1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUSubtarget.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "MCTargetDesc/R600MCTargetDesc.h" 21 #include "R600RegisterInfo.h" 22 #include "SIMachineFunctionInfo.h" 23 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGISel.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/IR/IntrinsicsAMDGPU.h" 30 #include "llvm/InitializePasses.h" 31 32 #ifdef EXPENSIVE_CHECKS 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #endif 36 37 #define DEBUG_TYPE "amdgpu-isel" 38 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // Instruction Selector Implementation 43 //===----------------------------------------------------------------------===// 44 45 namespace { 46 static SDValue stripBitcast(SDValue Val) { 47 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 48 } 49 50 // Figure out if this is really an extract of the high 16-bits of a dword. 51 static bool isExtractHiElt(SDValue In, SDValue &Out) { 52 In = stripBitcast(In); 53 54 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 55 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 56 if (!Idx->isOne()) 57 return false; 58 Out = In.getOperand(0); 59 return true; 60 } 61 } 62 63 if (In.getOpcode() != ISD::TRUNCATE) 64 return false; 65 66 SDValue Srl = In.getOperand(0); 67 if (Srl.getOpcode() == ISD::SRL) { 68 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 69 if (ShiftAmt->getZExtValue() == 16) { 70 Out = stripBitcast(Srl.getOperand(0)); 71 return true; 72 } 73 } 74 } 75 76 return false; 77 } 78 79 // Look through operations that obscure just looking at the low 16-bits of the 80 // same register. 81 static SDValue stripExtractLoElt(SDValue In) { 82 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 83 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 84 if (Idx->isZero() && In.getValueSizeInBits() <= 32) 85 return In.getOperand(0); 86 } 87 } 88 89 if (In.getOpcode() == ISD::TRUNCATE) { 90 SDValue Src = In.getOperand(0); 91 if (Src.getValueType().getSizeInBits() == 32) 92 return stripBitcast(Src); 93 } 94 95 return In; 96 } 97 98 } // end anonymous namespace 99 100 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 101 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 102 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 103 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 104 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 105 #ifdef EXPENSIVE_CHECKS 106 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 107 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 108 #endif 109 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 110 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 111 112 /// This pass converts a legalized DAG into a AMDGPU-specific 113 // DAG, ready for instruction scheduling. 114 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM, 115 CodeGenOpt::Level OptLevel) { 116 return new AMDGPUDAGToDAGISel(TM, OptLevel); 117 } 118 119 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM, 120 CodeGenOpt::Level OptLevel) 121 : SelectionDAGISel(ID, TM, OptLevel) { 122 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 123 } 124 125 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 126 #ifdef EXPENSIVE_CHECKS 127 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 128 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 129 for (auto &L : LI->getLoopsInPreorder()) { 130 assert(L->isLCSSAForm(DT)); 131 } 132 #endif 133 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 134 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 135 return SelectionDAGISel::runOnMachineFunction(MF); 136 } 137 138 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 139 // XXX - only need to list legal operations. 140 switch (Opc) { 141 case ISD::FADD: 142 case ISD::FSUB: 143 case ISD::FMUL: 144 case ISD::FDIV: 145 case ISD::FREM: 146 case ISD::FCANONICALIZE: 147 case ISD::UINT_TO_FP: 148 case ISD::SINT_TO_FP: 149 case ISD::FABS: 150 // Fabs is lowered to a bit operation, but it's an and which will clear the 151 // high bits anyway. 152 case ISD::FSQRT: 153 case ISD::FSIN: 154 case ISD::FCOS: 155 case ISD::FPOWI: 156 case ISD::FPOW: 157 case ISD::FLOG: 158 case ISD::FLOG2: 159 case ISD::FLOG10: 160 case ISD::FEXP: 161 case ISD::FEXP2: 162 case ISD::FCEIL: 163 case ISD::FTRUNC: 164 case ISD::FRINT: 165 case ISD::FNEARBYINT: 166 case ISD::FROUND: 167 case ISD::FFLOOR: 168 case ISD::FMINNUM: 169 case ISD::FMAXNUM: 170 case AMDGPUISD::FRACT: 171 case AMDGPUISD::CLAMP: 172 case AMDGPUISD::COS_HW: 173 case AMDGPUISD::SIN_HW: 174 case AMDGPUISD::FMIN3: 175 case AMDGPUISD::FMAX3: 176 case AMDGPUISD::FMED3: 177 case AMDGPUISD::FMAD_FTZ: 178 case AMDGPUISD::RCP: 179 case AMDGPUISD::RSQ: 180 case AMDGPUISD::RCP_IFLAG: 181 case AMDGPUISD::LDEXP: 182 // On gfx10, all 16-bit instructions preserve the high bits. 183 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 184 case ISD::FP_ROUND: 185 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 186 // high bits on gfx9. 187 // TODO: If we had the source node we could see if the source was fma/mad 188 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 189 case ISD::FMA: 190 case ISD::FMAD: 191 case AMDGPUISD::DIV_FIXUP: 192 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 193 default: 194 // fcopysign, select and others may be lowered to 32-bit bit operations 195 // which don't zero the high bits. 196 return false; 197 } 198 } 199 200 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 201 AU.addRequired<AMDGPUArgumentUsageInfo>(); 202 AU.addRequired<LegacyDivergenceAnalysis>(); 203 #ifdef EXPENSIVE_CHECKS 204 AU.addRequired<DominatorTreeWrapperPass>(); 205 AU.addRequired<LoopInfoWrapperPass>(); 206 #endif 207 SelectionDAGISel::getAnalysisUsage(AU); 208 } 209 210 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 211 assert(Subtarget->d16PreservesUnusedBits()); 212 MVT VT = N->getValueType(0).getSimpleVT(); 213 if (VT != MVT::v2i16 && VT != MVT::v2f16) 214 return false; 215 216 SDValue Lo = N->getOperand(0); 217 SDValue Hi = N->getOperand(1); 218 219 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 220 221 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 222 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 223 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 224 225 // Need to check for possible indirect dependencies on the other half of the 226 // vector to avoid introducing a cycle. 227 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 228 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 229 230 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 231 SDValue Ops[] = { 232 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 233 }; 234 235 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 236 if (LdHi->getMemoryVT() == MVT::i8) { 237 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 238 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 239 } else { 240 assert(LdHi->getMemoryVT() == MVT::i16); 241 } 242 243 SDValue NewLoadHi = 244 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 245 Ops, LdHi->getMemoryVT(), 246 LdHi->getMemOperand()); 247 248 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 249 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 250 return true; 251 } 252 253 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 254 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 255 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 256 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 257 if (LdLo && Lo.hasOneUse()) { 258 SDValue TiedIn = getHi16Elt(Hi); 259 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 260 return false; 261 262 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 263 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 264 if (LdLo->getMemoryVT() == MVT::i8) { 265 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 266 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 267 } else { 268 assert(LdLo->getMemoryVT() == MVT::i16); 269 } 270 271 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 272 273 SDValue Ops[] = { 274 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 275 }; 276 277 SDValue NewLoadLo = 278 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 279 Ops, LdLo->getMemoryVT(), 280 LdLo->getMemOperand()); 281 282 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 283 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 284 return true; 285 } 286 287 return false; 288 } 289 290 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 291 if (!Subtarget->d16PreservesUnusedBits()) 292 return; 293 294 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 295 296 bool MadeChange = false; 297 while (Position != CurDAG->allnodes_begin()) { 298 SDNode *N = &*--Position; 299 if (N->use_empty()) 300 continue; 301 302 switch (N->getOpcode()) { 303 case ISD::BUILD_VECTOR: 304 MadeChange |= matchLoadD16FromBuildVector(N); 305 break; 306 default: 307 break; 308 } 309 } 310 311 if (MadeChange) { 312 CurDAG->RemoveDeadNodes(); 313 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 314 CurDAG->dump();); 315 } 316 } 317 318 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 319 bool Negated) const { 320 if (N->isUndef()) 321 return true; 322 323 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 324 if (Negated) { 325 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 326 return TII->isInlineConstant(-C->getAPIntValue()); 327 328 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 329 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 330 331 } else { 332 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 333 return TII->isInlineConstant(C->getAPIntValue()); 334 335 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 336 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 337 } 338 339 return false; 340 } 341 342 /// Determine the register class for \p OpNo 343 /// \returns The register class of the virtual register that will be used for 344 /// the given operand number \OpNo or NULL if the register class cannot be 345 /// determined. 346 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 347 unsigned OpNo) const { 348 if (!N->isMachineOpcode()) { 349 if (N->getOpcode() == ISD::CopyToReg) { 350 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 351 if (Reg.isVirtual()) { 352 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 353 return MRI.getRegClass(Reg); 354 } 355 356 const SIRegisterInfo *TRI 357 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 358 return TRI->getPhysRegBaseClass(Reg); 359 } 360 361 return nullptr; 362 } 363 364 switch (N->getMachineOpcode()) { 365 default: { 366 const MCInstrDesc &Desc = 367 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 368 unsigned OpIdx = Desc.getNumDefs() + OpNo; 369 if (OpIdx >= Desc.getNumOperands()) 370 return nullptr; 371 int RegClass = Desc.operands()[OpIdx].RegClass; 372 if (RegClass == -1) 373 return nullptr; 374 375 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 376 } 377 case AMDGPU::REG_SEQUENCE: { 378 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 379 const TargetRegisterClass *SuperRC = 380 Subtarget->getRegisterInfo()->getRegClass(RCID); 381 382 SDValue SubRegOp = N->getOperand(OpNo + 1); 383 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 384 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 385 SubRegIdx); 386 } 387 } 388 } 389 390 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 391 SDValue Glue) const { 392 SmallVector <SDValue, 8> Ops; 393 Ops.push_back(NewChain); // Replace the chain. 394 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 395 Ops.push_back(N->getOperand(i)); 396 397 Ops.push_back(Glue); 398 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 399 } 400 401 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 402 const SITargetLowering& Lowering = 403 *static_cast<const SITargetLowering*>(getTargetLowering()); 404 405 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 406 407 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 408 return glueCopyToOp(N, M0, M0.getValue(1)); 409 } 410 411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 412 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 413 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 414 if (Subtarget->ldsRequiresM0Init()) 415 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 416 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 417 MachineFunction &MF = CurDAG->getMachineFunction(); 418 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 419 return 420 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 421 } 422 return N; 423 } 424 425 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 426 EVT VT) const { 427 SDNode *Lo = CurDAG->getMachineNode( 428 AMDGPU::S_MOV_B32, DL, MVT::i32, 429 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 430 SDNode *Hi = 431 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 432 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 433 const SDValue Ops[] = { 434 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 435 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 436 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 437 438 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 439 } 440 441 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 442 EVT VT = N->getValueType(0); 443 unsigned NumVectorElts = VT.getVectorNumElements(); 444 EVT EltVT = VT.getVectorElementType(); 445 SDLoc DL(N); 446 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 447 448 if (NumVectorElts == 1) { 449 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 450 RegClass); 451 return; 452 } 453 454 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 455 "supported yet"); 456 // 32 = Max Num Vector Elements 457 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 458 // 1 = Vector Register Class 459 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 460 461 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 462 Triple::amdgcn; 463 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 464 bool IsRegSeq = true; 465 unsigned NOps = N->getNumOperands(); 466 for (unsigned i = 0; i < NOps; i++) { 467 // XXX: Why is this here? 468 if (isa<RegisterSDNode>(N->getOperand(i))) { 469 IsRegSeq = false; 470 break; 471 } 472 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 473 : R600RegisterInfo::getSubRegFromChannel(i); 474 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 475 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 476 } 477 if (NOps != NumVectorElts) { 478 // Fill in the missing undef elements if this was a scalar_to_vector. 479 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 480 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 481 DL, EltVT); 482 for (unsigned i = NOps; i < NumVectorElts; ++i) { 483 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 484 : R600RegisterInfo::getSubRegFromChannel(i); 485 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 486 RegSeqArgs[1 + (2 * i) + 1] = 487 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 488 } 489 } 490 491 if (!IsRegSeq) 492 SelectCode(N); 493 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 494 } 495 496 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 497 unsigned int Opc = N->getOpcode(); 498 if (N->isMachineOpcode()) { 499 N->setNodeId(-1); 500 return; // Already selected. 501 } 502 503 // isa<MemSDNode> almost works but is slightly too permissive for some DS 504 // intrinsics. 505 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 506 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 507 Opc == ISD::ATOMIC_LOAD_FADD || 508 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 509 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 510 N = glueCopyToM0LDSInit(N); 511 SelectCode(N); 512 return; 513 } 514 515 switch (Opc) { 516 default: 517 break; 518 // We are selecting i64 ADD here instead of custom lower it during 519 // DAG legalization, so we can fold some i64 ADDs used for address 520 // calculation into the LOAD and STORE instructions. 521 case ISD::ADDC: 522 case ISD::ADDE: 523 case ISD::SUBC: 524 case ISD::SUBE: { 525 if (N->getValueType(0) != MVT::i64) 526 break; 527 528 SelectADD_SUB_I64(N); 529 return; 530 } 531 case ISD::ADDCARRY: 532 case ISD::SUBCARRY: 533 if (N->getValueType(0) != MVT::i32) 534 break; 535 536 SelectAddcSubb(N); 537 return; 538 case ISD::UADDO: 539 case ISD::USUBO: { 540 SelectUADDO_USUBO(N); 541 return; 542 } 543 case AMDGPUISD::FMUL_W_CHAIN: { 544 SelectFMUL_W_CHAIN(N); 545 return; 546 } 547 case AMDGPUISD::FMA_W_CHAIN: { 548 SelectFMA_W_CHAIN(N); 549 return; 550 } 551 552 case ISD::SCALAR_TO_VECTOR: 553 case ISD::BUILD_VECTOR: { 554 EVT VT = N->getValueType(0); 555 unsigned NumVectorElts = VT.getVectorNumElements(); 556 if (VT.getScalarSizeInBits() == 16) { 557 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 558 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 559 ReplaceNode(N, Packed); 560 return; 561 } 562 } 563 564 break; 565 } 566 567 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 568 unsigned RegClassID = 569 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 570 SelectBuildVector(N, RegClassID); 571 return; 572 } 573 case ISD::BUILD_PAIR: { 574 SDValue RC, SubReg0, SubReg1; 575 SDLoc DL(N); 576 if (N->getValueType(0) == MVT::i128) { 577 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 578 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 579 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 580 } else if (N->getValueType(0) == MVT::i64) { 581 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 582 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 583 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 584 } else { 585 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 586 } 587 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 588 N->getOperand(1), SubReg1 }; 589 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 590 N->getValueType(0), Ops)); 591 return; 592 } 593 594 case ISD::Constant: 595 case ISD::ConstantFP: { 596 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 597 break; 598 599 uint64_t Imm; 600 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 601 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 602 else { 603 ConstantSDNode *C = cast<ConstantSDNode>(N); 604 Imm = C->getZExtValue(); 605 } 606 607 SDLoc DL(N); 608 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 609 return; 610 } 611 case AMDGPUISD::BFE_I32: 612 case AMDGPUISD::BFE_U32: { 613 // There is a scalar version available, but unlike the vector version which 614 // has a separate operand for the offset and width, the scalar version packs 615 // the width and offset into a single operand. Try to move to the scalar 616 // version if the offsets are constant, so that we can try to keep extended 617 // loads of kernel arguments in SGPRs. 618 619 // TODO: Technically we could try to pattern match scalar bitshifts of 620 // dynamic values, but it's probably not useful. 621 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 622 if (!Offset) 623 break; 624 625 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 626 if (!Width) 627 break; 628 629 bool Signed = Opc == AMDGPUISD::BFE_I32; 630 631 uint32_t OffsetVal = Offset->getZExtValue(); 632 uint32_t WidthVal = Width->getZExtValue(); 633 634 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, 635 WidthVal)); 636 return; 637 } 638 case AMDGPUISD::DIV_SCALE: { 639 SelectDIV_SCALE(N); 640 return; 641 } 642 case AMDGPUISD::MAD_I64_I32: 643 case AMDGPUISD::MAD_U64_U32: { 644 SelectMAD_64_32(N); 645 return; 646 } 647 case ISD::SMUL_LOHI: 648 case ISD::UMUL_LOHI: 649 return SelectMUL_LOHI(N); 650 case ISD::CopyToReg: { 651 const SITargetLowering& Lowering = 652 *static_cast<const SITargetLowering*>(getTargetLowering()); 653 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 654 break; 655 } 656 case ISD::AND: 657 case ISD::SRL: 658 case ISD::SRA: 659 case ISD::SIGN_EXTEND_INREG: 660 if (N->getValueType(0) != MVT::i32) 661 break; 662 663 SelectS_BFE(N); 664 return; 665 case ISD::BRCOND: 666 SelectBRCOND(N); 667 return; 668 case ISD::FMAD: 669 case ISD::FMA: 670 SelectFMAD_FMA(N); 671 return; 672 case AMDGPUISD::CVT_PKRTZ_F16_F32: 673 case AMDGPUISD::CVT_PKNORM_I16_F32: 674 case AMDGPUISD::CVT_PKNORM_U16_F32: 675 case AMDGPUISD::CVT_PK_U16_U32: 676 case AMDGPUISD::CVT_PK_I16_I32: { 677 // Hack around using a legal type if f16 is illegal. 678 if (N->getValueType(0) == MVT::i32) { 679 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 680 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 681 { N->getOperand(0), N->getOperand(1) }); 682 SelectCode(N); 683 return; 684 } 685 686 break; 687 } 688 case ISD::INTRINSIC_W_CHAIN: { 689 SelectINTRINSIC_W_CHAIN(N); 690 return; 691 } 692 case ISD::INTRINSIC_WO_CHAIN: { 693 SelectINTRINSIC_WO_CHAIN(N); 694 return; 695 } 696 case ISD::INTRINSIC_VOID: { 697 SelectINTRINSIC_VOID(N); 698 return; 699 } 700 } 701 702 SelectCode(N); 703 } 704 705 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 706 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 707 const Instruction *Term = BB->getTerminator(); 708 return Term->getMetadata("amdgpu.uniform") || 709 Term->getMetadata("structurizecfg.uniform"); 710 } 711 712 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, 713 unsigned ShAmtBits) const { 714 assert(N->getOpcode() == ISD::AND); 715 716 const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 717 if (RHS.countTrailingOnes() >= ShAmtBits) 718 return true; 719 720 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; 721 return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits; 722 } 723 724 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 725 SDValue &N0, SDValue &N1) { 726 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 727 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 728 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 729 // (i64 (bitcast (v2i32 (build_vector 730 // (or (extract_vector_elt V, 0), OFFSET), 731 // (extract_vector_elt V, 1))))) 732 SDValue Lo = Addr.getOperand(0).getOperand(0); 733 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 734 SDValue BaseLo = Lo.getOperand(0); 735 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 736 // Check that split base (Lo and Hi) are extracted from the same one. 737 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 738 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 739 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 740 // Lo is statically extracted from index 0. 741 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 742 BaseLo.getConstantOperandVal(1) == 0 && 743 // Hi is statically extracted from index 0. 744 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 745 BaseHi.getConstantOperandVal(1) == 1) { 746 N0 = BaseLo.getOperand(0).getOperand(0); 747 N1 = Lo.getOperand(1); 748 return true; 749 } 750 } 751 } 752 return false; 753 } 754 755 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 756 SDValue &RHS) const { 757 if (CurDAG->isBaseWithConstantOffset(Addr)) { 758 LHS = Addr.getOperand(0); 759 RHS = Addr.getOperand(1); 760 return true; 761 } 762 763 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 764 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 765 return true; 766 } 767 768 return false; 769 } 770 771 StringRef AMDGPUDAGToDAGISel::getPassName() const { 772 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 773 } 774 775 //===----------------------------------------------------------------------===// 776 // Complex Patterns 777 //===----------------------------------------------------------------------===// 778 779 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 780 SDValue &Offset) { 781 return false; 782 } 783 784 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 785 SDValue &Offset) { 786 ConstantSDNode *C; 787 SDLoc DL(Addr); 788 789 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 790 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 791 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 792 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 793 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 794 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 795 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 796 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 797 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 798 Base = Addr.getOperand(0); 799 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 800 } else { 801 Base = Addr; 802 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 803 } 804 805 return true; 806 } 807 808 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 809 const SDLoc &DL) const { 810 SDNode *Mov = CurDAG->getMachineNode( 811 AMDGPU::S_MOV_B32, DL, MVT::i32, 812 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 813 return SDValue(Mov, 0); 814 } 815 816 // FIXME: Should only handle addcarry/subcarry 817 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 818 SDLoc DL(N); 819 SDValue LHS = N->getOperand(0); 820 SDValue RHS = N->getOperand(1); 821 822 unsigned Opcode = N->getOpcode(); 823 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 824 bool ProduceCarry = 825 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 826 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 827 828 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 829 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 830 831 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 832 DL, MVT::i32, LHS, Sub0); 833 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 834 DL, MVT::i32, LHS, Sub1); 835 836 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 837 DL, MVT::i32, RHS, Sub0); 838 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 839 DL, MVT::i32, RHS, Sub1); 840 841 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 842 843 static const unsigned OpcMap[2][2][2] = { 844 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 845 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 846 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 847 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 848 849 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 850 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 851 852 SDNode *AddLo; 853 if (!ConsumeCarry) { 854 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 855 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 856 } else { 857 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 858 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 859 } 860 SDValue AddHiArgs[] = { 861 SDValue(Hi0, 0), 862 SDValue(Hi1, 0), 863 SDValue(AddLo, 1) 864 }; 865 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 866 867 SDValue RegSequenceArgs[] = { 868 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 869 SDValue(AddLo,0), 870 Sub0, 871 SDValue(AddHi,0), 872 Sub1, 873 }; 874 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 875 MVT::i64, RegSequenceArgs); 876 877 if (ProduceCarry) { 878 // Replace the carry-use 879 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 880 } 881 882 // Replace the remaining uses. 883 ReplaceNode(N, RegSequence); 884 } 885 886 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 887 SDLoc DL(N); 888 SDValue LHS = N->getOperand(0); 889 SDValue RHS = N->getOperand(1); 890 SDValue CI = N->getOperand(2); 891 892 if (N->isDivergent()) { 893 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 894 : AMDGPU::V_SUBB_U32_e64; 895 CurDAG->SelectNodeTo( 896 N, Opc, N->getVTList(), 897 {LHS, RHS, CI, 898 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 899 } else { 900 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 901 : AMDGPU::S_SUB_CO_PSEUDO; 902 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 903 } 904 } 905 906 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 907 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 908 // carry out despite the _i32 name. These were renamed in VI to _U32. 909 // FIXME: We should probably rename the opcodes here. 910 bool IsAdd = N->getOpcode() == ISD::UADDO; 911 bool IsVALU = N->isDivergent(); 912 913 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 914 ++UI) 915 if (UI.getUse().getResNo() == 1) { 916 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 917 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 918 IsVALU = true; 919 break; 920 } 921 } 922 923 if (IsVALU) { 924 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 925 926 CurDAG->SelectNodeTo( 927 N, Opc, N->getVTList(), 928 {N->getOperand(0), N->getOperand(1), 929 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 930 } else { 931 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 932 : AMDGPU::S_USUBO_PSEUDO; 933 934 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 935 {N->getOperand(0), N->getOperand(1)}); 936 } 937 } 938 939 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 940 SDLoc SL(N); 941 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 942 SDValue Ops[10]; 943 944 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 945 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 946 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 947 Ops[8] = N->getOperand(0); 948 Ops[9] = N->getOperand(4); 949 950 // If there are no source modifiers, prefer fmac over fma because it can use 951 // the smaller VOP2 encoding. 952 bool UseFMAC = Subtarget->hasDLInsts() && 953 cast<ConstantSDNode>(Ops[0])->isZero() && 954 cast<ConstantSDNode>(Ops[2])->isZero() && 955 cast<ConstantSDNode>(Ops[4])->isZero(); 956 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 957 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 958 } 959 960 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 961 SDLoc SL(N); 962 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 963 SDValue Ops[8]; 964 965 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 966 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 967 Ops[6] = N->getOperand(0); 968 Ops[7] = N->getOperand(3); 969 970 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 971 } 972 973 // We need to handle this here because tablegen doesn't support matching 974 // instructions with multiple outputs. 975 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 976 SDLoc SL(N); 977 EVT VT = N->getValueType(0); 978 979 assert(VT == MVT::f32 || VT == MVT::f64); 980 981 unsigned Opc 982 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 983 984 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 985 // omod 986 SDValue Ops[8]; 987 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 988 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 989 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 990 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 991 } 992 993 // We need to handle this here because tablegen doesn't support matching 994 // instructions with multiple outputs. 995 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 996 SDLoc SL(N); 997 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 998 unsigned Opc; 999 if (Subtarget->hasMADIntraFwdBug()) 1000 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1001 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1002 else 1003 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1004 1005 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1006 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1007 Clamp }; 1008 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1009 } 1010 1011 // We need to handle this here because tablegen doesn't support matching 1012 // instructions with multiple outputs. 1013 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { 1014 SDLoc SL(N); 1015 bool Signed = N->getOpcode() == ISD::SMUL_LOHI; 1016 unsigned Opc; 1017 if (Subtarget->hasMADIntraFwdBug()) 1018 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1019 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1020 else 1021 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1022 1023 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); 1024 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1025 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; 1026 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); 1027 if (!SDValue(N, 0).use_empty()) { 1028 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); 1029 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1030 MVT::i32, SDValue(Mad, 0), Sub0); 1031 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); 1032 } 1033 if (!SDValue(N, 1).use_empty()) { 1034 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); 1035 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1036 MVT::i32, SDValue(Mad, 0), Sub1); 1037 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); 1038 } 1039 CurDAG->RemoveDeadNode(N); 1040 } 1041 1042 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1043 if (!isUInt<16>(Offset)) 1044 return false; 1045 1046 if (!Base || Subtarget->hasUsableDSOffset() || 1047 Subtarget->unsafeDSOffsetFoldingEnabled()) 1048 return true; 1049 1050 // On Southern Islands instruction with a negative base value and an offset 1051 // don't seem to work. 1052 return CurDAG->SignBitIsZero(Base); 1053 } 1054 1055 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1056 SDValue &Offset) const { 1057 SDLoc DL(Addr); 1058 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1059 SDValue N0 = Addr.getOperand(0); 1060 SDValue N1 = Addr.getOperand(1); 1061 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1062 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1063 // (add n0, c0) 1064 Base = N0; 1065 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1066 return true; 1067 } 1068 } else if (Addr.getOpcode() == ISD::SUB) { 1069 // sub C, x -> add (sub 0, x), C 1070 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1071 int64_t ByteOffset = C->getSExtValue(); 1072 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1073 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1074 1075 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1076 // the known bits in isDSOffsetLegal. We need to emit the selected node 1077 // here, so this is thrown away. 1078 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1079 Zero, Addr.getOperand(1)); 1080 1081 if (isDSOffsetLegal(Sub, ByteOffset)) { 1082 SmallVector<SDValue, 3> Opnds; 1083 Opnds.push_back(Zero); 1084 Opnds.push_back(Addr.getOperand(1)); 1085 1086 // FIXME: Select to VOP3 version for with-carry. 1087 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1088 if (Subtarget->hasAddNoCarry()) { 1089 SubOp = AMDGPU::V_SUB_U32_e64; 1090 Opnds.push_back( 1091 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1092 } 1093 1094 MachineSDNode *MachineSub = 1095 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1096 1097 Base = SDValue(MachineSub, 0); 1098 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1099 return true; 1100 } 1101 } 1102 } 1103 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1104 // If we have a constant address, prefer to put the constant into the 1105 // offset. This can save moves to load the constant address since multiple 1106 // operations can share the zero base address register, and enables merging 1107 // into read2 / write2 instructions. 1108 1109 SDLoc DL(Addr); 1110 1111 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1112 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1113 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1114 DL, MVT::i32, Zero); 1115 Base = SDValue(MovZero, 0); 1116 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1117 return true; 1118 } 1119 } 1120 1121 // default case 1122 Base = Addr; 1123 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1124 return true; 1125 } 1126 1127 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1128 unsigned Offset1, 1129 unsigned Size) const { 1130 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1131 return false; 1132 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1133 return false; 1134 1135 if (!Base || Subtarget->hasUsableDSOffset() || 1136 Subtarget->unsafeDSOffsetFoldingEnabled()) 1137 return true; 1138 1139 // On Southern Islands instruction with a negative base value and an offset 1140 // don't seem to work. 1141 return CurDAG->SignBitIsZero(Base); 1142 } 1143 1144 // TODO: If offset is too big, put low 16-bit into offset. 1145 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1146 SDValue &Offset0, 1147 SDValue &Offset1) const { 1148 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1149 } 1150 1151 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1152 SDValue &Offset0, 1153 SDValue &Offset1) const { 1154 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1155 } 1156 1157 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1158 SDValue &Offset0, SDValue &Offset1, 1159 unsigned Size) const { 1160 SDLoc DL(Addr); 1161 1162 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1163 SDValue N0 = Addr.getOperand(0); 1164 SDValue N1 = Addr.getOperand(1); 1165 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1166 unsigned OffsetValue0 = C1->getZExtValue(); 1167 unsigned OffsetValue1 = OffsetValue0 + Size; 1168 1169 // (add n0, c0) 1170 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1171 Base = N0; 1172 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1173 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1174 return true; 1175 } 1176 } else if (Addr.getOpcode() == ISD::SUB) { 1177 // sub C, x -> add (sub 0, x), C 1178 if (const ConstantSDNode *C = 1179 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1180 unsigned OffsetValue0 = C->getZExtValue(); 1181 unsigned OffsetValue1 = OffsetValue0 + Size; 1182 1183 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1184 SDLoc DL(Addr); 1185 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1186 1187 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1188 // the known bits in isDSOffsetLegal. We need to emit the selected node 1189 // here, so this is thrown away. 1190 SDValue Sub = 1191 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1192 1193 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1194 SmallVector<SDValue, 3> Opnds; 1195 Opnds.push_back(Zero); 1196 Opnds.push_back(Addr.getOperand(1)); 1197 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1198 if (Subtarget->hasAddNoCarry()) { 1199 SubOp = AMDGPU::V_SUB_U32_e64; 1200 Opnds.push_back( 1201 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1202 } 1203 1204 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1205 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1206 1207 Base = SDValue(MachineSub, 0); 1208 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1209 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1210 return true; 1211 } 1212 } 1213 } 1214 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1215 unsigned OffsetValue0 = CAddr->getZExtValue(); 1216 unsigned OffsetValue1 = OffsetValue0 + Size; 1217 1218 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1219 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1220 MachineSDNode *MovZero = 1221 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1222 Base = SDValue(MovZero, 0); 1223 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1224 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1225 return true; 1226 } 1227 } 1228 1229 // default case 1230 1231 Base = Addr; 1232 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1233 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1234 return true; 1235 } 1236 1237 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1238 SDValue &SOffset, SDValue &Offset, 1239 SDValue &Offen, SDValue &Idxen, 1240 SDValue &Addr64) const { 1241 // Subtarget prefers to use flat instruction 1242 // FIXME: This should be a pattern predicate and not reach here 1243 if (Subtarget->useFlatForGlobal()) 1244 return false; 1245 1246 SDLoc DL(Addr); 1247 1248 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1249 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1250 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1251 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1252 1253 ConstantSDNode *C1 = nullptr; 1254 SDValue N0 = Addr; 1255 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1256 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1257 if (isUInt<32>(C1->getZExtValue())) 1258 N0 = Addr.getOperand(0); 1259 else 1260 C1 = nullptr; 1261 } 1262 1263 if (N0.getOpcode() == ISD::ADD) { 1264 // (add N2, N3) -> addr64, or 1265 // (add (add N2, N3), C1) -> addr64 1266 SDValue N2 = N0.getOperand(0); 1267 SDValue N3 = N0.getOperand(1); 1268 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1269 1270 if (N2->isDivergent()) { 1271 if (N3->isDivergent()) { 1272 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1273 // addr64, and construct the resource from a 0 address. 1274 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1275 VAddr = N0; 1276 } else { 1277 // N2 is divergent, N3 is not. 1278 Ptr = N3; 1279 VAddr = N2; 1280 } 1281 } else { 1282 // N2 is not divergent. 1283 Ptr = N2; 1284 VAddr = N3; 1285 } 1286 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1287 } else if (N0->isDivergent()) { 1288 // N0 is divergent. Use it as the addr64, and construct the resource from a 1289 // 0 address. 1290 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1291 VAddr = N0; 1292 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1293 } else { 1294 // N0 -> offset, or 1295 // (N0 + C1) -> offset 1296 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1297 Ptr = N0; 1298 } 1299 1300 if (!C1) { 1301 // No offset. 1302 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1303 return true; 1304 } 1305 1306 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1307 // Legal offset for instruction. 1308 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1309 return true; 1310 } 1311 1312 // Illegal offset, store it in soffset. 1313 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1314 SOffset = 1315 SDValue(CurDAG->getMachineNode( 1316 AMDGPU::S_MOV_B32, DL, MVT::i32, 1317 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1318 0); 1319 return true; 1320 } 1321 1322 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1323 SDValue &VAddr, SDValue &SOffset, 1324 SDValue &Offset) const { 1325 SDValue Ptr, Offen, Idxen, Addr64; 1326 1327 // addr64 bit was removed for volcanic islands. 1328 // FIXME: This should be a pattern predicate and not reach here 1329 if (!Subtarget->hasAddr64()) 1330 return false; 1331 1332 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1333 return false; 1334 1335 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1336 if (C->getSExtValue()) { 1337 SDLoc DL(Addr); 1338 1339 const SITargetLowering& Lowering = 1340 *static_cast<const SITargetLowering*>(getTargetLowering()); 1341 1342 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1343 return true; 1344 } 1345 1346 return false; 1347 } 1348 1349 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1350 SDLoc DL(N); 1351 1352 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1353 SDValue TFI = 1354 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1355 1356 // We rebase the base address into an absolute stack address and hence 1357 // use constant 0 for soffset. This value must be retained until 1358 // frame elimination and eliminateFrameIndex will choose the appropriate 1359 // frame register if need be. 1360 return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1361 } 1362 1363 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1364 SDValue Addr, SDValue &Rsrc, 1365 SDValue &VAddr, SDValue &SOffset, 1366 SDValue &ImmOffset) const { 1367 1368 SDLoc DL(Addr); 1369 MachineFunction &MF = CurDAG->getMachineFunction(); 1370 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1371 1372 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1373 1374 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1375 int64_t Imm = CAddr->getSExtValue(); 1376 const int64_t NullPtr = 1377 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1378 // Don't fold null pointer. 1379 if (Imm != NullPtr) { 1380 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1381 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1382 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1383 VAddr = SDValue(MovHighBits, 0); 1384 1385 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1386 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1387 return true; 1388 } 1389 } 1390 1391 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1392 // (add n0, c1) 1393 1394 SDValue N0 = Addr.getOperand(0); 1395 SDValue N1 = Addr.getOperand(1); 1396 1397 // Offsets in vaddr must be positive if range checking is enabled. 1398 // 1399 // The total computation of vaddr + soffset + offset must not overflow. If 1400 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1401 // overflowing. 1402 // 1403 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1404 // always perform a range check. If a negative vaddr base index was used, 1405 // this would fail the range check. The overall address computation would 1406 // compute a valid address, but this doesn't happen due to the range 1407 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1408 // 1409 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1410 // MUBUF vaddr, but not on older subtargets which can only do this if the 1411 // sign bit is known 0. 1412 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1413 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1414 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1415 CurDAG->SignBitIsZero(N0))) { 1416 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1417 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1418 return true; 1419 } 1420 } 1421 1422 // (node) 1423 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1424 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1425 return true; 1426 } 1427 1428 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1429 if (Val.getOpcode() != ISD::CopyFromReg) 1430 return false; 1431 auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg(); 1432 if (!Reg.isPhysical()) 1433 return false; 1434 auto RC = TRI.getPhysRegBaseClass(Reg); 1435 return RC && TRI.isSGPRClass(RC); 1436 } 1437 1438 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1439 SDValue Addr, 1440 SDValue &SRsrc, 1441 SDValue &SOffset, 1442 SDValue &Offset) const { 1443 const SIRegisterInfo *TRI = 1444 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1445 MachineFunction &MF = CurDAG->getMachineFunction(); 1446 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1447 SDLoc DL(Addr); 1448 1449 // CopyFromReg <sgpr> 1450 if (IsCopyFromSGPR(*TRI, Addr)) { 1451 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1452 SOffset = Addr; 1453 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1454 return true; 1455 } 1456 1457 ConstantSDNode *CAddr; 1458 if (Addr.getOpcode() == ISD::ADD) { 1459 // Add (CopyFromReg <sgpr>) <constant> 1460 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1461 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1462 return false; 1463 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1464 return false; 1465 1466 SOffset = Addr.getOperand(0); 1467 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1468 SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1469 // <constant> 1470 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1471 } else { 1472 return false; 1473 } 1474 1475 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1476 1477 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1478 return true; 1479 } 1480 1481 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1482 SDValue &SOffset, SDValue &Offset 1483 ) const { 1484 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1485 const SIInstrInfo *TII = 1486 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1487 1488 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1489 return false; 1490 1491 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1492 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1493 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1494 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1495 APInt::getAllOnes(32).getZExtValue(); // Size 1496 SDLoc DL(Addr); 1497 1498 const SITargetLowering& Lowering = 1499 *static_cast<const SITargetLowering*>(getTargetLowering()); 1500 1501 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1502 return true; 1503 } 1504 return false; 1505 } 1506 1507 // Find a load or store from corresponding pattern root. 1508 // Roots may be build_vector, bitconvert or their combinations. 1509 static MemSDNode* findMemSDNode(SDNode *N) { 1510 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1511 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1512 return MN; 1513 assert(isa<BuildVectorSDNode>(N)); 1514 for (SDValue V : N->op_values()) 1515 if (MemSDNode *MN = 1516 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1517 return MN; 1518 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1519 } 1520 1521 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1522 SDValue &VAddr, SDValue &Offset, 1523 uint64_t FlatVariant) const { 1524 int64_t OffsetVal = 0; 1525 1526 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1527 1528 bool CanHaveFlatSegmentOffsetBug = 1529 Subtarget->hasFlatSegmentOffsetBug() && 1530 FlatVariant == SIInstrFlags::FLAT && 1531 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1532 1533 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1534 SDValue N0, N1; 1535 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1536 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1537 1538 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1539 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1540 Addr = N0; 1541 OffsetVal = COffsetVal; 1542 } else { 1543 // If the offset doesn't fit, put the low bits into the offset field and 1544 // add the rest. 1545 // 1546 // For a FLAT instruction the hardware decides whether to access 1547 // global/scratch/shared memory based on the high bits of vaddr, 1548 // ignoring the offset field, so we have to ensure that when we add 1549 // remainder to vaddr it still points into the same underlying object. 1550 // The easiest way to do that is to make sure that we split the offset 1551 // into two pieces that are both >= 0 or both <= 0. 1552 1553 SDLoc DL(N); 1554 uint64_t RemainderOffset; 1555 1556 std::tie(OffsetVal, RemainderOffset) = 1557 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1558 1559 SDValue AddOffsetLo = 1560 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1561 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1562 1563 if (Addr.getValueType().getSizeInBits() == 32) { 1564 SmallVector<SDValue, 3> Opnds; 1565 Opnds.push_back(N0); 1566 Opnds.push_back(AddOffsetLo); 1567 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1568 if (Subtarget->hasAddNoCarry()) { 1569 AddOp = AMDGPU::V_ADD_U32_e64; 1570 Opnds.push_back(Clamp); 1571 } 1572 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1573 } else { 1574 // TODO: Should this try to use a scalar add pseudo if the base address 1575 // is uniform and saddr is usable? 1576 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1577 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1578 1579 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1580 DL, MVT::i32, N0, Sub0); 1581 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1582 DL, MVT::i32, N0, Sub1); 1583 1584 SDValue AddOffsetHi = 1585 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1586 1587 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1588 1589 SDNode *Add = 1590 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1591 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1592 1593 SDNode *Addc = CurDAG->getMachineNode( 1594 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1595 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1596 1597 SDValue RegSequenceArgs[] = { 1598 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1599 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1600 1601 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1602 MVT::i64, RegSequenceArgs), 1603 0); 1604 } 1605 } 1606 } 1607 } 1608 1609 VAddr = Addr; 1610 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1611 return true; 1612 } 1613 1614 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1615 SDValue &VAddr, 1616 SDValue &Offset) const { 1617 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1618 } 1619 1620 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1621 SDValue &VAddr, 1622 SDValue &Offset) const { 1623 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1624 } 1625 1626 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1627 SDValue &VAddr, 1628 SDValue &Offset) const { 1629 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1630 SIInstrFlags::FlatScratch); 1631 } 1632 1633 // If this matches zero_extend i32:x, return x 1634 static SDValue matchZExtFromI32(SDValue Op) { 1635 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1636 return SDValue(); 1637 1638 SDValue ExtSrc = Op.getOperand(0); 1639 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1640 } 1641 1642 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1643 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1644 SDValue Addr, 1645 SDValue &SAddr, 1646 SDValue &VOffset, 1647 SDValue &Offset) const { 1648 int64_t ImmOffset = 0; 1649 1650 // Match the immediate offset first, which canonically is moved as low as 1651 // possible. 1652 1653 SDValue LHS, RHS; 1654 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1655 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1656 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1657 1658 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1659 SIInstrFlags::FlatGlobal)) { 1660 Addr = LHS; 1661 ImmOffset = COffsetVal; 1662 } else if (!LHS->isDivergent()) { 1663 if (COffsetVal > 0) { 1664 SDLoc SL(N); 1665 // saddr + large_offset -> saddr + 1666 // (voffset = large_offset & ~MaxOffset) + 1667 // (large_offset & MaxOffset); 1668 int64_t SplitImmOffset, RemainderOffset; 1669 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1670 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1671 1672 if (isUInt<32>(RemainderOffset)) { 1673 SDNode *VMov = CurDAG->getMachineNode( 1674 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1675 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1676 VOffset = SDValue(VMov, 0); 1677 SAddr = LHS; 1678 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1679 return true; 1680 } 1681 } 1682 1683 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1684 // is 1 we would need to perform 1 or 2 extra moves for each half of 1685 // the constant and it is better to do a scalar add and then issue a 1686 // single VALU instruction to materialize zero. Otherwise it is less 1687 // instructions to perform VALU adds with immediates or inline literals. 1688 unsigned NumLiterals = 1689 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1690 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1691 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1692 return false; 1693 } 1694 } 1695 1696 // Match the variable offset. 1697 if (Addr.getOpcode() == ISD::ADD) { 1698 LHS = Addr.getOperand(0); 1699 RHS = Addr.getOperand(1); 1700 1701 if (!LHS->isDivergent()) { 1702 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1703 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1704 SAddr = LHS; 1705 VOffset = ZextRHS; 1706 } 1707 } 1708 1709 if (!SAddr && !RHS->isDivergent()) { 1710 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1711 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1712 SAddr = RHS; 1713 VOffset = ZextLHS; 1714 } 1715 } 1716 1717 if (SAddr) { 1718 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1719 return true; 1720 } 1721 } 1722 1723 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1724 isa<ConstantSDNode>(Addr)) 1725 return false; 1726 1727 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1728 // moves required to copy a 64-bit SGPR to VGPR. 1729 SAddr = Addr; 1730 SDNode *VMov = 1731 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1732 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1733 VOffset = SDValue(VMov, 0); 1734 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1735 return true; 1736 } 1737 1738 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1739 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1740 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1741 } else if (SAddr.getOpcode() == ISD::ADD && 1742 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1743 // Materialize this into a scalar move for scalar address to avoid 1744 // readfirstlane. 1745 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1746 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1747 FI->getValueType(0)); 1748 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1749 MVT::i32, TFI, SAddr.getOperand(1)), 1750 0); 1751 } 1752 1753 return SAddr; 1754 } 1755 1756 // Match (32-bit SGPR base) + sext(imm offset) 1757 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1758 SDValue &SAddr, 1759 SDValue &Offset) const { 1760 if (Addr->isDivergent()) 1761 return false; 1762 1763 SDLoc DL(Addr); 1764 1765 int64_t COffsetVal = 0; 1766 1767 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1768 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1769 SAddr = Addr.getOperand(0); 1770 } else { 1771 SAddr = Addr; 1772 } 1773 1774 SAddr = SelectSAddrFI(CurDAG, SAddr); 1775 1776 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1777 1778 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1779 SIInstrFlags::FlatScratch)) { 1780 int64_t SplitImmOffset, RemainderOffset; 1781 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1782 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1783 1784 COffsetVal = SplitImmOffset; 1785 1786 SDValue AddOffset = 1787 SAddr.getOpcode() == ISD::TargetFrameIndex 1788 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1789 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1790 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1791 SAddr, AddOffset), 1792 0); 1793 } 1794 1795 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1796 1797 return true; 1798 } 1799 1800 // Check whether the flat scratch SVS swizzle bug affects this access. 1801 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( 1802 SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { 1803 if (!Subtarget->hasFlatScratchSVSSwizzleBug()) 1804 return false; 1805 1806 // The bug affects the swizzling of SVS accesses if there is any carry out 1807 // from the two low order bits (i.e. from bit 1 into bit 2) when adding 1808 // voffset to (soffset + inst_offset). 1809 KnownBits VKnown = CurDAG->computeKnownBits(VAddr); 1810 KnownBits SKnown = KnownBits::computeForAddSub( 1811 true, false, CurDAG->computeKnownBits(SAddr), 1812 KnownBits::makeConstant(APInt(32, ImmOffset))); 1813 uint64_t VMax = VKnown.getMaxValue().getZExtValue(); 1814 uint64_t SMax = SKnown.getMaxValue().getZExtValue(); 1815 return (VMax & 3) + (SMax & 3) >= 4; 1816 } 1817 1818 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, 1819 SDValue &VAddr, SDValue &SAddr, 1820 SDValue &Offset) const { 1821 int64_t ImmOffset = 0; 1822 1823 SDValue LHS, RHS; 1824 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1825 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1826 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1827 1828 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1829 Addr = LHS; 1830 ImmOffset = COffsetVal; 1831 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1832 SDLoc SL(N); 1833 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + 1834 // (large_offset & MaxOffset); 1835 int64_t SplitImmOffset, RemainderOffset; 1836 std::tie(SplitImmOffset, RemainderOffset) 1837 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true); 1838 1839 if (isUInt<32>(RemainderOffset)) { 1840 SDNode *VMov = CurDAG->getMachineNode( 1841 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1842 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1843 VAddr = SDValue(VMov, 0); 1844 SAddr = LHS; 1845 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset)) 1846 return false; 1847 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1848 return true; 1849 } 1850 } 1851 } 1852 1853 if (Addr.getOpcode() != ISD::ADD) 1854 return false; 1855 1856 LHS = Addr.getOperand(0); 1857 RHS = Addr.getOperand(1); 1858 1859 if (!LHS->isDivergent() && RHS->isDivergent()) { 1860 SAddr = LHS; 1861 VAddr = RHS; 1862 } else if (!RHS->isDivergent() && LHS->isDivergent()) { 1863 SAddr = RHS; 1864 VAddr = LHS; 1865 } else { 1866 return false; 1867 } 1868 1869 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) 1870 return false; 1871 SAddr = SelectSAddrFI(CurDAG, SAddr); 1872 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1873 return true; 1874 } 1875 1876 // Match an immediate (if Offset is not null) or an SGPR (if SOffset is 1877 // not null) offset. If Imm32Only is true, match only 32-bit immediate 1878 // offsets available on CI. 1879 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1880 SDValue *SOffset, SDValue *Offset, 1881 bool Imm32Only, bool IsBuffer) const { 1882 assert((!SOffset || !Offset) && 1883 "Cannot match both soffset and offset at the same time!"); 1884 1885 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1886 if (!C) { 1887 if (!SOffset) 1888 return false; 1889 if (ByteOffsetNode.getValueType().isScalarInteger() && 1890 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1891 *SOffset = ByteOffsetNode; 1892 return true; 1893 } 1894 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1895 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1896 *SOffset = ByteOffsetNode.getOperand(0); 1897 return true; 1898 } 1899 } 1900 return false; 1901 } 1902 1903 SDLoc SL(ByteOffsetNode); 1904 1905 // GFX9 and GFX10 have signed byte immediate offsets. The immediate 1906 // offset for S_BUFFER instructions is unsigned. 1907 int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue(); 1908 std::optional<int64_t> EncodedOffset = 1909 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, IsBuffer); 1910 if (EncodedOffset && Offset && !Imm32Only) { 1911 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1912 return true; 1913 } 1914 1915 // SGPR and literal offsets are unsigned. 1916 if (ByteOffset < 0) 1917 return false; 1918 1919 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1920 if (EncodedOffset && Offset && Imm32Only) { 1921 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1922 return true; 1923 } 1924 1925 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1926 return false; 1927 1928 if (SOffset) { 1929 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1930 *SOffset = SDValue( 1931 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1932 return true; 1933 } 1934 1935 return false; 1936 } 1937 1938 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1939 if (Addr.getValueType() != MVT::i32) 1940 return Addr; 1941 1942 // Zero-extend a 32-bit address. 1943 SDLoc SL(Addr); 1944 1945 const MachineFunction &MF = CurDAG->getMachineFunction(); 1946 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1947 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1948 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1949 1950 const SDValue Ops[] = { 1951 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1952 Addr, 1953 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1954 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1955 0), 1956 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1957 }; 1958 1959 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1960 Ops), 0); 1961 } 1962 1963 // Match a base and an immediate (if Offset is not null) or an SGPR (if 1964 // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is 1965 // true, match only 32-bit immediate offsets available on CI. 1966 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase, 1967 SDValue *SOffset, SDValue *Offset, 1968 bool Imm32Only, 1969 bool IsBuffer) const { 1970 if (SOffset && Offset) { 1971 assert(!Imm32Only && !IsBuffer); 1972 SDValue B; 1973 return SelectSMRDBaseOffset(Addr, B, nullptr, Offset) && 1974 SelectSMRDBaseOffset(B, SBase, SOffset, nullptr); 1975 } 1976 1977 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1978 // wraparound, because s_load instructions perform the addition in 64 bits. 1979 if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD && 1980 !Addr->getFlags().hasNoUnsignedWrap()) 1981 return false; 1982 1983 SDValue N0, N1; 1984 // Extract the base and offset if possible. 1985 if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) { 1986 N0 = Addr.getOperand(0); 1987 N1 = Addr.getOperand(1); 1988 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1989 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1990 } 1991 if (!N0 || !N1) 1992 return false; 1993 if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer)) { 1994 SBase = N0; 1995 return true; 1996 } 1997 if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer)) { 1998 SBase = N1; 1999 return true; 2000 } 2001 return false; 2002 } 2003 2004 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2005 SDValue *SOffset, SDValue *Offset, 2006 bool Imm32Only) const { 2007 if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) { 2008 SBase = Expand32BitAddress(SBase); 2009 return true; 2010 } 2011 2012 if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) { 2013 SBase = Expand32BitAddress(Addr); 2014 *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2015 return true; 2016 } 2017 2018 return false; 2019 } 2020 2021 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2022 SDValue &Offset) const { 2023 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset); 2024 } 2025 2026 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2027 SDValue &Offset) const { 2028 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2029 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset, 2030 /* Imm32Only */ true); 2031 } 2032 2033 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2034 SDValue &SOffset) const { 2035 return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr); 2036 } 2037 2038 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase, 2039 SDValue &SOffset, 2040 SDValue &Offset) const { 2041 return SelectSMRD(Addr, SBase, &SOffset, &Offset); 2042 } 2043 2044 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const { 2045 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2046 /* Imm32Only */ false, /* IsBuffer */ true); 2047 } 2048 2049 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N, 2050 SDValue &Offset) const { 2051 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2052 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2053 /* Imm32Only */ true, /* IsBuffer */ true); 2054 } 2055 2056 bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset, 2057 SDValue &Offset) const { 2058 // Match the (soffset + offset) pair as a 32-bit register base and 2059 // an immediate offset. 2060 return N.getValueType() == MVT::i32 && 2061 SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr, 2062 &Offset, /* Imm32Only */ false, 2063 /* IsBuffer */ true); 2064 } 2065 2066 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2067 SDValue &Base, 2068 SDValue &Offset) const { 2069 SDLoc DL(Index); 2070 2071 if (CurDAG->isBaseWithConstantOffset(Index)) { 2072 SDValue N0 = Index.getOperand(0); 2073 SDValue N1 = Index.getOperand(1); 2074 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2075 2076 // (add n0, c0) 2077 // Don't peel off the offset (c0) if doing so could possibly lead 2078 // the base (n0) to be negative. 2079 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2080 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2081 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2082 Base = N0; 2083 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2084 return true; 2085 } 2086 } 2087 2088 if (isa<ConstantSDNode>(Index)) 2089 return false; 2090 2091 Base = Index; 2092 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2093 return true; 2094 } 2095 2096 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, 2097 SDValue Val, uint32_t Offset, 2098 uint32_t Width) { 2099 if (Val->isDivergent()) { 2100 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; 2101 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); 2102 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); 2103 2104 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); 2105 } 2106 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2107 // Transformation function, pack the offset and width of a BFE into 2108 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2109 // source, bits [5:0] contain the offset and bits [22:16] the width. 2110 uint32_t PackedVal = Offset | (Width << 16); 2111 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2112 2113 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2114 } 2115 2116 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2117 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2118 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2119 // Predicate: 0 < b <= c < 32 2120 2121 const SDValue &Shl = N->getOperand(0); 2122 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2123 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2124 2125 if (B && C) { 2126 uint32_t BVal = B->getZExtValue(); 2127 uint32_t CVal = C->getZExtValue(); 2128 2129 if (0 < BVal && BVal <= CVal && CVal < 32) { 2130 bool Signed = N->getOpcode() == ISD::SRA; 2131 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2132 32 - CVal)); 2133 return; 2134 } 2135 } 2136 SelectCode(N); 2137 } 2138 2139 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2140 switch (N->getOpcode()) { 2141 case ISD::AND: 2142 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2143 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2144 // Predicate: isMask(mask) 2145 const SDValue &Srl = N->getOperand(0); 2146 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2147 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2148 2149 if (Shift && Mask) { 2150 uint32_t ShiftVal = Shift->getZExtValue(); 2151 uint32_t MaskVal = Mask->getZExtValue(); 2152 2153 if (isMask_32(MaskVal)) { 2154 uint32_t WidthVal = llvm::popcount(MaskVal); 2155 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, 2156 WidthVal)); 2157 return; 2158 } 2159 } 2160 } 2161 break; 2162 case ISD::SRL: 2163 if (N->getOperand(0).getOpcode() == ISD::AND) { 2164 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2165 // Predicate: isMask(mask >> b) 2166 const SDValue &And = N->getOperand(0); 2167 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2168 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2169 2170 if (Shift && Mask) { 2171 uint32_t ShiftVal = Shift->getZExtValue(); 2172 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2173 2174 if (isMask_32(MaskVal)) { 2175 uint32_t WidthVal = llvm::popcount(MaskVal); 2176 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, 2177 WidthVal)); 2178 return; 2179 } 2180 } 2181 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2182 SelectS_BFEFromShifts(N); 2183 return; 2184 } 2185 break; 2186 case ISD::SRA: 2187 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2188 SelectS_BFEFromShifts(N); 2189 return; 2190 } 2191 break; 2192 2193 case ISD::SIGN_EXTEND_INREG: { 2194 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2195 SDValue Src = N->getOperand(0); 2196 if (Src.getOpcode() != ISD::SRL) 2197 break; 2198 2199 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2200 if (!Amt) 2201 break; 2202 2203 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2204 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), 2205 Amt->getZExtValue(), Width)); 2206 return; 2207 } 2208 } 2209 2210 SelectCode(N); 2211 } 2212 2213 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2214 assert(N->getOpcode() == ISD::BRCOND); 2215 if (!N->hasOneUse()) 2216 return false; 2217 2218 SDValue Cond = N->getOperand(1); 2219 if (Cond.getOpcode() == ISD::CopyToReg) 2220 Cond = Cond.getOperand(2); 2221 2222 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2223 return false; 2224 2225 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2226 if (VT == MVT::i32) 2227 return true; 2228 2229 if (VT == MVT::i64) { 2230 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2231 2232 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2233 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2234 } 2235 2236 return false; 2237 } 2238 2239 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2240 SDValue Cond = N->getOperand(1); 2241 2242 if (Cond.isUndef()) { 2243 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2244 N->getOperand(2), N->getOperand(0)); 2245 return; 2246 } 2247 2248 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2249 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2250 2251 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2252 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2253 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2254 SDLoc SL(N); 2255 2256 if (!UseSCCBr) { 2257 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2258 // analyzed what generates the vcc value, so we do not know whether vcc 2259 // bits for disabled lanes are 0. Thus we need to mask out bits for 2260 // disabled lanes. 2261 // 2262 // For the case that we select S_CBRANCH_SCC1 and it gets 2263 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2264 // SIInstrInfo::moveToVALU which inserts the S_AND). 2265 // 2266 // We could add an analysis of what generates the vcc value here and omit 2267 // the S_AND when is unnecessary. But it would be better to add a separate 2268 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2269 // catches both cases. 2270 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2271 : AMDGPU::S_AND_B64, 2272 SL, MVT::i1, 2273 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2274 : AMDGPU::EXEC, 2275 MVT::i1), 2276 Cond), 2277 0); 2278 } 2279 2280 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2281 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2282 N->getOperand(2), // Basic Block 2283 VCC.getValue(0)); 2284 } 2285 2286 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2287 MVT VT = N->getSimpleValueType(0); 2288 bool IsFMA = N->getOpcode() == ISD::FMA; 2289 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2290 !Subtarget->hasFmaMixInsts()) || 2291 ((IsFMA && Subtarget->hasMadMixInsts()) || 2292 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2293 SelectCode(N); 2294 return; 2295 } 2296 2297 SDValue Src0 = N->getOperand(0); 2298 SDValue Src1 = N->getOperand(1); 2299 SDValue Src2 = N->getOperand(2); 2300 unsigned Src0Mods, Src1Mods, Src2Mods; 2301 2302 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2303 // using the conversion from f16. 2304 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2305 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2306 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2307 2308 assert((IsFMA || !Mode.allFP32Denormals()) && 2309 "fmad selected with denormals enabled"); 2310 // TODO: We can select this with f32 denormals enabled if all the sources are 2311 // converted from f16 (in which case fmad isn't legal). 2312 2313 if (Sel0 || Sel1 || Sel2) { 2314 // For dummy operands. 2315 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2316 SDValue Ops[] = { 2317 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2318 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2319 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2320 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2321 Zero, Zero 2322 }; 2323 2324 CurDAG->SelectNodeTo(N, 2325 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2326 MVT::f32, Ops); 2327 } else { 2328 SelectCode(N); 2329 } 2330 } 2331 2332 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2333 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2334 // be copied to an SGPR with readfirstlane. 2335 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2336 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2337 2338 SDValue Chain = N->getOperand(0); 2339 SDValue Ptr = N->getOperand(2); 2340 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2341 MachineMemOperand *MMO = M->getMemOperand(); 2342 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2343 2344 SDValue Offset; 2345 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2346 SDValue PtrBase = Ptr.getOperand(0); 2347 SDValue PtrOffset = Ptr.getOperand(1); 2348 2349 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2350 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2351 N = glueCopyToM0(N, PtrBase); 2352 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2353 } 2354 } 2355 2356 if (!Offset) { 2357 N = glueCopyToM0(N, Ptr); 2358 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2359 } 2360 2361 SDValue Ops[] = { 2362 Offset, 2363 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2364 Chain, 2365 N->getOperand(N->getNumOperands() - 1) // New glue 2366 }; 2367 2368 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2369 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2370 } 2371 2372 // We need to handle this here because tablegen doesn't support matching 2373 // instructions with multiple outputs. 2374 void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) { 2375 unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32; 2376 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4), 2377 N->getOperand(5), N->getOperand(0)}; 2378 2379 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2380 MachineMemOperand *MMO = M->getMemOperand(); 2381 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2382 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2383 } 2384 2385 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2386 switch (IntrID) { 2387 case Intrinsic::amdgcn_ds_gws_init: 2388 return AMDGPU::DS_GWS_INIT; 2389 case Intrinsic::amdgcn_ds_gws_barrier: 2390 return AMDGPU::DS_GWS_BARRIER; 2391 case Intrinsic::amdgcn_ds_gws_sema_v: 2392 return AMDGPU::DS_GWS_SEMA_V; 2393 case Intrinsic::amdgcn_ds_gws_sema_br: 2394 return AMDGPU::DS_GWS_SEMA_BR; 2395 case Intrinsic::amdgcn_ds_gws_sema_p: 2396 return AMDGPU::DS_GWS_SEMA_P; 2397 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2398 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2399 default: 2400 llvm_unreachable("not a gws intrinsic"); 2401 } 2402 } 2403 2404 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2405 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2406 !Subtarget->hasGWSSemaReleaseAll()) { 2407 // Let this error. 2408 SelectCode(N); 2409 return; 2410 } 2411 2412 // Chain, intrinsic ID, vsrc, offset 2413 const bool HasVSrc = N->getNumOperands() == 4; 2414 assert(HasVSrc || N->getNumOperands() == 3); 2415 2416 SDLoc SL(N); 2417 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2418 int ImmOffset = 0; 2419 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2420 MachineMemOperand *MMO = M->getMemOperand(); 2421 2422 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2423 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2424 2425 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2426 // offset field) % 64. Some versions of the programming guide omit the m0 2427 // part, or claim it's from offset 0. 2428 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2429 // If we have a constant offset, try to use the 0 in m0 as the base. 2430 // TODO: Look into changing the default m0 initialization value. If the 2431 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2432 // the immediate offset. 2433 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2434 ImmOffset = ConstOffset->getZExtValue(); 2435 } else { 2436 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2437 ImmOffset = BaseOffset.getConstantOperandVal(1); 2438 BaseOffset = BaseOffset.getOperand(0); 2439 } 2440 2441 // Prefer to do the shift in an SGPR since it should be possible to use m0 2442 // as the result directly. If it's already an SGPR, it will be eliminated 2443 // later. 2444 SDNode *SGPROffset 2445 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2446 BaseOffset); 2447 // Shift to offset in m0 2448 SDNode *M0Base 2449 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2450 SDValue(SGPROffset, 0), 2451 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2452 glueCopyToM0(N, SDValue(M0Base, 0)); 2453 } 2454 2455 SDValue Chain = N->getOperand(0); 2456 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2457 2458 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2459 SmallVector<SDValue, 5> Ops; 2460 if (HasVSrc) 2461 Ops.push_back(N->getOperand(2)); 2462 Ops.push_back(OffsetField); 2463 Ops.push_back(Chain); 2464 2465 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2466 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2467 } 2468 2469 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2470 if (Subtarget->getLDSBankCount() != 16) { 2471 // This is a single instruction with a pattern. 2472 SelectCode(N); 2473 return; 2474 } 2475 2476 SDLoc DL(N); 2477 2478 // This requires 2 instructions. It is possible to write a pattern to support 2479 // this, but the generated isel emitter doesn't correctly deal with multiple 2480 // output instructions using the same physical register input. The copy to m0 2481 // is incorrectly placed before the second instruction. 2482 // 2483 // TODO: Match source modifiers. 2484 // 2485 // def : Pat < 2486 // (int_amdgcn_interp_p1_f16 2487 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2488 // (i32 timm:$attrchan), (i32 timm:$attr), 2489 // (i1 timm:$high), M0), 2490 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2491 // timm:$attrchan, 0, 2492 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2493 // let Predicates = [has16BankLDS]; 2494 // } 2495 2496 // 16 bank LDS 2497 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2498 N->getOperand(5), SDValue()); 2499 2500 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2501 2502 SDNode *InterpMov = 2503 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2504 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2505 N->getOperand(3), // Attr 2506 N->getOperand(2), // Attrchan 2507 ToM0.getValue(1) // In glue 2508 }); 2509 2510 SDNode *InterpP1LV = 2511 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2512 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2513 N->getOperand(1), // Src0 2514 N->getOperand(3), // Attr 2515 N->getOperand(2), // Attrchan 2516 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2517 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2518 N->getOperand(4), // high 2519 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2520 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2521 SDValue(InterpMov, 1) 2522 }); 2523 2524 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2525 } 2526 2527 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2528 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2529 switch (IntrID) { 2530 case Intrinsic::amdgcn_ds_append: 2531 case Intrinsic::amdgcn_ds_consume: { 2532 if (N->getValueType(0) != MVT::i32) 2533 break; 2534 SelectDSAppendConsume(N, IntrID); 2535 return; 2536 } 2537 case Intrinsic::amdgcn_ds_bvh_stack_rtn: 2538 SelectDSBvhStackIntrinsic(N); 2539 return; 2540 } 2541 2542 SelectCode(N); 2543 } 2544 2545 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2546 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2547 unsigned Opcode; 2548 switch (IntrID) { 2549 case Intrinsic::amdgcn_wqm: 2550 Opcode = AMDGPU::WQM; 2551 break; 2552 case Intrinsic::amdgcn_softwqm: 2553 Opcode = AMDGPU::SOFT_WQM; 2554 break; 2555 case Intrinsic::amdgcn_wwm: 2556 case Intrinsic::amdgcn_strict_wwm: 2557 Opcode = AMDGPU::STRICT_WWM; 2558 break; 2559 case Intrinsic::amdgcn_strict_wqm: 2560 Opcode = AMDGPU::STRICT_WQM; 2561 break; 2562 case Intrinsic::amdgcn_interp_p1_f16: 2563 SelectInterpP1F16(N); 2564 return; 2565 default: 2566 SelectCode(N); 2567 return; 2568 } 2569 2570 SDValue Src = N->getOperand(1); 2571 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2572 } 2573 2574 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2575 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2576 switch (IntrID) { 2577 case Intrinsic::amdgcn_ds_gws_init: 2578 case Intrinsic::amdgcn_ds_gws_barrier: 2579 case Intrinsic::amdgcn_ds_gws_sema_v: 2580 case Intrinsic::amdgcn_ds_gws_sema_br: 2581 case Intrinsic::amdgcn_ds_gws_sema_p: 2582 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2583 SelectDS_GWS(N, IntrID); 2584 return; 2585 default: 2586 break; 2587 } 2588 2589 SelectCode(N); 2590 } 2591 2592 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2593 unsigned &Mods, 2594 bool AllowAbs) const { 2595 Mods = 0; 2596 Src = In; 2597 2598 if (Src.getOpcode() == ISD::FNEG) { 2599 Mods |= SISrcMods::NEG; 2600 Src = Src.getOperand(0); 2601 } 2602 2603 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2604 Mods |= SISrcMods::ABS; 2605 Src = Src.getOperand(0); 2606 } 2607 2608 return true; 2609 } 2610 2611 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2612 SDValue &SrcMods) const { 2613 unsigned Mods; 2614 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2615 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2616 return true; 2617 } 2618 2619 return false; 2620 } 2621 2622 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2623 SDValue &SrcMods) const { 2624 unsigned Mods; 2625 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2626 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2627 return true; 2628 } 2629 2630 return false; 2631 } 2632 2633 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2634 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2635 return false; 2636 2637 Src = In; 2638 return true; 2639 } 2640 2641 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src, 2642 SDValue &SrcMods, 2643 bool OpSel) const { 2644 unsigned Mods; 2645 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2646 if (OpSel) 2647 Mods |= SISrcMods::OP_SEL_0; 2648 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2649 return true; 2650 } 2651 2652 return false; 2653 } 2654 2655 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src, 2656 SDValue &SrcMods) const { 2657 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false); 2658 } 2659 2660 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src, 2661 SDValue &SrcMods) const { 2662 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true); 2663 } 2664 2665 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2666 SDValue &SrcMods, SDValue &Clamp, 2667 SDValue &Omod) const { 2668 SDLoc DL(In); 2669 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2670 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2671 2672 return SelectVOP3Mods(In, Src, SrcMods); 2673 } 2674 2675 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2676 SDValue &SrcMods, SDValue &Clamp, 2677 SDValue &Omod) const { 2678 SDLoc DL(In); 2679 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2680 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2681 2682 return SelectVOP3BMods(In, Src, SrcMods); 2683 } 2684 2685 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2686 SDValue &Clamp, SDValue &Omod) const { 2687 Src = In; 2688 2689 SDLoc DL(In); 2690 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2691 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2692 2693 return true; 2694 } 2695 2696 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2697 SDValue &SrcMods, bool IsDOT) const { 2698 unsigned Mods = 0; 2699 Src = In; 2700 2701 if (Src.getOpcode() == ISD::FNEG) { 2702 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2703 Src = Src.getOperand(0); 2704 } 2705 2706 if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 && 2707 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { 2708 unsigned VecMods = Mods; 2709 2710 SDValue Lo = stripBitcast(Src.getOperand(0)); 2711 SDValue Hi = stripBitcast(Src.getOperand(1)); 2712 2713 if (Lo.getOpcode() == ISD::FNEG) { 2714 Lo = stripBitcast(Lo.getOperand(0)); 2715 Mods ^= SISrcMods::NEG; 2716 } 2717 2718 if (Hi.getOpcode() == ISD::FNEG) { 2719 Hi = stripBitcast(Hi.getOperand(0)); 2720 Mods ^= SISrcMods::NEG_HI; 2721 } 2722 2723 if (isExtractHiElt(Lo, Lo)) 2724 Mods |= SISrcMods::OP_SEL_0; 2725 2726 if (isExtractHiElt(Hi, Hi)) 2727 Mods |= SISrcMods::OP_SEL_1; 2728 2729 unsigned VecSize = Src.getValueSizeInBits(); 2730 Lo = stripExtractLoElt(Lo); 2731 Hi = stripExtractLoElt(Hi); 2732 2733 if (Lo.getValueSizeInBits() > VecSize) { 2734 Lo = CurDAG->getTargetExtractSubreg( 2735 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2736 MVT::getIntegerVT(VecSize), Lo); 2737 } 2738 2739 if (Hi.getValueSizeInBits() > VecSize) { 2740 Hi = CurDAG->getTargetExtractSubreg( 2741 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2742 MVT::getIntegerVT(VecSize), Hi); 2743 } 2744 2745 assert(Lo.getValueSizeInBits() <= VecSize && 2746 Hi.getValueSizeInBits() <= VecSize); 2747 2748 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2749 // Really a scalar input. Just select from the low half of the register to 2750 // avoid packing. 2751 2752 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2753 Src = Lo; 2754 } else { 2755 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2756 2757 SDLoc SL(In); 2758 SDValue Undef = SDValue( 2759 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2760 Lo.getValueType()), 0); 2761 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2762 : AMDGPU::SReg_64RegClassID; 2763 const SDValue Ops[] = { 2764 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2765 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2766 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2767 2768 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2769 Src.getValueType(), Ops), 0); 2770 } 2771 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2772 return true; 2773 } 2774 2775 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2776 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2777 .bitcastToAPInt().getZExtValue(); 2778 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2779 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; 2780 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2781 return true; 2782 } 2783 } 2784 2785 Mods = VecMods; 2786 } 2787 2788 // Packed instructions do not have abs modifiers. 2789 Mods |= SISrcMods::OP_SEL_1; 2790 2791 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2792 return true; 2793 } 2794 2795 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, 2796 SDValue &SrcMods) const { 2797 return SelectVOP3PMods(In, Src, SrcMods, true); 2798 } 2799 2800 bool AMDGPUDAGToDAGISel::SelectDotIUVOP3PMods(SDValue In, SDValue &Src) const { 2801 const ConstantSDNode *C = cast<ConstantSDNode>(In); 2802 // Literal i1 value set in intrinsic, represents SrcMods for the next operand. 2803 // 1 promotes packed values to signed, 0 treats them as unsigned. 2804 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 2805 2806 unsigned Mods = SISrcMods::OP_SEL_1; 2807 unsigned SrcSign = C->getAPIntValue().getZExtValue(); 2808 if (SrcSign == 1) 2809 Mods ^= SISrcMods::NEG; 2810 2811 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2812 return true; 2813 } 2814 2815 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In, 2816 SDValue &Src) const { 2817 const ConstantSDNode *C = cast<ConstantSDNode>(In); 2818 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 2819 2820 unsigned Mods = SISrcMods::OP_SEL_1; 2821 unsigned SrcVal = C->getAPIntValue().getZExtValue(); 2822 if (SrcVal == 1) 2823 Mods |= SISrcMods::OP_SEL_0; 2824 2825 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2826 return true; 2827 } 2828 2829 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2830 SDValue &SrcMods) const { 2831 Src = In; 2832 // FIXME: Handle op_sel 2833 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2834 return true; 2835 } 2836 2837 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2838 SDValue &SrcMods) const { 2839 // FIXME: Handle op_sel 2840 return SelectVOP3Mods(In, Src, SrcMods); 2841 } 2842 2843 // The return value is not whether the match is possible (which it always is), 2844 // but whether or not it a conversion is really used. 2845 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2846 unsigned &Mods) const { 2847 Mods = 0; 2848 SelectVOP3ModsImpl(In, Src, Mods); 2849 2850 if (Src.getOpcode() == ISD::FP_EXTEND) { 2851 Src = Src.getOperand(0); 2852 assert(Src.getValueType() == MVT::f16); 2853 Src = stripBitcast(Src); 2854 2855 // Be careful about folding modifiers if we already have an abs. fneg is 2856 // applied last, so we don't want to apply an earlier fneg. 2857 if ((Mods & SISrcMods::ABS) == 0) { 2858 unsigned ModsTmp; 2859 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2860 2861 if ((ModsTmp & SISrcMods::NEG) != 0) 2862 Mods ^= SISrcMods::NEG; 2863 2864 if ((ModsTmp & SISrcMods::ABS) != 0) 2865 Mods |= SISrcMods::ABS; 2866 } 2867 2868 // op_sel/op_sel_hi decide the source type and source. 2869 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2870 // If the sources's op_sel is set, it picks the high half of the source 2871 // register. 2872 2873 Mods |= SISrcMods::OP_SEL_1; 2874 if (isExtractHiElt(Src, Src)) { 2875 Mods |= SISrcMods::OP_SEL_0; 2876 2877 // TODO: Should we try to look for neg/abs here? 2878 } 2879 2880 return true; 2881 } 2882 2883 return false; 2884 } 2885 2886 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2887 SDValue &SrcMods) const { 2888 unsigned Mods = 0; 2889 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2890 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2891 return true; 2892 } 2893 2894 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2895 if (In.isUndef()) 2896 return CurDAG->getUNDEF(MVT::i32); 2897 2898 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2899 SDLoc SL(In); 2900 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2901 } 2902 2903 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2904 SDLoc SL(In); 2905 return CurDAG->getConstant( 2906 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2907 } 2908 2909 SDValue Src; 2910 if (isExtractHiElt(In, Src)) 2911 return Src; 2912 2913 return SDValue(); 2914 } 2915 2916 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2917 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2918 2919 const SIRegisterInfo *SIRI = 2920 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2921 const SIInstrInfo * SII = 2922 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2923 2924 unsigned Limit = 0; 2925 bool AllUsesAcceptSReg = true; 2926 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2927 Limit < 10 && U != E; ++U, ++Limit) { 2928 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2929 2930 // If the register class is unknown, it could be an unknown 2931 // register class that needs to be an SGPR, e.g. an inline asm 2932 // constraint 2933 if (!RC || SIRI->isSGPRClass(RC)) 2934 return false; 2935 2936 if (RC != &AMDGPU::VS_32RegClass) { 2937 AllUsesAcceptSReg = false; 2938 SDNode * User = *U; 2939 if (User->isMachineOpcode()) { 2940 unsigned Opc = User->getMachineOpcode(); 2941 const MCInstrDesc &Desc = SII->get(Opc); 2942 if (Desc.isCommutable()) { 2943 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2944 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2945 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2946 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2947 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2948 if (CommutedRC == &AMDGPU::VS_32RegClass) 2949 AllUsesAcceptSReg = true; 2950 } 2951 } 2952 } 2953 // If "AllUsesAcceptSReg == false" so far we haven't succeeded 2954 // commuting current user. This means have at least one use 2955 // that strictly require VGPR. Thus, we will not attempt to commute 2956 // other user instructions. 2957 if (!AllUsesAcceptSReg) 2958 break; 2959 } 2960 } 2961 return !AllUsesAcceptSReg && (Limit < 10); 2962 } 2963 2964 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2965 auto Ld = cast<LoadSDNode>(N); 2966 2967 if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(Ld->getMemOperand())) 2968 return false; 2969 2970 return Ld->getAlign() >= Align(4) && 2971 ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2972 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) || 2973 (Subtarget->getScalarizeGlobalBehavior() && 2974 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2975 Ld->isSimple() && 2976 static_cast<const SITargetLowering *>(getTargetLowering()) 2977 ->isMemOpHasNoClobberedMemOperand(N))); 2978 } 2979 2980 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2981 const AMDGPUTargetLowering& Lowering = 2982 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2983 bool IsModified = false; 2984 do { 2985 IsModified = false; 2986 2987 // Go over all selected nodes and try to fold them a bit more 2988 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2989 while (Position != CurDAG->allnodes_end()) { 2990 SDNode *Node = &*Position++; 2991 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2992 if (!MachineNode) 2993 continue; 2994 2995 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2996 if (ResNode != Node) { 2997 if (ResNode) 2998 ReplaceUses(Node, ResNode); 2999 IsModified = true; 3000 } 3001 } 3002 CurDAG->RemoveDeadNodes(); 3003 } while (IsModified); 3004 } 3005 3006 char AMDGPUDAGToDAGISel::ID = 0; 3007