValue(MovHighBits, 0); 1466 1467 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1468 ImmOffset = CurDAG->getTargetConstant(Imm & MaxOffset, DL, MVT::i32); 1469 return true; 1470 } 1471 } 1472 1473 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1474 // (add n0, c1) 1475 1476 SDValue N0 = Addr.getOperand(0); 1477 SDValue N1 = Addr.getOperand(1); 1478 1479 // Offsets in vaddr must be positive if range checking is enabled. 1480 // 1481 // The total computation of vaddr + soffset + offset must not overflow. If 1482 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1483 // overflowing. 1484 // 1485 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1486 // always perform a range check. If a negative vaddr base index was used, 1487 // this would fail the range check. The overall address computation would 1488 // compute a valid address, but this doesn't happen due to the range 1489 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1490 // 1491 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1492 // MUBUF vaddr, but not on older subtargets which can only do this if the 1493 // sign bit is known 0. 1494 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1495 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1496 if (TII->isLegalMUBUFImmOffset(C1->getZExtValue()) && 1497 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1498 CurDAG->SignBitIsZero(N0))) { 1499 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1500 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1501 return true; 1502 } 1503 } 1504 1505 // (node) 1506 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1507 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1508 return true; 1509 } 1510 1511 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1512 if (Val.getOpcode() != ISD::CopyFromReg) 1513 return false; 1514 auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg(); 1515 if (!Reg.isPhysical()) 1516 return false; 1517 auto RC = TRI.getPhysRegBaseClass(Reg); 1518 return RC && TRI.isSGPRClass(RC); 1519 } 1520 1521 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1522 SDValue Addr, 1523 SDValue &SRsrc, 1524 SDValue &SOffset, 1525 SDValue &Offset) const { 1526 const SIRegisterInfo *TRI = 1527 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1528 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1529 MachineFunction &MF = CurDAG->getMachineFunction(); 1530 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1531 SDLoc DL(Addr); 1532 1533 // CopyFromReg <sgpr> 1534 if (IsCopyFromSGPR(*TRI, Addr)) { 1535 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1536 SOffset = Addr; 1537 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1538 return true; 1539 } 1540 1541 ConstantSDNode *CAddr; 1542 if (Addr.getOpcode() == ISD::ADD) { 1543 // Add (CopyFromReg <sgpr>) <constant> 1544 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1545 if (!CAddr || !TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1546 return false; 1547 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1548 return false; 1549 1550 SOffset = Addr.getOperand(0); 1551 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1552 TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1553 // <constant> 1554 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1555 } else { 1556 return false; 1557 } 1558 1559 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1560 1561 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i32); 1562 return true; 1563 } 1564 1565 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1566 SDValue &SOffset, SDValue &Offset 1567 ) const { 1568 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1569 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1570 1571 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1572 return false; 1573 1574 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1575 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1576 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1577 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1578 APInt::getAllOnes(32).getZExtValue(); // Size 1579 SDLoc DL(Addr); 1580 1581 const SITargetLowering& Lowering = 1582 *static_cast<const SITargetLowering*>(getTargetLowering()); 1583 1584 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1585 return true; 1586 } 1587 return false; 1588 } 1589 1590 bool AMDGPUDAGToDAGISel::SelectBUFSOffset(SDValue ByteOffsetNode, 1591 SDValue &SOffset) const { 1592 if (Subtarget->hasRestrictedSOffset() && isNullConstant(ByteOffsetNode)) { 1593 SOffset = CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32); 1594 return true; 1595 } 1596 1597 SOffset = ByteOffsetNode; 1598 return true; 1599 } 1600 1601 // Find a load or store from corresponding pattern root. 1602 // Roots may be build_vector, bitconvert or their combinations. 1603 static MemSDNode* findMemSDNode(SDNode *N) { 1604 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1605 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1606 return MN; 1607 assert(isa<BuildVectorSDNode>(N)); 1608 for (SDValue V : N->op_values()) 1609 if (MemSDNode *MN = 1610 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1611 return MN; 1612 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1613 } 1614 1615 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1616 SDValue &VAddr, SDValue &Offset, 1617 uint64_t FlatVariant) const { 1618 int64_t OffsetVal = 0; 1619 1620 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1621 1622 bool CanHaveFlatSegmentOffsetBug = 1623 Subtarget->hasFlatSegmentOffsetBug() && 1624 FlatVariant == SIInstrFlags::FLAT && 1625 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1626 1627 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1628 SDValue N0, N1; 1629 if (isBaseWithConstantOffset64(Addr, N0, N1) && 1630 (FlatVariant != SIInstrFlags::FlatScratch || 1631 isFlatScratchBaseLegal(Addr))) { 1632 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1633 1634 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1635 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1636 Addr = N0; 1637 OffsetVal = COffsetVal; 1638 } else { 1639 // If the offset doesn't fit, put the low bits into the offset field and 1640 // add the rest. 1641 // 1642 // For a FLAT instruction the hardware decides whether to access 1643 // global/scratch/shared memory based on the high bits of vaddr, 1644 // ignoring the offset field, so we have to ensure that when we add 1645 // remainder to vaddr it still points into the same underlying object. 1646 // The easiest way to do that is to make sure that we split the offset 1647 // into two pieces that are both >= 0 or both <= 0. 1648 1649 SDLoc DL(N); 1650 uint64_t RemainderOffset; 1651 1652 std::tie(OffsetVal, RemainderOffset) = 1653 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1654 1655 SDValue AddOffsetLo = 1656 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1657 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1658 1659 if (Addr.getValueType().getSizeInBits() == 32) { 1660 SmallVector<SDValue, 3> Opnds; 1661 Opnds.push_back(N0); 1662 Opnds.push_back(AddOffsetLo); 1663 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1664 if (Subtarget->hasAddNoCarry()) { 1665 AddOp = AMDGPU::V_ADD_U32_e64; 1666 Opnds.push_back(Clamp); 1667 } 1668 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1669 } else { 1670 // TODO: Should this try to use a scalar add pseudo if the base address 1671 // is uniform and saddr is usable? 1672 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1673 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1674 1675 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1676 DL, MVT::i32, N0, Sub0); 1677 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1678 DL, MVT::i32, N0, Sub1); 1679 1680 SDValue AddOffsetHi = 1681 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1682 1683 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1684 1685 SDNode *Add = 1686 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1687 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1688 1689 SDNode *Addc = CurDAG->getMachineNode( 1690 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1691 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1692 1693 SDValue RegSequenceArgs[] = { 1694 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1695 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1696 1697 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1698 MVT::i64, RegSequenceArgs), 1699 0); 1700 } 1701 } 1702 } 1703 } 1704 1705 VAddr = Addr; 1706 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 1707 return true; 1708 } 1709 1710 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1711 SDValue &VAddr, 1712 SDValue &Offset) const { 1713 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1714 } 1715 1716 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1717 SDValue &VAddr, 1718 SDValue &Offset) const { 1719 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1720 } 1721 1722 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1723 SDValue &VAddr, 1724 SDValue &Offset) const { 1725 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1726 SIInstrFlags::FlatScratch); 1727 } 1728 1729 // If this matches zero_extend i32:x, return x 1730 static SDValue matchZExtFromI32(SDValue Op) { 1731 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1732 return SDValue(); 1733 1734 SDValue ExtSrc = Op.getOperand(0); 1735 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1736 } 1737 1738 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1739 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1740 SDValue Addr, 1741 SDValue &SAddr, 1742 SDValue &VOffset, 1743 SDValue &Offset) const { 1744 int64_t ImmOffset = 0; 1745 1746 // Match the immediate offset first, which canonically is moved as low as 1747 // possible. 1748 1749 SDValue LHS, RHS; 1750 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1751 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1752 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1753 1754 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1755 SIInstrFlags::FlatGlobal)) { 1756 Addr = LHS; 1757 ImmOffset = COffsetVal; 1758 } else if (!LHS->isDivergent()) { 1759 if (COffsetVal > 0) { 1760 SDLoc SL(N); 1761 // saddr + large_offset -> saddr + 1762 // (voffset = large_offset & ~MaxOffset) + 1763 // (large_offset & MaxOffset); 1764 int64_t SplitImmOffset, RemainderOffset; 1765 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1766 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1767 1768 if (isUInt<32>(RemainderOffset)) { 1769 SDNode *VMov = CurDAG->getMachineNode( 1770 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1771 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1772 VOffset = SDValue(VMov, 0); 1773 SAddr = LHS; 1774 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i32); 1775 return true; 1776 } 1777 } 1778 1779 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1780 // is 1 we would need to perform 1 or 2 extra moves for each half of 1781 // the constant and it is better to do a scalar add and then issue a 1782 // single VALU instruction to materialize zero. Otherwise it is less 1783 // instructions to perform VALU adds with immediates or inline literals. 1784 unsigned NumLiterals = 1785 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1786 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1787 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1788 return false; 1789 } 1790 } 1791 1792 // Match the variable offset. 1793 if (Addr.getOpcode() == ISD::ADD) { 1794 LHS = Addr.getOperand(0); 1795 RHS = Addr.getOperand(1); 1796 1797 if (!LHS->isDivergent()) { 1798 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1799 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1800 SAddr = LHS; 1801 VOffset = ZextRHS; 1802 } 1803 } 1804 1805 if (!SAddr && !RHS->isDivergent()) { 1806 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1807 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1808 SAddr = RHS; 1809 VOffset = ZextLHS; 1810 } 1811 } 1812 1813 if (SAddr) { 1814 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 1815 return true; 1816 } 1817 } 1818 1819 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1820 isa<ConstantSDNode>(Addr)) 1821 return false; 1822 1823 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1824 // moves required to copy a 64-bit SGPR to VGPR. 1825 SAddr = Addr; 1826 SDNode *VMov = 1827 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1828 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1829 VOffset = SDValue(VMov, 0); 1830 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 1831 return true; 1832 } 1833 1834 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1835 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1836 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1837 } else if (SAddr.getOpcode() == ISD::ADD && 1838 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1839 // Materialize this into a scalar move for scalar address to avoid 1840 // readfirstlane. 1841 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1842 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1843 FI->getValueType(0)); 1844 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1845 MVT::i32, TFI, SAddr.getOperand(1)), 1846 0); 1847 } 1848 1849 return SAddr; 1850 } 1851 1852 // Match (32-bit SGPR base) + sext(imm offset) 1853 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1854 SDValue &SAddr, 1855 SDValue &Offset) const { 1856 if (Addr->isDivergent()) 1857 return false; 1858 1859 SDLoc DL(Addr); 1860 1861 int64_t COffsetVal = 0; 1862 1863 if (CurDAG->isBaseWithConstantOffset(Addr) && isFlatScratchBaseLegal(Addr)) { 1864 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1865 SAddr = Addr.getOperand(0); 1866 } else { 1867 SAddr = Addr; 1868 } 1869 1870 SAddr = SelectSAddrFI(CurDAG, SAddr); 1871 1872 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1873 1874 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1875 SIInstrFlags::FlatScratch)) { 1876 int64_t SplitImmOffset, RemainderOffset; 1877 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1878 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1879 1880 COffsetVal = SplitImmOffset; 1881 1882 SDValue AddOffset = 1883 SAddr.getOpcode() == ISD::TargetFrameIndex 1884 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1885 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1886 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1887 SAddr, AddOffset), 1888 0); 1889 } 1890 1891 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1892 1893 return true; 1894 } 1895 1896 // Check whether the flat scratch SVS swizzle bug affects this access. 1897 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( 1898 SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { 1899 if (!Subtarget->hasFlatScratchSVSSwizzleBug()) 1900 return false; 1901 1902 // The bug affects the swizzling of SVS accesses if there is any carry out 1903 // from the two low order bits (i.e. from bit 1 into bit 2) when adding 1904 // voffset to (soffset + inst_offset). 1905 KnownBits VKnown = CurDAG->computeKnownBits(VAddr); 1906 KnownBits SKnown = KnownBits::computeForAddSub( 1907 true, false, CurDAG->computeKnownBits(SAddr), 1908 KnownBits::makeConstant(APInt(32, ImmOffset))); 1909 uint64_t VMax = VKnown.getMaxValue().getZExtValue(); 1910 uint64_t SMax = SKnown.getMaxValue().getZExtValue(); 1911 return (VMax & 3) + (SMax & 3) >= 4; 1912 } 1913 1914 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, 1915 SDValue &VAddr, SDValue &SAddr, 1916 SDValue &Offset) const { 1917 int64_t ImmOffset = 0; 1918 1919 SDValue LHS, RHS; 1920 SDValue OrigAddr = Addr; 1921 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1922 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1923 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1924 1925 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1926 Addr = LHS; 1927 ImmOffset = COffsetVal; 1928 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1929 SDLoc SL(N); 1930 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + 1931 // (large_offset & MaxOffset); 1932 int64_t SplitImmOffset, RemainderOffset; 1933 std::tie(SplitImmOffset, RemainderOffset) 1934 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true); 1935 1936 if (isUInt<32>(RemainderOffset)) { 1937 SDNode *VMov = CurDAG->getMachineNode( 1938 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1939 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1940 VAddr = SDValue(VMov, 0); 1941 SAddr = LHS; 1942 if (!isFlatScratchBaseLegal(Addr)) 1943 return false; 1944 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset)) 1945 return false; 1946 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1947 return true; 1948 } 1949 } 1950 } 1951 1952 if (Addr.getOpcode() != ISD::ADD) 1953 return false; 1954 1955 LHS = Addr.getOperand(0); 1956 RHS = Addr.getOperand(1); 1957 1958 if (!LHS->isDivergent() && RHS->isDivergent()) { 1959 SAddr = LHS; 1960 VAddr = RHS; 1961 } else if (!RHS->isDivergent() && LHS->isDivergent()) { 1962 SAddr = RHS; 1963 VAddr = LHS; 1964 } else { 1965 return false; 1966 } 1967 1968 if (OrigAddr != Addr) { 1969 if (!isFlatScratchBaseLegalSVImm(OrigAddr)) 1970 return false; 1971 } else { 1972 if (!isFlatScratchBaseLegalSV(OrigAddr)) 1973 return false; 1974 } 1975 1976 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) 1977 return false; 1978 SAddr = SelectSAddrFI(CurDAG, SAddr); 1979 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1980 return true; 1981 } 1982 1983 // Match an immediate (if Offset is not null) or an SGPR (if SOffset is 1984 // not null) offset. If Imm32Only is true, match only 32-bit immediate 1985 // offsets available on CI. 1986 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1987 SDValue *SOffset, SDValue *Offset, 1988 bool Imm32Only, bool IsBuffer) const { 1989 assert((!SOffset || !Offset) && 1990 "Cannot match both soffset and offset at the same time!"); 1991 1992 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1993 if (!C) { 1994 if (!SOffset) 1995 return false; 1996 if (ByteOffsetNode.getValueType().isScalarInteger() && 1997 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1998 *SOffset = ByteOffsetNode; 1999 return true; 2000 } 2001 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 2002 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 2003 *SOffset = ByteOffsetNode.getOperand(0); 2004 return true; 2005 } 2006 } 2007 return false; 2008 } 2009 2010 SDLoc SL(ByteOffsetNode); 2011 2012 // GFX9 and GFX10 have signed byte immediate offsets. The immediate 2013 // offset for S_BUFFER instructions is unsigned. 2014 int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue(); 2015 std::optional<int64_t> EncodedOffset = 2016 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, IsBuffer); 2017 if (EncodedOffset && Offset && !Imm32Only) { 2018 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 2019 return true; 2020 } 2021 2022 // SGPR and literal offsets are unsigned. 2023 if (ByteOffset < 0) 2024 return false; 2025 2026 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 2027 if (EncodedOffset && Offset && Imm32Only) { 2028 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 2029 return true; 2030 } 2031 2032 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 2033 return false; 2034 2035 if (SOffset) { 2036 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 2037 *SOffset = SDValue( 2038 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 2039 return true; 2040 } 2041 2042 return false; 2043 } 2044 2045 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 2046 if (Addr.getValueType() != MVT::i32) 2047 return Addr; 2048 2049 // Zero-extend a 32-bit address. 2050 SDLoc SL(Addr); 2051 2052 const MachineFunction &MF = CurDAG->getMachineFunction(); 2053 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2054 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 2055 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 2056 2057 const SDValue Ops[] = { 2058 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 2059 Addr, 2060 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2061 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 2062 0), 2063 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 2064 }; 2065 2066 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 2067 Ops), 0); 2068 } 2069 2070 // Match a base and an immediate (if Offset is not null) or an SGPR (if 2071 // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is 2072 // true, match only 32-bit immediate offsets available on CI. 2073 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase, 2074 SDValue *SOffset, SDValue *Offset, 2075 bool Imm32Only, 2076 bool IsBuffer) const { 2077 if (SOffset && Offset) { 2078 assert(!Imm32Only && !IsBuffer); 2079 SDValue B; 2080 return SelectSMRDBaseOffset(Addr, B, nullptr, Offset) && 2081 SelectSMRDBaseOffset(B, SBase, SOffset, nullptr); 2082 } 2083 2084 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2085 // wraparound, because s_load instructions perform the addition in 64 bits. 2086 if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD && 2087 !Addr->getFlags().hasNoUnsignedWrap()) 2088 return false; 2089 2090 SDValue N0, N1; 2091 // Extract the base and offset if possible. 2092 if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) { 2093 N0 = Addr.getOperand(0); 2094 N1 = Addr.getOperand(1); 2095 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2096 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2097 } 2098 if (!N0 || !N1) 2099 return false; 2100 if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer)) { 2101 SBase = N0; 2102 return true; 2103 } 2104 if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer)) { 2105 SBase = N1; 2106 return true; 2107 } 2108 return false; 2109 } 2110 2111 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2112 SDValue *SOffset, SDValue *Offset, 2113 bool Imm32Only) const { 2114 if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) { 2115 SBase = Expand32BitAddress(SBase); 2116 return true; 2117 } 2118 2119 if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) { 2120 SBase = Expand32BitAddress(Addr); 2121 *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2122 return true; 2123 } 2124 2125 return false; 2126 } 2127 2128 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2129 SDValue &Offset) const { 2130 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset); 2131 } 2132 2133 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2134 SDValue &Offset) const { 2135 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2136 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset, 2137 /* Imm32Only */ true); 2138 } 2139 2140 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2141 SDValue &SOffset) const { 2142 return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr); 2143 } 2144 2145 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase, 2146 SDValue &SOffset, 2147 SDValue &Offset) const { 2148 return SelectSMRD(Addr, SBase, &SOffset, &Offset); 2149 } 2150 2151 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const { 2152 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2153 /* Imm32Only */ false, /* IsBuffer */ true); 2154 } 2155 2156 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N, 2157 SDValue &Offset) const { 2158 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2159 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2160 /* Imm32Only */ true, /* IsBuffer */ true); 2161 } 2162 2163 bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset, 2164 SDValue &Offset) const { 2165 // Match the (soffset + offset) pair as a 32-bit register base and 2166 // an immediate offset. 2167 return N.getValueType() == MVT::i32 && 2168 SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr, 2169 &Offset, /* Imm32Only */ false, 2170 /* IsBuffer */ true); 2171 } 2172 2173 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2174 SDValue &Base, 2175 SDValue &Offset) const { 2176 SDLoc DL(Index); 2177 2178 if (CurDAG->isBaseWithConstantOffset(Index)) { 2179 SDValue N0 = Index.getOperand(0); 2180 SDValue N1 = Index.getOperand(1); 2181 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2182 2183 // (add n0, c0) 2184 // Don't peel off the offset (c0) if doing so could possibly lead 2185 // the base (n0) to be negative. 2186 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2187 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2188 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2189 Base = N0; 2190 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2191 return true; 2192 } 2193 } 2194 2195 if (isa<ConstantSDNode>(Index)) 2196 return false; 2197 2198 Base = Index; 2199 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2200 return true; 2201 } 2202 2203 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, 2204 SDValue Val, uint32_t Offset, 2205 uint32_t Width) { 2206 if (Val->isDivergent()) { 2207 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; 2208 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); 2209 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); 2210 2211 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); 2212 } 2213 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2214 // Transformation function, pack the offset and width of a BFE into 2215 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2216 // source, bits [5:0] contain the offset and bits [22:16] the width. 2217 uint32_t PackedVal = Offset | (Width << 16); 2218 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2219 2220 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2221 } 2222 2223 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2224 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2225 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2226 // Predicate: 0 < b <= c < 32 2227 2228 const SDValue &Shl = N->getOperand(0); 2229 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2230 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2231 2232 if (B && C) { 2233 uint32_t BVal = B->getZExtValue(); 2234 uint32_t CVal = C->getZExtValue(); 2235 2236 if (0 < BVal && BVal <= CVal && CVal < 32) { 2237 bool Signed = N->getOpcode() == ISD::SRA; 2238 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2239 32 - CVal)); 2240 return; 2241 } 2242 } 2243 SelectCode(N); 2244 } 2245 2246 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2247 switch (N->getOpcode()) { 2248 case ISD::AND: 2249 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2250 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2251 // Predicate: isMask(mask) 2252 const SDValue &Srl = N->getOperand(0); 2253 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2254 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2255 2256 if (Shift && Mask) { 2257 uint32_t ShiftVal = Shift->getZExtValue(); 2258 uint32_t MaskVal = Mask->getZExtValue(); 2259 2260 if (isMask_32(MaskVal)) { 2261 uint32_t WidthVal = llvm::popcount(MaskVal); 2262 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, 2263 WidthVal)); 2264 return; 2265 } 2266 } 2267 } 2268 break; 2269 case ISD::SRL: 2270 if (N->getOperand(0).getOpcode() == ISD::AND) { 2271 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2272 // Predicate: isMask(mask >> b) 2273 const SDValue &And = N->getOperand(0); 2274 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2275 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2276 2277 if (Shift && Mask) { 2278 uint32_t ShiftVal = Shift->getZExtValue(); 2279 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2280 2281 if (isMask_32(MaskVal)) { 2282 uint32_t WidthVal = llvm::popcount(MaskVal); 2283 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, 2284 WidthVal)); 2285 return; 2286 } 2287 } 2288 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2289 SelectS_BFEFromShifts(N); 2290 return; 2291 } 2292 break; 2293 case ISD::SRA: 2294 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2295 SelectS_BFEFromShifts(N); 2296 return; 2297 } 2298 break; 2299 2300 case ISD::SIGN_EXTEND_INREG: { 2301 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2302 SDValue Src = N->getOperand(0); 2303 if (Src.getOpcode() != ISD::SRL) 2304 break; 2305 2306 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2307 if (!Amt) 2308 break; 2309 2310 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2311 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), 2312 Amt->getZExtValue(), Width)); 2313 return; 2314 } 2315 } 2316 2317 SelectCode(N); 2318 } 2319 2320 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2321 assert(N->getOpcode() == ISD::BRCOND); 2322 if (!N->hasOneUse()) 2323 return false; 2324 2325 SDValue Cond = N->getOperand(1); 2326 if (Cond.getOpcode() == ISD::CopyToReg) 2327 Cond = Cond.getOperand(2); 2328 2329 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2330 return false; 2331 2332 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2333 if (VT == MVT::i32) 2334 return true; 2335 2336 if (VT == MVT::i64) { 2337 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2338 2339 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2340 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2341 } 2342 2343 return false; 2344 } 2345 2346 static SDValue combineBallotPattern(SDValue VCMP, bool &Negate) { 2347 assert(VCMP->getOpcode() == AMDGPUISD::SETCC); 2348 // Special case for amdgcn.ballot: 2349 // %Cond = i1 (and/or combination of i1 ISD::SETCCs) 2350 // %VCMP = i(WaveSize) AMDGPUISD::SETCC (ext %Cond), 0, setne/seteq 2351 // => 2352 // Use i1 %Cond value instead of i(WaveSize) %VCMP. 2353 // This is possible because divergent ISD::SETCC is selected as V_CMP and 2354 // Cond becomes a i(WaveSize) full mask value. 2355 // Note that ballot doesn't use SETEQ condition but its easy to support it 2356 // here for completeness, so in this case Negate is set true on return. 2357 auto VCMP_CC = cast<CondCodeSDNode>(VCMP.getOperand(2))->get(); 2358 if ((VCMP_CC == ISD::SETEQ || VCMP_CC == ISD::SETNE) && 2359 isNullConstant(VCMP.getOperand(1))) { 2360 2361 auto Cond = VCMP.getOperand(0); 2362 if (ISD::isExtOpcode(Cond->getOpcode())) // Skip extension. 2363 Cond = Cond.getOperand(0); 2364 2365 if (isBoolSGPR(Cond)) { 2366 Negate = VCMP_CC == ISD::SETEQ; 2367 return Cond; 2368 } 2369 } 2370 return SDValue(); 2371 } 2372 2373 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2374 SDValue Cond = N->getOperand(1); 2375 2376 if (Cond.isUndef()) { 2377 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2378 N->getOperand(2), N->getOperand(0)); 2379 return; 2380 } 2381 2382 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2383 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2384 2385 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2386 bool AndExec = !UseSCCBr; 2387 bool Negate = false; 2388 2389 if (Cond.getOpcode() == ISD::SETCC && 2390 Cond->getOperand(0)->getOpcode() == AMDGPUISD::SETCC) { 2391 SDValue VCMP = Cond->getOperand(0); 2392 auto CC = cast<CondCodeSDNode>(Cond->getOperand(2))->get(); 2393 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 2394 isNullConstant(Cond->getOperand(1)) && 2395 // TODO: make condition below an assert after fixing ballot bitwidth. 2396 VCMP.getValueType().getSizeInBits() == ST->getWavefrontSize()) { 2397 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... 2398 // %C = i1 ISD::SETCC %VCMP, 0, setne/seteq 2399 // BRCOND i1 %C, %BB 2400 // => 2401 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... 2402 // VCC = COPY i(WaveSize) %VCMP 2403 // S_CBRANCH_VCCNZ/VCCZ %BB 2404 Negate = CC == ISD::SETEQ; 2405 bool NegatedBallot = false; 2406 if (auto BallotCond = combineBallotPattern(VCMP, NegatedBallot)) { 2407 Cond = BallotCond; 2408 UseSCCBr = !BallotCond->isDivergent(); 2409 Negate = Negate ^ NegatedBallot; 2410 } else { 2411 // TODO: don't use SCC here assuming that AMDGPUISD::SETCC is always 2412 // selected as V_CMP, but this may change for uniform condition. 2413 Cond = VCMP; 2414 UseSCCBr = false; 2415 } 2416 } 2417 // Cond is either V_CMP resulted from AMDGPUISD::SETCC or a combination of 2418 // V_CMPs resulted from ballot or ballot has uniform condition and SCC is 2419 // used. 2420 AndExec = false; 2421 } 2422 2423 unsigned BrOp = 2424 UseSCCBr ? (Negate ? AMDGPU::S_CBRANCH_SCC0 : AMDGPU::S_CBRANCH_SCC1) 2425 : (Negate ? AMDGPU::S_CBRANCH_VCCZ : AMDGPU::S_CBRANCH_VCCNZ); 2426 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2427 SDLoc SL(N); 2428 2429 if (AndExec) { 2430 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2431 // analyzed what generates the vcc value, so we do not know whether vcc 2432 // bits for disabled lanes are 0. Thus we need to mask out bits for 2433 // disabled lanes. 2434 // 2435 // For the case that we select S_CBRANCH_SCC1 and it gets 2436 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2437 // SIInstrInfo::moveToVALU which inserts the S_AND). 2438 // 2439 // We could add an analysis of what generates the vcc value here and omit 2440 // the S_AND when is unnecessary. But it would be better to add a separate 2441 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2442 // catches both cases. 2443 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2444 : AMDGPU::S_AND_B64, 2445 SL, MVT::i1, 2446 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2447 : AMDGPU::EXEC, 2448 MVT::i1), 2449 Cond), 2450 0); 2451 } 2452 2453 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2454 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2455 N->getOperand(2), // Basic Block 2456 VCC.getValue(0)); 2457 } 2458 2459 void AMDGPUDAGToDAGISel::SelectFP_EXTEND(SDNode *N) { 2460 if (Subtarget->hasSALUFloatInsts() && N->getValueType(0) == MVT::f32 && 2461 !N->isDivergent()) { 2462 SDValue Src = N->getOperand(0); 2463 if (Src.getValueType() == MVT::f16) { 2464 if (isExtractHiElt(Src, Src)) { 2465 CurDAG->SelectNodeTo(N, AMDGPU::S_CVT_HI_F32_F16, N->getVTList(), 2466 {Src}); 2467 return; 2468 } 2469 } 2470 } 2471 2472 SelectCode(N); 2473 } 2474 2475 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2476 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2477 // be copied to an SGPR with readfirstlane. 2478 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2479 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2480 2481 SDValue Chain = N->getOperand(0); 2482 SDValue Ptr = N->getOperand(2); 2483 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2484 MachineMemOperand *MMO = M->getMemOperand(); 2485 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2486 2487 SDValue Offset; 2488 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2489 SDValue PtrBase = Ptr.getOperand(0); 2490 SDValue PtrOffset = Ptr.getOperand(1); 2491 2492 const APInt &OffsetVal = PtrOffset->getAsAPIntVal(); 2493 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2494 N = glueCopyToM0(N, PtrBase); 2495 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2496 } 2497 } 2498 2499 if (!Offset) { 2500 N = glueCopyToM0(N, Ptr); 2501 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2502 } 2503 2504 SDValue Ops[] = { 2505 Offset, 2506 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2507 Chain, 2508 N->getOperand(N->getNumOperands() - 1) // New glue 2509 }; 2510 2511 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2512 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2513 } 2514 2515 // We need to handle this here because tablegen doesn't support matching 2516 // instructions with multiple outputs. 2517 void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) { 2518 unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32; 2519 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4), 2520 N->getOperand(5), N->getOperand(0)}; 2521 2522 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2523 MachineMemOperand *MMO = M->getMemOperand(); 2524 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2525 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2526 } 2527 2528 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2529 switch (IntrID) { 2530 case Intrinsic::amdgcn_ds_gws_init: 2531 return AMDGPU::DS_GWS_INIT; 2532 case Intrinsic::amdgcn_ds_gws_barrier: 2533 return AMDGPU::DS_GWS_BARRIER; 2534 case Intrinsic::amdgcn_ds_gws_sema_v: 2535 return AMDGPU::DS_GWS_SEMA_V; 2536 case Intrinsic::amdgcn_ds_gws_sema_br: 2537 return AMDGPU::DS_GWS_SEMA_BR; 2538 case Intrinsic::amdgcn_ds_gws_sema_p: 2539 return AMDGPU::DS_GWS_SEMA_P; 2540 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2541 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2542 default: 2543 llvm_unreachable("not a gws intrinsic"); 2544 } 2545 } 2546 2547 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2548 if (!Subtarget->hasGWS() || 2549 (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2550 !Subtarget->hasGWSSemaReleaseAll())) { 2551 // Let this error. 2552 SelectCode(N); 2553 return; 2554 } 2555 2556 // Chain, intrinsic ID, vsrc, offset 2557 const bool HasVSrc = N->getNumOperands() == 4; 2558 assert(HasVSrc || N->getNumOperands() == 3); 2559 2560 SDLoc SL(N); 2561 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2562 int ImmOffset = 0; 2563 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2564 MachineMemOperand *MMO = M->getMemOperand(); 2565 2566 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2567 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2568 2569 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2570 // offset field) % 64. Some versions of the programming guide omit the m0 2571 // part, or claim it's from offset 0. 2572 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2573 // If we have a constant offset, try to use the 0 in m0 as the base. 2574 // TODO: Look into changing the default m0 initialization value. If the 2575 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2576 // the immediate offset. 2577 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2578 ImmOffset = ConstOffset->getZExtValue(); 2579 } else { 2580 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2581 ImmOffset = BaseOffset.getConstantOperandVal(1); 2582 BaseOffset = BaseOffset.getOperand(0); 2583 } 2584 2585 // Prefer to do the shift in an SGPR since it should be possible to use m0 2586 // as the result directly. If it's already an SGPR, it will be eliminated 2587 // later. 2588 SDNode *SGPROffset 2589 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2590 BaseOffset); 2591 // Shift to offset in m0 2592 SDNode *M0Base 2593 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2594 SDValue(SGPROffset, 0), 2595 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2596 glueCopyToM0(N, SDValue(M0Base, 0)); 2597 } 2598 2599 SDValue Chain = N->getOperand(0); 2600 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2601 2602 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2603 SmallVector<SDValue, 5> Ops; 2604 if (HasVSrc) 2605 Ops.push_back(N->getOperand(2)); 2606 Ops.push_back(OffsetField); 2607 Ops.push_back(Chain); 2608 2609 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2610 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2611 } 2612 2613 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2614 if (Subtarget->getLDSBankCount() != 16) { 2615 // This is a single instruction with a pattern. 2616 SelectCode(N); 2617 return; 2618 } 2619 2620 SDLoc DL(N); 2621 2622 // This requires 2 instructions. It is possible to write a pattern to support 2623 // this, but the generated isel emitter doesn't correctly deal with multiple 2624 // output instructions using the same physical register input. The copy to m0 2625 // is incorrectly placed before the second instruction. 2626 // 2627 // TODO: Match source modifiers. 2628 // 2629 // def : Pat < 2630 // (int_amdgcn_interp_p1_f16 2631 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2632 // (i32 timm:$attrchan), (i32 timm:$attr), 2633 // (i1 timm:$high), M0), 2634 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2635 // timm:$attrchan, 0, 2636 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2637 // let Predicates = [has16BankLDS]; 2638 // } 2639 2640 // 16 bank LDS 2641 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2642 N->getOperand(5), SDValue()); 2643 2644 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2645 2646 SDNode *InterpMov = 2647 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2648 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2649 N->getOperand(3), // Attr 2650 N->getOperand(2), // Attrchan 2651 ToM0.getValue(1) // In glue 2652 }); 2653 2654 SDNode *InterpP1LV = 2655 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2656 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2657 N->getOperand(1), // Src0 2658 N->getOperand(3), // Attr 2659 N->getOperand(2), // Attrchan 2660 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2661 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2662 N->getOperand(4), // high 2663 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2664 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2665 SDValue(InterpMov, 1) 2666 }); 2667 2668 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2669 } 2670 2671 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2672 unsigned IntrID = N->getConstantOperandVal(1); 2673 switch (IntrID) { 2674 case Intrinsic::amdgcn_ds_append: 2675 case Intrinsic::amdgcn_ds_consume: { 2676 if (N->getValueType(0) != MVT::i32) 2677 break; 2678 SelectDSAppendConsume(N, IntrID); 2679 return; 2680 } 2681 case Intrinsic::amdgcn_ds_bvh_stack_rtn: 2682 SelectDSBvhStackIntrinsic(N); 2683 return; 2684 } 2685 2686 SelectCode(N); 2687 } 2688 2689 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2690 unsigned IntrID = N->getConstantOperandVal(0); 2691 unsigned Opcode; 2692 switch (IntrID) { 2693 case Intrinsic::amdgcn_wqm: 2694 Opcode = AMDGPU::WQM; 2695 break; 2696 case Intrinsic::amdgcn_softwqm: 2697 Opcode = AMDGPU::SOFT_WQM; 2698 break; 2699 case Intrinsic::amdgcn_wwm: 2700 case Intrinsic::amdgcn_strict_wwm: 2701 Opcode = AMDGPU::STRICT_WWM; 2702 break; 2703 case Intrinsic::amdgcn_strict_wqm: 2704 Opcode = AMDGPU::STRICT_WQM; 2705 break; 2706 case Intrinsic::amdgcn_interp_p1_f16: 2707 SelectInterpP1F16(N); 2708 return; 2709 case Intrinsic::amdgcn_inverse_ballot: 2710 switch (N->getOperand(1).getValueSizeInBits()) { 2711 case 32: 2712 Opcode = AMDGPU::S_INVERSE_BALLOT_U32; 2713 break; 2714 case 64: 2715 Opcode = AMDGPU::S_INVERSE_BALLOT_U64; 2716 break; 2717 default: 2718 llvm_unreachable("Unsupported size for inverse ballot mask."); 2719 } 2720 break; 2721 default: 2722 SelectCode(N); 2723 return; 2724 } 2725 2726 SDValue Src = N->getOperand(1); 2727 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2728 } 2729 2730 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2731 unsigned IntrID = N->getConstantOperandVal(1); 2732 switch (IntrID) { 2733 case Intrinsic::amdgcn_ds_gws_init: 2734 case Intrinsic::amdgcn_ds_gws_barrier: 2735 case Intrinsic::amdgcn_ds_gws_sema_v: 2736 case Intrinsic::amdgcn_ds_gws_sema_br: 2737 case Intrinsic::amdgcn_ds_gws_sema_p: 2738 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2739 SelectDS_GWS(N, IntrID); 2740 return; 2741 default: 2742 break; 2743 } 2744 2745 SelectCode(N); 2746 } 2747 2748 void AMDGPUDAGToDAGISel::SelectWAVE_ADDRESS(SDNode *N) { 2749 SDValue Log2WaveSize = 2750 CurDAG->getTargetConstant(Subtarget->getWavefrontSizeLog2(), SDLoc(N), MVT::i32); 2751 CurDAG->SelectNodeTo(N, AMDGPU::S_LSHR_B32, N->getVTList(), 2752 {N->getOperand(0), Log2WaveSize}); 2753 } 2754 2755 void AMDGPUDAGToDAGISel::SelectSTACKRESTORE(SDNode *N) { 2756 SDValue SrcVal = N->getOperand(1); 2757 if (SrcVal.getValueType() != MVT::i32) { 2758 SelectCode(N); // Emit default error 2759 return; 2760 } 2761 2762 SDValue CopyVal; 2763 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 2764 SDLoc SL(N); 2765 2766 if (SrcVal.getOpcode() == AMDGPUISD::WAVE_ADDRESS) { 2767 CopyVal = SrcVal.getOperand(0); 2768 } else { 2769 SDValue Log2WaveSize = CurDAG->getTargetConstant( 2770 Subtarget->getWavefrontSizeLog2(), SL, MVT::i32); 2771 2772 if (N->isDivergent()) { 2773 SrcVal = SDValue(CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, 2774 MVT::i32, SrcVal), 2775 0); 2776 } 2777 2778 CopyVal = SDValue(CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2779 {SrcVal, Log2WaveSize}), 2780 0); 2781 } 2782 2783 SDValue CopyToSP = CurDAG->getCopyToReg(N->getOperand(0), SL, SP, CopyVal); 2784 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyToSP); 2785 } 2786 2787 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2788 unsigned &Mods, 2789 bool IsCanonicalizing, 2790 bool AllowAbs) const { 2791 Mods = SISrcMods::NONE; 2792 Src = In; 2793 2794 if (Src.getOpcode() == ISD::FNEG) { 2795 Mods |= SISrcMods::NEG; 2796 Src = Src.getOperand(0); 2797 } else if (Src.getOpcode() == ISD::FSUB && IsCanonicalizing) { 2798 // Fold fsub [+-]0 into fneg. This may not have folded depending on the 2799 // denormal mode, but we're implicitly canonicalizing in a source operand. 2800 auto *LHS = dyn_cast<ConstantFPSDNode>(Src.getOperand(0)); 2801 if (LHS && LHS->isZero()) { 2802 Mods |= SISrcMods::NEG; 2803 Src = Src.getOperand(1); 2804 } 2805 } 2806 2807 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2808 Mods |= SISrcMods::ABS; 2809 Src = Src.getOperand(0); 2810 } 2811 2812 return true; 2813 } 2814 2815 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2816 SDValue &SrcMods) const { 2817 unsigned Mods; 2818 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/true, 2819 /*AllowAbs=*/true)) { 2820 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2821 return true; 2822 } 2823 2824 return false; 2825 } 2826 2827 bool AMDGPUDAGToDAGISel::SelectVOP3ModsNonCanonicalizing( 2828 SDValue In, SDValue &Src, SDValue &SrcMods) const { 2829 unsigned Mods; 2830 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/false, 2831 /*AllowAbs=*/true)) { 2832 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2833 return true; 2834 } 2835 2836 return false; 2837 } 2838 2839 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2840 SDValue &SrcMods) const { 2841 unsigned Mods; 2842 if (SelectVOP3ModsImpl(In, Src, Mods, 2843 /*IsCanonicalizing=*/true, 2844 /*AllowAbs=*/false)) { 2845 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2846 return true; 2847 } 2848 2849 return false; 2850 } 2851 2852 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2853 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2854 return false; 2855 2856 Src = In; 2857 return true; 2858 } 2859 2860 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src, 2861 SDValue &SrcMods, 2862 bool OpSel) const { 2863 unsigned Mods; 2864 if (SelectVOP3ModsImpl(In, Src, Mods, 2865 /*IsCanonicalizing=*/true, 2866 /*AllowAbs=*/false)) { 2867 if (OpSel) 2868 Mods |= SISrcMods::OP_SEL_0; 2869 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2870 return true; 2871 } 2872 2873 return false; 2874 } 2875 2876 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src, 2877 SDValue &SrcMods) const { 2878 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false); 2879 } 2880 2881 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src, 2882 SDValue &SrcMods) const { 2883 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true); 2884 } 2885 2886 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2887 SDValue &SrcMods, SDValue &Clamp, 2888 SDValue &Omod) const { 2889 SDLoc DL(In); 2890 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2891 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2892 2893 return SelectVOP3Mods(In, Src, SrcMods); 2894 } 2895 2896 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2897 SDValue &SrcMods, SDValue &Clamp, 2898 SDValue &Omod) const { 2899 SDLoc DL(In); 2900 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2901 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2902 2903 return SelectVOP3BMods(In, Src, SrcMods); 2904 } 2905 2906 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2907 SDValue &Clamp, SDValue &Omod) const { 2908 Src = In; 2909 2910 SDLoc DL(In); 2911 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2912 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2913 2914 return true; 2915 } 2916 2917 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2918 SDValue &SrcMods, bool IsDOT) const { 2919 unsigned Mods = SISrcMods::NONE; 2920 Src = In; 2921 2922 // TODO: Handle G_FSUB 0 as fneg 2923 if (Src.getOpcode() == ISD::FNEG) { 2924 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2925 Src = Src.getOperand(0); 2926 } 2927 2928 if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 && 2929 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { 2930 unsigned VecMods = Mods; 2931 2932 SDValue Lo = stripBitcast(Src.getOperand(0)); 2933 SDValue Hi = stripBitcast(Src.getOperand(1)); 2934 2935 if (Lo.getOpcode() == ISD::FNEG) { 2936 Lo = stripBitcast(Lo.getOperand(0)); 2937 Mods ^= SISrcMods::NEG; 2938 } 2939 2940 if (Hi.getOpcode() == ISD::FNEG) { 2941 Hi = stripBitcast(Hi.getOperand(0)); 2942 Mods ^= SISrcMods::NEG_HI; 2943 } 2944 2945 if (isExtractHiElt(Lo, Lo)) 2946 Mods |= SISrcMods::OP_SEL_0; 2947 2948 if (isExtractHiElt(Hi, Hi)) 2949 Mods |= SISrcMods::OP_SEL_1; 2950 2951 unsigned VecSize = Src.getValueSizeInBits(); 2952 Lo = stripExtractLoElt(Lo); 2953 Hi = stripExtractLoElt(Hi); 2954 2955 if (Lo.getValueSizeInBits() > VecSize) { 2956 Lo = CurDAG->getTargetExtractSubreg( 2957 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2958 MVT::getIntegerVT(VecSize), Lo); 2959 } 2960 2961 if (Hi.getValueSizeInBits() > VecSize) { 2962 Hi = CurDAG->getTargetExtractSubreg( 2963 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2964 MVT::getIntegerVT(VecSize), Hi); 2965 } 2966 2967 assert(Lo.getValueSizeInBits() <= VecSize && 2968 Hi.getValueSizeInBits() <= VecSize); 2969 2970 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2971 // Really a scalar input. Just select from the low half of the register to 2972 // avoid packing. 2973 2974 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2975 Src = Lo; 2976 } else { 2977 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2978 2979 SDLoc SL(In); 2980 SDValue Undef = SDValue( 2981 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2982 Lo.getValueType()), 0); 2983 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2984 : AMDGPU::SReg_64RegClassID; 2985 const SDValue Ops[] = { 2986 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2987 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2988 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2989 2990 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2991 Src.getValueType(), Ops), 0); 2992 } 2993 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2994 return true; 2995 } 2996 2997 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2998 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2999 .bitcastToAPInt().getZExtValue(); 3000 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 3001 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64); 3002 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3003 return true; 3004 } 3005 } 3006 3007 Mods = VecMods; 3008 } 3009 3010 // Packed instructions do not have abs modifiers. 3011 Mods |= SISrcMods::OP_SEL_1; 3012 3013 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3014 return true; 3015 } 3016 3017 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, 3018 SDValue &SrcMods) const { 3019 return SelectVOP3PMods(In, Src, SrcMods, true); 3020 } 3021 3022 bool AMDGPUDAGToDAGISel::SelectVOP3PModsNeg(SDValue In, SDValue &Src) const { 3023 const ConstantSDNode *C = cast<ConstantSDNode>(In); 3024 // Literal i1 value set in intrinsic, represents SrcMods for the next operand. 3025 // 1 promotes packed values to signed, 0 treats them as unsigned. 3026 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 3027 3028 unsigned Mods = SISrcMods::OP_SEL_1; 3029 unsigned SrcSign = C->getZExtValue(); 3030 if (SrcSign == 1) 3031 Mods ^= SISrcMods::NEG; 3032 3033 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3034 return true; 3035 } 3036 3037 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In, 3038 SDValue &Src) const { 3039 const ConstantSDNode *C = cast<ConstantSDNode>(In); 3040 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 3041 3042 unsigned Mods = SISrcMods::OP_SEL_1; 3043 unsigned SrcVal = C->getZExtValue(); 3044 if (SrcVal == 1) 3045 Mods |= SISrcMods::OP_SEL_0; 3046 3047 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3048 return true; 3049 } 3050 3051 static MachineSDNode *buildRegSequence32(SmallVectorImpl<SDValue> &Elts, 3052 llvm::SelectionDAG *CurDAG, 3053 const SDLoc &DL) { 3054 unsigned DstRegClass; 3055 EVT DstTy; 3056 switch (Elts.size()) { 3057 case 8: 3058 DstRegClass = AMDGPU::VReg_256RegClassID; 3059 DstTy = MVT::v8i32; 3060 break; 3061 case 4: 3062 DstRegClass = AMDGPU::VReg_128RegClassID; 3063 DstTy = MVT::v4i32; 3064 break; 3065 case 2: 3066 DstRegClass = AMDGPU::VReg_64RegClassID; 3067 DstTy = MVT::v2i32; 3068 break; 3069 default: 3070 llvm_unreachable("unhandled Reg sequence size"); 3071 } 3072 3073 SmallVector<SDValue, 17> Ops; 3074 Ops.push_back(CurDAG->getTargetConstant(DstRegClass, DL, MVT::i32)); 3075 for (unsigned i = 0; i < Elts.size(); ++i) { 3076 Ops.push_back(Elts[i]); 3077 Ops.push_back(CurDAG->getTargetConstant( 3078 SIRegisterInfo::getSubRegFromChannel(i), DL, MVT::i32)); 3079 } 3080 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, DstTy, Ops); 3081 } 3082 3083 static MachineSDNode *buildRegSequence16(SmallVectorImpl<SDValue> &Elts, 3084 llvm::SelectionDAG *CurDAG, 3085 const SDLoc &DL) { 3086 SmallVector<SDValue, 8> PackedElts; 3087 assert("unhandled Reg sequence size" && 3088 (Elts.size() == 8 || Elts.size() == 16)); 3089 3090 // Pack 16-bit elements in pairs into 32-bit register. If both elements are 3091 // unpacked from 32-bit source use it, otherwise pack them using v_perm. 3092 for (unsigned i = 0; i < Elts.size(); i += 2) { 3093 SDValue LoSrc = stripExtractLoElt(stripBitcast(Elts[i])); 3094 SDValue HiSrc; 3095 if (isExtractHiElt(Elts[i + 1], HiSrc) && LoSrc == HiSrc) { 3096 PackedElts.push_back(HiSrc); 3097 } else { 3098 SDValue PackLoLo = CurDAG->getTargetConstant(0x05040100, DL, MVT::i32); 3099 MachineSDNode *Packed = 3100 CurDAG->getMachineNode(AMDGPU::V_PERM_B32_e64, DL, MVT::i32, 3101 {Elts[i + 1], Elts[i], PackLoLo}); 3102 PackedElts.push_back(SDValue(Packed, 0)); 3103 } 3104 } 3105 3106 return buildRegSequence32(PackedElts, CurDAG, DL); 3107 } 3108 3109 static MachineSDNode *buildRegSequence(SmallVectorImpl<SDValue> &Elts, 3110 llvm::SelectionDAG *CurDAG, 3111 const SDLoc &DL, unsigned ElementSize) { 3112 if (ElementSize == 16) 3113 return buildRegSequence16(Elts, CurDAG, DL); 3114 if (ElementSize == 32) 3115 return buildRegSequence32(Elts, CurDAG, DL); 3116 llvm_unreachable("Unhandled element size"); 3117 } 3118 3119 static void selectWMMAModsNegAbs(unsigned ModOpcode, unsigned &Mods, 3120 SmallVectorImpl<SDValue> &Elts, SDValue &Src, 3121 llvm::SelectionDAG *CurDAG, const SDLoc &DL, 3122 unsigned ElementSize) { 3123 if (ModOpcode == ISD::FNEG) { 3124 Mods |= SISrcMods::NEG; 3125 // Check if all elements also have abs modifier 3126 SmallVector<SDValue, 8> NegAbsElts; 3127 for (auto El : Elts) { 3128 if (El.getOpcode() != ISD::FABS) 3129 break; 3130 NegAbsElts.push_back(El->getOperand(0)); 3131 } 3132 if (Elts.size() != NegAbsElts.size()) { 3133 // Neg 3134 Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0); 3135 } else { 3136 // Neg and Abs 3137 Mods |= SISrcMods::NEG_HI; 3138 Src = SDValue(buildRegSequence(NegAbsElts, CurDAG, DL, ElementSize), 0); 3139 } 3140 } else { 3141 assert(ModOpcode == ISD::FABS); 3142 // Abs 3143 Mods |= SISrcMods::NEG_HI; 3144 Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0); 3145 } 3146 } 3147 3148 // Check all f16 elements for modifiers while looking through b32 and v2b16 3149 // build vector, stop if element does not satisfy ModifierCheck. 3150 static void 3151 checkWMMAElementsModifiersF16(BuildVectorSDNode *BV, 3152 std::function<bool(SDValue)> ModifierCheck) { 3153 for (unsigned i = 0; i < BV->getNumOperands(); ++i) { 3154 if (auto *F16Pair = 3155 dyn_cast<BuildVectorSDNode>(stripBitcast(BV->getOperand(i)))) { 3156 for (unsigned i = 0; i < F16Pair->getNumOperands(); ++i) { 3157 SDValue ElF16 = stripBitcast(F16Pair->getOperand(i)); 3158 if (!ModifierCheck(ElF16)) 3159 break; 3160 } 3161 } 3162 } 3163 } 3164 3165 bool AMDGPUDAGToDAGISel::SelectWMMAModsF16Neg(SDValue In, SDValue &Src, 3166 SDValue &SrcMods) const { 3167 Src = In; 3168 unsigned Mods = SISrcMods::OP_SEL_1; 3169 3170 // mods are on f16 elements 3171 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3172 SmallVector<SDValue, 8> EltsF16; 3173 3174 checkWMMAElementsModifiersF16(BV, [&](SDValue Element) -> bool { 3175 if (Element.getOpcode() != ISD::FNEG) 3176 return false; 3177 EltsF16.push_back(Element.getOperand(0)); 3178 return true; 3179 }); 3180 3181 // All elements have neg modifier 3182 if (BV->getNumOperands() * 2 == EltsF16.size()) { 3183 Src = SDValue(buildRegSequence16(EltsF16, CurDAG, SDLoc(In)), 0); 3184 Mods |= SISrcMods::NEG; 3185 Mods |= SISrcMods::NEG_HI; 3186 } 3187 } 3188 3189 // mods are on v2f16 elements 3190 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3191 SmallVector<SDValue, 8> EltsV2F16; 3192 for (unsigned i = 0; i < BV->getNumOperands(); ++i) { 3193 SDValue ElV2f16 = stripBitcast(BV->getOperand(i)); 3194 // Based on first element decide which mod we match, neg or abs 3195 if (ElV2f16.getOpcode() != ISD::FNEG) 3196 break; 3197 EltsV2F16.push_back(ElV2f16.getOperand(0)); 3198 } 3199 3200 // All pairs of elements have neg modifier 3201 if (BV->getNumOperands() == EltsV2F16.size()) { 3202 Src = SDValue(buildRegSequence32(EltsV2F16, CurDAG, SDLoc(In)), 0); 3203 Mods |= SISrcMods::NEG; 3204 Mods |= SISrcMods::NEG_HI; 3205 } 3206 } 3207 3208 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3209 return true; 3210 } 3211 3212 bool AMDGPUDAGToDAGISel::SelectWMMAModsF16NegAbs(SDValue In, SDValue &Src, 3213 SDValue &SrcMods) const { 3214 Src = In; 3215 unsigned Mods = SISrcMods::OP_SEL_1; 3216 unsigned ModOpcode; 3217 3218 // mods are on f16 elements 3219 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3220 SmallVector<SDValue, 8> EltsF16; 3221 checkWMMAElementsModifiersF16(BV, [&](SDValue ElF16) -> bool { 3222 // Based on first element decide which mod we match, neg or abs 3223 if (EltsF16.empty()) 3224 ModOpcode = (ElF16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; 3225 if (ElF16.getOpcode() != ModOpcode) 3226 return false; 3227 EltsF16.push_back(ElF16.getOperand(0)); 3228 return true; 3229 }); 3230 3231 // All elements have ModOpcode modifier 3232 if (BV->getNumOperands() * 2 == EltsF16.size()) 3233 selectWMMAModsNegAbs(ModOpcode, Mods, EltsF16, Src, CurDAG, SDLoc(In), 3234 16); 3235 } 3236 3237 // mods are on v2f16 elements 3238 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3239 SmallVector<SDValue, 8> EltsV2F16; 3240 3241 for (unsigned i = 0; i < BV->getNumOperands(); ++i) { 3242 SDValue ElV2f16 = stripBitcast(BV->getOperand(i)); 3243 // Based on first element decide which mod we match, neg or abs 3244 if (EltsV2F16.empty()) 3245 ModOpcode = (ElV2f16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; 3246 if (ElV2f16->getOpcode() != ModOpcode) 3247 break; 3248 EltsV2F16.push_back(ElV2f16->getOperand(0)); 3249 } 3250 3251 // All elements have ModOpcode modifier 3252 if (BV->getNumOperands() == EltsV2F16.size()) 3253 selectWMMAModsNegAbs(ModOpcode, Mods, EltsV2F16, Src, CurDAG, SDLoc(In), 3254 32); 3255 } 3256 3257 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3258 return true; 3259 } 3260 3261 bool AMDGPUDAGToDAGISel::SelectWMMAModsF32NegAbs(SDValue In, SDValue &Src, 3262 SDValue &SrcMods) const { 3263 Src = In; 3264 unsigned Mods = SISrcMods::OP_SEL_1; 3265 unsigned ModOpcode; 3266 SmallVector<SDValue, 8> EltsF32; 3267 3268 if (auto *BV = dyn_cast<BuildVectorSDNode>(stripBitcast(In))) { 3269 for (unsigned i = 0; i < BV->getNumOperands(); ++i) { 3270 SDValue ElF32 = stripBitcast(BV->getOperand(i)); 3271 // Based on first element decide which mod we match, neg or abs 3272 if (EltsF32.empty()) 3273 ModOpcode = (ElF32.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; 3274 if (ElF32.getOpcode() != ModOpcode) 3275 break; 3276 EltsF32.push_back(ElF32.getOperand(0)); 3277 } 3278 3279 // All elements had ModOpcode modifier 3280 if (BV->getNumOperands() == EltsF32.size()) 3281 selectWMMAModsNegAbs(ModOpcode, Mods, EltsF32, Src, CurDAG, SDLoc(In), 3282 32); 3283 } 3284 3285 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3286 return true; 3287 } 3288 3289 bool AMDGPUDAGToDAGISel::SelectWMMAVISrc(SDValue In, SDValue &Src) const { 3290 if (auto *BV = dyn_cast<BuildVectorSDNode>(In)) { 3291 BitVector UndefElements; 3292 if (SDValue Splat = BV->getSplatValue(&UndefElements)) 3293 if (isInlineImmediate(Splat.getNode())) { 3294 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Splat)) { 3295 unsigned Imm = C->getAPIntValue().getSExtValue(); 3296 Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32); 3297 return true; 3298 } 3299 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Splat)) { 3300 unsigned Imm = C->getValueAPF().bitcastToAPInt().getSExtValue(); 3301 Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32); 3302 return true; 3303 } 3304 llvm_unreachable("unhandled Constant node"); 3305 } 3306 } 3307 3308 // 16 bit splat 3309 SDValue SplatSrc32 = stripBitcast(In); 3310 if (auto *SplatSrc32BV = dyn_cast<BuildVectorSDNode>(SplatSrc32)) { 3311 if (SDValue Splat32 = SplatSrc32BV->getSplatValue()) { 3312 SDValue SplatSrc16 = stripBitcast(Splat32); 3313 if (auto *SplatSrc16BV = dyn_cast<BuildVectorSDNode>(SplatSrc16)) { 3314 if (SDValue Splat = SplatSrc16BV->getSplatValue()) { 3315 3316 // f16 3317 if (isInlineImmediate(Splat.getNode())) { 3318 const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Splat); 3319 int64_t Imm = C->getValueAPF().bitcastToAPInt().getSExtValue(); 3320 Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i16); 3321 return true; 3322 } 3323 3324 // bf16 3325 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Splat)) { 3326 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 3327 APInt BF16Value = C->getAPIntValue(); 3328 APInt F32Value = BF16Value.zext(32).shl(16); 3329 if (TII->isInlineConstant(F32Value)) { 3330 int64_t Imm = F32Value.getSExtValue(); 3331 Src = CurDAG->getTargetConstant(Imm, SDLoc(In), MVT::i32); 3332 return true; 3333 } 3334 } 3335 } 3336 } 3337 } 3338 } 3339 3340 return false; 3341 } 3342 3343 bool AMDGPUDAGToDAGISel::SelectSWMMACIndex8(SDValue In, SDValue &Src, 3344 SDValue &IndexKey) const { 3345 unsigned Key = 0; 3346 Src = In; 3347 3348 if (In.getOpcode() == ISD::SRL) { 3349 const llvm::SDValue &ShiftSrc = In.getOperand(0); 3350 ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 3351 if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt && 3352 ShiftAmt->getZExtValue() % 8 == 0) { 3353 Key = ShiftAmt->getZExtValue() / 8; 3354 Src = ShiftSrc; 3355 } 3356 } 3357 3358 IndexKey = CurDAG->getTargetConstant(Key, SDLoc(In), MVT::i32); 3359 return true; 3360 } 3361 3362 bool AMDGPUDAGToDAGISel::SelectSWMMACIndex16(SDValue In, SDValue &Src, 3363 SDValue &IndexKey) const { 3364 unsigned Key = 0; 3365 Src = In; 3366 3367 if (In.getOpcode() == ISD::SRL) { 3368 const llvm::SDValue &ShiftSrc = In.getOperand(0); 3369 ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 3370 if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt && 3371 ShiftAmt->getZExtValue() == 16) { 3372 Key = 1; 3373 Src = ShiftSrc; 3374 } 3375 } 3376 3377 IndexKey = CurDAG->getTargetConstant(Key, SDLoc(In), MVT::i32); 3378 return true; 3379 } 3380 3381 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 3382 SDValue &SrcMods) const { 3383 Src = In; 3384 // FIXME: Handle op_sel 3385 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 3386 return true; 3387 } 3388 3389 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 3390 SDValue &SrcMods) const { 3391 // FIXME: Handle op_sel 3392 return SelectVOP3Mods(In, Src, SrcMods); 3393 } 3394 3395 // The return value is not whether the match is possible (which it always is), 3396 // but whether or not it a conversion is really used. 3397 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 3398 unsigned &Mods) const { 3399 Mods = 0; 3400 SelectVOP3ModsImpl(In, Src, Mods); 3401 3402 if (Src.getOpcode() == ISD::FP_EXTEND) { 3403 Src = Src.getOperand(0); 3404 assert(Src.getValueType() == MVT::f16); 3405 Src = stripBitcast(Src); 3406 3407 // Be careful about folding modifiers if we already have an abs. fneg is 3408 // applied last, so we don't want to apply an earlier fneg. 3409 if ((Mods & SISrcMods::ABS) == 0) { 3410 unsigned ModsTmp; 3411 SelectVOP3ModsImpl(Src, Src, ModsTmp); 3412 3413 if ((ModsTmp & SISrcMods::NEG) != 0) 3414 Mods ^= SISrcMods::NEG; 3415 3416 if ((ModsTmp & SISrcMods::ABS) != 0) 3417 Mods |= SISrcMods::ABS; 3418 } 3419 3420 // op_sel/op_sel_hi decide the source type and source. 3421 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 3422 // If the sources's op_sel is set, it picks the high half of the source 3423 // register. 3424 3425 Mods |= SISrcMods::OP_SEL_1; 3426 if (isExtractHiElt(Src, Src)) { 3427 Mods |= SISrcMods::OP_SEL_0; 3428 3429 // TODO: Should we try to look for neg/abs here? 3430 } 3431 3432 return true; 3433 } 3434 3435 return false; 3436 } 3437 3438 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsExt(SDValue In, SDValue &Src, 3439 SDValue &SrcMods) const { 3440 unsigned Mods = 0; 3441 if (!SelectVOP3PMadMixModsImpl(In, Src, Mods)) 3442 return false; 3443 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3444 return true; 3445 } 3446 3447 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 3448 SDValue &SrcMods) const { 3449 unsigned Mods = 0; 3450 SelectVOP3PMadMixModsImpl(In, Src, Mods); 3451 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3452 return true; 3453 } 3454 3455 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 3456 if (In.isUndef()) 3457 return CurDAG->getUNDEF(MVT::i32); 3458 3459 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 3460 SDLoc SL(In); 3461 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 3462 } 3463 3464 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 3465 SDLoc SL(In); 3466 return CurDAG->getConstant( 3467 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 3468 } 3469 3470 SDValue Src; 3471 if (isExtractHiElt(In, Src)) 3472 return Src; 3473 3474 return SDValue(); 3475 } 3476 3477 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 3478 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 3479 3480 const SIRegisterInfo *SIRI = 3481 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 3482 const SIInstrInfo * SII = 3483 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 3484 3485 unsigned Limit = 0; 3486 bool AllUsesAcceptSReg = true; 3487 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 3488 Limit < 10 && U != E; ++U, ++Limit) { 3489 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 3490 3491 // If the register class is unknown, it could be an unknown 3492 // register class that needs to be an SGPR, e.g. an inline asm 3493 // constraint 3494 if (!RC || SIRI->isSGPRClass(RC)) 3495 return false; 3496 3497 if (RC != &AMDGPU::VS_32RegClass && RC != &AMDGPU::VS_64RegClass) { 3498 AllUsesAcceptSReg = false; 3499 SDNode * User = *U; 3500 if (User->isMachineOpcode()) { 3501 unsigned Opc = User->getMachineOpcode(); 3502 const MCInstrDesc &Desc = SII->get(Opc); 3503 if (Desc.isCommutable()) { 3504 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 3505 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 3506 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 3507 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 3508 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 3509 if (CommutedRC == &AMDGPU::VS_32RegClass || 3510 CommutedRC == &AMDGPU::VS_64RegClass) 3511 AllUsesAcceptSReg = true; 3512 } 3513 } 3514 } 3515 // If "AllUsesAcceptSReg == false" so far we haven't succeeded 3516 // commuting current user. This means have at least one use 3517 // that strictly require VGPR. Thus, we will not attempt to commute 3518 // other user instructions. 3519 if (!AllUsesAcceptSReg) 3520 break; 3521 } 3522 } 3523 return !AllUsesAcceptSReg && (Limit < 10); 3524 } 3525 3526 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode *N) const { 3527 auto Ld = cast<LoadSDNode>(N); 3528 3529 const MachineMemOperand *MMO = Ld->getMemOperand(); 3530 if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(MMO)) 3531 return false; 3532 3533 return Ld->getAlign() >= Align(std::min(MMO->getSize(), uint64_t(4))) && 3534 ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3535 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) || 3536 (Subtarget->getScalarizeGlobalBehavior() && 3537 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 3538 Ld->isSimple() && 3539 static_cast<const SITargetLowering *>(getTargetLowering()) 3540 ->isMemOpHasNoClobberedMemOperand(N))); 3541 } 3542 3543 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 3544 const AMDGPUTargetLowering& Lowering = 3545 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 3546 bool IsModified = false; 3547 do { 3548 IsModified = false; 3549 3550 // Go over all selected nodes and try to fold them a bit more 3551 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 3552 while (Position != CurDAG->allnodes_end()) { 3553 SDNode *Node = &*Position++; 3554 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 3555 if (!MachineNode) 3556 continue; 3557 3558 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 3559 if (ResNode != Node) { 3560 if (ResNode) 3561 ReplaceUses(Node, ResNode); 3562 IsModified = true; 3563 } 3564 } 3565 CurDAG->RemoveDeadNodes(); 3566 } while (IsModified); 3567 } 3568 3569 char AMDGPUDAGToDAGISel::ID = 0; 3570