1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUTargetMachine.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/SelectionDAGISel.h" 22 #include "llvm/CodeGen/SelectionDAGNodes.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/InitializePasses.h" 25 26 #ifdef EXPENSIVE_CHECKS 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #endif 30 31 #define DEBUG_TYPE "isel" 32 33 using namespace llvm; 34 35 namespace llvm { 36 37 class R600InstrInfo; 38 39 } // end namespace llvm 40 41 //===----------------------------------------------------------------------===// 42 // Instruction Selector Implementation 43 //===----------------------------------------------------------------------===// 44 45 namespace { 46 47 static bool isNullConstantOrUndef(SDValue V) { 48 if (V.isUndef()) 49 return true; 50 51 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 52 return Const != nullptr && Const->isNullValue(); 53 } 54 55 static bool getConstantValue(SDValue N, uint32_t &Out) { 56 // This is only used for packed vectors, where ussing 0 for undef should 57 // always be good. 58 if (N.isUndef()) { 59 Out = 0; 60 return true; 61 } 62 63 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 64 Out = C->getAPIntValue().getSExtValue(); 65 return true; 66 } 67 68 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 69 Out = C->getValueAPF().bitcastToAPInt().getSExtValue(); 70 return true; 71 } 72 73 return false; 74 } 75 76 // TODO: Handle undef as zero 77 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG, 78 bool Negate = false) { 79 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2); 80 uint32_t LHSVal, RHSVal; 81 if (getConstantValue(N->getOperand(0), LHSVal) && 82 getConstantValue(N->getOperand(1), RHSVal)) { 83 SDLoc SL(N); 84 uint32_t K = Negate ? 85 (-LHSVal & 0xffff) | (-RHSVal << 16) : 86 (LHSVal & 0xffff) | (RHSVal << 16); 87 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0), 88 DAG.getTargetConstant(K, SL, MVT::i32)); 89 } 90 91 return nullptr; 92 } 93 94 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) { 95 return packConstantV2I16(N, DAG, true); 96 } 97 98 /// AMDGPU specific code to select AMDGPU machine instructions for 99 /// SelectionDAG operations. 100 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 101 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 102 // make the right decision when generating code for different targets. 103 const GCNSubtarget *Subtarget; 104 105 // Default FP mode for the current function. 106 AMDGPU::SIModeRegisterDefaults Mode; 107 108 bool EnableLateStructurizeCFG; 109 110 public: 111 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 112 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 113 : SelectionDAGISel(*TM, OptLevel) { 114 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 115 } 116 ~AMDGPUDAGToDAGISel() override = default; 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override { 119 AU.addRequired<AMDGPUArgumentUsageInfo>(); 120 AU.addRequired<LegacyDivergenceAnalysis>(); 121 #ifdef EXPENSIVE_CHECKS 122 AU.addRequired<DominatorTreeWrapperPass>(); 123 AU.addRequired<LoopInfoWrapperPass>(); 124 #endif 125 SelectionDAGISel::getAnalysisUsage(AU); 126 } 127 128 bool matchLoadD16FromBuildVector(SDNode *N) const; 129 130 bool runOnMachineFunction(MachineFunction &MF) override; 131 void PreprocessISelDAG() override; 132 void Select(SDNode *N) override; 133 StringRef getPassName() const override; 134 void PostprocessISelDAG() override; 135 136 protected: 137 void SelectBuildVector(SDNode *N, unsigned RegClassID); 138 139 private: 140 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 141 bool isNoNanSrc(SDValue N) const; 142 bool isInlineImmediate(const SDNode *N, bool Negated = false) const; 143 bool isNegInlineImmediate(const SDNode *N) const { 144 return isInlineImmediate(N, true); 145 } 146 147 bool isInlineImmediate16(int64_t Imm) const { 148 return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm()); 149 } 150 151 bool isInlineImmediate32(int64_t Imm) const { 152 return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm()); 153 } 154 155 bool isInlineImmediate64(int64_t Imm) const { 156 return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm()); 157 } 158 159 bool isInlineImmediate(const APFloat &Imm) const { 160 return Subtarget->getInstrInfo()->isInlineConstant(Imm); 161 } 162 163 bool isVGPRImm(const SDNode *N) const; 164 bool isUniformLoad(const SDNode *N) const; 165 bool isUniformBr(const SDNode *N) const; 166 167 bool isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 168 SDValue &RHS) const; 169 170 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 171 172 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const; 173 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const; 174 SDNode *glueCopyToM0LDSInit(SDNode *N) const; 175 176 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 177 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 178 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 179 bool isDSOffsetLegal(SDValue Base, unsigned Offset) const; 180 bool isDSOffset2Legal(SDValue Base, unsigned Offset0, unsigned Offset1, 181 unsigned Size) const; 182 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 183 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 184 SDValue &Offset1) const; 185 bool SelectDS128Bit8ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 186 SDValue &Offset1) const; 187 bool SelectDSReadWrite2(SDValue Ptr, SDValue &Base, SDValue &Offset0, 188 SDValue &Offset1, unsigned Size) const; 189 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 190 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 191 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, 192 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 193 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 194 SDValue &SOffset, SDValue &Offset, SDValue &GLC, 195 SDValue &SLC, SDValue &TFE, SDValue &DLC, 196 SDValue &SWZ) const; 197 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 198 SDValue &VAddr, SDValue &SOffset, SDValue &Offset, 199 SDValue &SLC) const; 200 bool SelectMUBUFScratchOffen(SDNode *Parent, 201 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 202 SDValue &SOffset, SDValue &ImmOffset) const; 203 bool SelectMUBUFScratchOffset(SDNode *Parent, 204 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 205 SDValue &Offset) const; 206 207 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, 208 SDValue &Offset, SDValue &GLC, SDValue &SLC, 209 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 210 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 211 SDValue &Offset, SDValue &SLC) const; 212 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 213 SDValue &Offset) const; 214 215 template <bool IsSigned> 216 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 217 SDValue &Offset) const; 218 bool SelectGlobalSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 219 SDValue &VOffset, SDValue &Offset) const; 220 bool SelectScratchSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 221 SDValue &Offset) const; 222 223 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 224 bool &Imm) const; 225 SDValue Expand32BitAddress(SDValue Addr) const; 226 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 227 bool &Imm) const; 228 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 229 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 230 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 231 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 232 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 233 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 234 235 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 236 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods, 237 bool AllowAbs = true) const; 238 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 239 bool SelectVOP3BMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 240 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 241 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 242 SDValue &Clamp, SDValue &Omod) const; 243 bool SelectVOP3BMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 244 SDValue &Clamp, SDValue &Omod) const; 245 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 246 SDValue &Clamp, SDValue &Omod) const; 247 248 bool SelectVOP3OMods(SDValue In, SDValue &Src, 249 SDValue &Clamp, SDValue &Omod) const; 250 251 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 252 253 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 254 255 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 256 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 257 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 258 259 SDValue getHi16Elt(SDValue In) const; 260 261 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const; 262 263 void SelectADD_SUB_I64(SDNode *N); 264 void SelectAddcSubb(SDNode *N); 265 void SelectUADDO_USUBO(SDNode *N); 266 void SelectDIV_SCALE(SDNode *N); 267 void SelectMAD_64_32(SDNode *N); 268 void SelectFMA_W_CHAIN(SDNode *N); 269 void SelectFMUL_W_CHAIN(SDNode *N); 270 271 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 272 uint32_t Offset, uint32_t Width); 273 void SelectS_BFEFromShifts(SDNode *N); 274 void SelectS_BFE(SDNode *N); 275 bool isCBranchSCC(const SDNode *N) const; 276 void SelectBRCOND(SDNode *N); 277 void SelectFMAD_FMA(SDNode *N); 278 void SelectATOMIC_CMP_SWAP(SDNode *N); 279 void SelectDSAppendConsume(SDNode *N, unsigned IntrID); 280 void SelectDS_GWS(SDNode *N, unsigned IntrID); 281 void SelectInterpP1F16(SDNode *N); 282 void SelectINTRINSIC_W_CHAIN(SDNode *N); 283 void SelectINTRINSIC_WO_CHAIN(SDNode *N); 284 void SelectINTRINSIC_VOID(SDNode *N); 285 286 protected: 287 // Include the pieces autogenerated from the target description. 288 #include "AMDGPUGenDAGISel.inc" 289 }; 290 291 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 292 const R600Subtarget *Subtarget; 293 294 bool isConstantLoad(const MemSDNode *N, int cbID) const; 295 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 296 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 297 SDValue& Offset); 298 public: 299 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 300 AMDGPUDAGToDAGISel(TM, OptLevel) {} 301 302 void Select(SDNode *N) override; 303 304 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 305 SDValue &Offset) override; 306 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 307 SDValue &Offset) override; 308 309 bool runOnMachineFunction(MachineFunction &MF) override; 310 311 void PreprocessISelDAG() override {} 312 313 protected: 314 // Include the pieces autogenerated from the target description. 315 #include "R600GenDAGISel.inc" 316 }; 317 318 static SDValue stripBitcast(SDValue Val) { 319 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 320 } 321 322 // Figure out if this is really an extract of the high 16-bits of a dword. 323 static bool isExtractHiElt(SDValue In, SDValue &Out) { 324 In = stripBitcast(In); 325 if (In.getOpcode() != ISD::TRUNCATE) 326 return false; 327 328 SDValue Srl = In.getOperand(0); 329 if (Srl.getOpcode() == ISD::SRL) { 330 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 331 if (ShiftAmt->getZExtValue() == 16) { 332 Out = stripBitcast(Srl.getOperand(0)); 333 return true; 334 } 335 } 336 } 337 338 return false; 339 } 340 341 // Look through operations that obscure just looking at the low 16-bits of the 342 // same register. 343 static SDValue stripExtractLoElt(SDValue In) { 344 if (In.getOpcode() == ISD::TRUNCATE) { 345 SDValue Src = In.getOperand(0); 346 if (Src.getValueType().getSizeInBits() == 32) 347 return stripBitcast(Src); 348 } 349 350 return In; 351 } 352 353 } // end anonymous namespace 354 355 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 356 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 357 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 358 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 359 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 360 #ifdef EXPENSIVE_CHECKS 361 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 362 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 363 #endif 364 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 365 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 366 367 /// This pass converts a legalized DAG into a AMDGPU-specific 368 // DAG, ready for instruction scheduling. 369 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 370 CodeGenOpt::Level OptLevel) { 371 return new AMDGPUDAGToDAGISel(TM, OptLevel); 372 } 373 374 /// This pass converts a legalized DAG into a R600-specific 375 // DAG, ready for instruction scheduling. 376 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 377 CodeGenOpt::Level OptLevel) { 378 return new R600DAGToDAGISel(TM, OptLevel); 379 } 380 381 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 382 #ifdef EXPENSIVE_CHECKS 383 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 384 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 385 for (auto &L : LI->getLoopsInPreorder()) { 386 assert(L->isLCSSAForm(DT)); 387 } 388 #endif 389 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 390 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 391 return SelectionDAGISel::runOnMachineFunction(MF); 392 } 393 394 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 395 assert(Subtarget->d16PreservesUnusedBits()); 396 MVT VT = N->getValueType(0).getSimpleVT(); 397 if (VT != MVT::v2i16 && VT != MVT::v2f16) 398 return false; 399 400 SDValue Lo = N->getOperand(0); 401 SDValue Hi = N->getOperand(1); 402 403 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 404 405 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 406 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 407 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 408 409 // Need to check for possible indirect dependencies on the other half of the 410 // vector to avoid introducing a cycle. 411 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 412 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 413 414 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 415 SDValue Ops[] = { 416 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 417 }; 418 419 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 420 if (LdHi->getMemoryVT() == MVT::i8) { 421 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 422 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 423 } else { 424 assert(LdHi->getMemoryVT() == MVT::i16); 425 } 426 427 SDValue NewLoadHi = 428 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 429 Ops, LdHi->getMemoryVT(), 430 LdHi->getMemOperand()); 431 432 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 433 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 434 return true; 435 } 436 437 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 438 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 439 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 440 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 441 if (LdLo && Lo.hasOneUse()) { 442 SDValue TiedIn = getHi16Elt(Hi); 443 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 444 return false; 445 446 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 447 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 448 if (LdLo->getMemoryVT() == MVT::i8) { 449 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 450 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 451 } else { 452 assert(LdLo->getMemoryVT() == MVT::i16); 453 } 454 455 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 456 457 SDValue Ops[] = { 458 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 459 }; 460 461 SDValue NewLoadLo = 462 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 463 Ops, LdLo->getMemoryVT(), 464 LdLo->getMemOperand()); 465 466 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 467 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 468 return true; 469 } 470 471 return false; 472 } 473 474 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 475 if (!Subtarget->d16PreservesUnusedBits()) 476 return; 477 478 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 479 480 bool MadeChange = false; 481 while (Position != CurDAG->allnodes_begin()) { 482 SDNode *N = &*--Position; 483 if (N->use_empty()) 484 continue; 485 486 switch (N->getOpcode()) { 487 case ISD::BUILD_VECTOR: 488 MadeChange |= matchLoadD16FromBuildVector(N); 489 break; 490 default: 491 break; 492 } 493 } 494 495 if (MadeChange) { 496 CurDAG->RemoveDeadNodes(); 497 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 498 CurDAG->dump();); 499 } 500 } 501 502 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 503 if (TM.Options.NoNaNsFPMath) 504 return true; 505 506 // TODO: Move into isKnownNeverNaN 507 if (N->getFlags().hasNoNaNs()) 508 return true; 509 510 return CurDAG->isKnownNeverNaN(N); 511 } 512 513 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 514 bool Negated) const { 515 if (N->isUndef()) 516 return true; 517 518 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 519 if (Negated) { 520 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 521 return TII->isInlineConstant(-C->getAPIntValue()); 522 523 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 524 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 525 526 } else { 527 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 528 return TII->isInlineConstant(C->getAPIntValue()); 529 530 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 531 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 532 } 533 534 return false; 535 } 536 537 /// Determine the register class for \p OpNo 538 /// \returns The register class of the virtual register that will be used for 539 /// the given operand number \OpNo or NULL if the register class cannot be 540 /// determined. 541 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 542 unsigned OpNo) const { 543 if (!N->isMachineOpcode()) { 544 if (N->getOpcode() == ISD::CopyToReg) { 545 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 546 if (Reg.isVirtual()) { 547 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 548 return MRI.getRegClass(Reg); 549 } 550 551 const SIRegisterInfo *TRI 552 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 553 return TRI->getPhysRegClass(Reg); 554 } 555 556 return nullptr; 557 } 558 559 switch (N->getMachineOpcode()) { 560 default: { 561 const MCInstrDesc &Desc = 562 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 563 unsigned OpIdx = Desc.getNumDefs() + OpNo; 564 if (OpIdx >= Desc.getNumOperands()) 565 return nullptr; 566 int RegClass = Desc.OpInfo[OpIdx].RegClass; 567 if (RegClass == -1) 568 return nullptr; 569 570 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 571 } 572 case AMDGPU::REG_SEQUENCE: { 573 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 574 const TargetRegisterClass *SuperRC = 575 Subtarget->getRegisterInfo()->getRegClass(RCID); 576 577 SDValue SubRegOp = N->getOperand(OpNo + 1); 578 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 579 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 580 SubRegIdx); 581 } 582 } 583 } 584 585 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 586 SDValue Glue) const { 587 SmallVector <SDValue, 8> Ops; 588 Ops.push_back(NewChain); // Replace the chain. 589 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 590 Ops.push_back(N->getOperand(i)); 591 592 Ops.push_back(Glue); 593 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 594 } 595 596 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 597 const SITargetLowering& Lowering = 598 *static_cast<const SITargetLowering*>(getTargetLowering()); 599 600 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 601 602 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 603 return glueCopyToOp(N, M0, M0.getValue(1)); 604 } 605 606 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 607 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 608 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 609 if (Subtarget->ldsRequiresM0Init()) 610 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 611 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 612 MachineFunction &MF = CurDAG->getMachineFunction(); 613 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 614 return 615 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 616 } 617 return N; 618 } 619 620 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 621 EVT VT) const { 622 SDNode *Lo = CurDAG->getMachineNode( 623 AMDGPU::S_MOV_B32, DL, MVT::i32, 624 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 625 SDNode *Hi = 626 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 627 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 628 const SDValue Ops[] = { 629 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 630 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 631 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 632 633 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 634 } 635 636 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 637 EVT VT = N->getValueType(0); 638 unsigned NumVectorElts = VT.getVectorNumElements(); 639 EVT EltVT = VT.getVectorElementType(); 640 SDLoc DL(N); 641 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 642 643 if (NumVectorElts == 1) { 644 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 645 RegClass); 646 return; 647 } 648 649 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 650 "supported yet"); 651 // 32 = Max Num Vector Elements 652 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 653 // 1 = Vector Register Class 654 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 655 656 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 657 Triple::amdgcn; 658 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 659 bool IsRegSeq = true; 660 unsigned NOps = N->getNumOperands(); 661 for (unsigned i = 0; i < NOps; i++) { 662 // XXX: Why is this here? 663 if (isa<RegisterSDNode>(N->getOperand(i))) { 664 IsRegSeq = false; 665 break; 666 } 667 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 668 : R600RegisterInfo::getSubRegFromChannel(i); 669 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 670 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 671 } 672 if (NOps != NumVectorElts) { 673 // Fill in the missing undef elements if this was a scalar_to_vector. 674 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 675 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 676 DL, EltVT); 677 for (unsigned i = NOps; i < NumVectorElts; ++i) { 678 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 679 : R600RegisterInfo::getSubRegFromChannel(i); 680 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 681 RegSeqArgs[1 + (2 * i) + 1] = 682 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 683 } 684 } 685 686 if (!IsRegSeq) 687 SelectCode(N); 688 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 689 } 690 691 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 692 unsigned int Opc = N->getOpcode(); 693 if (N->isMachineOpcode()) { 694 N->setNodeId(-1); 695 return; // Already selected. 696 } 697 698 // isa<MemSDNode> almost works but is slightly too permissive for some DS 699 // intrinsics. 700 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 701 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 702 Opc == ISD::ATOMIC_LOAD_FADD || 703 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 704 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 705 N = glueCopyToM0LDSInit(N); 706 SelectCode(N); 707 return; 708 } 709 710 switch (Opc) { 711 default: 712 break; 713 // We are selecting i64 ADD here instead of custom lower it during 714 // DAG legalization, so we can fold some i64 ADDs used for address 715 // calculation into the LOAD and STORE instructions. 716 case ISD::ADDC: 717 case ISD::ADDE: 718 case ISD::SUBC: 719 case ISD::SUBE: { 720 if (N->getValueType(0) != MVT::i64) 721 break; 722 723 SelectADD_SUB_I64(N); 724 return; 725 } 726 case ISD::ADDCARRY: 727 case ISD::SUBCARRY: 728 if (N->getValueType(0) != MVT::i32) 729 break; 730 731 SelectAddcSubb(N); 732 return; 733 case ISD::UADDO: 734 case ISD::USUBO: { 735 SelectUADDO_USUBO(N); 736 return; 737 } 738 case AMDGPUISD::FMUL_W_CHAIN: { 739 SelectFMUL_W_CHAIN(N); 740 return; 741 } 742 case AMDGPUISD::FMA_W_CHAIN: { 743 SelectFMA_W_CHAIN(N); 744 return; 745 } 746 747 case ISD::SCALAR_TO_VECTOR: 748 case ISD::BUILD_VECTOR: { 749 EVT VT = N->getValueType(0); 750 unsigned NumVectorElts = VT.getVectorNumElements(); 751 if (VT.getScalarSizeInBits() == 16) { 752 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 753 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 754 ReplaceNode(N, Packed); 755 return; 756 } 757 } 758 759 break; 760 } 761 762 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 763 unsigned RegClassID = 764 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 765 SelectBuildVector(N, RegClassID); 766 return; 767 } 768 case ISD::BUILD_PAIR: { 769 SDValue RC, SubReg0, SubReg1; 770 SDLoc DL(N); 771 if (N->getValueType(0) == MVT::i128) { 772 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 773 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 774 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 775 } else if (N->getValueType(0) == MVT::i64) { 776 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 777 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 778 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 779 } else { 780 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 781 } 782 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 783 N->getOperand(1), SubReg1 }; 784 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 785 N->getValueType(0), Ops)); 786 return; 787 } 788 789 case ISD::Constant: 790 case ISD::ConstantFP: { 791 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 792 break; 793 794 uint64_t Imm; 795 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 796 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 797 else { 798 ConstantSDNode *C = cast<ConstantSDNode>(N); 799 Imm = C->getZExtValue(); 800 } 801 802 SDLoc DL(N); 803 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 804 return; 805 } 806 case AMDGPUISD::BFE_I32: 807 case AMDGPUISD::BFE_U32: { 808 // There is a scalar version available, but unlike the vector version which 809 // has a separate operand for the offset and width, the scalar version packs 810 // the width and offset into a single operand. Try to move to the scalar 811 // version if the offsets are constant, so that we can try to keep extended 812 // loads of kernel arguments in SGPRs. 813 814 // TODO: Technically we could try to pattern match scalar bitshifts of 815 // dynamic values, but it's probably not useful. 816 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 817 if (!Offset) 818 break; 819 820 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 821 if (!Width) 822 break; 823 824 bool Signed = Opc == AMDGPUISD::BFE_I32; 825 826 uint32_t OffsetVal = Offset->getZExtValue(); 827 uint32_t WidthVal = Width->getZExtValue(); 828 829 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 830 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 831 return; 832 } 833 case AMDGPUISD::DIV_SCALE: { 834 SelectDIV_SCALE(N); 835 return; 836 } 837 case AMDGPUISD::MAD_I64_I32: 838 case AMDGPUISD::MAD_U64_U32: { 839 SelectMAD_64_32(N); 840 return; 841 } 842 case ISD::CopyToReg: { 843 const SITargetLowering& Lowering = 844 *static_cast<const SITargetLowering*>(getTargetLowering()); 845 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 846 break; 847 } 848 case ISD::AND: 849 case ISD::SRL: 850 case ISD::SRA: 851 case ISD::SIGN_EXTEND_INREG: 852 if (N->getValueType(0) != MVT::i32) 853 break; 854 855 SelectS_BFE(N); 856 return; 857 case ISD::BRCOND: 858 SelectBRCOND(N); 859 return; 860 case ISD::FMAD: 861 case ISD::FMA: 862 SelectFMAD_FMA(N); 863 return; 864 case AMDGPUISD::ATOMIC_CMP_SWAP: 865 SelectATOMIC_CMP_SWAP(N); 866 return; 867 case AMDGPUISD::CVT_PKRTZ_F16_F32: 868 case AMDGPUISD::CVT_PKNORM_I16_F32: 869 case AMDGPUISD::CVT_PKNORM_U16_F32: 870 case AMDGPUISD::CVT_PK_U16_U32: 871 case AMDGPUISD::CVT_PK_I16_I32: { 872 // Hack around using a legal type if f16 is illegal. 873 if (N->getValueType(0) == MVT::i32) { 874 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 875 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 876 { N->getOperand(0), N->getOperand(1) }); 877 SelectCode(N); 878 return; 879 } 880 881 break; 882 } 883 case ISD::INTRINSIC_W_CHAIN: { 884 SelectINTRINSIC_W_CHAIN(N); 885 return; 886 } 887 case ISD::INTRINSIC_WO_CHAIN: { 888 SelectINTRINSIC_WO_CHAIN(N); 889 return; 890 } 891 case ISD::INTRINSIC_VOID: { 892 SelectINTRINSIC_VOID(N); 893 return; 894 } 895 } 896 897 SelectCode(N); 898 } 899 900 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 901 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 902 const Instruction *Term = BB->getTerminator(); 903 return Term->getMetadata("amdgpu.uniform") || 904 Term->getMetadata("structurizecfg.uniform"); 905 } 906 907 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 908 SDValue &N0, SDValue &N1) { 909 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 910 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 911 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 912 // (i64 (bitcast (v2i32 (build_vector 913 // (or (extract_vector_elt V, 0), OFFSET), 914 // (extract_vector_elt V, 1))))) 915 SDValue Lo = Addr.getOperand(0).getOperand(0); 916 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 917 SDValue BaseLo = Lo.getOperand(0); 918 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 919 // Check that split base (Lo and Hi) are extracted from the same one. 920 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 921 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 922 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 923 // Lo is statically extracted from index 0. 924 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 925 BaseLo.getConstantOperandVal(1) == 0 && 926 // Hi is statically extracted from index 0. 927 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 928 BaseHi.getConstantOperandVal(1) == 1) { 929 N0 = BaseLo.getOperand(0).getOperand(0); 930 N1 = Lo.getOperand(1); 931 return true; 932 } 933 } 934 } 935 return false; 936 } 937 938 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 939 SDValue &RHS) const { 940 if (CurDAG->isBaseWithConstantOffset(Addr)) { 941 LHS = Addr.getOperand(0); 942 RHS = Addr.getOperand(1); 943 return true; 944 } 945 946 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 947 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 948 return true; 949 } 950 951 return false; 952 } 953 954 StringRef AMDGPUDAGToDAGISel::getPassName() const { 955 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 956 } 957 958 //===----------------------------------------------------------------------===// 959 // Complex Patterns 960 //===----------------------------------------------------------------------===// 961 962 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 963 SDValue &Offset) { 964 return false; 965 } 966 967 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 968 SDValue &Offset) { 969 ConstantSDNode *C; 970 SDLoc DL(Addr); 971 972 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 973 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 974 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 975 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 976 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 977 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 978 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 979 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 980 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 981 Base = Addr.getOperand(0); 982 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 983 } else { 984 Base = Addr; 985 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 986 } 987 988 return true; 989 } 990 991 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 992 const SDLoc &DL) const { 993 SDNode *Mov = CurDAG->getMachineNode( 994 AMDGPU::S_MOV_B32, DL, MVT::i32, 995 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 996 return SDValue(Mov, 0); 997 } 998 999 // FIXME: Should only handle addcarry/subcarry 1000 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 1001 SDLoc DL(N); 1002 SDValue LHS = N->getOperand(0); 1003 SDValue RHS = N->getOperand(1); 1004 1005 unsigned Opcode = N->getOpcode(); 1006 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 1007 bool ProduceCarry = 1008 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 1009 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 1010 1011 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1012 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1013 1014 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1015 DL, MVT::i32, LHS, Sub0); 1016 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1017 DL, MVT::i32, LHS, Sub1); 1018 1019 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1020 DL, MVT::i32, RHS, Sub0); 1021 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1022 DL, MVT::i32, RHS, Sub1); 1023 1024 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 1025 1026 static const unsigned OpcMap[2][2][2] = { 1027 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 1028 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 1029 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 1030 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 1031 1032 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 1033 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 1034 1035 SDNode *AddLo; 1036 if (!ConsumeCarry) { 1037 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 1038 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 1039 } else { 1040 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 1041 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 1042 } 1043 SDValue AddHiArgs[] = { 1044 SDValue(Hi0, 0), 1045 SDValue(Hi1, 0), 1046 SDValue(AddLo, 1) 1047 }; 1048 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 1049 1050 SDValue RegSequenceArgs[] = { 1051 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 1052 SDValue(AddLo,0), 1053 Sub0, 1054 SDValue(AddHi,0), 1055 Sub1, 1056 }; 1057 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1058 MVT::i64, RegSequenceArgs); 1059 1060 if (ProduceCarry) { 1061 // Replace the carry-use 1062 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 1063 } 1064 1065 // Replace the remaining uses. 1066 ReplaceNode(N, RegSequence); 1067 } 1068 1069 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 1070 SDLoc DL(N); 1071 SDValue LHS = N->getOperand(0); 1072 SDValue RHS = N->getOperand(1); 1073 SDValue CI = N->getOperand(2); 1074 1075 if (N->isDivergent()) { 1076 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 1077 : AMDGPU::V_SUBB_U32_e64; 1078 CurDAG->SelectNodeTo( 1079 N, Opc, N->getVTList(), 1080 {LHS, RHS, CI, 1081 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1082 } else { 1083 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 1084 : AMDGPU::S_SUB_CO_PSEUDO; 1085 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 1086 } 1087 } 1088 1089 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 1090 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 1091 // carry out despite the _i32 name. These were renamed in VI to _U32. 1092 // FIXME: We should probably rename the opcodes here. 1093 bool IsAdd = N->getOpcode() == ISD::UADDO; 1094 bool IsVALU = N->isDivergent(); 1095 1096 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 1097 ++UI) 1098 if (UI.getUse().getResNo() == 1) { 1099 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 1100 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 1101 IsVALU = true; 1102 break; 1103 } 1104 } 1105 1106 if (IsVALU) { 1107 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 1108 1109 CurDAG->SelectNodeTo( 1110 N, Opc, N->getVTList(), 1111 {N->getOperand(0), N->getOperand(1), 1112 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1113 } else { 1114 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 1115 : AMDGPU::S_USUBO_PSEUDO; 1116 1117 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 1118 {N->getOperand(0), N->getOperand(1)}); 1119 } 1120 } 1121 1122 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 1123 SDLoc SL(N); 1124 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 1125 SDValue Ops[10]; 1126 1127 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 1128 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1129 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 1130 Ops[8] = N->getOperand(0); 1131 Ops[9] = N->getOperand(4); 1132 1133 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32_e64, N->getVTList(), Ops); 1134 } 1135 1136 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 1137 SDLoc SL(N); 1138 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 1139 SDValue Ops[8]; 1140 1141 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 1142 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1143 Ops[6] = N->getOperand(0); 1144 Ops[7] = N->getOperand(3); 1145 1146 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 1147 } 1148 1149 // We need to handle this here because tablegen doesn't support matching 1150 // instructions with multiple outputs. 1151 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1152 SDLoc SL(N); 1153 EVT VT = N->getValueType(0); 1154 1155 assert(VT == MVT::f32 || VT == MVT::f64); 1156 1157 unsigned Opc 1158 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 1159 1160 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 1161 // omod 1162 SDValue Ops[8]; 1163 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1164 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 1165 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1166 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1167 } 1168 1169 // We need to handle this here because tablegen doesn't support matching 1170 // instructions with multiple outputs. 1171 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1172 SDLoc SL(N); 1173 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1174 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1175 1176 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1177 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1178 Clamp }; 1179 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1180 } 1181 1182 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1183 if (!isUInt<16>(Offset)) 1184 return false; 1185 1186 if (!Base || Subtarget->hasUsableDSOffset() || 1187 Subtarget->unsafeDSOffsetFoldingEnabled()) 1188 return true; 1189 1190 // On Southern Islands instruction with a negative base value and an offset 1191 // don't seem to work. 1192 return CurDAG->SignBitIsZero(Base); 1193 } 1194 1195 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1196 SDValue &Offset) const { 1197 SDLoc DL(Addr); 1198 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1199 SDValue N0 = Addr.getOperand(0); 1200 SDValue N1 = Addr.getOperand(1); 1201 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1202 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1203 // (add n0, c0) 1204 Base = N0; 1205 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1206 return true; 1207 } 1208 } else if (Addr.getOpcode() == ISD::SUB) { 1209 // sub C, x -> add (sub 0, x), C 1210 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1211 int64_t ByteOffset = C->getSExtValue(); 1212 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1213 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1214 1215 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1216 // the known bits in isDSOffsetLegal. We need to emit the selected node 1217 // here, so this is thrown away. 1218 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1219 Zero, Addr.getOperand(1)); 1220 1221 if (isDSOffsetLegal(Sub, ByteOffset)) { 1222 SmallVector<SDValue, 3> Opnds; 1223 Opnds.push_back(Zero); 1224 Opnds.push_back(Addr.getOperand(1)); 1225 1226 // FIXME: Select to VOP3 version for with-carry. 1227 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1228 if (Subtarget->hasAddNoCarry()) { 1229 SubOp = AMDGPU::V_SUB_U32_e64; 1230 Opnds.push_back( 1231 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1232 } 1233 1234 MachineSDNode *MachineSub = 1235 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1236 1237 Base = SDValue(MachineSub, 0); 1238 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1239 return true; 1240 } 1241 } 1242 } 1243 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1244 // If we have a constant address, prefer to put the constant into the 1245 // offset. This can save moves to load the constant address since multiple 1246 // operations can share the zero base address register, and enables merging 1247 // into read2 / write2 instructions. 1248 1249 SDLoc DL(Addr); 1250 1251 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1252 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1253 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1254 DL, MVT::i32, Zero); 1255 Base = SDValue(MovZero, 0); 1256 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1257 return true; 1258 } 1259 } 1260 1261 // default case 1262 Base = Addr; 1263 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1264 return true; 1265 } 1266 1267 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1268 unsigned Offset1, 1269 unsigned Size) const { 1270 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1271 return false; 1272 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1273 return false; 1274 1275 if (!Base || Subtarget->hasUsableDSOffset() || 1276 Subtarget->unsafeDSOffsetFoldingEnabled()) 1277 return true; 1278 1279 // On Southern Islands instruction with a negative base value and an offset 1280 // don't seem to work. 1281 return CurDAG->SignBitIsZero(Base); 1282 } 1283 1284 // TODO: If offset is too big, put low 16-bit into offset. 1285 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1286 SDValue &Offset0, 1287 SDValue &Offset1) const { 1288 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1289 } 1290 1291 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1292 SDValue &Offset0, 1293 SDValue &Offset1) const { 1294 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1295 } 1296 1297 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1298 SDValue &Offset0, SDValue &Offset1, 1299 unsigned Size) const { 1300 SDLoc DL(Addr); 1301 1302 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1303 SDValue N0 = Addr.getOperand(0); 1304 SDValue N1 = Addr.getOperand(1); 1305 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1306 unsigned OffsetValue0 = C1->getZExtValue(); 1307 unsigned OffsetValue1 = OffsetValue0 + Size; 1308 1309 // (add n0, c0) 1310 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1311 Base = N0; 1312 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1313 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1314 return true; 1315 } 1316 } else if (Addr.getOpcode() == ISD::SUB) { 1317 // sub C, x -> add (sub 0, x), C 1318 if (const ConstantSDNode *C = 1319 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1320 unsigned OffsetValue0 = C->getZExtValue(); 1321 unsigned OffsetValue1 = OffsetValue0 + Size; 1322 1323 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1324 SDLoc DL(Addr); 1325 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1326 1327 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1328 // the known bits in isDSOffsetLegal. We need to emit the selected node 1329 // here, so this is thrown away. 1330 SDValue Sub = 1331 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1332 1333 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1334 SmallVector<SDValue, 3> Opnds; 1335 Opnds.push_back(Zero); 1336 Opnds.push_back(Addr.getOperand(1)); 1337 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1338 if (Subtarget->hasAddNoCarry()) { 1339 SubOp = AMDGPU::V_SUB_U32_e64; 1340 Opnds.push_back( 1341 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1342 } 1343 1344 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1345 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1346 1347 Base = SDValue(MachineSub, 0); 1348 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1349 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1350 return true; 1351 } 1352 } 1353 } 1354 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1355 unsigned OffsetValue0 = CAddr->getZExtValue(); 1356 unsigned OffsetValue1 = OffsetValue0 + Size; 1357 1358 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1359 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1360 MachineSDNode *MovZero = 1361 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1362 Base = SDValue(MovZero, 0); 1363 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1364 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1365 return true; 1366 } 1367 } 1368 1369 // default case 1370 1371 Base = Addr; 1372 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1373 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1374 return true; 1375 } 1376 1377 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, 1378 SDValue &VAddr, SDValue &SOffset, 1379 SDValue &Offset, SDValue &Offen, 1380 SDValue &Idxen, SDValue &Addr64, 1381 SDValue &GLC, SDValue &SLC, 1382 SDValue &TFE, SDValue &DLC, 1383 SDValue &SWZ) const { 1384 // Subtarget prefers to use flat instruction 1385 // FIXME: This should be a pattern predicate and not reach here 1386 if (Subtarget->useFlatForGlobal()) 1387 return false; 1388 1389 SDLoc DL(Addr); 1390 1391 if (!GLC.getNode()) 1392 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1393 if (!SLC.getNode()) 1394 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1395 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); 1396 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1397 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1); 1398 1399 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1400 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1401 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1402 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1403 1404 ConstantSDNode *C1 = nullptr; 1405 SDValue N0 = Addr; 1406 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1407 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1408 if (isUInt<32>(C1->getZExtValue())) 1409 N0 = Addr.getOperand(0); 1410 else 1411 C1 = nullptr; 1412 } 1413 1414 if (N0.getOpcode() == ISD::ADD) { 1415 // (add N2, N3) -> addr64, or 1416 // (add (add N2, N3), C1) -> addr64 1417 SDValue N2 = N0.getOperand(0); 1418 SDValue N3 = N0.getOperand(1); 1419 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1420 1421 if (N2->isDivergent()) { 1422 if (N3->isDivergent()) { 1423 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1424 // addr64, and construct the resource from a 0 address. 1425 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1426 VAddr = N0; 1427 } else { 1428 // N2 is divergent, N3 is not. 1429 Ptr = N3; 1430 VAddr = N2; 1431 } 1432 } else { 1433 // N2 is not divergent. 1434 Ptr = N2; 1435 VAddr = N3; 1436 } 1437 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1438 } else if (N0->isDivergent()) { 1439 // N0 is divergent. Use it as the addr64, and construct the resource from a 1440 // 0 address. 1441 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1442 VAddr = N0; 1443 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1444 } else { 1445 // N0 -> offset, or 1446 // (N0 + C1) -> offset 1447 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1448 Ptr = N0; 1449 } 1450 1451 if (!C1) { 1452 // No offset. 1453 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1454 return true; 1455 } 1456 1457 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1458 // Legal offset for instruction. 1459 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1460 return true; 1461 } 1462 1463 // Illegal offset, store it in soffset. 1464 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1465 SOffset = 1466 SDValue(CurDAG->getMachineNode( 1467 AMDGPU::S_MOV_B32, DL, MVT::i32, 1468 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1469 0); 1470 return true; 1471 } 1472 1473 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1474 SDValue &VAddr, SDValue &SOffset, 1475 SDValue &Offset, SDValue &GLC, 1476 SDValue &SLC, SDValue &TFE, 1477 SDValue &DLC, SDValue &SWZ) const { 1478 SDValue Ptr, Offen, Idxen, Addr64; 1479 1480 // addr64 bit was removed for volcanic islands. 1481 // FIXME: This should be a pattern predicate and not reach here 1482 if (!Subtarget->hasAddr64()) 1483 return false; 1484 1485 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1486 GLC, SLC, TFE, DLC, SWZ)) 1487 return false; 1488 1489 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1490 if (C->getSExtValue()) { 1491 SDLoc DL(Addr); 1492 1493 const SITargetLowering& Lowering = 1494 *static_cast<const SITargetLowering*>(getTargetLowering()); 1495 1496 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1497 return true; 1498 } 1499 1500 return false; 1501 } 1502 1503 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1504 SDValue &VAddr, SDValue &SOffset, 1505 SDValue &Offset, 1506 SDValue &SLC) const { 1507 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); 1508 SDValue GLC, TFE, DLC, SWZ; 1509 1510 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1511 } 1512 1513 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { 1514 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); 1515 return PSV && PSV->isStack(); 1516 } 1517 1518 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1519 SDLoc DL(N); 1520 1521 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1522 SDValue TFI = 1523 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1524 1525 // We rebase the base address into an absolute stack address and hence 1526 // use constant 0 for soffset. This value must be retained until 1527 // frame elimination and eliminateFrameIndex will choose the appropriate 1528 // frame register if need be. 1529 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1530 } 1531 1532 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1533 SDValue Addr, SDValue &Rsrc, 1534 SDValue &VAddr, SDValue &SOffset, 1535 SDValue &ImmOffset) const { 1536 1537 SDLoc DL(Addr); 1538 MachineFunction &MF = CurDAG->getMachineFunction(); 1539 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1540 1541 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1542 1543 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1544 int64_t Imm = CAddr->getSExtValue(); 1545 const int64_t NullPtr = 1546 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1547 // Don't fold null pointer. 1548 if (Imm != NullPtr) { 1549 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1550 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1551 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1552 VAddr = SDValue(MovHighBits, 0); 1553 1554 // In a call sequence, stores to the argument stack area are relative to the 1555 // stack pointer. 1556 const MachinePointerInfo &PtrInfo 1557 = cast<MemSDNode>(Parent)->getPointerInfo(); 1558 SOffset = isStackPtrRelative(PtrInfo) 1559 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1560 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1561 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1562 return true; 1563 } 1564 } 1565 1566 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1567 // (add n0, c1) 1568 1569 SDValue N0 = Addr.getOperand(0); 1570 SDValue N1 = Addr.getOperand(1); 1571 1572 // Offsets in vaddr must be positive if range checking is enabled. 1573 // 1574 // The total computation of vaddr + soffset + offset must not overflow. If 1575 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1576 // overflowing. 1577 // 1578 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1579 // always perform a range check. If a negative vaddr base index was used, 1580 // this would fail the range check. The overall address computation would 1581 // compute a valid address, but this doesn't happen due to the range 1582 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1583 // 1584 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1585 // MUBUF vaddr, but not on older subtargets which can only do this if the 1586 // sign bit is known 0. 1587 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1588 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1589 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1590 CurDAG->SignBitIsZero(N0))) { 1591 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1592 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1593 return true; 1594 } 1595 } 1596 1597 // (node) 1598 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1599 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1600 return true; 1601 } 1602 1603 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1604 SDValue Addr, 1605 SDValue &SRsrc, 1606 SDValue &SOffset, 1607 SDValue &Offset) const { 1608 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); 1609 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1610 return false; 1611 1612 SDLoc DL(Addr); 1613 MachineFunction &MF = CurDAG->getMachineFunction(); 1614 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1615 1616 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1617 1618 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1619 1620 // FIXME: Get from MachinePointerInfo? We should only be using the frame 1621 // offset if we know this is in a call sequence. 1622 SOffset = isStackPtrRelative(PtrInfo) 1623 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1624 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1625 1626 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1627 return true; 1628 } 1629 1630 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1631 SDValue &SOffset, SDValue &Offset, 1632 SDValue &GLC, SDValue &SLC, 1633 SDValue &TFE, SDValue &DLC, 1634 SDValue &SWZ) const { 1635 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1636 const SIInstrInfo *TII = 1637 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1638 1639 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1640 GLC, SLC, TFE, DLC, SWZ)) 1641 return false; 1642 1643 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1644 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1645 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1646 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1647 APInt::getAllOnesValue(32).getZExtValue(); // Size 1648 SDLoc DL(Addr); 1649 1650 const SITargetLowering& Lowering = 1651 *static_cast<const SITargetLowering*>(getTargetLowering()); 1652 1653 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1654 return true; 1655 } 1656 return false; 1657 } 1658 1659 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1660 SDValue &Soffset, SDValue &Offset 1661 ) const { 1662 SDValue GLC, SLC, TFE, DLC, SWZ; 1663 1664 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1665 } 1666 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1667 SDValue &Soffset, SDValue &Offset, 1668 SDValue &SLC) const { 1669 SDValue GLC, TFE, DLC, SWZ; 1670 1671 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1672 } 1673 1674 // Find a load or store from corresponding pattern root. 1675 // Roots may be build_vector, bitconvert or their combinations. 1676 static MemSDNode* findMemSDNode(SDNode *N) { 1677 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1678 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1679 return MN; 1680 assert(isa<BuildVectorSDNode>(N)); 1681 for (SDValue V : N->op_values()) 1682 if (MemSDNode *MN = 1683 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1684 return MN; 1685 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1686 } 1687 1688 template <bool IsSigned> 1689 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, 1690 SDValue Addr, 1691 SDValue &VAddr, 1692 SDValue &Offset) const { 1693 int64_t OffsetVal = 0; 1694 1695 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1696 1697 if (Subtarget->hasFlatInstOffsets() && 1698 (!Subtarget->hasFlatSegmentOffsetBug() || 1699 AS != AMDGPUAS::FLAT_ADDRESS)) { 1700 SDValue N0, N1; 1701 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1702 uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1703 1704 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1705 if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) { 1706 Addr = N0; 1707 OffsetVal = COffsetVal; 1708 } else { 1709 // If the offset doesn't fit, put the low bits into the offset field and 1710 // add the rest. 1711 // 1712 // For a FLAT instruction the hardware decides whether to access 1713 // global/scratch/shared memory based on the high bits of vaddr, 1714 // ignoring the offset field, so we have to ensure that when we add 1715 // remainder to vaddr it still points into the same underlying object. 1716 // The easiest way to do that is to make sure that we split the offset 1717 // into two pieces that are both >= 0 or both <= 0. 1718 1719 SDLoc DL(N); 1720 uint64_t RemainderOffset; 1721 1722 std::tie(OffsetVal, RemainderOffset) 1723 = TII->splitFlatOffset(COffsetVal, AS, IsSigned); 1724 1725 SDValue AddOffsetLo = 1726 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1727 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1728 1729 if (Addr.getValueType().getSizeInBits() == 32) { 1730 SmallVector<SDValue, 3> Opnds; 1731 Opnds.push_back(N0); 1732 Opnds.push_back(AddOffsetLo); 1733 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1734 if (Subtarget->hasAddNoCarry()) { 1735 AddOp = AMDGPU::V_ADD_U32_e64; 1736 Opnds.push_back(Clamp); 1737 } 1738 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1739 } else { 1740 // TODO: Should this try to use a scalar add pseudo if the base address 1741 // is uniform and saddr is usable? 1742 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1743 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1744 1745 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1746 DL, MVT::i32, N0, Sub0); 1747 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1748 DL, MVT::i32, N0, Sub1); 1749 1750 SDValue AddOffsetHi = 1751 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1752 1753 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1754 1755 SDNode *Add = 1756 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1757 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1758 1759 SDNode *Addc = CurDAG->getMachineNode( 1760 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1761 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1762 1763 SDValue RegSequenceArgs[] = { 1764 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1765 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1766 1767 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1768 MVT::i64, RegSequenceArgs), 1769 0); 1770 } 1771 } 1772 } 1773 } 1774 1775 VAddr = Addr; 1776 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1777 return true; 1778 } 1779 1780 // If this matches zero_extend i32:x, return x 1781 static SDValue matchZExtFromI32(SDValue Op) { 1782 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1783 return SDValue(); 1784 1785 SDValue ExtSrc = Op.getOperand(0); 1786 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1787 } 1788 1789 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1790 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1791 SDValue Addr, 1792 SDValue &SAddr, 1793 SDValue &VOffset, 1794 SDValue &Offset) const { 1795 int64_t ImmOffset = 0; 1796 1797 // Match the immediate offset first, which canonically is moved as low as 1798 // possible. 1799 1800 SDValue LHS, RHS; 1801 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1802 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1803 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1804 1805 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true)) { 1806 Addr = LHS; 1807 ImmOffset = COffsetVal; 1808 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1809 SDLoc SL(N); 1810 // saddr + large_offset -> saddr + (voffset = large_offset & ~MaxOffset) + 1811 // (large_offset & MaxOffset); 1812 int64_t SplitImmOffset, RemainderOffset; 1813 std::tie(SplitImmOffset, RemainderOffset) 1814 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true); 1815 1816 if (isUInt<32>(RemainderOffset)) { 1817 SDNode *VMov = CurDAG->getMachineNode( 1818 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1819 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1820 VOffset = SDValue(VMov, 0); 1821 SAddr = LHS; 1822 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1823 return true; 1824 } 1825 } 1826 } 1827 1828 // Match the variable offset. 1829 if (Addr.getOpcode() != ISD::ADD) { 1830 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1831 isa<ConstantSDNode>(Addr)) 1832 return false; 1833 1834 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1835 // moves required to copy a 64-bit SGPR to VGPR. 1836 SAddr = Addr; 1837 SDNode *VMov = CurDAG->getMachineNode( 1838 AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1839 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1840 VOffset = SDValue(VMov, 0); 1841 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1842 return true; 1843 } 1844 1845 LHS = Addr.getOperand(0); 1846 RHS = Addr.getOperand(1); 1847 1848 if (!LHS->isDivergent()) { 1849 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1850 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1851 SAddr = LHS; 1852 VOffset = ZextRHS; 1853 } 1854 } 1855 1856 if (!SAddr && !RHS->isDivergent()) { 1857 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1858 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1859 SAddr = RHS; 1860 VOffset = ZextLHS; 1861 } 1862 } 1863 1864 if (!SAddr) 1865 return false; 1866 1867 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1868 return true; 1869 } 1870 1871 // Match (32-bit SGPR base) + sext(imm offset) 1872 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *N, 1873 SDValue Addr, 1874 SDValue &SAddr, 1875 SDValue &Offset) const { 1876 if (Addr->isDivergent()) 1877 return false; 1878 1879 SAddr = Addr; 1880 int64_t COffsetVal = 0; 1881 1882 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1883 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1884 SAddr = Addr.getOperand(0); 1885 } 1886 1887 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1888 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1889 } else if (SAddr.getOpcode() == ISD::ADD && 1890 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1891 // Materialize this into a scalar move for scalar address to avoid 1892 // readfirstlane. 1893 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1894 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1895 FI->getValueType(0)); 1896 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, SDLoc(SAddr), 1897 MVT::i32, TFI, SAddr.getOperand(1)), 1898 0); 1899 } 1900 1901 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1902 1903 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1904 int64_t RemainderOffset = COffsetVal; 1905 int64_t ImmField = 0; 1906 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(*Subtarget, true); 1907 // Use signed division by a power of two to truncate towards 0. 1908 int64_t D = 1LL << (NumBits - 1); 1909 RemainderOffset = (COffsetVal / D) * D; 1910 ImmField = COffsetVal - RemainderOffset; 1911 1912 assert(TII->isLegalFLATOffset(ImmField, AMDGPUAS::PRIVATE_ADDRESS, true)); 1913 assert(RemainderOffset + ImmField == COffsetVal); 1914 1915 COffsetVal = ImmField; 1916 1917 SDLoc DL(N); 1918 SDValue AddOffset = 1919 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1920 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, DL, MVT::i32, 1921 SAddr, AddOffset), 0); 1922 } 1923 1924 Offset = CurDAG->getTargetConstant(COffsetVal, SDLoc(), MVT::i16); 1925 1926 return true; 1927 } 1928 1929 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1930 SDValue &Offset, bool &Imm) const { 1931 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1932 if (!C) { 1933 if (ByteOffsetNode.getValueType().isScalarInteger() && 1934 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1935 Offset = ByteOffsetNode; 1936 Imm = false; 1937 return true; 1938 } 1939 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1940 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1941 Offset = ByteOffsetNode.getOperand(0); 1942 Imm = false; 1943 return true; 1944 } 1945 } 1946 return false; 1947 } 1948 1949 SDLoc SL(ByteOffsetNode); 1950 // GFX9 and GFX10 have signed byte immediate offsets. 1951 int64_t ByteOffset = C->getSExtValue(); 1952 Optional<int64_t> EncodedOffset = 1953 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1954 if (EncodedOffset) { 1955 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1956 Imm = true; 1957 return true; 1958 } 1959 1960 // SGPR and literal offsets are unsigned. 1961 if (ByteOffset < 0) 1962 return false; 1963 1964 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1965 if (EncodedOffset) { 1966 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1967 return true; 1968 } 1969 1970 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1971 return false; 1972 1973 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1974 Offset = SDValue( 1975 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1976 1977 return true; 1978 } 1979 1980 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1981 if (Addr.getValueType() != MVT::i32) 1982 return Addr; 1983 1984 // Zero-extend a 32-bit address. 1985 SDLoc SL(Addr); 1986 1987 const MachineFunction &MF = CurDAG->getMachineFunction(); 1988 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1989 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1990 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1991 1992 const SDValue Ops[] = { 1993 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1994 Addr, 1995 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1996 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1997 0), 1998 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1999 }; 2000 2001 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 2002 Ops), 0); 2003 } 2004 2005 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2006 SDValue &Offset, bool &Imm) const { 2007 SDLoc SL(Addr); 2008 2009 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2010 // wraparound, because s_load instructions perform the addition in 64 bits. 2011 if ((Addr.getValueType() != MVT::i32 || 2012 Addr->getFlags().hasNoUnsignedWrap())) { 2013 SDValue N0, N1; 2014 // Extract the base and offset if possible. 2015 if (CurDAG->isBaseWithConstantOffset(Addr) || 2016 Addr.getOpcode() == ISD::ADD) { 2017 N0 = Addr.getOperand(0); 2018 N1 = Addr.getOperand(1); 2019 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2020 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2021 } 2022 if (N0 && N1) { 2023 if (SelectSMRDOffset(N1, Offset, Imm)) { 2024 SBase = Expand32BitAddress(N0); 2025 return true; 2026 } 2027 } 2028 } 2029 SBase = Expand32BitAddress(Addr); 2030 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 2031 Imm = true; 2032 return true; 2033 } 2034 2035 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2036 SDValue &Offset) const { 2037 bool Imm = false; 2038 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 2039 } 2040 2041 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2042 SDValue &Offset) const { 2043 2044 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2045 2046 bool Imm = false; 2047 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 2048 return false; 2049 2050 return !Imm && isa<ConstantSDNode>(Offset); 2051 } 2052 2053 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2054 SDValue &Offset) const { 2055 bool Imm = false; 2056 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 2057 !isa<ConstantSDNode>(Offset); 2058 } 2059 2060 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 2061 SDValue &Offset) const { 2062 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2063 // The immediate offset for S_BUFFER instructions is unsigned. 2064 if (auto Imm = 2065 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 2066 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2067 return true; 2068 } 2069 } 2070 2071 return false; 2072 } 2073 2074 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 2075 SDValue &Offset) const { 2076 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2077 2078 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2079 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 2080 C->getZExtValue())) { 2081 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2082 return true; 2083 } 2084 } 2085 2086 return false; 2087 } 2088 2089 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2090 SDValue &Base, 2091 SDValue &Offset) const { 2092 SDLoc DL(Index); 2093 2094 if (CurDAG->isBaseWithConstantOffset(Index)) { 2095 SDValue N0 = Index.getOperand(0); 2096 SDValue N1 = Index.getOperand(1); 2097 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2098 2099 // (add n0, c0) 2100 // Don't peel off the offset (c0) if doing so could possibly lead 2101 // the base (n0) to be negative. 2102 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2103 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2104 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2105 Base = N0; 2106 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2107 return true; 2108 } 2109 } 2110 2111 if (isa<ConstantSDNode>(Index)) 2112 return false; 2113 2114 Base = Index; 2115 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2116 return true; 2117 } 2118 2119 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 2120 SDValue Val, uint32_t Offset, 2121 uint32_t Width) { 2122 // Transformation function, pack the offset and width of a BFE into 2123 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2124 // source, bits [5:0] contain the offset and bits [22:16] the width. 2125 uint32_t PackedVal = Offset | (Width << 16); 2126 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2127 2128 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2129 } 2130 2131 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2132 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2133 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2134 // Predicate: 0 < b <= c < 32 2135 2136 const SDValue &Shl = N->getOperand(0); 2137 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2138 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2139 2140 if (B && C) { 2141 uint32_t BVal = B->getZExtValue(); 2142 uint32_t CVal = C->getZExtValue(); 2143 2144 if (0 < BVal && BVal <= CVal && CVal < 32) { 2145 bool Signed = N->getOpcode() == ISD::SRA; 2146 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2147 2148 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2149 32 - CVal)); 2150 return; 2151 } 2152 } 2153 SelectCode(N); 2154 } 2155 2156 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2157 switch (N->getOpcode()) { 2158 case ISD::AND: 2159 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2160 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2161 // Predicate: isMask(mask) 2162 const SDValue &Srl = N->getOperand(0); 2163 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2164 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2165 2166 if (Shift && Mask) { 2167 uint32_t ShiftVal = Shift->getZExtValue(); 2168 uint32_t MaskVal = Mask->getZExtValue(); 2169 2170 if (isMask_32(MaskVal)) { 2171 uint32_t WidthVal = countPopulation(MaskVal); 2172 2173 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2174 Srl.getOperand(0), ShiftVal, WidthVal)); 2175 return; 2176 } 2177 } 2178 } 2179 break; 2180 case ISD::SRL: 2181 if (N->getOperand(0).getOpcode() == ISD::AND) { 2182 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2183 // Predicate: isMask(mask >> b) 2184 const SDValue &And = N->getOperand(0); 2185 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2186 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2187 2188 if (Shift && Mask) { 2189 uint32_t ShiftVal = Shift->getZExtValue(); 2190 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2191 2192 if (isMask_32(MaskVal)) { 2193 uint32_t WidthVal = countPopulation(MaskVal); 2194 2195 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2196 And.getOperand(0), ShiftVal, WidthVal)); 2197 return; 2198 } 2199 } 2200 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2201 SelectS_BFEFromShifts(N); 2202 return; 2203 } 2204 break; 2205 case ISD::SRA: 2206 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2207 SelectS_BFEFromShifts(N); 2208 return; 2209 } 2210 break; 2211 2212 case ISD::SIGN_EXTEND_INREG: { 2213 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2214 SDValue Src = N->getOperand(0); 2215 if (Src.getOpcode() != ISD::SRL) 2216 break; 2217 2218 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2219 if (!Amt) 2220 break; 2221 2222 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2223 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2224 Amt->getZExtValue(), Width)); 2225 return; 2226 } 2227 } 2228 2229 SelectCode(N); 2230 } 2231 2232 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2233 assert(N->getOpcode() == ISD::BRCOND); 2234 if (!N->hasOneUse()) 2235 return false; 2236 2237 SDValue Cond = N->getOperand(1); 2238 if (Cond.getOpcode() == ISD::CopyToReg) 2239 Cond = Cond.getOperand(2); 2240 2241 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2242 return false; 2243 2244 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2245 if (VT == MVT::i32) 2246 return true; 2247 2248 if (VT == MVT::i64) { 2249 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2250 2251 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2252 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2253 } 2254 2255 return false; 2256 } 2257 2258 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2259 SDValue Cond = N->getOperand(1); 2260 2261 if (Cond.isUndef()) { 2262 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2263 N->getOperand(2), N->getOperand(0)); 2264 return; 2265 } 2266 2267 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2268 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2269 2270 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2271 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2272 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2273 SDLoc SL(N); 2274 2275 if (!UseSCCBr) { 2276 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2277 // analyzed what generates the vcc value, so we do not know whether vcc 2278 // bits for disabled lanes are 0. Thus we need to mask out bits for 2279 // disabled lanes. 2280 // 2281 // For the case that we select S_CBRANCH_SCC1 and it gets 2282 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2283 // SIInstrInfo::moveToVALU which inserts the S_AND). 2284 // 2285 // We could add an analysis of what generates the vcc value here and omit 2286 // the S_AND when is unnecessary. But it would be better to add a separate 2287 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2288 // catches both cases. 2289 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2290 : AMDGPU::S_AND_B64, 2291 SL, MVT::i1, 2292 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2293 : AMDGPU::EXEC, 2294 MVT::i1), 2295 Cond), 2296 0); 2297 } 2298 2299 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2300 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2301 N->getOperand(2), // Basic Block 2302 VCC.getValue(0)); 2303 } 2304 2305 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2306 MVT VT = N->getSimpleValueType(0); 2307 bool IsFMA = N->getOpcode() == ISD::FMA; 2308 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2309 !Subtarget->hasFmaMixInsts()) || 2310 ((IsFMA && Subtarget->hasMadMixInsts()) || 2311 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2312 SelectCode(N); 2313 return; 2314 } 2315 2316 SDValue Src0 = N->getOperand(0); 2317 SDValue Src1 = N->getOperand(1); 2318 SDValue Src2 = N->getOperand(2); 2319 unsigned Src0Mods, Src1Mods, Src2Mods; 2320 2321 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2322 // using the conversion from f16. 2323 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2324 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2325 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2326 2327 assert((IsFMA || !Mode.allFP32Denormals()) && 2328 "fmad selected with denormals enabled"); 2329 // TODO: We can select this with f32 denormals enabled if all the sources are 2330 // converted from f16 (in which case fmad isn't legal). 2331 2332 if (Sel0 || Sel1 || Sel2) { 2333 // For dummy operands. 2334 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2335 SDValue Ops[] = { 2336 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2337 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2338 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2339 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2340 Zero, Zero 2341 }; 2342 2343 CurDAG->SelectNodeTo(N, 2344 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2345 MVT::f32, Ops); 2346 } else { 2347 SelectCode(N); 2348 } 2349 } 2350 2351 // This is here because there isn't a way to use the generated sub0_sub1 as the 2352 // subreg index to EXTRACT_SUBREG in tablegen. 2353 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2354 MemSDNode *Mem = cast<MemSDNode>(N); 2355 unsigned AS = Mem->getAddressSpace(); 2356 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2357 SelectCode(N); 2358 return; 2359 } 2360 2361 MVT VT = N->getSimpleValueType(0); 2362 bool Is32 = (VT == MVT::i32); 2363 SDLoc SL(N); 2364 2365 MachineSDNode *CmpSwap = nullptr; 2366 if (Subtarget->hasAddr64()) { 2367 SDValue SRsrc, VAddr, SOffset, Offset, SLC; 2368 2369 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) { 2370 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2371 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2372 SDValue CmpVal = Mem->getOperand(2); 2373 SDValue GLC = CurDAG->getTargetConstant(1, SL, MVT::i1); 2374 2375 // XXX - Do we care about glue operands? 2376 2377 SDValue Ops[] = { 2378 CmpVal, VAddr, SRsrc, SOffset, Offset, GLC, SLC, Mem->getChain() 2379 }; 2380 2381 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2382 } 2383 } 2384 2385 if (!CmpSwap) { 2386 SDValue SRsrc, SOffset, Offset, SLC; 2387 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) { 2388 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2389 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2390 2391 SDValue CmpVal = Mem->getOperand(2); 2392 SDValue GLC = CurDAG->getTargetConstant(1, SL, MVT::i1); 2393 SDValue Ops[] = { 2394 CmpVal, SRsrc, SOffset, Offset, GLC, SLC, Mem->getChain() 2395 }; 2396 2397 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2398 } 2399 } 2400 2401 if (!CmpSwap) { 2402 SelectCode(N); 2403 return; 2404 } 2405 2406 MachineMemOperand *MMO = Mem->getMemOperand(); 2407 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2408 2409 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2410 SDValue Extract 2411 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2412 2413 ReplaceUses(SDValue(N, 0), Extract); 2414 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2415 CurDAG->RemoveDeadNode(N); 2416 } 2417 2418 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2419 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2420 // be copied to an SGPR with readfirstlane. 2421 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2422 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2423 2424 SDValue Chain = N->getOperand(0); 2425 SDValue Ptr = N->getOperand(2); 2426 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2427 MachineMemOperand *MMO = M->getMemOperand(); 2428 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2429 2430 SDValue Offset; 2431 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2432 SDValue PtrBase = Ptr.getOperand(0); 2433 SDValue PtrOffset = Ptr.getOperand(1); 2434 2435 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2436 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2437 N = glueCopyToM0(N, PtrBase); 2438 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2439 } 2440 } 2441 2442 if (!Offset) { 2443 N = glueCopyToM0(N, Ptr); 2444 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2445 } 2446 2447 SDValue Ops[] = { 2448 Offset, 2449 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2450 Chain, 2451 N->getOperand(N->getNumOperands() - 1) // New glue 2452 }; 2453 2454 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2455 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2456 } 2457 2458 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2459 switch (IntrID) { 2460 case Intrinsic::amdgcn_ds_gws_init: 2461 return AMDGPU::DS_GWS_INIT; 2462 case Intrinsic::amdgcn_ds_gws_barrier: 2463 return AMDGPU::DS_GWS_BARRIER; 2464 case Intrinsic::amdgcn_ds_gws_sema_v: 2465 return AMDGPU::DS_GWS_SEMA_V; 2466 case Intrinsic::amdgcn_ds_gws_sema_br: 2467 return AMDGPU::DS_GWS_SEMA_BR; 2468 case Intrinsic::amdgcn_ds_gws_sema_p: 2469 return AMDGPU::DS_GWS_SEMA_P; 2470 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2471 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2472 default: 2473 llvm_unreachable("not a gws intrinsic"); 2474 } 2475 } 2476 2477 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2478 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2479 !Subtarget->hasGWSSemaReleaseAll()) { 2480 // Let this error. 2481 SelectCode(N); 2482 return; 2483 } 2484 2485 // Chain, intrinsic ID, vsrc, offset 2486 const bool HasVSrc = N->getNumOperands() == 4; 2487 assert(HasVSrc || N->getNumOperands() == 3); 2488 2489 SDLoc SL(N); 2490 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2491 int ImmOffset = 0; 2492 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2493 MachineMemOperand *MMO = M->getMemOperand(); 2494 2495 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2496 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2497 2498 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2499 // offset field) % 64. Some versions of the programming guide omit the m0 2500 // part, or claim it's from offset 0. 2501 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2502 // If we have a constant offset, try to use the 0 in m0 as the base. 2503 // TODO: Look into changing the default m0 initialization value. If the 2504 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2505 // the immediate offset. 2506 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2507 ImmOffset = ConstOffset->getZExtValue(); 2508 } else { 2509 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2510 ImmOffset = BaseOffset.getConstantOperandVal(1); 2511 BaseOffset = BaseOffset.getOperand(0); 2512 } 2513 2514 // Prefer to do the shift in an SGPR since it should be possible to use m0 2515 // as the result directly. If it's already an SGPR, it will be eliminated 2516 // later. 2517 SDNode *SGPROffset 2518 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2519 BaseOffset); 2520 // Shift to offset in m0 2521 SDNode *M0Base 2522 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2523 SDValue(SGPROffset, 0), 2524 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2525 glueCopyToM0(N, SDValue(M0Base, 0)); 2526 } 2527 2528 SDValue Chain = N->getOperand(0); 2529 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2530 2531 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2532 SmallVector<SDValue, 5> Ops; 2533 if (HasVSrc) 2534 Ops.push_back(N->getOperand(2)); 2535 Ops.push_back(OffsetField); 2536 Ops.push_back(Chain); 2537 2538 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2539 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2540 } 2541 2542 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2543 if (Subtarget->getLDSBankCount() != 16) { 2544 // This is a single instruction with a pattern. 2545 SelectCode(N); 2546 return; 2547 } 2548 2549 SDLoc DL(N); 2550 2551 // This requires 2 instructions. It is possible to write a pattern to support 2552 // this, but the generated isel emitter doesn't correctly deal with multiple 2553 // output instructions using the same physical register input. The copy to m0 2554 // is incorrectly placed before the second instruction. 2555 // 2556 // TODO: Match source modifiers. 2557 // 2558 // def : Pat < 2559 // (int_amdgcn_interp_p1_f16 2560 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2561 // (i32 timm:$attrchan), (i32 timm:$attr), 2562 // (i1 timm:$high), M0), 2563 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2564 // timm:$attrchan, 0, 2565 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2566 // let Predicates = [has16BankLDS]; 2567 // } 2568 2569 // 16 bank LDS 2570 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2571 N->getOperand(5), SDValue()); 2572 2573 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2574 2575 SDNode *InterpMov = 2576 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2577 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2578 N->getOperand(3), // Attr 2579 N->getOperand(2), // Attrchan 2580 ToM0.getValue(1) // In glue 2581 }); 2582 2583 SDNode *InterpP1LV = 2584 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2585 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2586 N->getOperand(1), // Src0 2587 N->getOperand(3), // Attr 2588 N->getOperand(2), // Attrchan 2589 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2590 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2591 N->getOperand(4), // high 2592 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2593 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2594 SDValue(InterpMov, 1) 2595 }); 2596 2597 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2598 } 2599 2600 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2601 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2602 switch (IntrID) { 2603 case Intrinsic::amdgcn_ds_append: 2604 case Intrinsic::amdgcn_ds_consume: { 2605 if (N->getValueType(0) != MVT::i32) 2606 break; 2607 SelectDSAppendConsume(N, IntrID); 2608 return; 2609 } 2610 } 2611 2612 SelectCode(N); 2613 } 2614 2615 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2616 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2617 unsigned Opcode; 2618 switch (IntrID) { 2619 case Intrinsic::amdgcn_wqm: 2620 Opcode = AMDGPU::WQM; 2621 break; 2622 case Intrinsic::amdgcn_softwqm: 2623 Opcode = AMDGPU::SOFT_WQM; 2624 break; 2625 case Intrinsic::amdgcn_wwm: 2626 Opcode = AMDGPU::WWM; 2627 break; 2628 case Intrinsic::amdgcn_interp_p1_f16: 2629 SelectInterpP1F16(N); 2630 return; 2631 default: 2632 SelectCode(N); 2633 return; 2634 } 2635 2636 SDValue Src = N->getOperand(1); 2637 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2638 } 2639 2640 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2641 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2642 switch (IntrID) { 2643 case Intrinsic::amdgcn_ds_gws_init: 2644 case Intrinsic::amdgcn_ds_gws_barrier: 2645 case Intrinsic::amdgcn_ds_gws_sema_v: 2646 case Intrinsic::amdgcn_ds_gws_sema_br: 2647 case Intrinsic::amdgcn_ds_gws_sema_p: 2648 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2649 SelectDS_GWS(N, IntrID); 2650 return; 2651 default: 2652 break; 2653 } 2654 2655 SelectCode(N); 2656 } 2657 2658 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2659 unsigned &Mods, 2660 bool AllowAbs) const { 2661 Mods = 0; 2662 Src = In; 2663 2664 if (Src.getOpcode() == ISD::FNEG) { 2665 Mods |= SISrcMods::NEG; 2666 Src = Src.getOperand(0); 2667 } 2668 2669 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2670 Mods |= SISrcMods::ABS; 2671 Src = Src.getOperand(0); 2672 } 2673 2674 return true; 2675 } 2676 2677 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2678 SDValue &SrcMods) const { 2679 unsigned Mods; 2680 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2681 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2682 return true; 2683 } 2684 2685 return false; 2686 } 2687 2688 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2689 SDValue &SrcMods) const { 2690 unsigned Mods; 2691 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2692 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2693 return true; 2694 } 2695 2696 return false; 2697 } 2698 2699 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2700 SDValue &SrcMods) const { 2701 SelectVOP3Mods(In, Src, SrcMods); 2702 return isNoNanSrc(Src); 2703 } 2704 2705 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2706 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2707 return false; 2708 2709 Src = In; 2710 return true; 2711 } 2712 2713 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2714 SDValue &SrcMods, SDValue &Clamp, 2715 SDValue &Omod) const { 2716 SDLoc DL(In); 2717 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2718 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2719 2720 return SelectVOP3Mods(In, Src, SrcMods); 2721 } 2722 2723 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2724 SDValue &SrcMods, SDValue &Clamp, 2725 SDValue &Omod) const { 2726 SDLoc DL(In); 2727 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2728 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2729 2730 return SelectVOP3BMods(In, Src, SrcMods); 2731 } 2732 2733 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2734 SDValue &Clamp, SDValue &Omod) const { 2735 Src = In; 2736 2737 SDLoc DL(In); 2738 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2739 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2740 2741 return true; 2742 } 2743 2744 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2745 SDValue &SrcMods) const { 2746 unsigned Mods = 0; 2747 Src = In; 2748 2749 if (Src.getOpcode() == ISD::FNEG) { 2750 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2751 Src = Src.getOperand(0); 2752 } 2753 2754 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2755 unsigned VecMods = Mods; 2756 2757 SDValue Lo = stripBitcast(Src.getOperand(0)); 2758 SDValue Hi = stripBitcast(Src.getOperand(1)); 2759 2760 if (Lo.getOpcode() == ISD::FNEG) { 2761 Lo = stripBitcast(Lo.getOperand(0)); 2762 Mods ^= SISrcMods::NEG; 2763 } 2764 2765 if (Hi.getOpcode() == ISD::FNEG) { 2766 Hi = stripBitcast(Hi.getOperand(0)); 2767 Mods ^= SISrcMods::NEG_HI; 2768 } 2769 2770 if (isExtractHiElt(Lo, Lo)) 2771 Mods |= SISrcMods::OP_SEL_0; 2772 2773 if (isExtractHiElt(Hi, Hi)) 2774 Mods |= SISrcMods::OP_SEL_1; 2775 2776 Lo = stripExtractLoElt(Lo); 2777 Hi = stripExtractLoElt(Hi); 2778 2779 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2780 // Really a scalar input. Just select from the low half of the register to 2781 // avoid packing. 2782 2783 Src = Lo; 2784 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2785 return true; 2786 } 2787 2788 Mods = VecMods; 2789 } 2790 2791 // Packed instructions do not have abs modifiers. 2792 Mods |= SISrcMods::OP_SEL_1; 2793 2794 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2795 return true; 2796 } 2797 2798 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2799 SDValue &SrcMods) const { 2800 Src = In; 2801 // FIXME: Handle op_sel 2802 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2803 return true; 2804 } 2805 2806 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2807 SDValue &SrcMods) const { 2808 // FIXME: Handle op_sel 2809 return SelectVOP3Mods(In, Src, SrcMods); 2810 } 2811 2812 // The return value is not whether the match is possible (which it always is), 2813 // but whether or not it a conversion is really used. 2814 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2815 unsigned &Mods) const { 2816 Mods = 0; 2817 SelectVOP3ModsImpl(In, Src, Mods); 2818 2819 if (Src.getOpcode() == ISD::FP_EXTEND) { 2820 Src = Src.getOperand(0); 2821 assert(Src.getValueType() == MVT::f16); 2822 Src = stripBitcast(Src); 2823 2824 // Be careful about folding modifiers if we already have an abs. fneg is 2825 // applied last, so we don't want to apply an earlier fneg. 2826 if ((Mods & SISrcMods::ABS) == 0) { 2827 unsigned ModsTmp; 2828 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2829 2830 if ((ModsTmp & SISrcMods::NEG) != 0) 2831 Mods ^= SISrcMods::NEG; 2832 2833 if ((ModsTmp & SISrcMods::ABS) != 0) 2834 Mods |= SISrcMods::ABS; 2835 } 2836 2837 // op_sel/op_sel_hi decide the source type and source. 2838 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2839 // If the sources's op_sel is set, it picks the high half of the source 2840 // register. 2841 2842 Mods |= SISrcMods::OP_SEL_1; 2843 if (isExtractHiElt(Src, Src)) { 2844 Mods |= SISrcMods::OP_SEL_0; 2845 2846 // TODO: Should we try to look for neg/abs here? 2847 } 2848 2849 return true; 2850 } 2851 2852 return false; 2853 } 2854 2855 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2856 SDValue &SrcMods) const { 2857 unsigned Mods = 0; 2858 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2859 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2860 return true; 2861 } 2862 2863 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2864 if (In.isUndef()) 2865 return CurDAG->getUNDEF(MVT::i32); 2866 2867 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2868 SDLoc SL(In); 2869 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2870 } 2871 2872 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2873 SDLoc SL(In); 2874 return CurDAG->getConstant( 2875 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2876 } 2877 2878 SDValue Src; 2879 if (isExtractHiElt(In, Src)) 2880 return Src; 2881 2882 return SDValue(); 2883 } 2884 2885 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2886 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2887 2888 const SIRegisterInfo *SIRI = 2889 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2890 const SIInstrInfo * SII = 2891 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2892 2893 unsigned Limit = 0; 2894 bool AllUsesAcceptSReg = true; 2895 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2896 Limit < 10 && U != E; ++U, ++Limit) { 2897 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2898 2899 // If the register class is unknown, it could be an unknown 2900 // register class that needs to be an SGPR, e.g. an inline asm 2901 // constraint 2902 if (!RC || SIRI->isSGPRClass(RC)) 2903 return false; 2904 2905 if (RC != &AMDGPU::VS_32RegClass) { 2906 AllUsesAcceptSReg = false; 2907 SDNode * User = *U; 2908 if (User->isMachineOpcode()) { 2909 unsigned Opc = User->getMachineOpcode(); 2910 MCInstrDesc Desc = SII->get(Opc); 2911 if (Desc.isCommutable()) { 2912 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2913 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2914 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2915 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2916 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2917 if (CommutedRC == &AMDGPU::VS_32RegClass) 2918 AllUsesAcceptSReg = true; 2919 } 2920 } 2921 } 2922 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2923 // commuting current user. This means have at least one use 2924 // that strictly require VGPR. Thus, we will not attempt to commute 2925 // other user instructions. 2926 if (!AllUsesAcceptSReg) 2927 break; 2928 } 2929 } 2930 return !AllUsesAcceptSReg && (Limit < 10); 2931 } 2932 2933 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2934 auto Ld = cast<LoadSDNode>(N); 2935 2936 return Ld->getAlignment() >= 4 && 2937 ( 2938 ( 2939 ( 2940 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2941 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2942 ) 2943 && 2944 !N->isDivergent() 2945 ) 2946 || 2947 ( 2948 Subtarget->getScalarizeGlobalBehavior() && 2949 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2950 Ld->isSimple() && 2951 !N->isDivergent() && 2952 static_cast<const SITargetLowering *>( 2953 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2954 ) 2955 ); 2956 } 2957 2958 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2959 const AMDGPUTargetLowering& Lowering = 2960 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2961 bool IsModified = false; 2962 do { 2963 IsModified = false; 2964 2965 // Go over all selected nodes and try to fold them a bit more 2966 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2967 while (Position != CurDAG->allnodes_end()) { 2968 SDNode *Node = &*Position++; 2969 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2970 if (!MachineNode) 2971 continue; 2972 2973 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2974 if (ResNode != Node) { 2975 if (ResNode) 2976 ReplaceUses(Node, ResNode); 2977 IsModified = true; 2978 } 2979 } 2980 CurDAG->RemoveDeadNodes(); 2981 } while (IsModified); 2982 } 2983 2984 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 2985 Subtarget = &MF.getSubtarget<R600Subtarget>(); 2986 return SelectionDAGISel::runOnMachineFunction(MF); 2987 } 2988 2989 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 2990 if (!N->readMem()) 2991 return false; 2992 if (CbId == -1) 2993 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2994 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 2995 2996 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 2997 } 2998 2999 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 3000 SDValue& IntPtr) { 3001 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 3002 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 3003 true); 3004 return true; 3005 } 3006 return false; 3007 } 3008 3009 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 3010 SDValue& BaseReg, SDValue &Offset) { 3011 if (!isa<ConstantSDNode>(Addr)) { 3012 BaseReg = Addr; 3013 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 3014 return true; 3015 } 3016 return false; 3017 } 3018 3019 void R600DAGToDAGISel::Select(SDNode *N) { 3020 unsigned int Opc = N->getOpcode(); 3021 if (N->isMachineOpcode()) { 3022 N->setNodeId(-1); 3023 return; // Already selected. 3024 } 3025 3026 switch (Opc) { 3027 default: break; 3028 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 3029 case ISD::SCALAR_TO_VECTOR: 3030 case ISD::BUILD_VECTOR: { 3031 EVT VT = N->getValueType(0); 3032 unsigned NumVectorElts = VT.getVectorNumElements(); 3033 unsigned RegClassID; 3034 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 3035 // that adds a 128 bits reg copy when going through TwoAddressInstructions 3036 // pass. We want to avoid 128 bits copies as much as possible because they 3037 // can't be bundled by our scheduler. 3038 switch(NumVectorElts) { 3039 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 3040 case 4: 3041 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 3042 RegClassID = R600::R600_Reg128VerticalRegClassID; 3043 else 3044 RegClassID = R600::R600_Reg128RegClassID; 3045 break; 3046 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 3047 } 3048 SelectBuildVector(N, RegClassID); 3049 return; 3050 } 3051 } 3052 3053 SelectCode(N); 3054 } 3055 3056 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 3057 SDValue &Offset) { 3058 ConstantSDNode *C; 3059 SDLoc DL(Addr); 3060 3061 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 3062 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3063 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3064 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 3065 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 3066 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3067 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3068 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 3069 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 3070 Base = Addr.getOperand(0); 3071 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3072 } else { 3073 Base = Addr; 3074 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 3075 } 3076 3077 return true; 3078 } 3079 3080 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 3081 SDValue &Offset) { 3082 ConstantSDNode *IMMOffset; 3083 3084 if (Addr.getOpcode() == ISD::ADD 3085 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 3086 && isInt<16>(IMMOffset->getZExtValue())) { 3087 3088 Base = Addr.getOperand(0); 3089 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3090 MVT::i32); 3091 return true; 3092 // If the pointer address is constant, we can move it to the offset field. 3093 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 3094 && isInt<16>(IMMOffset->getZExtValue())) { 3095 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 3096 SDLoc(CurDAG->getEntryNode()), 3097 R600::ZERO, MVT::i32); 3098 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3099 MVT::i32); 3100 return true; 3101 } 3102 3103 // Default case, no offset 3104 Base = Addr; 3105 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 3106 return true; 3107 } 3108