1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUArgumentUsageInfo.h" 16 #include "AMDGPUISelLowering.h" // For AMDGPUISD 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUPerfHintAnalysis.h" 19 #include "AMDGPURegisterInfo.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 23 #include "SIDefines.h" 24 #include "SIISelLowering.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "SIRegisterInfo.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/FunctionLoweringInfo.h" 34 #include "llvm/CodeGen/ISDOpcodes.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGISel.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/InitializePasses.h" 43 #ifdef EXPENSIVE_CHECKS 44 #include "llvm/IR/Dominators.h" 45 #endif 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MachineValueType.h" 52 #include "llvm/Support/MathExtras.h" 53 #include <cassert> 54 #include <cstdint> 55 #include <new> 56 #include <vector> 57 58 #define DEBUG_TYPE "isel" 59 60 using namespace llvm; 61 62 namespace llvm { 63 64 class R600InstrInfo; 65 66 } // end namespace llvm 67 68 //===----------------------------------------------------------------------===// 69 // Instruction Selector Implementation 70 //===----------------------------------------------------------------------===// 71 72 namespace { 73 74 static bool isNullConstantOrUndef(SDValue V) { 75 if (V.isUndef()) 76 return true; 77 78 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 79 return Const != nullptr && Const->isNullValue(); 80 } 81 82 static bool getConstantValue(SDValue N, uint32_t &Out) { 83 // This is only used for packed vectors, where ussing 0 for undef should 84 // always be good. 85 if (N.isUndef()) { 86 Out = 0; 87 return true; 88 } 89 90 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 91 Out = C->getAPIntValue().getSExtValue(); 92 return true; 93 } 94 95 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 96 Out = C->getValueAPF().bitcastToAPInt().getSExtValue(); 97 return true; 98 } 99 100 return false; 101 } 102 103 // TODO: Handle undef as zero 104 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG, 105 bool Negate = false) { 106 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2); 107 uint32_t LHSVal, RHSVal; 108 if (getConstantValue(N->getOperand(0), LHSVal) && 109 getConstantValue(N->getOperand(1), RHSVal)) { 110 SDLoc SL(N); 111 uint32_t K = Negate ? 112 (-LHSVal & 0xffff) | (-RHSVal << 16) : 113 (LHSVal & 0xffff) | (RHSVal << 16); 114 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0), 115 DAG.getTargetConstant(K, SL, MVT::i32)); 116 } 117 118 return nullptr; 119 } 120 121 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) { 122 return packConstantV2I16(N, DAG, true); 123 } 124 125 /// AMDGPU specific code to select AMDGPU machine instructions for 126 /// SelectionDAG operations. 127 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 128 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 129 // make the right decision when generating code for different targets. 130 const GCNSubtarget *Subtarget; 131 132 // Default FP mode for the current function. 133 AMDGPU::SIModeRegisterDefaults Mode; 134 135 bool EnableLateStructurizeCFG; 136 137 public: 138 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 139 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 140 : SelectionDAGISel(*TM, OptLevel) { 141 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 142 } 143 ~AMDGPUDAGToDAGISel() override = default; 144 145 void getAnalysisUsage(AnalysisUsage &AU) const override { 146 AU.addRequired<AMDGPUArgumentUsageInfo>(); 147 AU.addRequired<LegacyDivergenceAnalysis>(); 148 #ifdef EXPENSIVE_CHECKS 149 AU.addRequired<DominatorTreeWrapperPass>(); 150 AU.addRequired<LoopInfoWrapperPass>(); 151 #endif 152 SelectionDAGISel::getAnalysisUsage(AU); 153 } 154 155 bool matchLoadD16FromBuildVector(SDNode *N) const; 156 157 bool runOnMachineFunction(MachineFunction &MF) override; 158 void PreprocessISelDAG() override; 159 void Select(SDNode *N) override; 160 StringRef getPassName() const override; 161 void PostprocessISelDAG() override; 162 163 protected: 164 void SelectBuildVector(SDNode *N, unsigned RegClassID); 165 166 private: 167 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 168 bool isNoNanSrc(SDValue N) const; 169 bool isInlineImmediate(const SDNode *N, bool Negated = false) const; 170 bool isNegInlineImmediate(const SDNode *N) const { 171 return isInlineImmediate(N, true); 172 } 173 174 bool isInlineImmediate16(int64_t Imm) const { 175 return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm()); 176 } 177 178 bool isInlineImmediate32(int64_t Imm) const { 179 return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm()); 180 } 181 182 bool isInlineImmediate64(int64_t Imm) const { 183 return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm()); 184 } 185 186 bool isInlineImmediate(const APFloat &Imm) const { 187 return Subtarget->getInstrInfo()->isInlineConstant(Imm); 188 } 189 190 bool isVGPRImm(const SDNode *N) const; 191 bool isUniformLoad(const SDNode *N) const; 192 bool isUniformBr(const SDNode *N) const; 193 194 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 195 196 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const; 197 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const; 198 SDNode *glueCopyToM0LDSInit(SDNode *N) const; 199 200 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 201 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 202 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 203 bool isDSOffsetLegal(SDValue Base, unsigned Offset, 204 unsigned OffsetBits) const; 205 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 206 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 207 SDValue &Offset1) const; 208 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 209 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 210 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, 211 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 212 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 213 SDValue &SOffset, SDValue &Offset, SDValue &GLC, 214 SDValue &SLC, SDValue &TFE, SDValue &DLC, 215 SDValue &SWZ) const; 216 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 217 SDValue &VAddr, SDValue &SOffset, SDValue &Offset, 218 SDValue &SLC) const; 219 bool SelectMUBUFScratchOffen(SDNode *Parent, 220 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 221 SDValue &SOffset, SDValue &ImmOffset) const; 222 bool SelectMUBUFScratchOffset(SDNode *Parent, 223 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 224 SDValue &Offset) const; 225 226 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, 227 SDValue &Offset, SDValue &GLC, SDValue &SLC, 228 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 229 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 230 SDValue &Offset, SDValue &SLC) const; 231 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 232 SDValue &Offset) const; 233 234 template <bool IsSigned> 235 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 236 SDValue &Offset, SDValue &SLC) const; 237 bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr, 238 SDValue &Offset, SDValue &SLC) const; 239 bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr, 240 SDValue &Offset, SDValue &SLC) const; 241 242 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 243 bool &Imm) const; 244 SDValue Expand32BitAddress(SDValue Addr) const; 245 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 246 bool &Imm) const; 247 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 248 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 249 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 250 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 251 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 252 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 253 254 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 255 bool SelectVOP3Mods_f32(SDValue In, SDValue &Src, SDValue &SrcMods) const; 256 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const; 257 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 258 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 259 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 260 SDValue &Clamp, SDValue &Omod) const; 261 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 262 SDValue &Clamp, SDValue &Omod) const; 263 264 bool SelectVOP3OMods(SDValue In, SDValue &Src, 265 SDValue &Clamp, SDValue &Omod) const; 266 267 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 268 bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 269 SDValue &Clamp) const; 270 271 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 272 bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods, 273 SDValue &Clamp) const; 274 275 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 276 bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 277 SDValue &Clamp) const; 278 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 279 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 280 281 SDValue getHi16Elt(SDValue In) const; 282 283 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const; 284 285 void SelectADD_SUB_I64(SDNode *N); 286 void SelectAddcSubb(SDNode *N); 287 void SelectUADDO_USUBO(SDNode *N); 288 void SelectDIV_SCALE(SDNode *N); 289 void SelectDIV_FMAS(SDNode *N); 290 void SelectMAD_64_32(SDNode *N); 291 void SelectFMA_W_CHAIN(SDNode *N); 292 void SelectFMUL_W_CHAIN(SDNode *N); 293 294 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 295 uint32_t Offset, uint32_t Width); 296 void SelectS_BFEFromShifts(SDNode *N); 297 void SelectS_BFE(SDNode *N); 298 bool isCBranchSCC(const SDNode *N) const; 299 void SelectBRCOND(SDNode *N); 300 void SelectFMAD_FMA(SDNode *N); 301 void SelectATOMIC_CMP_SWAP(SDNode *N); 302 void SelectDSAppendConsume(SDNode *N, unsigned IntrID); 303 void SelectDS_GWS(SDNode *N, unsigned IntrID); 304 void SelectINTRINSIC_W_CHAIN(SDNode *N); 305 void SelectINTRINSIC_WO_CHAIN(SDNode *N); 306 void SelectINTRINSIC_VOID(SDNode *N); 307 308 protected: 309 // Include the pieces autogenerated from the target description. 310 #include "AMDGPUGenDAGISel.inc" 311 }; 312 313 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 314 const R600Subtarget *Subtarget; 315 316 bool isConstantLoad(const MemSDNode *N, int cbID) const; 317 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 318 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 319 SDValue& Offset); 320 public: 321 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 322 AMDGPUDAGToDAGISel(TM, OptLevel) {} 323 324 void Select(SDNode *N) override; 325 326 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 327 SDValue &Offset) override; 328 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 329 SDValue &Offset) override; 330 331 bool runOnMachineFunction(MachineFunction &MF) override; 332 333 void PreprocessISelDAG() override {} 334 335 protected: 336 // Include the pieces autogenerated from the target description. 337 #include "R600GenDAGISel.inc" 338 }; 339 340 static SDValue stripBitcast(SDValue Val) { 341 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 342 } 343 344 // Figure out if this is really an extract of the high 16-bits of a dword. 345 static bool isExtractHiElt(SDValue In, SDValue &Out) { 346 In = stripBitcast(In); 347 if (In.getOpcode() != ISD::TRUNCATE) 348 return false; 349 350 SDValue Srl = In.getOperand(0); 351 if (Srl.getOpcode() == ISD::SRL) { 352 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 353 if (ShiftAmt->getZExtValue() == 16) { 354 Out = stripBitcast(Srl.getOperand(0)); 355 return true; 356 } 357 } 358 } 359 360 return false; 361 } 362 363 // Look through operations that obscure just looking at the low 16-bits of the 364 // same register. 365 static SDValue stripExtractLoElt(SDValue In) { 366 if (In.getOpcode() == ISD::TRUNCATE) { 367 SDValue Src = In.getOperand(0); 368 if (Src.getValueType().getSizeInBits() == 32) 369 return stripBitcast(Src); 370 } 371 372 return In; 373 } 374 375 } // end anonymous namespace 376 377 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 378 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 379 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 380 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 381 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 382 #ifdef EXPENSIVE_CHECKS 383 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 384 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 385 #endif 386 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 387 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 388 389 /// This pass converts a legalized DAG into a AMDGPU-specific 390 // DAG, ready for instruction scheduling. 391 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 392 CodeGenOpt::Level OptLevel) { 393 return new AMDGPUDAGToDAGISel(TM, OptLevel); 394 } 395 396 /// This pass converts a legalized DAG into a R600-specific 397 // DAG, ready for instruction scheduling. 398 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 399 CodeGenOpt::Level OptLevel) { 400 return new R600DAGToDAGISel(TM, OptLevel); 401 } 402 403 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 404 #ifdef EXPENSIVE_CHECKS 405 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 406 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 407 for (auto &L : LI->getLoopsInPreorder()) { 408 assert(L->isLCSSAForm(DT)); 409 } 410 #endif 411 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 412 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction(), *Subtarget); 413 return SelectionDAGISel::runOnMachineFunction(MF); 414 } 415 416 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 417 assert(Subtarget->d16PreservesUnusedBits()); 418 MVT VT = N->getValueType(0).getSimpleVT(); 419 if (VT != MVT::v2i16 && VT != MVT::v2f16) 420 return false; 421 422 SDValue Lo = N->getOperand(0); 423 SDValue Hi = N->getOperand(1); 424 425 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 426 427 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 428 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 429 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 430 431 // Need to check for possible indirect dependencies on the other half of the 432 // vector to avoid introducing a cycle. 433 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 434 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 435 436 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 437 SDValue Ops[] = { 438 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 439 }; 440 441 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 442 if (LdHi->getMemoryVT() == MVT::i8) { 443 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 444 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 445 } else { 446 assert(LdHi->getMemoryVT() == MVT::i16); 447 } 448 449 SDValue NewLoadHi = 450 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 451 Ops, LdHi->getMemoryVT(), 452 LdHi->getMemOperand()); 453 454 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 455 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 456 return true; 457 } 458 459 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 460 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 461 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 462 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 463 if (LdLo && Lo.hasOneUse()) { 464 SDValue TiedIn = getHi16Elt(Hi); 465 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 466 return false; 467 468 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 469 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 470 if (LdLo->getMemoryVT() == MVT::i8) { 471 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 472 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 473 } else { 474 assert(LdLo->getMemoryVT() == MVT::i16); 475 } 476 477 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 478 479 SDValue Ops[] = { 480 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 481 }; 482 483 SDValue NewLoadLo = 484 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 485 Ops, LdLo->getMemoryVT(), 486 LdLo->getMemOperand()); 487 488 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 489 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 490 return true; 491 } 492 493 return false; 494 } 495 496 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 497 if (!Subtarget->d16PreservesUnusedBits()) 498 return; 499 500 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 501 502 bool MadeChange = false; 503 while (Position != CurDAG->allnodes_begin()) { 504 SDNode *N = &*--Position; 505 if (N->use_empty()) 506 continue; 507 508 switch (N->getOpcode()) { 509 case ISD::BUILD_VECTOR: 510 MadeChange |= matchLoadD16FromBuildVector(N); 511 break; 512 default: 513 break; 514 } 515 } 516 517 if (MadeChange) { 518 CurDAG->RemoveDeadNodes(); 519 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 520 CurDAG->dump();); 521 } 522 } 523 524 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 525 if (TM.Options.NoNaNsFPMath) 526 return true; 527 528 // TODO: Move into isKnownNeverNaN 529 if (N->getFlags().isDefined()) 530 return N->getFlags().hasNoNaNs(); 531 532 return CurDAG->isKnownNeverNaN(N); 533 } 534 535 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 536 bool Negated) const { 537 if (N->isUndef()) 538 return true; 539 540 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 541 if (Negated) { 542 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 543 return TII->isInlineConstant(-C->getAPIntValue()); 544 545 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 546 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 547 548 } else { 549 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 550 return TII->isInlineConstant(C->getAPIntValue()); 551 552 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 553 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 554 } 555 556 return false; 557 } 558 559 /// Determine the register class for \p OpNo 560 /// \returns The register class of the virtual register that will be used for 561 /// the given operand number \OpNo or NULL if the register class cannot be 562 /// determined. 563 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 564 unsigned OpNo) const { 565 if (!N->isMachineOpcode()) { 566 if (N->getOpcode() == ISD::CopyToReg) { 567 unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 568 if (Register::isVirtualRegister(Reg)) { 569 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 570 return MRI.getRegClass(Reg); 571 } 572 573 const SIRegisterInfo *TRI 574 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 575 return TRI->getPhysRegClass(Reg); 576 } 577 578 return nullptr; 579 } 580 581 switch (N->getMachineOpcode()) { 582 default: { 583 const MCInstrDesc &Desc = 584 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 585 unsigned OpIdx = Desc.getNumDefs() + OpNo; 586 if (OpIdx >= Desc.getNumOperands()) 587 return nullptr; 588 int RegClass = Desc.OpInfo[OpIdx].RegClass; 589 if (RegClass == -1) 590 return nullptr; 591 592 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 593 } 594 case AMDGPU::REG_SEQUENCE: { 595 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 596 const TargetRegisterClass *SuperRC = 597 Subtarget->getRegisterInfo()->getRegClass(RCID); 598 599 SDValue SubRegOp = N->getOperand(OpNo + 1); 600 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 601 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 602 SubRegIdx); 603 } 604 } 605 } 606 607 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 608 SDValue Glue) const { 609 SmallVector <SDValue, 8> Ops; 610 Ops.push_back(NewChain); // Replace the chain. 611 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 612 Ops.push_back(N->getOperand(i)); 613 614 Ops.push_back(Glue); 615 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 616 } 617 618 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 619 const SITargetLowering& Lowering = 620 *static_cast<const SITargetLowering*>(getTargetLowering()); 621 622 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 623 624 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 625 return glueCopyToOp(N, M0, M0.getValue(1)); 626 } 627 628 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 629 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 630 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 631 if (Subtarget->ldsRequiresM0Init()) 632 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 633 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 634 MachineFunction &MF = CurDAG->getMachineFunction(); 635 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 636 return 637 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 638 } 639 return N; 640 } 641 642 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 643 EVT VT) const { 644 SDNode *Lo = CurDAG->getMachineNode( 645 AMDGPU::S_MOV_B32, DL, MVT::i32, 646 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 647 SDNode *Hi = 648 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 649 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 650 const SDValue Ops[] = { 651 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 652 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 653 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 654 655 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 656 } 657 658 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) { 659 switch (NumVectorElts) { 660 case 1: 661 return AMDGPU::SReg_32RegClassID; 662 case 2: 663 return AMDGPU::SReg_64RegClassID; 664 case 3: 665 return AMDGPU::SGPR_96RegClassID; 666 case 4: 667 return AMDGPU::SGPR_128RegClassID; 668 case 5: 669 return AMDGPU::SGPR_160RegClassID; 670 case 8: 671 return AMDGPU::SReg_256RegClassID; 672 case 16: 673 return AMDGPU::SReg_512RegClassID; 674 case 32: 675 return AMDGPU::SReg_1024RegClassID; 676 } 677 678 llvm_unreachable("invalid vector size"); 679 } 680 681 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 682 EVT VT = N->getValueType(0); 683 unsigned NumVectorElts = VT.getVectorNumElements(); 684 EVT EltVT = VT.getVectorElementType(); 685 SDLoc DL(N); 686 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 687 688 if (NumVectorElts == 1) { 689 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 690 RegClass); 691 return; 692 } 693 694 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 695 "supported yet"); 696 // 32 = Max Num Vector Elements 697 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 698 // 1 = Vector Register Class 699 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 700 701 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 702 bool IsRegSeq = true; 703 unsigned NOps = N->getNumOperands(); 704 for (unsigned i = 0; i < NOps; i++) { 705 // XXX: Why is this here? 706 if (isa<RegisterSDNode>(N->getOperand(i))) { 707 IsRegSeq = false; 708 break; 709 } 710 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i); 711 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 712 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 713 } 714 if (NOps != NumVectorElts) { 715 // Fill in the missing undef elements if this was a scalar_to_vector. 716 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 717 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 718 DL, EltVT); 719 for (unsigned i = NOps; i < NumVectorElts; ++i) { 720 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i); 721 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 722 RegSeqArgs[1 + (2 * i) + 1] = 723 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 724 } 725 } 726 727 if (!IsRegSeq) 728 SelectCode(N); 729 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 730 } 731 732 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 733 unsigned int Opc = N->getOpcode(); 734 if (N->isMachineOpcode()) { 735 N->setNodeId(-1); 736 return; // Already selected. 737 } 738 739 // isa<MemSDNode> almost works but is slightly too permissive for some DS 740 // intrinsics. 741 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 742 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 743 Opc == ISD::ATOMIC_LOAD_FADD || 744 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 745 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 746 N = glueCopyToM0LDSInit(N); 747 SelectCode(N); 748 return; 749 } 750 751 switch (Opc) { 752 default: 753 break; 754 // We are selecting i64 ADD here instead of custom lower it during 755 // DAG legalization, so we can fold some i64 ADDs used for address 756 // calculation into the LOAD and STORE instructions. 757 case ISD::ADDC: 758 case ISD::ADDE: 759 case ISD::SUBC: 760 case ISD::SUBE: { 761 if (N->getValueType(0) != MVT::i64) 762 break; 763 764 SelectADD_SUB_I64(N); 765 return; 766 } 767 case ISD::ADDCARRY: 768 case ISD::SUBCARRY: 769 if (N->getValueType(0) != MVT::i32) 770 break; 771 772 SelectAddcSubb(N); 773 return; 774 case ISD::UADDO: 775 case ISD::USUBO: { 776 SelectUADDO_USUBO(N); 777 return; 778 } 779 case AMDGPUISD::FMUL_W_CHAIN: { 780 SelectFMUL_W_CHAIN(N); 781 return; 782 } 783 case AMDGPUISD::FMA_W_CHAIN: { 784 SelectFMA_W_CHAIN(N); 785 return; 786 } 787 788 case ISD::SCALAR_TO_VECTOR: 789 case ISD::BUILD_VECTOR: { 790 EVT VT = N->getValueType(0); 791 unsigned NumVectorElts = VT.getVectorNumElements(); 792 if (VT.getScalarSizeInBits() == 16) { 793 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 794 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 795 ReplaceNode(N, Packed); 796 return; 797 } 798 } 799 800 break; 801 } 802 803 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 804 unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts); 805 SelectBuildVector(N, RegClassID); 806 return; 807 } 808 case ISD::BUILD_PAIR: { 809 SDValue RC, SubReg0, SubReg1; 810 SDLoc DL(N); 811 if (N->getValueType(0) == MVT::i128) { 812 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 813 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 814 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 815 } else if (N->getValueType(0) == MVT::i64) { 816 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 817 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 818 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 819 } else { 820 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 821 } 822 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 823 N->getOperand(1), SubReg1 }; 824 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 825 N->getValueType(0), Ops)); 826 return; 827 } 828 829 case ISD::Constant: 830 case ISD::ConstantFP: { 831 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 832 break; 833 834 uint64_t Imm; 835 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 836 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 837 else { 838 ConstantSDNode *C = cast<ConstantSDNode>(N); 839 Imm = C->getZExtValue(); 840 } 841 842 SDLoc DL(N); 843 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 844 return; 845 } 846 case AMDGPUISD::BFE_I32: 847 case AMDGPUISD::BFE_U32: { 848 // There is a scalar version available, but unlike the vector version which 849 // has a separate operand for the offset and width, the scalar version packs 850 // the width and offset into a single operand. Try to move to the scalar 851 // version if the offsets are constant, so that we can try to keep extended 852 // loads of kernel arguments in SGPRs. 853 854 // TODO: Technically we could try to pattern match scalar bitshifts of 855 // dynamic values, but it's probably not useful. 856 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 857 if (!Offset) 858 break; 859 860 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 861 if (!Width) 862 break; 863 864 bool Signed = Opc == AMDGPUISD::BFE_I32; 865 866 uint32_t OffsetVal = Offset->getZExtValue(); 867 uint32_t WidthVal = Width->getZExtValue(); 868 869 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 870 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 871 return; 872 } 873 case AMDGPUISD::DIV_SCALE: { 874 SelectDIV_SCALE(N); 875 return; 876 } 877 case AMDGPUISD::DIV_FMAS: { 878 SelectDIV_FMAS(N); 879 return; 880 } 881 case AMDGPUISD::MAD_I64_I32: 882 case AMDGPUISD::MAD_U64_U32: { 883 SelectMAD_64_32(N); 884 return; 885 } 886 case ISD::CopyToReg: { 887 const SITargetLowering& Lowering = 888 *static_cast<const SITargetLowering*>(getTargetLowering()); 889 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 890 break; 891 } 892 case ISD::AND: 893 case ISD::SRL: 894 case ISD::SRA: 895 case ISD::SIGN_EXTEND_INREG: 896 if (N->getValueType(0) != MVT::i32) 897 break; 898 899 SelectS_BFE(N); 900 return; 901 case ISD::BRCOND: 902 SelectBRCOND(N); 903 return; 904 case ISD::FMAD: 905 case ISD::FMA: 906 SelectFMAD_FMA(N); 907 return; 908 case AMDGPUISD::ATOMIC_CMP_SWAP: 909 SelectATOMIC_CMP_SWAP(N); 910 return; 911 case AMDGPUISD::CVT_PKRTZ_F16_F32: 912 case AMDGPUISD::CVT_PKNORM_I16_F32: 913 case AMDGPUISD::CVT_PKNORM_U16_F32: 914 case AMDGPUISD::CVT_PK_U16_U32: 915 case AMDGPUISD::CVT_PK_I16_I32: { 916 // Hack around using a legal type if f16 is illegal. 917 if (N->getValueType(0) == MVT::i32) { 918 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 919 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 920 { N->getOperand(0), N->getOperand(1) }); 921 SelectCode(N); 922 return; 923 } 924 925 break; 926 } 927 case ISD::INTRINSIC_W_CHAIN: { 928 SelectINTRINSIC_W_CHAIN(N); 929 return; 930 } 931 case ISD::INTRINSIC_WO_CHAIN: { 932 SelectINTRINSIC_WO_CHAIN(N); 933 return; 934 } 935 case ISD::INTRINSIC_VOID: { 936 SelectINTRINSIC_VOID(N); 937 return; 938 } 939 } 940 941 SelectCode(N); 942 } 943 944 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 945 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 946 const Instruction *Term = BB->getTerminator(); 947 return Term->getMetadata("amdgpu.uniform") || 948 Term->getMetadata("structurizecfg.uniform"); 949 } 950 951 StringRef AMDGPUDAGToDAGISel::getPassName() const { 952 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 953 } 954 955 //===----------------------------------------------------------------------===// 956 // Complex Patterns 957 //===----------------------------------------------------------------------===// 958 959 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 960 SDValue &Offset) { 961 return false; 962 } 963 964 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 965 SDValue &Offset) { 966 ConstantSDNode *C; 967 SDLoc DL(Addr); 968 969 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 970 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 971 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 972 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 973 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 974 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 975 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 976 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 977 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 978 Base = Addr.getOperand(0); 979 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 980 } else { 981 Base = Addr; 982 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 983 } 984 985 return true; 986 } 987 988 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 989 const SDLoc &DL) const { 990 SDNode *Mov = CurDAG->getMachineNode( 991 AMDGPU::S_MOV_B32, DL, MVT::i32, 992 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 993 return SDValue(Mov, 0); 994 } 995 996 // FIXME: Should only handle addcarry/subcarry 997 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 998 SDLoc DL(N); 999 SDValue LHS = N->getOperand(0); 1000 SDValue RHS = N->getOperand(1); 1001 1002 unsigned Opcode = N->getOpcode(); 1003 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 1004 bool ProduceCarry = 1005 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 1006 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 1007 1008 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1009 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1010 1011 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1012 DL, MVT::i32, LHS, Sub0); 1013 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1014 DL, MVT::i32, LHS, Sub1); 1015 1016 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1017 DL, MVT::i32, RHS, Sub0); 1018 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1019 DL, MVT::i32, RHS, Sub1); 1020 1021 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 1022 1023 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 1024 unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 1025 1026 SDNode *AddLo; 1027 if (!ConsumeCarry) { 1028 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 1029 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 1030 } else { 1031 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 1032 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 1033 } 1034 SDValue AddHiArgs[] = { 1035 SDValue(Hi0, 0), 1036 SDValue(Hi1, 0), 1037 SDValue(AddLo, 1) 1038 }; 1039 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 1040 1041 SDValue RegSequenceArgs[] = { 1042 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 1043 SDValue(AddLo,0), 1044 Sub0, 1045 SDValue(AddHi,0), 1046 Sub1, 1047 }; 1048 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1049 MVT::i64, RegSequenceArgs); 1050 1051 if (ProduceCarry) { 1052 // Replace the carry-use 1053 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 1054 } 1055 1056 // Replace the remaining uses. 1057 ReplaceNode(N, RegSequence); 1058 } 1059 1060 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 1061 SDLoc DL(N); 1062 SDValue LHS = N->getOperand(0); 1063 SDValue RHS = N->getOperand(1); 1064 SDValue CI = N->getOperand(2); 1065 1066 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 1067 : AMDGPU::V_SUBB_U32_e64; 1068 CurDAG->SelectNodeTo( 1069 N, Opc, N->getVTList(), 1070 {LHS, RHS, CI, CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1071 } 1072 1073 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 1074 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 1075 // carry out despite the _i32 name. These were renamed in VI to _U32. 1076 // FIXME: We should probably rename the opcodes here. 1077 unsigned Opc = N->getOpcode() == ISD::UADDO ? 1078 AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64; 1079 1080 CurDAG->SelectNodeTo( 1081 N, Opc, N->getVTList(), 1082 {N->getOperand(0), N->getOperand(1), 1083 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1084 } 1085 1086 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 1087 SDLoc SL(N); 1088 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 1089 SDValue Ops[10]; 1090 1091 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 1092 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1093 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 1094 Ops[8] = N->getOperand(0); 1095 Ops[9] = N->getOperand(4); 1096 1097 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops); 1098 } 1099 1100 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 1101 SDLoc SL(N); 1102 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 1103 SDValue Ops[8]; 1104 1105 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 1106 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1107 Ops[6] = N->getOperand(0); 1108 Ops[7] = N->getOperand(3); 1109 1110 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 1111 } 1112 1113 // We need to handle this here because tablegen doesn't support matching 1114 // instructions with multiple outputs. 1115 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1116 SDLoc SL(N); 1117 EVT VT = N->getValueType(0); 1118 1119 assert(VT == MVT::f32 || VT == MVT::f64); 1120 1121 unsigned Opc 1122 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32; 1123 1124 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) }; 1125 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1126 } 1127 1128 void AMDGPUDAGToDAGISel::SelectDIV_FMAS(SDNode *N) { 1129 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 1130 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 1131 1132 SDLoc SL(N); 1133 EVT VT = N->getValueType(0); 1134 1135 assert(VT == MVT::f32 || VT == MVT::f64); 1136 1137 unsigned Opc 1138 = (VT == MVT::f64) ? AMDGPU::V_DIV_FMAS_F64 : AMDGPU::V_DIV_FMAS_F32; 1139 1140 SDValue CarryIn = N->getOperand(3); 1141 // V_DIV_FMAS implicitly reads VCC. 1142 SDValue VCC = CurDAG->getCopyToReg(CurDAG->getEntryNode(), SL, 1143 TRI->getVCC(), CarryIn, SDValue()); 1144 1145 SDValue Ops[10]; 1146 1147 SelectVOP3Mods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1148 SelectVOP3Mods(N->getOperand(1), Ops[3], Ops[2]); 1149 SelectVOP3Mods(N->getOperand(2), Ops[5], Ops[4]); 1150 1151 Ops[8] = VCC; 1152 Ops[9] = VCC.getValue(1); 1153 1154 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1155 } 1156 1157 // We need to handle this here because tablegen doesn't support matching 1158 // instructions with multiple outputs. 1159 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1160 SDLoc SL(N); 1161 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1162 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32; 1163 1164 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1165 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1166 Clamp }; 1167 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1168 } 1169 1170 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset, 1171 unsigned OffsetBits) const { 1172 if ((OffsetBits == 16 && !isUInt<16>(Offset)) || 1173 (OffsetBits == 8 && !isUInt<8>(Offset))) 1174 return false; 1175 1176 if (Subtarget->hasUsableDSOffset() || 1177 Subtarget->unsafeDSOffsetFoldingEnabled()) 1178 return true; 1179 1180 // On Southern Islands instruction with a negative base value and an offset 1181 // don't seem to work. 1182 return CurDAG->SignBitIsZero(Base); 1183 } 1184 1185 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1186 SDValue &Offset) const { 1187 SDLoc DL(Addr); 1188 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1189 SDValue N0 = Addr.getOperand(0); 1190 SDValue N1 = Addr.getOperand(1); 1191 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1192 if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) { 1193 // (add n0, c0) 1194 Base = N0; 1195 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1196 return true; 1197 } 1198 } else if (Addr.getOpcode() == ISD::SUB) { 1199 // sub C, x -> add (sub 0, x), C 1200 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1201 int64_t ByteOffset = C->getSExtValue(); 1202 if (isUInt<16>(ByteOffset)) { 1203 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1204 1205 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1206 // the known bits in isDSOffsetLegal. We need to emit the selected node 1207 // here, so this is thrown away. 1208 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1209 Zero, Addr.getOperand(1)); 1210 1211 if (isDSOffsetLegal(Sub, ByteOffset, 16)) { 1212 SmallVector<SDValue, 3> Opnds; 1213 Opnds.push_back(Zero); 1214 Opnds.push_back(Addr.getOperand(1)); 1215 1216 // FIXME: Select to VOP3 version for with-carry. 1217 unsigned SubOp = AMDGPU::V_SUB_I32_e32; 1218 if (Subtarget->hasAddNoCarry()) { 1219 SubOp = AMDGPU::V_SUB_U32_e64; 1220 Opnds.push_back( 1221 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1222 } 1223 1224 MachineSDNode *MachineSub = 1225 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1226 1227 Base = SDValue(MachineSub, 0); 1228 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1229 return true; 1230 } 1231 } 1232 } 1233 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1234 // If we have a constant address, prefer to put the constant into the 1235 // offset. This can save moves to load the constant address since multiple 1236 // operations can share the zero base address register, and enables merging 1237 // into read2 / write2 instructions. 1238 1239 SDLoc DL(Addr); 1240 1241 if (isUInt<16>(CAddr->getZExtValue())) { 1242 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1243 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1244 DL, MVT::i32, Zero); 1245 Base = SDValue(MovZero, 0); 1246 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1247 return true; 1248 } 1249 } 1250 1251 // default case 1252 Base = Addr; 1253 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1254 return true; 1255 } 1256 1257 // TODO: If offset is too big, put low 16-bit into offset. 1258 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1259 SDValue &Offset0, 1260 SDValue &Offset1) const { 1261 SDLoc DL(Addr); 1262 1263 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1264 SDValue N0 = Addr.getOperand(0); 1265 SDValue N1 = Addr.getOperand(1); 1266 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1267 unsigned DWordOffset0 = C1->getZExtValue() / 4; 1268 unsigned DWordOffset1 = DWordOffset0 + 1; 1269 // (add n0, c0) 1270 if (isDSOffsetLegal(N0, DWordOffset1, 8)) { 1271 Base = N0; 1272 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 1273 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 1274 return true; 1275 } 1276 } else if (Addr.getOpcode() == ISD::SUB) { 1277 // sub C, x -> add (sub 0, x), C 1278 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1279 unsigned DWordOffset0 = C->getZExtValue() / 4; 1280 unsigned DWordOffset1 = DWordOffset0 + 1; 1281 1282 if (isUInt<8>(DWordOffset0)) { 1283 SDLoc DL(Addr); 1284 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1285 1286 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1287 // the known bits in isDSOffsetLegal. We need to emit the selected node 1288 // here, so this is thrown away. 1289 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1290 Zero, Addr.getOperand(1)); 1291 1292 if (isDSOffsetLegal(Sub, DWordOffset1, 8)) { 1293 SmallVector<SDValue, 3> Opnds; 1294 Opnds.push_back(Zero); 1295 Opnds.push_back(Addr.getOperand(1)); 1296 unsigned SubOp = AMDGPU::V_SUB_I32_e32; 1297 if (Subtarget->hasAddNoCarry()) { 1298 SubOp = AMDGPU::V_SUB_U32_e64; 1299 Opnds.push_back( 1300 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1301 } 1302 1303 MachineSDNode *MachineSub 1304 = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1305 1306 Base = SDValue(MachineSub, 0); 1307 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 1308 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 1309 return true; 1310 } 1311 } 1312 } 1313 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1314 unsigned DWordOffset0 = CAddr->getZExtValue() / 4; 1315 unsigned DWordOffset1 = DWordOffset0 + 1; 1316 assert(4 * DWordOffset0 == CAddr->getZExtValue()); 1317 1318 if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) { 1319 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1320 MachineSDNode *MovZero 1321 = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1322 DL, MVT::i32, Zero); 1323 Base = SDValue(MovZero, 0); 1324 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 1325 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 1326 return true; 1327 } 1328 } 1329 1330 // default case 1331 1332 Base = Addr; 1333 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1334 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1335 return true; 1336 } 1337 1338 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, 1339 SDValue &VAddr, SDValue &SOffset, 1340 SDValue &Offset, SDValue &Offen, 1341 SDValue &Idxen, SDValue &Addr64, 1342 SDValue &GLC, SDValue &SLC, 1343 SDValue &TFE, SDValue &DLC, 1344 SDValue &SWZ) const { 1345 // Subtarget prefers to use flat instruction 1346 if (Subtarget->useFlatForGlobal()) 1347 return false; 1348 1349 SDLoc DL(Addr); 1350 1351 if (!GLC.getNode()) 1352 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1353 if (!SLC.getNode()) 1354 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1355 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); 1356 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1357 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1); 1358 1359 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1360 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1361 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1362 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1363 1364 ConstantSDNode *C1 = nullptr; 1365 SDValue N0 = Addr; 1366 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1367 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1368 if (isUInt<32>(C1->getZExtValue())) 1369 N0 = Addr.getOperand(0); 1370 else 1371 C1 = nullptr; 1372 } 1373 1374 if (N0.getOpcode() == ISD::ADD) { 1375 // (add N2, N3) -> addr64, or 1376 // (add (add N2, N3), C1) -> addr64 1377 SDValue N2 = N0.getOperand(0); 1378 SDValue N3 = N0.getOperand(1); 1379 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1380 1381 if (N2->isDivergent()) { 1382 if (N3->isDivergent()) { 1383 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1384 // addr64, and construct the resource from a 0 address. 1385 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1386 VAddr = N0; 1387 } else { 1388 // N2 is divergent, N3 is not. 1389 Ptr = N3; 1390 VAddr = N2; 1391 } 1392 } else { 1393 // N2 is not divergent. 1394 Ptr = N2; 1395 VAddr = N3; 1396 } 1397 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1398 } else if (N0->isDivergent()) { 1399 // N0 is divergent. Use it as the addr64, and construct the resource from a 1400 // 0 address. 1401 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1402 VAddr = N0; 1403 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1404 } else { 1405 // N0 -> offset, or 1406 // (N0 + C1) -> offset 1407 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1408 Ptr = N0; 1409 } 1410 1411 if (!C1) { 1412 // No offset. 1413 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1414 return true; 1415 } 1416 1417 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1418 // Legal offset for instruction. 1419 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1420 return true; 1421 } 1422 1423 // Illegal offset, store it in soffset. 1424 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1425 SOffset = 1426 SDValue(CurDAG->getMachineNode( 1427 AMDGPU::S_MOV_B32, DL, MVT::i32, 1428 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1429 0); 1430 return true; 1431 } 1432 1433 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1434 SDValue &VAddr, SDValue &SOffset, 1435 SDValue &Offset, SDValue &GLC, 1436 SDValue &SLC, SDValue &TFE, 1437 SDValue &DLC, SDValue &SWZ) const { 1438 SDValue Ptr, Offen, Idxen, Addr64; 1439 1440 // addr64 bit was removed for volcanic islands. 1441 if (!Subtarget->hasAddr64()) 1442 return false; 1443 1444 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1445 GLC, SLC, TFE, DLC, SWZ)) 1446 return false; 1447 1448 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1449 if (C->getSExtValue()) { 1450 SDLoc DL(Addr); 1451 1452 const SITargetLowering& Lowering = 1453 *static_cast<const SITargetLowering*>(getTargetLowering()); 1454 1455 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1456 return true; 1457 } 1458 1459 return false; 1460 } 1461 1462 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1463 SDValue &VAddr, SDValue &SOffset, 1464 SDValue &Offset, 1465 SDValue &SLC) const { 1466 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); 1467 SDValue GLC, TFE, DLC, SWZ; 1468 1469 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1470 } 1471 1472 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { 1473 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); 1474 return PSV && PSV->isStack(); 1475 } 1476 1477 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1478 const MachineFunction &MF = CurDAG->getMachineFunction(); 1479 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1480 1481 if (auto FI = dyn_cast<FrameIndexSDNode>(N)) { 1482 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1483 FI->getValueType(0)); 1484 1485 // If we can resolve this to a frame index access, this will be relative to 1486 // either the stack or frame pointer SGPR. 1487 return std::make_pair( 1488 TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)); 1489 } 1490 1491 // If we don't know this private access is a local stack object, it needs to 1492 // be relative to the entry point's scratch wave offset register. 1493 return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(), 1494 MVT::i32)); 1495 } 1496 1497 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1498 SDValue Addr, SDValue &Rsrc, 1499 SDValue &VAddr, SDValue &SOffset, 1500 SDValue &ImmOffset) const { 1501 1502 SDLoc DL(Addr); 1503 MachineFunction &MF = CurDAG->getMachineFunction(); 1504 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1505 1506 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1507 1508 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1509 unsigned Imm = CAddr->getZExtValue(); 1510 1511 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1512 MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1513 DL, MVT::i32, HighBits); 1514 VAddr = SDValue(MovHighBits, 0); 1515 1516 // In a call sequence, stores to the argument stack area are relative to the 1517 // stack pointer. 1518 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1519 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ? 1520 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg(); 1521 1522 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32); 1523 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1524 return true; 1525 } 1526 1527 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1528 // (add n0, c1) 1529 1530 SDValue N0 = Addr.getOperand(0); 1531 SDValue N1 = Addr.getOperand(1); 1532 1533 // Offsets in vaddr must be positive if range checking is enabled. 1534 // 1535 // The total computation of vaddr + soffset + offset must not overflow. If 1536 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1537 // overflowing. 1538 // 1539 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1540 // always perform a range check. If a negative vaddr base index was used, 1541 // this would fail the range check. The overall address computation would 1542 // compute a valid address, but this doesn't happen due to the range 1543 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1544 // 1545 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1546 // MUBUF vaddr, but not on older subtargets which can only do this if the 1547 // sign bit is known 0. 1548 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1549 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1550 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1551 CurDAG->SignBitIsZero(N0))) { 1552 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1553 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1554 return true; 1555 } 1556 } 1557 1558 // (node) 1559 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1560 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1561 return true; 1562 } 1563 1564 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1565 SDValue Addr, 1566 SDValue &SRsrc, 1567 SDValue &SOffset, 1568 SDValue &Offset) const { 1569 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); 1570 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1571 return false; 1572 1573 SDLoc DL(Addr); 1574 MachineFunction &MF = CurDAG->getMachineFunction(); 1575 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1576 1577 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1578 1579 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1580 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ? 1581 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg(); 1582 1583 // FIXME: Get from MachinePointerInfo? We should only be using the frame 1584 // offset if we know this is in a call sequence. 1585 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32); 1586 1587 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1588 return true; 1589 } 1590 1591 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1592 SDValue &SOffset, SDValue &Offset, 1593 SDValue &GLC, SDValue &SLC, 1594 SDValue &TFE, SDValue &DLC, 1595 SDValue &SWZ) const { 1596 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1597 const SIInstrInfo *TII = 1598 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1599 1600 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1601 GLC, SLC, TFE, DLC, SWZ)) 1602 return false; 1603 1604 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1605 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1606 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1607 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1608 APInt::getAllOnesValue(32).getZExtValue(); // Size 1609 SDLoc DL(Addr); 1610 1611 const SITargetLowering& Lowering = 1612 *static_cast<const SITargetLowering*>(getTargetLowering()); 1613 1614 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1615 return true; 1616 } 1617 return false; 1618 } 1619 1620 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1621 SDValue &Soffset, SDValue &Offset 1622 ) const { 1623 SDValue GLC, SLC, TFE, DLC, SWZ; 1624 1625 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1626 } 1627 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1628 SDValue &Soffset, SDValue &Offset, 1629 SDValue &SLC) const { 1630 SDValue GLC, TFE, DLC, SWZ; 1631 1632 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1633 } 1634 1635 // Find a load or store from corresponding pattern root. 1636 // Roots may be build_vector, bitconvert or their combinations. 1637 static MemSDNode* findMemSDNode(SDNode *N) { 1638 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1639 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1640 return MN; 1641 assert(isa<BuildVectorSDNode>(N)); 1642 for (SDValue V : N->op_values()) 1643 if (MemSDNode *MN = 1644 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1645 return MN; 1646 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1647 } 1648 1649 template <bool IsSigned> 1650 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, 1651 SDValue Addr, 1652 SDValue &VAddr, 1653 SDValue &Offset, 1654 SDValue &SLC) const { 1655 int64_t OffsetVal = 0; 1656 1657 if (Subtarget->hasFlatInstOffsets() && 1658 (!Subtarget->hasFlatSegmentOffsetBug() || 1659 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) && 1660 CurDAG->isBaseWithConstantOffset(Addr)) { 1661 SDValue N0 = Addr.getOperand(0); 1662 SDValue N1 = Addr.getOperand(1); 1663 uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1664 1665 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1666 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1667 if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) { 1668 Addr = N0; 1669 OffsetVal = COffsetVal; 1670 } else { 1671 // If the offset doesn't fit, put the low bits into the offset field and 1672 // add the rest. 1673 1674 SDLoc DL(N); 1675 uint64_t ImmField; 1676 const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned); 1677 if (IsSigned) { 1678 ImmField = SignExtend64(COffsetVal, NumBits); 1679 1680 // Don't use a negative offset field if the base offset is positive. 1681 // Since the scheduler currently relies on the offset field, doing so 1682 // could result in strange scheduling decisions. 1683 1684 // TODO: Should we not do this in the opposite direction as well? 1685 if (static_cast<int64_t>(COffsetVal) > 0) { 1686 if (static_cast<int64_t>(ImmField) < 0) { 1687 const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits - 1); 1688 ImmField = COffsetVal & OffsetMask; 1689 } 1690 } 1691 } else { 1692 // TODO: Should we do this for a negative offset? 1693 const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits); 1694 ImmField = COffsetVal & OffsetMask; 1695 } 1696 1697 uint64_t RemainderOffset = COffsetVal - ImmField; 1698 1699 assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned)); 1700 assert(RemainderOffset + ImmField == COffsetVal); 1701 1702 OffsetVal = ImmField; 1703 1704 // TODO: Should this try to use a scalar add pseudo if the base address is 1705 // uniform and saddr is usable? 1706 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1707 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1708 1709 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1710 DL, MVT::i32, N0, Sub0); 1711 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1712 DL, MVT::i32, N0, Sub1); 1713 1714 SDValue AddOffsetLo 1715 = getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1716 SDValue AddOffsetHi 1717 = getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1718 1719 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1720 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1721 1722 SDNode *Add = CurDAG->getMachineNode( 1723 AMDGPU::V_ADD_I32_e64, DL, VTs, 1724 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1725 1726 SDNode *Addc = CurDAG->getMachineNode( 1727 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1728 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1729 1730 SDValue RegSequenceArgs[] = { 1731 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1732 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1 1733 }; 1734 1735 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1736 MVT::i64, RegSequenceArgs), 0); 1737 } 1738 } 1739 1740 VAddr = Addr; 1741 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1742 SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1); 1743 return true; 1744 } 1745 1746 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N, 1747 SDValue Addr, 1748 SDValue &VAddr, 1749 SDValue &Offset, 1750 SDValue &SLC) const { 1751 return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC); 1752 } 1753 1754 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N, 1755 SDValue Addr, 1756 SDValue &VAddr, 1757 SDValue &Offset, 1758 SDValue &SLC) const { 1759 return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC); 1760 } 1761 1762 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1763 SDValue &Offset, bool &Imm) const { 1764 1765 // FIXME: Handle non-constant offsets. 1766 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1767 if (!C) 1768 return false; 1769 1770 SDLoc SL(ByteOffsetNode); 1771 GCNSubtarget::Generation Gen = Subtarget->getGeneration(); 1772 int64_t ByteOffset = C->getSExtValue(); 1773 int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset); 1774 1775 if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) { 1776 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32); 1777 Imm = true; 1778 return true; 1779 } 1780 1781 if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset)) 1782 return false; 1783 1784 if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) { 1785 // 32-bit Immediates are supported on Sea Islands. 1786 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32); 1787 } else { 1788 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1789 Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, 1790 C32Bit), 0); 1791 } 1792 Imm = false; 1793 return true; 1794 } 1795 1796 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1797 if (Addr.getValueType() != MVT::i32) 1798 return Addr; 1799 1800 // Zero-extend a 32-bit address. 1801 SDLoc SL(Addr); 1802 1803 const MachineFunction &MF = CurDAG->getMachineFunction(); 1804 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1805 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1806 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1807 1808 const SDValue Ops[] = { 1809 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1810 Addr, 1811 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1812 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1813 0), 1814 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1815 }; 1816 1817 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1818 Ops), 0); 1819 } 1820 1821 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 1822 SDValue &Offset, bool &Imm) const { 1823 SDLoc SL(Addr); 1824 1825 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1826 // wraparound, because s_load instructions perform the addition in 64 bits. 1827 if ((Addr.getValueType() != MVT::i32 || 1828 Addr->getFlags().hasNoUnsignedWrap()) && 1829 CurDAG->isBaseWithConstantOffset(Addr)) { 1830 SDValue N0 = Addr.getOperand(0); 1831 SDValue N1 = Addr.getOperand(1); 1832 1833 if (SelectSMRDOffset(N1, Offset, Imm)) { 1834 SBase = Expand32BitAddress(N0); 1835 return true; 1836 } 1837 } 1838 SBase = Expand32BitAddress(Addr); 1839 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 1840 Imm = true; 1841 return true; 1842 } 1843 1844 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 1845 SDValue &Offset) const { 1846 bool Imm; 1847 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 1848 } 1849 1850 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 1851 SDValue &Offset) const { 1852 1853 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS) 1854 return false; 1855 1856 bool Imm; 1857 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 1858 return false; 1859 1860 return !Imm && isa<ConstantSDNode>(Offset); 1861 } 1862 1863 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 1864 SDValue &Offset) const { 1865 bool Imm; 1866 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 1867 !isa<ConstantSDNode>(Offset); 1868 } 1869 1870 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 1871 SDValue &Offset) const { 1872 bool Imm; 1873 return SelectSMRDOffset(Addr, Offset, Imm) && Imm; 1874 } 1875 1876 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 1877 SDValue &Offset) const { 1878 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS) 1879 return false; 1880 1881 bool Imm; 1882 if (!SelectSMRDOffset(Addr, Offset, Imm)) 1883 return false; 1884 1885 return !Imm && isa<ConstantSDNode>(Offset); 1886 } 1887 1888 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 1889 SDValue &Base, 1890 SDValue &Offset) const { 1891 SDLoc DL(Index); 1892 1893 if (CurDAG->isBaseWithConstantOffset(Index)) { 1894 SDValue N0 = Index.getOperand(0); 1895 SDValue N1 = Index.getOperand(1); 1896 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1897 1898 // (add n0, c0) 1899 // Don't peel off the offset (c0) if doing so could possibly lead 1900 // the base (n0) to be negative. 1901 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) { 1902 Base = N0; 1903 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1904 return true; 1905 } 1906 } 1907 1908 if (isa<ConstantSDNode>(Index)) 1909 return false; 1910 1911 Base = Index; 1912 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1913 return true; 1914 } 1915 1916 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 1917 SDValue Val, uint32_t Offset, 1918 uint32_t Width) { 1919 // Transformation function, pack the offset and width of a BFE into 1920 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 1921 // source, bits [5:0] contain the offset and bits [22:16] the width. 1922 uint32_t PackedVal = Offset | (Width << 16); 1923 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 1924 1925 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 1926 } 1927 1928 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 1929 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 1930 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 1931 // Predicate: 0 < b <= c < 32 1932 1933 const SDValue &Shl = N->getOperand(0); 1934 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 1935 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1936 1937 if (B && C) { 1938 uint32_t BVal = B->getZExtValue(); 1939 uint32_t CVal = C->getZExtValue(); 1940 1941 if (0 < BVal && BVal <= CVal && CVal < 32) { 1942 bool Signed = N->getOpcode() == ISD::SRA; 1943 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 1944 1945 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 1946 32 - CVal)); 1947 return; 1948 } 1949 } 1950 SelectCode(N); 1951 } 1952 1953 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 1954 switch (N->getOpcode()) { 1955 case ISD::AND: 1956 if (N->getOperand(0).getOpcode() == ISD::SRL) { 1957 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 1958 // Predicate: isMask(mask) 1959 const SDValue &Srl = N->getOperand(0); 1960 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 1961 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1962 1963 if (Shift && Mask) { 1964 uint32_t ShiftVal = Shift->getZExtValue(); 1965 uint32_t MaskVal = Mask->getZExtValue(); 1966 1967 if (isMask_32(MaskVal)) { 1968 uint32_t WidthVal = countPopulation(MaskVal); 1969 1970 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 1971 Srl.getOperand(0), ShiftVal, WidthVal)); 1972 return; 1973 } 1974 } 1975 } 1976 break; 1977 case ISD::SRL: 1978 if (N->getOperand(0).getOpcode() == ISD::AND) { 1979 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 1980 // Predicate: isMask(mask >> b) 1981 const SDValue &And = N->getOperand(0); 1982 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1983 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 1984 1985 if (Shift && Mask) { 1986 uint32_t ShiftVal = Shift->getZExtValue(); 1987 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 1988 1989 if (isMask_32(MaskVal)) { 1990 uint32_t WidthVal = countPopulation(MaskVal); 1991 1992 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 1993 And.getOperand(0), ShiftVal, WidthVal)); 1994 return; 1995 } 1996 } 1997 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 1998 SelectS_BFEFromShifts(N); 1999 return; 2000 } 2001 break; 2002 case ISD::SRA: 2003 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2004 SelectS_BFEFromShifts(N); 2005 return; 2006 } 2007 break; 2008 2009 case ISD::SIGN_EXTEND_INREG: { 2010 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2011 SDValue Src = N->getOperand(0); 2012 if (Src.getOpcode() != ISD::SRL) 2013 break; 2014 2015 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2016 if (!Amt) 2017 break; 2018 2019 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2020 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2021 Amt->getZExtValue(), Width)); 2022 return; 2023 } 2024 } 2025 2026 SelectCode(N); 2027 } 2028 2029 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2030 assert(N->getOpcode() == ISD::BRCOND); 2031 if (!N->hasOneUse()) 2032 return false; 2033 2034 SDValue Cond = N->getOperand(1); 2035 if (Cond.getOpcode() == ISD::CopyToReg) 2036 Cond = Cond.getOperand(2); 2037 2038 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2039 return false; 2040 2041 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2042 if (VT == MVT::i32) 2043 return true; 2044 2045 if (VT == MVT::i64) { 2046 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2047 2048 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2049 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2050 } 2051 2052 return false; 2053 } 2054 2055 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2056 SDValue Cond = N->getOperand(1); 2057 2058 if (Cond.isUndef()) { 2059 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2060 N->getOperand(2), N->getOperand(0)); 2061 return; 2062 } 2063 2064 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2065 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2066 2067 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2068 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2069 unsigned CondReg = UseSCCBr ? (unsigned)AMDGPU::SCC : TRI->getVCC(); 2070 SDLoc SL(N); 2071 2072 if (!UseSCCBr) { 2073 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2074 // analyzed what generates the vcc value, so we do not know whether vcc 2075 // bits for disabled lanes are 0. Thus we need to mask out bits for 2076 // disabled lanes. 2077 // 2078 // For the case that we select S_CBRANCH_SCC1 and it gets 2079 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2080 // SIInstrInfo::moveToVALU which inserts the S_AND). 2081 // 2082 // We could add an analysis of what generates the vcc value here and omit 2083 // the S_AND when is unnecessary. But it would be better to add a separate 2084 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2085 // catches both cases. 2086 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2087 : AMDGPU::S_AND_B64, 2088 SL, MVT::i1, 2089 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2090 : AMDGPU::EXEC, 2091 MVT::i1), 2092 Cond), 2093 0); 2094 } 2095 2096 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2097 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2098 N->getOperand(2), // Basic Block 2099 VCC.getValue(0)); 2100 } 2101 2102 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2103 MVT VT = N->getSimpleValueType(0); 2104 bool IsFMA = N->getOpcode() == ISD::FMA; 2105 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2106 !Subtarget->hasFmaMixInsts()) || 2107 ((IsFMA && Subtarget->hasMadMixInsts()) || 2108 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2109 SelectCode(N); 2110 return; 2111 } 2112 2113 SDValue Src0 = N->getOperand(0); 2114 SDValue Src1 = N->getOperand(1); 2115 SDValue Src2 = N->getOperand(2); 2116 unsigned Src0Mods, Src1Mods, Src2Mods; 2117 2118 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2119 // using the conversion from f16. 2120 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2121 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2122 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2123 2124 assert((IsFMA || !Mode.FP32Denormals) && 2125 "fmad selected with denormals enabled"); 2126 // TODO: We can select this with f32 denormals enabled if all the sources are 2127 // converted from f16 (in which case fmad isn't legal). 2128 2129 if (Sel0 || Sel1 || Sel2) { 2130 // For dummy operands. 2131 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2132 SDValue Ops[] = { 2133 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2134 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2135 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2136 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2137 Zero, Zero 2138 }; 2139 2140 CurDAG->SelectNodeTo(N, 2141 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2142 MVT::f32, Ops); 2143 } else { 2144 SelectCode(N); 2145 } 2146 } 2147 2148 // This is here because there isn't a way to use the generated sub0_sub1 as the 2149 // subreg index to EXTRACT_SUBREG in tablegen. 2150 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2151 MemSDNode *Mem = cast<MemSDNode>(N); 2152 unsigned AS = Mem->getAddressSpace(); 2153 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2154 SelectCode(N); 2155 return; 2156 } 2157 2158 MVT VT = N->getSimpleValueType(0); 2159 bool Is32 = (VT == MVT::i32); 2160 SDLoc SL(N); 2161 2162 MachineSDNode *CmpSwap = nullptr; 2163 if (Subtarget->hasAddr64()) { 2164 SDValue SRsrc, VAddr, SOffset, Offset, SLC; 2165 2166 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) { 2167 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2168 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2169 SDValue CmpVal = Mem->getOperand(2); 2170 2171 // XXX - Do we care about glue operands? 2172 2173 SDValue Ops[] = { 2174 CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain() 2175 }; 2176 2177 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2178 } 2179 } 2180 2181 if (!CmpSwap) { 2182 SDValue SRsrc, SOffset, Offset, SLC; 2183 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) { 2184 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2185 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2186 2187 SDValue CmpVal = Mem->getOperand(2); 2188 SDValue Ops[] = { 2189 CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain() 2190 }; 2191 2192 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2193 } 2194 } 2195 2196 if (!CmpSwap) { 2197 SelectCode(N); 2198 return; 2199 } 2200 2201 MachineMemOperand *MMO = Mem->getMemOperand(); 2202 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2203 2204 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2205 SDValue Extract 2206 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2207 2208 ReplaceUses(SDValue(N, 0), Extract); 2209 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2210 CurDAG->RemoveDeadNode(N); 2211 } 2212 2213 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2214 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2215 // be copied to an SGPR with readfirstlane. 2216 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2217 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2218 2219 SDValue Chain = N->getOperand(0); 2220 SDValue Ptr = N->getOperand(2); 2221 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2222 MachineMemOperand *MMO = M->getMemOperand(); 2223 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2224 2225 SDValue Offset; 2226 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2227 SDValue PtrBase = Ptr.getOperand(0); 2228 SDValue PtrOffset = Ptr.getOperand(1); 2229 2230 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2231 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) { 2232 N = glueCopyToM0(N, PtrBase); 2233 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2234 } 2235 } 2236 2237 if (!Offset) { 2238 N = glueCopyToM0(N, Ptr); 2239 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2240 } 2241 2242 SDValue Ops[] = { 2243 Offset, 2244 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2245 Chain, 2246 N->getOperand(N->getNumOperands() - 1) // New glue 2247 }; 2248 2249 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2250 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2251 } 2252 2253 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2254 switch (IntrID) { 2255 case Intrinsic::amdgcn_ds_gws_init: 2256 return AMDGPU::DS_GWS_INIT; 2257 case Intrinsic::amdgcn_ds_gws_barrier: 2258 return AMDGPU::DS_GWS_BARRIER; 2259 case Intrinsic::amdgcn_ds_gws_sema_v: 2260 return AMDGPU::DS_GWS_SEMA_V; 2261 case Intrinsic::amdgcn_ds_gws_sema_br: 2262 return AMDGPU::DS_GWS_SEMA_BR; 2263 case Intrinsic::amdgcn_ds_gws_sema_p: 2264 return AMDGPU::DS_GWS_SEMA_P; 2265 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2266 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2267 default: 2268 llvm_unreachable("not a gws intrinsic"); 2269 } 2270 } 2271 2272 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2273 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2274 !Subtarget->hasGWSSemaReleaseAll()) { 2275 // Let this error. 2276 SelectCode(N); 2277 return; 2278 } 2279 2280 // Chain, intrinsic ID, vsrc, offset 2281 const bool HasVSrc = N->getNumOperands() == 4; 2282 assert(HasVSrc || N->getNumOperands() == 3); 2283 2284 SDLoc SL(N); 2285 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2286 int ImmOffset = 0; 2287 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2288 MachineMemOperand *MMO = M->getMemOperand(); 2289 2290 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2291 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2292 2293 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2294 // offset field) % 64. Some versions of the programming guide omit the m0 2295 // part, or claim it's from offset 0. 2296 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2297 // If we have a constant offset, try to use the 0 in m0 as the base. 2298 // TODO: Look into changing the default m0 initialization value. If the 2299 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2300 // the immediate offset. 2301 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2302 ImmOffset = ConstOffset->getZExtValue(); 2303 } else { 2304 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2305 ImmOffset = BaseOffset.getConstantOperandVal(1); 2306 BaseOffset = BaseOffset.getOperand(0); 2307 } 2308 2309 // Prefer to do the shift in an SGPR since it should be possible to use m0 2310 // as the result directly. If it's already an SGPR, it will be eliminated 2311 // later. 2312 SDNode *SGPROffset 2313 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2314 BaseOffset); 2315 // Shift to offset in m0 2316 SDNode *M0Base 2317 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2318 SDValue(SGPROffset, 0), 2319 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2320 glueCopyToM0(N, SDValue(M0Base, 0)); 2321 } 2322 2323 SDValue Chain = N->getOperand(0); 2324 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2325 2326 // TODO: Can this just be removed from the instruction? 2327 SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1); 2328 2329 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2330 SmallVector<SDValue, 5> Ops; 2331 if (HasVSrc) 2332 Ops.push_back(N->getOperand(2)); 2333 Ops.push_back(OffsetField); 2334 Ops.push_back(GDS); 2335 Ops.push_back(Chain); 2336 2337 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2338 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2339 } 2340 2341 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2342 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2343 switch (IntrID) { 2344 case Intrinsic::amdgcn_ds_append: 2345 case Intrinsic::amdgcn_ds_consume: { 2346 if (N->getValueType(0) != MVT::i32) 2347 break; 2348 SelectDSAppendConsume(N, IntrID); 2349 return; 2350 } 2351 } 2352 2353 SelectCode(N); 2354 } 2355 2356 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2357 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2358 unsigned Opcode; 2359 switch (IntrID) { 2360 case Intrinsic::amdgcn_wqm: 2361 Opcode = AMDGPU::WQM; 2362 break; 2363 case Intrinsic::amdgcn_softwqm: 2364 Opcode = AMDGPU::SOFT_WQM; 2365 break; 2366 case Intrinsic::amdgcn_wwm: 2367 Opcode = AMDGPU::WWM; 2368 break; 2369 default: 2370 SelectCode(N); 2371 return; 2372 } 2373 2374 SDValue Src = N->getOperand(1); 2375 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2376 } 2377 2378 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2379 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2380 switch (IntrID) { 2381 case Intrinsic::amdgcn_ds_gws_init: 2382 case Intrinsic::amdgcn_ds_gws_barrier: 2383 case Intrinsic::amdgcn_ds_gws_sema_v: 2384 case Intrinsic::amdgcn_ds_gws_sema_br: 2385 case Intrinsic::amdgcn_ds_gws_sema_p: 2386 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2387 SelectDS_GWS(N, IntrID); 2388 return; 2389 default: 2390 break; 2391 } 2392 2393 SelectCode(N); 2394 } 2395 2396 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2397 unsigned &Mods) const { 2398 Mods = 0; 2399 Src = In; 2400 2401 if (Src.getOpcode() == ISD::FNEG) { 2402 Mods |= SISrcMods::NEG; 2403 Src = Src.getOperand(0); 2404 } 2405 2406 if (Src.getOpcode() == ISD::FABS) { 2407 Mods |= SISrcMods::ABS; 2408 Src = Src.getOperand(0); 2409 } 2410 2411 return true; 2412 } 2413 2414 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2415 SDValue &SrcMods) const { 2416 unsigned Mods; 2417 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2418 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2419 return true; 2420 } 2421 2422 return false; 2423 } 2424 2425 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2426 SDValue &SrcMods) const { 2427 SelectVOP3Mods(In, Src, SrcMods); 2428 return isNoNanSrc(Src); 2429 } 2430 2431 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_f32(SDValue In, SDValue &Src, 2432 SDValue &SrcMods) const { 2433 if (In.getValueType() == MVT::f32) 2434 return SelectVOP3Mods(In, Src, SrcMods); 2435 Src = In; 2436 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);; 2437 return true; 2438 } 2439 2440 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2441 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2442 return false; 2443 2444 Src = In; 2445 return true; 2446 } 2447 2448 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2449 SDValue &SrcMods, SDValue &Clamp, 2450 SDValue &Omod) const { 2451 SDLoc DL(In); 2452 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2453 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2454 2455 return SelectVOP3Mods(In, Src, SrcMods); 2456 } 2457 2458 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2459 SDValue &Clamp, SDValue &Omod) const { 2460 Src = In; 2461 2462 SDLoc DL(In); 2463 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2464 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2465 2466 return true; 2467 } 2468 2469 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2470 SDValue &SrcMods) const { 2471 unsigned Mods = 0; 2472 Src = In; 2473 2474 if (Src.getOpcode() == ISD::FNEG) { 2475 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2476 Src = Src.getOperand(0); 2477 } 2478 2479 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2480 unsigned VecMods = Mods; 2481 2482 SDValue Lo = stripBitcast(Src.getOperand(0)); 2483 SDValue Hi = stripBitcast(Src.getOperand(1)); 2484 2485 if (Lo.getOpcode() == ISD::FNEG) { 2486 Lo = stripBitcast(Lo.getOperand(0)); 2487 Mods ^= SISrcMods::NEG; 2488 } 2489 2490 if (Hi.getOpcode() == ISD::FNEG) { 2491 Hi = stripBitcast(Hi.getOperand(0)); 2492 Mods ^= SISrcMods::NEG_HI; 2493 } 2494 2495 if (isExtractHiElt(Lo, Lo)) 2496 Mods |= SISrcMods::OP_SEL_0; 2497 2498 if (isExtractHiElt(Hi, Hi)) 2499 Mods |= SISrcMods::OP_SEL_1; 2500 2501 Lo = stripExtractLoElt(Lo); 2502 Hi = stripExtractLoElt(Hi); 2503 2504 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2505 // Really a scalar input. Just select from the low half of the register to 2506 // avoid packing. 2507 2508 Src = Lo; 2509 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2510 return true; 2511 } 2512 2513 Mods = VecMods; 2514 } 2515 2516 // Packed instructions do not have abs modifiers. 2517 Mods |= SISrcMods::OP_SEL_1; 2518 2519 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2520 return true; 2521 } 2522 2523 bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src, 2524 SDValue &SrcMods, 2525 SDValue &Clamp) const { 2526 SDLoc SL(In); 2527 2528 // FIXME: Handle clamp and op_sel 2529 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); 2530 2531 return SelectVOP3PMods(In, Src, SrcMods); 2532 } 2533 2534 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2535 SDValue &SrcMods) const { 2536 Src = In; 2537 // FIXME: Handle op_sel 2538 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2539 return true; 2540 } 2541 2542 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src, 2543 SDValue &SrcMods, 2544 SDValue &Clamp) const { 2545 SDLoc SL(In); 2546 2547 // FIXME: Handle clamp 2548 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); 2549 2550 return SelectVOP3OpSel(In, Src, SrcMods); 2551 } 2552 2553 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2554 SDValue &SrcMods) const { 2555 // FIXME: Handle op_sel 2556 return SelectVOP3Mods(In, Src, SrcMods); 2557 } 2558 2559 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src, 2560 SDValue &SrcMods, 2561 SDValue &Clamp) const { 2562 SDLoc SL(In); 2563 2564 // FIXME: Handle clamp 2565 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); 2566 2567 return SelectVOP3OpSelMods(In, Src, SrcMods); 2568 } 2569 2570 // The return value is not whether the match is possible (which it always is), 2571 // but whether or not it a conversion is really used. 2572 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2573 unsigned &Mods) const { 2574 Mods = 0; 2575 SelectVOP3ModsImpl(In, Src, Mods); 2576 2577 if (Src.getOpcode() == ISD::FP_EXTEND) { 2578 Src = Src.getOperand(0); 2579 assert(Src.getValueType() == MVT::f16); 2580 Src = stripBitcast(Src); 2581 2582 // Be careful about folding modifiers if we already have an abs. fneg is 2583 // applied last, so we don't want to apply an earlier fneg. 2584 if ((Mods & SISrcMods::ABS) == 0) { 2585 unsigned ModsTmp; 2586 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2587 2588 if ((ModsTmp & SISrcMods::NEG) != 0) 2589 Mods ^= SISrcMods::NEG; 2590 2591 if ((ModsTmp & SISrcMods::ABS) != 0) 2592 Mods |= SISrcMods::ABS; 2593 } 2594 2595 // op_sel/op_sel_hi decide the source type and source. 2596 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2597 // If the sources's op_sel is set, it picks the high half of the source 2598 // register. 2599 2600 Mods |= SISrcMods::OP_SEL_1; 2601 if (isExtractHiElt(Src, Src)) { 2602 Mods |= SISrcMods::OP_SEL_0; 2603 2604 // TODO: Should we try to look for neg/abs here? 2605 } 2606 2607 return true; 2608 } 2609 2610 return false; 2611 } 2612 2613 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2614 SDValue &SrcMods) const { 2615 unsigned Mods = 0; 2616 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2617 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2618 return true; 2619 } 2620 2621 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2622 if (In.isUndef()) 2623 return CurDAG->getUNDEF(MVT::i32); 2624 2625 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2626 SDLoc SL(In); 2627 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2628 } 2629 2630 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2631 SDLoc SL(In); 2632 return CurDAG->getConstant( 2633 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2634 } 2635 2636 SDValue Src; 2637 if (isExtractHiElt(In, Src)) 2638 return Src; 2639 2640 return SDValue(); 2641 } 2642 2643 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2644 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2645 2646 const SIRegisterInfo *SIRI = 2647 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2648 const SIInstrInfo * SII = 2649 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2650 2651 unsigned Limit = 0; 2652 bool AllUsesAcceptSReg = true; 2653 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2654 Limit < 10 && U != E; ++U, ++Limit) { 2655 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2656 2657 // If the register class is unknown, it could be an unknown 2658 // register class that needs to be an SGPR, e.g. an inline asm 2659 // constraint 2660 if (!RC || SIRI->isSGPRClass(RC)) 2661 return false; 2662 2663 if (RC != &AMDGPU::VS_32RegClass) { 2664 AllUsesAcceptSReg = false; 2665 SDNode * User = *U; 2666 if (User->isMachineOpcode()) { 2667 unsigned Opc = User->getMachineOpcode(); 2668 MCInstrDesc Desc = SII->get(Opc); 2669 if (Desc.isCommutable()) { 2670 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2671 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2672 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2673 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2674 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2675 if (CommutedRC == &AMDGPU::VS_32RegClass) 2676 AllUsesAcceptSReg = true; 2677 } 2678 } 2679 } 2680 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2681 // commuting current user. This means have at least one use 2682 // that strictly require VGPR. Thus, we will not attempt to commute 2683 // other user instructions. 2684 if (!AllUsesAcceptSReg) 2685 break; 2686 } 2687 } 2688 return !AllUsesAcceptSReg && (Limit < 10); 2689 } 2690 2691 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2692 auto Ld = cast<LoadSDNode>(N); 2693 2694 return Ld->getAlignment() >= 4 && 2695 ( 2696 ( 2697 ( 2698 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2699 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2700 ) 2701 && 2702 !N->isDivergent() 2703 ) 2704 || 2705 ( 2706 Subtarget->getScalarizeGlobalBehavior() && 2707 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2708 !Ld->isVolatile() && 2709 !N->isDivergent() && 2710 static_cast<const SITargetLowering *>( 2711 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2712 ) 2713 ); 2714 } 2715 2716 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2717 const AMDGPUTargetLowering& Lowering = 2718 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2719 bool IsModified = false; 2720 do { 2721 IsModified = false; 2722 2723 // Go over all selected nodes and try to fold them a bit more 2724 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2725 while (Position != CurDAG->allnodes_end()) { 2726 SDNode *Node = &*Position++; 2727 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2728 if (!MachineNode) 2729 continue; 2730 2731 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2732 if (ResNode != Node) { 2733 if (ResNode) 2734 ReplaceUses(Node, ResNode); 2735 IsModified = true; 2736 } 2737 } 2738 CurDAG->RemoveDeadNodes(); 2739 } while (IsModified); 2740 } 2741 2742 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 2743 Subtarget = &MF.getSubtarget<R600Subtarget>(); 2744 return SelectionDAGISel::runOnMachineFunction(MF); 2745 } 2746 2747 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 2748 if (!N->readMem()) 2749 return false; 2750 if (CbId == -1) 2751 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2752 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 2753 2754 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 2755 } 2756 2757 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 2758 SDValue& IntPtr) { 2759 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 2760 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 2761 true); 2762 return true; 2763 } 2764 return false; 2765 } 2766 2767 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 2768 SDValue& BaseReg, SDValue &Offset) { 2769 if (!isa<ConstantSDNode>(Addr)) { 2770 BaseReg = Addr; 2771 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 2772 return true; 2773 } 2774 return false; 2775 } 2776 2777 void R600DAGToDAGISel::Select(SDNode *N) { 2778 unsigned int Opc = N->getOpcode(); 2779 if (N->isMachineOpcode()) { 2780 N->setNodeId(-1); 2781 return; // Already selected. 2782 } 2783 2784 switch (Opc) { 2785 default: break; 2786 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 2787 case ISD::SCALAR_TO_VECTOR: 2788 case ISD::BUILD_VECTOR: { 2789 EVT VT = N->getValueType(0); 2790 unsigned NumVectorElts = VT.getVectorNumElements(); 2791 unsigned RegClassID; 2792 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 2793 // that adds a 128 bits reg copy when going through TwoAddressInstructions 2794 // pass. We want to avoid 128 bits copies as much as possible because they 2795 // can't be bundled by our scheduler. 2796 switch(NumVectorElts) { 2797 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 2798 case 4: 2799 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 2800 RegClassID = R600::R600_Reg128VerticalRegClassID; 2801 else 2802 RegClassID = R600::R600_Reg128RegClassID; 2803 break; 2804 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 2805 } 2806 SelectBuildVector(N, RegClassID); 2807 return; 2808 } 2809 } 2810 2811 SelectCode(N); 2812 } 2813 2814 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 2815 SDValue &Offset) { 2816 ConstantSDNode *C; 2817 SDLoc DL(Addr); 2818 2819 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 2820 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 2821 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2822 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 2823 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 2824 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 2825 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2826 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 2827 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 2828 Base = Addr.getOperand(0); 2829 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2830 } else { 2831 Base = Addr; 2832 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2833 } 2834 2835 return true; 2836 } 2837 2838 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 2839 SDValue &Offset) { 2840 ConstantSDNode *IMMOffset; 2841 2842 if (Addr.getOpcode() == ISD::ADD 2843 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 2844 && isInt<16>(IMMOffset->getZExtValue())) { 2845 2846 Base = Addr.getOperand(0); 2847 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 2848 MVT::i32); 2849 return true; 2850 // If the pointer address is constant, we can move it to the offset field. 2851 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 2852 && isInt<16>(IMMOffset->getZExtValue())) { 2853 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 2854 SDLoc(CurDAG->getEntryNode()), 2855 R600::ZERO, MVT::i32); 2856 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 2857 MVT::i32); 2858 return true; 2859 } 2860 2861 // Default case, no offset 2862 Base = Addr; 2863 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2864 return true; 2865 } 2866