1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUSubtarget.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "MCTargetDesc/R600MCTargetDesc.h" 21 #include "R600RegisterInfo.h" 22 #include "SIISelLowering.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/Analysis/UniformityAnalysis.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/IntrinsicsAMDGPU.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Support/ErrorHandling.h" 33 34 #ifdef EXPENSIVE_CHECKS 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #endif 38 39 #define DEBUG_TYPE "amdgpu-isel" 40 41 using namespace llvm; 42 43 //===----------------------------------------------------------------------===// 44 // Instruction Selector Implementation 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 static SDValue stripBitcast(SDValue Val) { 49 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 50 } 51 52 // Figure out if this is really an extract of the high 16-bits of a dword. 53 static bool isExtractHiElt(SDValue In, SDValue &Out) { 54 In = stripBitcast(In); 55 56 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 57 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 58 if (!Idx->isOne()) 59 return false; 60 Out = In.getOperand(0); 61 return true; 62 } 63 } 64 65 if (In.getOpcode() != ISD::TRUNCATE) 66 return false; 67 68 SDValue Srl = In.getOperand(0); 69 if (Srl.getOpcode() == ISD::SRL) { 70 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 71 if (ShiftAmt->getZExtValue() == 16) { 72 Out = stripBitcast(Srl.getOperand(0)); 73 return true; 74 } 75 } 76 } 77 78 return false; 79 } 80 81 // Look through operations that obscure just looking at the low 16-bits of the 82 // same register. 83 static SDValue stripExtractLoElt(SDValue In) { 84 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 85 SDValue Idx = In.getOperand(1); 86 if (isNullConstant(Idx) && In.getValueSizeInBits() <= 32) 87 return In.getOperand(0); 88 } 89 90 if (In.getOpcode() == ISD::TRUNCATE) { 91 SDValue Src = In.getOperand(0); 92 if (Src.getValueType().getSizeInBits() == 32) 93 return stripBitcast(Src); 94 } 95 96 return In; 97 } 98 99 } // end anonymous namespace 100 101 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 102 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 103 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 104 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 105 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 106 #ifdef EXPENSIVE_CHECKS 107 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 108 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 109 #endif 110 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 111 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 112 113 /// This pass converts a legalized DAG into a AMDGPU-specific 114 // DAG, ready for instruction scheduling. 115 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM, 116 CodeGenOptLevel OptLevel) { 117 return new AMDGPUDAGToDAGISel(TM, OptLevel); 118 } 119 120 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM, 121 CodeGenOptLevel OptLevel) 122 : SelectionDAGISel(ID, TM, OptLevel) { 123 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 124 } 125 126 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 127 #ifdef EXPENSIVE_CHECKS 128 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 129 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 130 for (auto &L : LI->getLoopsInPreorder()) { 131 assert(L->isLCSSAForm(DT)); 132 } 133 #endif 134 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 135 Mode = SIModeRegisterDefaults(MF.getFunction(), *Subtarget); 136 return SelectionDAGISel::runOnMachineFunction(MF); 137 } 138 139 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 140 // XXX - only need to list legal operations. 141 switch (Opc) { 142 case ISD::FADD: 143 case ISD::FSUB: 144 case ISD::FMUL: 145 case ISD::FDIV: 146 case ISD::FREM: 147 case ISD::FCANONICALIZE: 148 case ISD::UINT_TO_FP: 149 case ISD::SINT_TO_FP: 150 case ISD::FABS: 151 // Fabs is lowered to a bit operation, but it's an and which will clear the 152 // high bits anyway. 153 case ISD::FSQRT: 154 case ISD::FSIN: 155 case ISD::FCOS: 156 case ISD::FPOWI: 157 case ISD::FPOW: 158 case ISD::FLOG: 159 case ISD::FLOG2: 160 case ISD::FLOG10: 161 case ISD::FEXP: 162 case ISD::FEXP2: 163 case ISD::FCEIL: 164 case ISD::FTRUNC: 165 case ISD::FRINT: 166 case ISD::FNEARBYINT: 167 case ISD::FROUNDEVEN: 168 case ISD::FROUND: 169 case ISD::FFLOOR: 170 case ISD::FMINNUM: 171 case ISD::FMAXNUM: 172 case ISD::FLDEXP: 173 case AMDGPUISD::FRACT: 174 case AMDGPUISD::CLAMP: 175 case AMDGPUISD::COS_HW: 176 case AMDGPUISD::SIN_HW: 177 case AMDGPUISD::FMIN3: 178 case AMDGPUISD::FMAX3: 179 case AMDGPUISD::FMED3: 180 case AMDGPUISD::FMAD_FTZ: 181 case AMDGPUISD::RCP: 182 case AMDGPUISD::RSQ: 183 case AMDGPUISD::RCP_IFLAG: 184 // On gfx10, all 16-bit instructions preserve the high bits. 185 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 186 case ISD::FP_ROUND: 187 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 188 // high bits on gfx9. 189 // TODO: If we had the source node we could see if the source was fma/mad 190 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 191 case ISD::FMA: 192 case ISD::FMAD: 193 case AMDGPUISD::DIV_FIXUP: 194 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 195 default: 196 // fcopysign, select and others may be lowered to 32-bit bit operations 197 // which don't zero the high bits. 198 return false; 199 } 200 } 201 202 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 203 AU.addRequired<AMDGPUArgumentUsageInfo>(); 204 AU.addRequired<UniformityInfoWrapperPass>(); 205 #ifdef EXPENSIVE_CHECKS 206 AU.addRequired<DominatorTreeWrapperPass>(); 207 AU.addRequired<LoopInfoWrapperPass>(); 208 #endif 209 SelectionDAGISel::getAnalysisUsage(AU); 210 } 211 212 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 213 assert(Subtarget->d16PreservesUnusedBits()); 214 MVT VT = N->getValueType(0).getSimpleVT(); 215 if (VT != MVT::v2i16 && VT != MVT::v2f16) 216 return false; 217 218 SDValue Lo = N->getOperand(0); 219 SDValue Hi = N->getOperand(1); 220 221 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 222 223 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 224 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 225 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 226 227 // Need to check for possible indirect dependencies on the other half of the 228 // vector to avoid introducing a cycle. 229 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 230 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 231 232 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 233 SDValue Ops[] = { 234 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 235 }; 236 237 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 238 if (LdHi->getMemoryVT() == MVT::i8) { 239 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 240 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 241 } else { 242 assert(LdHi->getMemoryVT() == MVT::i16); 243 } 244 245 SDValue NewLoadHi = 246 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 247 Ops, LdHi->getMemoryVT(), 248 LdHi->getMemOperand()); 249 250 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 251 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 252 return true; 253 } 254 255 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 256 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 257 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 258 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 259 if (LdLo && Lo.hasOneUse()) { 260 SDValue TiedIn = getHi16Elt(Hi); 261 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 262 return false; 263 264 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 265 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 266 if (LdLo->getMemoryVT() == MVT::i8) { 267 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 268 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 269 } else { 270 assert(LdLo->getMemoryVT() == MVT::i16); 271 } 272 273 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 274 275 SDValue Ops[] = { 276 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 277 }; 278 279 SDValue NewLoadLo = 280 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 281 Ops, LdLo->getMemoryVT(), 282 LdLo->getMemOperand()); 283 284 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 285 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 286 return true; 287 } 288 289 return false; 290 } 291 292 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 293 if (!Subtarget->d16PreservesUnusedBits()) 294 return; 295 296 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 297 298 bool MadeChange = false; 299 while (Position != CurDAG->allnodes_begin()) { 300 SDNode *N = &*--Position; 301 if (N->use_empty()) 302 continue; 303 304 switch (N->getOpcode()) { 305 case ISD::BUILD_VECTOR: 306 // TODO: Match load d16 from shl (extload:i16), 16 307 MadeChange |= matchLoadD16FromBuildVector(N); 308 break; 309 default: 310 break; 311 } 312 } 313 314 if (MadeChange) { 315 CurDAG->RemoveDeadNodes(); 316 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 317 CurDAG->dump();); 318 } 319 } 320 321 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const { 322 if (N->isUndef()) 323 return true; 324 325 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 326 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 327 return TII->isInlineConstant(C->getAPIntValue()); 328 329 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 330 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 331 332 return false; 333 } 334 335 /// Determine the register class for \p OpNo 336 /// \returns The register class of the virtual register that will be used for 337 /// the given operand number \OpNo or NULL if the register class cannot be 338 /// determined. 339 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 340 unsigned OpNo) const { 341 if (!N->isMachineOpcode()) { 342 if (N->getOpcode() == ISD::CopyToReg) { 343 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 344 if (Reg.isVirtual()) { 345 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 346 return MRI.getRegClass(Reg); 347 } 348 349 const SIRegisterInfo *TRI 350 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 351 return TRI->getPhysRegBaseClass(Reg); 352 } 353 354 return nullptr; 355 } 356 357 switch (N->getMachineOpcode()) { 358 default: { 359 const MCInstrDesc &Desc = 360 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 361 unsigned OpIdx = Desc.getNumDefs() + OpNo; 362 if (OpIdx >= Desc.getNumOperands()) 363 return nullptr; 364 int RegClass = Desc.operands()[OpIdx].RegClass; 365 if (RegClass == -1) 366 return nullptr; 367 368 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 369 } 370 case AMDGPU::REG_SEQUENCE: { 371 unsigned RCID = N->getConstantOperandVal(0); 372 const TargetRegisterClass *SuperRC = 373 Subtarget->getRegisterInfo()->getRegClass(RCID); 374 375 SDValue SubRegOp = N->getOperand(OpNo + 1); 376 unsigned SubRegIdx = SubRegOp->getAsZExtVal(); 377 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 378 SubRegIdx); 379 } 380 } 381 } 382 383 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 384 SDValue Glue) const { 385 SmallVector <SDValue, 8> Ops; 386 Ops.push_back(NewChain); // Replace the chain. 387 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 388 Ops.push_back(N->getOperand(i)); 389 390 Ops.push_back(Glue); 391 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 392 } 393 394 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 395 const SITargetLowering& Lowering = 396 *static_cast<const SITargetLowering*>(getTargetLowering()); 397 398 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 399 400 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 401 return glueCopyToOp(N, M0, M0.getValue(1)); 402 } 403 404 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 405 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 406 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 407 if (Subtarget->ldsRequiresM0Init()) 408 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 409 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 410 MachineFunction &MF = CurDAG->getMachineFunction(); 411 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 412 return 413 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 414 } 415 return N; 416 } 417 418 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 419 EVT VT) const { 420 SDNode *Lo = CurDAG->getMachineNode( 421 AMDGPU::S_MOV_B32, DL, MVT::i32, 422 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 423 SDNode *Hi = 424 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 425 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 426 const SDValue Ops[] = { 427 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 428 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 429 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 430 431 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 432 } 433 434 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 435 EVT VT = N->getValueType(0); 436 unsigned NumVectorElts = VT.getVectorNumElements(); 437 EVT EltVT = VT.getVectorElementType(); 438 SDLoc DL(N); 439 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 440 441 if (NumVectorElts == 1) { 442 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 443 RegClass); 444 return; 445 } 446 447 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 448 "supported yet"); 449 // 32 = Max Num Vector Elements 450 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 451 // 1 = Vector Register Class 452 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 453 454 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 455 Triple::amdgcn; 456 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 457 bool IsRegSeq = true; 458 unsigned NOps = N->getNumOperands(); 459 for (unsigned i = 0; i < NOps; i++) { 460 // XXX: Why is this here? 461 if (isa<RegisterSDNode>(N->getOperand(i))) { 462 IsRegSeq = false; 463 break; 464 } 465 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 466 : R600RegisterInfo::getSubRegFromChannel(i); 467 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 468 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 469 } 470 if (NOps != NumVectorElts) { 471 // Fill in the missing undef elements if this was a scalar_to_vector. 472 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 473 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 474 DL, EltVT); 475 for (unsigned i = NOps; i < NumVectorElts; ++i) { 476 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 477 : R600RegisterInfo::getSubRegFromChannel(i); 478 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 479 RegSeqArgs[1 + (2 * i) + 1] = 480 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 481 } 482 } 483 484 if (!IsRegSeq) 485 SelectCode(N); 486 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 487 } 488 489 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 490 unsigned int Opc = N->getOpcode(); 491 if (N->isMachineOpcode()) { 492 N->setNodeId(-1); 493 return; // Already selected. 494 } 495 496 // isa<MemSDNode> almost works but is slightly too permissive for some DS 497 // intrinsics. 498 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 499 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 500 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX) { 501 N = glueCopyToM0LDSInit(N); 502 SelectCode(N); 503 return; 504 } 505 506 switch (Opc) { 507 default: 508 break; 509 // We are selecting i64 ADD here instead of custom lower it during 510 // DAG legalization, so we can fold some i64 ADDs used for address 511 // calculation into the LOAD and STORE instructions. 512 case ISD::ADDC: 513 case ISD::ADDE: 514 case ISD::SUBC: 515 case ISD::SUBE: { 516 if (N->getValueType(0) != MVT::i64) 517 break; 518 519 SelectADD_SUB_I64(N); 520 return; 521 } 522 case ISD::UADDO_CARRY: 523 case ISD::USUBO_CARRY: 524 if (N->getValueType(0) != MVT::i32) 525 break; 526 527 SelectAddcSubb(N); 528 return; 529 case ISD::UADDO: 530 case ISD::USUBO: { 531 SelectUADDO_USUBO(N); 532 return; 533 } 534 case AMDGPUISD::FMUL_W_CHAIN: { 535 SelectFMUL_W_CHAIN(N); 536 return; 537 } 538 case AMDGPUISD::FMA_W_CHAIN: { 539 SelectFMA_W_CHAIN(N); 540 return; 541 } 542 543 case ISD::SCALAR_TO_VECTOR: 544 case ISD::BUILD_VECTOR: { 545 EVT VT = N->getValueType(0); 546 unsigned NumVectorElts = VT.getVectorNumElements(); 547 if (VT.getScalarSizeInBits() == 16) { 548 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 549 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 550 ReplaceNode(N, Packed); 551 return; 552 } 553 } 554 555 break; 556 } 557 558 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 559 unsigned RegClassID = 560 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 561 SelectBuildVector(N, RegClassID); 562 return; 563 } 564 case ISD::BUILD_PAIR: { 565 SDValue RC, SubReg0, SubReg1; 566 SDLoc DL(N); 567 if (N->getValueType(0) == MVT::i128) { 568 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 569 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 570 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 571 } else if (N->getValueType(0) == MVT::i64) { 572 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 573 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 574 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 575 } else { 576 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 577 } 578 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 579 N->getOperand(1), SubReg1 }; 580 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 581 N->getValueType(0), Ops)); 582 return; 583 } 584 585 case ISD::Constant: 586 case ISD::ConstantFP: { 587 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 588 break; 589 590 uint64_t Imm; 591 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) { 592 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 593 if (AMDGPU::isValid32BitLiteral(Imm, true)) 594 break; 595 } else { 596 ConstantSDNode *C = cast<ConstantSDNode>(N); 597 Imm = C->getZExtValue(); 598 if (AMDGPU::isValid32BitLiteral(Imm, false)) 599 break; 600 } 601 602 SDLoc DL(N); 603 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 604 return; 605 } 606 case AMDGPUISD::BFE_I32: 607 case AMDGPUISD::BFE_U32: { 608 // There is a scalar version available, but unlike the vector version which 609 // has a separate operand for the offset and width, the scalar version packs 610 // the width and offset into a single operand. Try to move to the scalar 611 // version if the offsets are constant, so that we can try to keep extended 612 // loads of kernel arguments in SGPRs. 613 614 // TODO: Technically we could try to pattern match scalar bitshifts of 615 // dynamic values, but it's probably not useful. 616 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 617 if (!Offset) 618 break; 619 620 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 621 if (!Width) 622 break; 623 624 bool Signed = Opc == AMDGPUISD::BFE_I32; 625 626 uint32_t OffsetVal = Offset->getZExtValue(); 627 uint32_t WidthVal = Width->getZExtValue(); 628 629 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, 630 WidthVal)); 631 return; 632 } 633 case AMDGPUISD::DIV_SCALE: { 634 SelectDIV_SCALE(N); 635 return; 636 } 637 case AMDGPUISD::MAD_I64_I32: 638 case AMDGPUISD::MAD_U64_U32: { 639 SelectMAD_64_32(N); 640 return; 641 } 642 case ISD::SMUL_LOHI: 643 case ISD::UMUL_LOHI: 644 return SelectMUL_LOHI(N); 645 case ISD::CopyToReg: { 646 const SITargetLowering& Lowering = 647 *static_cast<const SITargetLowering*>(getTargetLowering()); 648 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 649 break; 650 } 651 case ISD::AND: 652 case ISD::SRL: 653 case ISD::SRA: 654 case ISD::SIGN_EXTEND_INREG: 655 if (N->getValueType(0) != MVT::i32) 656 break; 657 658 SelectS_BFE(N); 659 return; 660 case ISD::BRCOND: 661 SelectBRCOND(N); 662 return; 663 case ISD::FP_EXTEND: 664 SelectFP_EXTEND(N); 665 return; 666 case AMDGPUISD::CVT_PKRTZ_F16_F32: 667 case AMDGPUISD::CVT_PKNORM_I16_F32: 668 case AMDGPUISD::CVT_PKNORM_U16_F32: 669 case AMDGPUISD::CVT_PK_U16_U32: 670 case AMDGPUISD::CVT_PK_I16_I32: { 671 // Hack around using a legal type if f16 is illegal. 672 if (N->getValueType(0) == MVT::i32) { 673 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 674 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 675 { N->getOperand(0), N->getOperand(1) }); 676 SelectCode(N); 677 return; 678 } 679 680 break; 681 } 682 case ISD::INTRINSIC_W_CHAIN: { 683 SelectINTRINSIC_W_CHAIN(N); 684 return; 685 } 686 case ISD::INTRINSIC_WO_CHAIN: { 687 SelectINTRINSIC_WO_CHAIN(N); 688 return; 689 } 690 case ISD::INTRINSIC_VOID: { 691 SelectINTRINSIC_VOID(N); 692 return; 693 } 694 case AMDGPUISD::WAVE_ADDRESS: { 695 SelectWAVE_ADDRESS(N); 696 return; 697 } 698 case ISD::STACKRESTORE: { 699 SelectSTACKRESTORE(N); 700 return; 701 } 702 } 703 704 SelectCode(N); 705 } 706 707 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 708 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 709 const Instruction *Term = BB->getTerminator(); 710 return Term->getMetadata("amdgpu.uniform") || 711 Term->getMetadata("structurizecfg.uniform"); 712 } 713 714 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, 715 unsigned ShAmtBits) const { 716 assert(N->getOpcode() == ISD::AND); 717 718 const APInt &RHS = N->getConstantOperandAPInt(1); 719 if (RHS.countr_one() >= ShAmtBits) 720 return true; 721 722 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; 723 return (LHSKnownZeros | RHS).countr_one() >= ShAmtBits; 724 } 725 726 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 727 SDValue &N0, SDValue &N1) { 728 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 729 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 730 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 731 // (i64 (bitcast (v2i32 (build_vector 732 // (or (extract_vector_elt V, 0), OFFSET), 733 // (extract_vector_elt V, 1))))) 734 SDValue Lo = Addr.getOperand(0).getOperand(0); 735 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 736 SDValue BaseLo = Lo.getOperand(0); 737 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 738 // Check that split base (Lo and Hi) are extracted from the same one. 739 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 740 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 741 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 742 // Lo is statically extracted from index 0. 743 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 744 BaseLo.getConstantOperandVal(1) == 0 && 745 // Hi is statically extracted from index 0. 746 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 747 BaseHi.getConstantOperandVal(1) == 1) { 748 N0 = BaseLo.getOperand(0).getOperand(0); 749 N1 = Lo.getOperand(1); 750 return true; 751 } 752 } 753 } 754 return false; 755 } 756 757 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 758 SDValue &RHS) const { 759 if (CurDAG->isBaseWithConstantOffset(Addr)) { 760 LHS = Addr.getOperand(0); 761 RHS = Addr.getOperand(1); 762 return true; 763 } 764 765 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 766 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 767 return true; 768 } 769 770 return false; 771 } 772 773 StringRef AMDGPUDAGToDAGISel::getPassName() const { 774 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 775 } 776 777 //===----------------------------------------------------------------------===// 778 // Complex Patterns 779 //===----------------------------------------------------------------------===// 780 781 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 782 SDValue &Offset) { 783 return false; 784 } 785 786 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 787 SDValue &Offset) { 788 ConstantSDNode *C; 789 SDLoc DL(Addr); 790 791 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 792 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 793 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 794 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 795 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 796 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 797 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 798 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 799 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 800 Base = Addr.getOperand(0); 801 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 802 } else { 803 Base = Addr; 804 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 805 } 806 807 return true; 808 } 809 810 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 811 const SDLoc &DL) const { 812 SDNode *Mov = CurDAG->getMachineNode( 813 AMDGPU::S_MOV_B32, DL, MVT::i32, 814 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 815 return SDValue(Mov, 0); 816 } 817 818 // FIXME: Should only handle uaddo_carry/usubo_carry 819 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 820 SDLoc DL(N); 821 SDValue LHS = N->getOperand(0); 822 SDValue RHS = N->getOperand(1); 823 824 unsigned Opcode = N->getOpcode(); 825 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 826 bool ProduceCarry = 827 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 828 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 829 830 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 831 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 832 833 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 834 DL, MVT::i32, LHS, Sub0); 835 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 836 DL, MVT::i32, LHS, Sub1); 837 838 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 839 DL, MVT::i32, RHS, Sub0); 840 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 841 DL, MVT::i32, RHS, Sub1); 842 843 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 844 845 static const unsigned OpcMap[2][2][2] = { 846 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 847 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 848 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 849 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 850 851 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 852 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 853 854 SDNode *AddLo; 855 if (!ConsumeCarry) { 856 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 857 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 858 } else { 859 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 860 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 861 } 862 SDValue AddHiArgs[] = { 863 SDValue(Hi0, 0), 864 SDValue(Hi1, 0), 865 SDValue(AddLo, 1) 866 }; 867 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 868 869 SDValue RegSequenceArgs[] = { 870 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 871 SDValue(AddLo,0), 872 Sub0, 873 SDValue(AddHi,0), 874 Sub1, 875 }; 876 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 877 MVT::i64, RegSequenceArgs); 878 879 if (ProduceCarry) { 880 // Replace the carry-use 881 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 882 } 883 884 // Replace the remaining uses. 885 ReplaceNode(N, RegSequence); 886 } 887 888 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 889 SDLoc DL(N); 890 SDValue LHS = N->getOperand(0); 891 SDValue RHS = N->getOperand(1); 892 SDValue CI = N->getOperand(2); 893 894 if (N->isDivergent()) { 895 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::V_ADDC_U32_e64 896 : AMDGPU::V_SUBB_U32_e64; 897 CurDAG->SelectNodeTo( 898 N, Opc, N->getVTList(), 899 {LHS, RHS, CI, 900 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 901 } else { 902 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::S_ADD_CO_PSEUDO 903 : AMDGPU::S_SUB_CO_PSEUDO; 904 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 905 } 906 } 907 908 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 909 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 910 // carry out despite the _i32 name. These were renamed in VI to _U32. 911 // FIXME: We should probably rename the opcodes here. 912 bool IsAdd = N->getOpcode() == ISD::UADDO; 913 bool IsVALU = N->isDivergent(); 914 915 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 916 ++UI) 917 if (UI.getUse().getResNo() == 1) { 918 if ((IsAdd && (UI->getOpcode() != ISD::UADDO_CARRY)) || 919 (!IsAdd && (UI->getOpcode() != ISD::USUBO_CARRY))) { 920 IsVALU = true; 921 break; 922 } 923 } 924 925 if (IsVALU) { 926 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 927 928 CurDAG->SelectNodeTo( 929 N, Opc, N->getVTList(), 930 {N->getOperand(0), N->getOperand(1), 931 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 932 } else { 933 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 934 : AMDGPU::S_USUBO_PSEUDO; 935 936 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 937 {N->getOperand(0), N->getOperand(1)}); 938 } 939 } 940 941 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 942 SDLoc SL(N); 943 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 944 SDValue Ops[10]; 945 946 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 947 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 948 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 949 Ops[8] = N->getOperand(0); 950 Ops[9] = N->getOperand(4); 951 952 // If there are no source modifiers, prefer fmac over fma because it can use 953 // the smaller VOP2 encoding. 954 bool UseFMAC = Subtarget->hasDLInsts() && 955 cast<ConstantSDNode>(Ops[0])->isZero() && 956 cast<ConstantSDNode>(Ops[2])->isZero() && 957 cast<ConstantSDNode>(Ops[4])->isZero(); 958 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 959 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 960 } 961 962 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 963 SDLoc SL(N); 964 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 965 SDValue Ops[8]; 966 967 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 968 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 969 Ops[6] = N->getOperand(0); 970 Ops[7] = N->getOperand(3); 971 972 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 973 } 974 975 // We need to handle this here because tablegen doesn't support matching 976 // instructions with multiple outputs. 977 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 978 SDLoc SL(N); 979 EVT VT = N->getValueType(0); 980 981 assert(VT == MVT::f32 || VT == MVT::f64); 982 983 unsigned Opc 984 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 985 986 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 987 // omod 988 SDValue Ops[8]; 989 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 990 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 991 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 992 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 993 } 994 995 // We need to handle this here because tablegen doesn't support matching 996 // instructions with multiple outputs. 997 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 998 SDLoc SL(N); 999 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1000 unsigned Opc; 1001 if (Subtarget->hasMADIntraFwdBug()) 1002 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1003 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1004 else 1005 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1006 1007 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1008 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1009 Clamp }; 1010 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1011 } 1012 1013 // We need to handle this here because tablegen doesn't support matching 1014 // instructions with multiple outputs. 1015 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { 1016 SDLoc SL(N); 1017 bool Signed = N->getOpcode() == ISD::SMUL_LOHI; 1018 unsigned Opc; 1019 if (Subtarget->hasMADIntraFwdBug()) 1020 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1021 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1022 else 1023 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1024 1025 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); 1026 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1027 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; 1028 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); 1029 if (!SDValue(N, 0).use_empty()) { 1030 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); 1031 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1032 MVT::i32, SDValue(Mad, 0), Sub0); 1033 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); 1034 } 1035 if (!SDValue(N, 1).use_empty()) { 1036 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); 1037 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1038 MVT::i32, SDValue(Mad, 0), Sub1); 1039 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); 1040 } 1041 CurDAG->RemoveDeadNode(N); 1042 } 1043 1044 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1045 if (!isUInt<16>(Offset)) 1046 return false; 1047 1048 if (!Base || Subtarget->hasUsableDSOffset() || 1049 Subtarget->unsafeDSOffsetFoldingEnabled()) 1050 return true; 1051 1052 // On Southern Islands instruction with a negative base value and an offset 1053 // don't seem to work. 1054 return CurDAG->SignBitIsZero(Base); 1055 } 1056 1057 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1058 SDValue &Offset) const { 1059 SDLoc DL(Addr); 1060 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1061 SDValue N0 = Addr.getOperand(0); 1062 SDValue N1 = Addr.getOperand(1); 1063 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1064 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1065 // (add n0, c0) 1066 Base = N0; 1067 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1068 return true; 1069 } 1070 } else if (Addr.getOpcode() == ISD::SUB) { 1071 // sub C, x -> add (sub 0, x), C 1072 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1073 int64_t ByteOffset = C->getSExtValue(); 1074 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1075 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1076 1077 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1078 // the known bits in isDSOffsetLegal. We need to emit the selected node 1079 // here, so this is thrown away. 1080 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1081 Zero, Addr.getOperand(1)); 1082 1083 if (isDSOffsetLegal(Sub, ByteOffset)) { 1084 SmallVector<SDValue, 3> Opnds; 1085 Opnds.push_back(Zero); 1086 Opnds.push_back(Addr.getOperand(1)); 1087 1088 // FIXME: Select to VOP3 version for with-carry. 1089 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1090 if (Subtarget->hasAddNoCarry()) { 1091 SubOp = AMDGPU::V_SUB_U32_e64; 1092 Opnds.push_back( 1093 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1094 } 1095 1096 MachineSDNode *MachineSub = 1097 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1098 1099 Base = SDValue(MachineSub, 0); 1100 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1101 return true; 1102 } 1103 } 1104 } 1105 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1106 // If we have a constant address, prefer to put the constant into the 1107 // offset. This can save moves to load the constant address since multiple 1108 // operations can share the zero base address register, and enables merging 1109 // into read2 / write2 instructions. 1110 1111 SDLoc DL(Addr); 1112 1113 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1114 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1115 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1116 DL, MVT::i32, Zero); 1117 Base = SDValue(MovZero, 0); 1118 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1119 return true; 1120 } 1121 } 1122 1123 // default case 1124 Base = Addr; 1125 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1126 return true; 1127 } 1128 1129 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1130 unsigned Offset1, 1131 unsigned Size) const { 1132 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1133 return false; 1134 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1135 return false; 1136 1137 if (!Base || Subtarget->hasUsableDSOffset() || 1138 Subtarget->unsafeDSOffsetFoldingEnabled()) 1139 return true; 1140 1141 // On Southern Islands instruction with a negative base value and an offset 1142 // don't seem to work. 1143 return CurDAG->SignBitIsZero(Base); 1144 } 1145 1146 // Return whether the operation has NoUnsignedWrap property. 1147 static bool isNoUnsignedWrap(SDValue Addr) { 1148 return (Addr.getOpcode() == ISD::ADD && 1149 Addr->getFlags().hasNoUnsignedWrap()) || 1150 Addr->getOpcode() == ISD::OR; 1151 } 1152 1153 // Check that the base address of flat scratch load/store in the form of `base + 1154 // offset` is legal to be put in SGPR/VGPR (i.e. unsigned per hardware 1155 // requirement). We always treat the first operand as the base address here. 1156 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegal(SDValue Addr) const { 1157 if (isNoUnsignedWrap(Addr)) 1158 return true; 1159 1160 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative 1161 // values. 1162 if (AMDGPU::isGFX12Plus(*Subtarget)) 1163 return true; 1164 1165 auto LHS = Addr.getOperand(0); 1166 auto RHS = Addr.getOperand(1); 1167 1168 // If the immediate offset is negative and within certain range, the base 1169 // address cannot also be negative. If the base is also negative, the sum 1170 // would be either negative or much larger than the valid range of scratch 1171 // memory a thread can access. 1172 ConstantSDNode *ImmOp = nullptr; 1173 if (Addr.getOpcode() == ISD::ADD && (ImmOp = dyn_cast<ConstantSDNode>(RHS))) { 1174 if (ImmOp->getSExtValue() < 0 && ImmOp->getSExtValue() > -0x40000000) 1175 return true; 1176 } 1177 1178 return CurDAG->SignBitIsZero(LHS); 1179 } 1180 1181 // Check address value in SGPR/VGPR are legal for flat scratch in the form 1182 // of: SGPR + VGPR. 1183 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSV(SDValue Addr) const { 1184 if (isNoUnsignedWrap(Addr)) 1185 return true; 1186 1187 auto LHS = Addr.getOperand(0); 1188 auto RHS = Addr.getOperand(1); 1189 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS); 1190 } 1191 1192 // Check address value in SGPR/VGPR are legal for flat scratch in the form 1193 // of: SGPR + VGPR + Imm. 1194 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSVImm(SDValue Addr) const { 1195 auto Base = Addr.getOperand(0); 1196 auto *RHSImm = cast<ConstantSDNode>(Addr.getOperand(1)); 1197 // If the immediate offset is negative and within certain range, the base 1198 // address cannot also be negative. If the base is also negative, the sum 1199 // would be either negative or much larger than the valid range of scratch 1200 // memory a thread can access. 1201 if (isNoUnsignedWrap(Base) && 1202 (isNoUnsignedWrap(Addr) || 1203 (RHSImm->getSExtValue() < 0 && RHSImm->getSExtValue() > -0x40000000))) 1204 return true; 1205 1206 auto LHS = Base.getOperand(0); 1207 auto RHS = Base.getOperand(1); 1208 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS); 1209 } 1210 1211 // TODO: If offset is too big, put low 16-bit into offset. 1212 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1213 SDValue &Offset0, 1214 SDValue &Offset1) const { 1215 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1216 } 1217 1218 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1219 SDValue &Offset0, 1220 SDValue &Offset1) const { 1221 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1222 } 1223 1224 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1225 SDValue &Offset0, SDValue &Offset1, 1226 unsigned Size) const { 1227 SDLoc DL(Addr); 1228 1229 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1230 SDValue N0 = Addr.getOperand(0); 1231 SDValue N1 = Addr.getOperand(1); 1232 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1233 unsigned OffsetValue0 = C1->getZExtValue(); 1234 unsigned OffsetValue1 = OffsetValue0 + Size; 1235 1236 // (add n0, c0) 1237 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1238 Base = N0; 1239 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1240 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1241 return true; 1242 } 1243 } else if (Addr.getOpcode() == ISD::SUB) { 1244 // sub C, x -> add (sub 0, x), C 1245 if (const ConstantSDNode *C = 1246 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1247 unsigned OffsetValue0 = C->getZExtValue(); 1248 unsigned OffsetValue1 = OffsetValue0 + Size; 1249 1250 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1251 SDLoc DL(Addr); 1252 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1253 1254 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1255 // the known bits in isDSOffsetLegal. We need to emit the selected node 1256 // here, so this is thrown away. 1257 SDValue Sub = 1258 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1259 1260 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1261 SmallVector<SDValue, 3> Opnds; 1262 Opnds.push_back(Zero); 1263 Opnds.push_back(Addr.getOperand(1)); 1264 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1265 if (Subtarget->hasAddNoCarry()) { 1266 SubOp = AMDGPU::V_SUB_U32_e64; 1267 Opnds.push_back( 1268 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1269 } 1270 1271 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1272 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1273 1274 Base = SDValue(MachineSub, 0); 1275 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1276 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1277 return true; 1278 } 1279 } 1280 } 1281 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1282 unsigned OffsetValue0 = CAddr->getZExtValue(); 1283 unsigned OffsetValue1 = OffsetValue0 + Size; 1284 1285 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1286 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1287 MachineSDNode *MovZero = 1288 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1289 Base = SDValue(MovZero, 0); 1290 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1291 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1292 return true; 1293 } 1294 } 1295 1296 // default case 1297 1298 Base = Addr; 1299 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1300 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1301 return true; 1302 } 1303 1304 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1305 SDValue &SOffset, SDValue &Offset, 1306 SDValue &Offen, SDValue &Idxen, 1307 SDValue &Addr64) const { 1308 // Subtarget prefers to use flat instruction 1309 // FIXME: This should be a pattern predicate and not reach here 1310 if (Subtarget->useFlatForGlobal()) 1311 return false; 1312 1313 SDLoc DL(Addr); 1314 1315 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1316 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1317 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1318 SOffset = Subtarget->hasRestrictedSOffset() 1319 ? CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32) 1320 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1321 1322 ConstantSDNode *C1 = nullptr; 1323 SDValue N0 = Addr; 1324 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1325 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1326 if (isUInt<32>(C1->getZExtValue())) 1327 N0 = Addr.getOperand(0); 1328 else 1329 C1 = nullptr; 1330 } 1331 1332 if (N0.getOpcode() == ISD::ADD) { 1333 // (add N2, N3) -> addr64, or 1334 // (add (add N2, N3), C1) -> addr64 1335 SDValue N2 = N0.getOperand(0); 1336 SDValue N3 = N0.getOperand(1); 1337 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1338 1339 if (N2->isDivergent()) { 1340 if (N3->isDivergent()) { 1341 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1342 // addr64, and construct the resource from a 0 address. 1343 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1344 VAddr = N0; 1345 } else { 1346 // N2 is divergent, N3 is not. 1347 Ptr = N3; 1348 VAddr = N2; 1349 } 1350 } else { 1351 // N2 is not divergent. 1352 Ptr = N2; 1353 VAddr = N3; 1354 } 1355 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1356 } else if (N0->isDivergent()) { 1357 // N0 is divergent. Use it as the addr64, and construct the resource from a 1358 // 0 address. 1359 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1360 VAddr = N0; 1361 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1362 } else { 1363 // N0 -> offset, or 1364 // (N0 + C1) -> offset 1365 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1366 Ptr = N0; 1367 } 1368 1369 if (!C1) { 1370 // No offset. 1371 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1372 return true; 1373 } 1374 1375 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1376 if (TII->isLegalMUBUFImmOffset(C1->getZExtValue())) { 1377 // Legal offset for instruction. 1378 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1379 return true; 1380 } 1381 1382 // Illegal offset, store it in soffset. 1383 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1384 SOffset = 1385 SDValue(CurDAG->getMachineNode( 1386 AMDGPU::S_MOV_B32, DL, MVT::i32, 1387 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1388 0); 1389 return true; 1390 } 1391 1392 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1393 SDValue &VAddr, SDValue &SOffset, 1394 SDValue &Offset) const { 1395 SDValue Ptr, Offen, Idxen, Addr64; 1396 1397 // addr64 bit was removed for volcanic islands. 1398 // FIXME: This should be a pattern predicate and not reach here 1399 if (!Subtarget->hasAddr64()) 1400 return false; 1401 1402 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1403 return false; 1404 1405 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1406 if (C->getSExtValue()) { 1407 SDLoc DL(Addr); 1408 1409 const SITargetLowering& Lowering = 1410 *static_cast<const SITargetLowering*>(getTargetLowering()); 1411 1412 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1413 return true; 1414 } 1415 1416 return false; 1417 } 1418 1419 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1420 SDLoc DL(N); 1421 1422 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1423 SDValue TFI = 1424 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1425 1426 // We rebase the base address into an absolute stack address and hence 1427 // use constant 0 for soffset. This value must be retained until 1428 // frame elimination and eliminateFrameIndex will choose the appropriate 1429 // frame register if need be. 1430 return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1431 } 1432 1433 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1434 SDValue Addr, SDValue &Rsrc, 1435 SDValue &VAddr, SDValue &SOffset, 1436 SDValue &ImmOffset) const { 1437 1438 SDLoc DL(Addr); 1439 MachineFunction &MF = CurDAG->getMachineFunction(); 1440 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1441 1442 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1443 1444 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1445 int64_t Imm = CAddr->getSExtValue(); 1446 const int64_t NullPtr = 1447 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1448 // Don't fold null pointer. 1449 if (Imm != NullPtr) { 1450 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget); 1451 SDValue HighBits = 1452 CurDAG->getTargetConstant(Imm & ~MaxOffset, DL, MVT::i32); 1453 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1454 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1455 VAddr = SDValue(MovHighBits, 0); 1456 1457 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1458 ImmOffset = CurDAG->getTargetConstant(Imm & MaxOffset, DL, MVT::i32); 1459 return true; 1460 } 1461 } 1462 1463 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1464 // (add n0, c1) 1465 1466 SDValue N0 = Addr.getOperand(0); 1467 SDValue N1 = Addr.getOperand(1); 1468 1469 // Offsets in vaddr must be positive if range checking is enabled. 1470 // 1471 // The total computation of vaddr + soffset + offset must not overflow. If 1472 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1473 // overflowing. 1474 // 1475 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1476 // always perform a range check. If a negative vaddr base index was used, 1477 // this would fail the range check. The overall address computation would 1478 // compute a valid address, but this doesn't happen due to the range 1479 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1480 // 1481 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1482 // MUBUF vaddr, but not on older subtargets which can only do this if the 1483 // sign bit is known 0. 1484 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1485 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1486 if (TII->isLegalMUBUFImmOffset(C1->getZExtValue()) && 1487 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1488 CurDAG->SignBitIsZero(N0))) { 1489 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1490 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1491 return true; 1492 } 1493 } 1494 1495 // (node) 1496 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1497 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1498 return true; 1499 } 1500 1501 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1502 if (Val.getOpcode() != ISD::CopyFromReg) 1503 return false; 1504 auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg(); 1505 if (!Reg.isPhysical()) 1506 return false; 1507 auto RC = TRI.getPhysRegBaseClass(Reg); 1508 return RC && TRI.isSGPRClass(RC); 1509 } 1510 1511 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1512 SDValue Addr, 1513 SDValue &SRsrc, 1514 SDValue &SOffset, 1515 SDValue &Offset) const { 1516 const SIRegisterInfo *TRI = 1517 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1518 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1519 MachineFunction &MF = CurDAG->getMachineFunction(); 1520 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1521 SDLoc DL(Addr); 1522 1523 // CopyFromReg <sgpr> 1524 if (IsCopyFromSGPR(*TRI, Addr)) { 1525 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1526 SOffset = Addr; 1527 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1528 return true; 1529 } 1530 1531 ConstantSDNode *CAddr; 1532 if (Addr.getOpcode() == ISD::ADD) { 1533 // Add (CopyFromReg <sgpr>) <constant> 1534 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1535 if (!CAddr || !TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1536 return false; 1537 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1538 return false; 1539 1540 SOffset = Addr.getOperand(0); 1541 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1542 TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1543 // <constant> 1544 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1545 } else { 1546 return false; 1547 } 1548 1549 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1550 1551 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i32); 1552 return true; 1553 } 1554 1555 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1556 SDValue &SOffset, SDValue &Offset 1557 ) const { 1558 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1559 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1560 1561 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1562 return false; 1563 1564 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1565 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1566 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1567 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1568 APInt::getAllOnes(32).getZExtValue(); // Size 1569 SDLoc DL(Addr); 1570 1571 const SITargetLowering& Lowering = 1572 *static_cast<const SITargetLowering*>(getTargetLowering()); 1573 1574 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1575 return true; 1576 } 1577 return false; 1578 } 1579 1580 bool AMDGPUDAGToDAGISel::SelectBUFSOffset(SDValue ByteOffsetNode, 1581 SDValue &SOffset) const { 1582 if (Subtarget->hasRestrictedSOffset() && isNullConstant(ByteOffsetNode)) { 1583 SOffset = CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32); 1584 return true; 1585 } 1586 1587 SOffset = ByteOffsetNode; 1588 return true; 1589 } 1590 1591 // Find a load or store from corresponding pattern root. 1592 // Roots may be build_vector, bitconvert or their combinations. 1593 static MemSDNode* findMemSDNode(SDNode *N) { 1594 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1595 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1596 return MN; 1597 assert(isa<BuildVectorSDNode>(N)); 1598 for (SDValue V : N->op_values()) 1599 if (MemSDNode *MN = 1600 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1601 return MN; 1602 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1603 } 1604 1605 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1606 SDValue &VAddr, SDValue &Offset, 1607 uint64_t FlatVariant) const { 1608 int64_t OffsetVal = 0; 1609 1610 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1611 1612 bool CanHaveFlatSegmentOffsetBug = 1613 Subtarget->hasFlatSegmentOffsetBug() && 1614 FlatVariant == SIInstrFlags::FLAT && 1615 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1616 1617 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1618 SDValue N0, N1; 1619 if (isBaseWithConstantOffset64(Addr, N0, N1) && 1620 (FlatVariant != SIInstrFlags::FlatScratch || 1621 isFlatScratchBaseLegal(Addr))) { 1622 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1623 1624 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1625 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1626 Addr = N0; 1627 OffsetVal = COffsetVal; 1628 } else { 1629 // If the offset doesn't fit, put the low bits into the offset field and 1630 // add the rest. 1631 // 1632 // For a FLAT instruction the hardware decides whether to access 1633 // global/scratch/shared memory based on the high bits of vaddr, 1634 // ignoring the offset field, so we have to ensure that when we add 1635 // remainder to vaddr it still points into the same underlying object. 1636 // The easiest way to do that is to make sure that we split the offset 1637 // into two pieces that are both >= 0 or both <= 0. 1638 1639 SDLoc DL(N); 1640 uint64_t RemainderOffset; 1641 1642 std::tie(OffsetVal, RemainderOffset) = 1643 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1644 1645 SDValue AddOffsetLo = 1646 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1647 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1648 1649 if (Addr.getValueType().getSizeInBits() == 32) { 1650 SmallVector<SDValue, 3> Opnds; 1651 Opnds.push_back(N0); 1652 Opnds.push_back(AddOffsetLo); 1653 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1654 if (Subtarget->hasAddNoCarry()) { 1655 AddOp = AMDGPU::V_ADD_U32_e64; 1656 Opnds.push_back(Clamp); 1657 } 1658 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1659 } else { 1660 // TODO: Should this try to use a scalar add pseudo if the base address 1661 // is uniform and saddr is usable? 1662 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1663 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1664 1665 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1666 DL, MVT::i32, N0, Sub0); 1667 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1668 DL, MVT::i32, N0, Sub1); 1669 1670 SDValue AddOffsetHi = 1671 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1672 1673 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1674 1675 SDNode *Add = 1676 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1677 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1678 1679 SDNode *Addc = CurDAG->getMachineNode( 1680 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1681 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1682 1683 SDValue RegSequenceArgs[] = { 1684 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1685 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1686 1687 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1688 MVT::i64, RegSequenceArgs), 1689 0); 1690 } 1691 } 1692 } 1693 } 1694 1695 VAddr = Addr; 1696 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 1697 return true; 1698 } 1699 1700 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1701 SDValue &VAddr, 1702 SDValue &Offset) const { 1703 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1704 } 1705 1706 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1707 SDValue &VAddr, 1708 SDValue &Offset) const { 1709 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1710 } 1711 1712 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1713 SDValue &VAddr, 1714 SDValue &Offset) const { 1715 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1716 SIInstrFlags::FlatScratch); 1717 } 1718 1719 // If this matches zero_extend i32:x, return x 1720 static SDValue matchZExtFromI32(SDValue Op) { 1721 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1722 return SDValue(); 1723 1724 SDValue ExtSrc = Op.getOperand(0); 1725 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1726 } 1727 1728 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1729 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1730 SDValue Addr, 1731 SDValue &SAddr, 1732 SDValue &VOffset, 1733 SDValue &Offset) const { 1734 int64_t ImmOffset = 0; 1735 1736 // Match the immediate offset first, which canonically is moved as low as 1737 // possible. 1738 1739 SDValue LHS, RHS; 1740 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1741 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1742 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1743 1744 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1745 SIInstrFlags::FlatGlobal)) { 1746 Addr = LHS; 1747 ImmOffset = COffsetVal; 1748 } else if (!LHS->isDivergent()) { 1749 if (COffsetVal > 0) { 1750 SDLoc SL(N); 1751 // saddr + large_offset -> saddr + 1752 // (voffset = large_offset & ~MaxOffset) + 1753 // (large_offset & MaxOffset); 1754 int64_t SplitImmOffset, RemainderOffset; 1755 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1756 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1757 1758 if (isUInt<32>(RemainderOffset)) { 1759 SDNode *VMov = CurDAG->getMachineNode( 1760 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1761 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1762 VOffset = SDValue(VMov, 0); 1763 SAddr = LHS; 1764 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i32); 1765 return true; 1766 } 1767 } 1768 1769 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1770 // is 1 we would need to perform 1 or 2 extra moves for each half of 1771 // the constant and it is better to do a scalar add and then issue a 1772 // single VALU instruction to materialize zero. Otherwise it is less 1773 // instructions to perform VALU adds with immediates or inline literals. 1774 unsigned NumLiterals = 1775 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1776 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1777 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1778 return false; 1779 } 1780 } 1781 1782 // Match the variable offset. 1783 if (Addr.getOpcode() == ISD::ADD) { 1784 LHS = Addr.getOperand(0); 1785 RHS = Addr.getOperand(1); 1786 1787 if (!LHS->isDivergent()) { 1788 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1789 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1790 SAddr = LHS; 1791 VOffset = ZextRHS; 1792 } 1793 } 1794 1795 if (!SAddr && !RHS->isDivergent()) { 1796 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1797 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1798 SAddr = RHS; 1799 VOffset = ZextLHS; 1800 } 1801 } 1802 1803 if (SAddr) { 1804 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 1805 return true; 1806 } 1807 } 1808 1809 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1810 isa<ConstantSDNode>(Addr)) 1811 return false; 1812 1813 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1814 // moves required to copy a 64-bit SGPR to VGPR. 1815 SAddr = Addr; 1816 SDNode *VMov = 1817 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1818 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1819 VOffset = SDValue(VMov, 0); 1820 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 1821 return true; 1822 } 1823 1824 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1825 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1826 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1827 } else if (SAddr.getOpcode() == ISD::ADD && 1828 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1829 // Materialize this into a scalar move for scalar address to avoid 1830 // readfirstlane. 1831 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1832 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1833 FI->getValueType(0)); 1834 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1835 MVT::i32, TFI, SAddr.getOperand(1)), 1836 0); 1837 } 1838 1839 return SAddr; 1840 } 1841 1842 // Match (32-bit SGPR base) + sext(imm offset) 1843 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1844 SDValue &SAddr, 1845 SDValue &Offset) const { 1846 if (Addr->isDivergent()) 1847 return false; 1848 1849 SDLoc DL(Addr); 1850 1851 int64_t COffsetVal = 0; 1852 1853 if (CurDAG->isBaseWithConstantOffset(Addr) && isFlatScratchBaseLegal(Addr)) { 1854 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1855 SAddr = Addr.getOperand(0); 1856 } else { 1857 SAddr = Addr; 1858 } 1859 1860 SAddr = SelectSAddrFI(CurDAG, SAddr); 1861 1862 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1863 1864 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1865 SIInstrFlags::FlatScratch)) { 1866 int64_t SplitImmOffset, RemainderOffset; 1867 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1868 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1869 1870 COffsetVal = SplitImmOffset; 1871 1872 SDValue AddOffset = 1873 SAddr.getOpcode() == ISD::TargetFrameIndex 1874 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1875 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1876 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1877 SAddr, AddOffset), 1878 0); 1879 } 1880 1881 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1882 1883 return true; 1884 } 1885 1886 // Check whether the flat scratch SVS swizzle bug affects this access. 1887 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( 1888 SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { 1889 if (!Subtarget->hasFlatScratchSVSSwizzleBug()) 1890 return false; 1891 1892 // The bug affects the swizzling of SVS accesses if there is any carry out 1893 // from the two low order bits (i.e. from bit 1 into bit 2) when adding 1894 // voffset to (soffset + inst_offset). 1895 KnownBits VKnown = CurDAG->computeKnownBits(VAddr); 1896 KnownBits SKnown = KnownBits::computeForAddSub( 1897 true, false, CurDAG->computeKnownBits(SAddr), 1898 KnownBits::makeConstant(APInt(32, ImmOffset))); 1899 uint64_t VMax = VKnown.getMaxValue().getZExtValue(); 1900 uint64_t SMax = SKnown.getMaxValue().getZExtValue(); 1901 return (VMax & 3) + (SMax & 3) >= 4; 1902 } 1903 1904 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, 1905 SDValue &VAddr, SDValue &SAddr, 1906 SDValue &Offset) const { 1907 int64_t ImmOffset = 0; 1908 1909 SDValue LHS, RHS; 1910 SDValue OrigAddr = Addr; 1911 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1912 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1913 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1914 1915 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1916 Addr = LHS; 1917 ImmOffset = COffsetVal; 1918 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1919 SDLoc SL(N); 1920 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + 1921 // (large_offset & MaxOffset); 1922 int64_t SplitImmOffset, RemainderOffset; 1923 std::tie(SplitImmOffset, RemainderOffset) 1924 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true); 1925 1926 if (isUInt<32>(RemainderOffset)) { 1927 SDNode *VMov = CurDAG->getMachineNode( 1928 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1929 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1930 VAddr = SDValue(VMov, 0); 1931 SAddr = LHS; 1932 if (!isFlatScratchBaseLegal(Addr)) 1933 return false; 1934 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset)) 1935 return false; 1936 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1937 return true; 1938 } 1939 } 1940 } 1941 1942 if (Addr.getOpcode() != ISD::ADD) 1943 return false; 1944 1945 LHS = Addr.getOperand(0); 1946 RHS = Addr.getOperand(1); 1947 1948 if (!LHS->isDivergent() && RHS->isDivergent()) { 1949 SAddr = LHS; 1950 VAddr = RHS; 1951 } else if (!RHS->isDivergent() && LHS->isDivergent()) { 1952 SAddr = RHS; 1953 VAddr = LHS; 1954 } else { 1955 return false; 1956 } 1957 1958 if (OrigAddr != Addr) { 1959 if (!isFlatScratchBaseLegalSVImm(OrigAddr)) 1960 return false; 1961 } else { 1962 if (!isFlatScratchBaseLegalSV(OrigAddr)) 1963 return false; 1964 } 1965 1966 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) 1967 return false; 1968 SAddr = SelectSAddrFI(CurDAG, SAddr); 1969 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1970 return true; 1971 } 1972 1973 // Match an immediate (if Offset is not null) or an SGPR (if SOffset is 1974 // not null) offset. If Imm32Only is true, match only 32-bit immediate 1975 // offsets available on CI. 1976 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1977 SDValue *SOffset, SDValue *Offset, 1978 bool Imm32Only, bool IsBuffer) const { 1979 assert((!SOffset || !Offset) && 1980 "Cannot match both soffset and offset at the same time!"); 1981 1982 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1983 if (!C) { 1984 if (!SOffset) 1985 return false; 1986 if (ByteOffsetNode.getValueType().isScalarInteger() && 1987 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1988 *SOffset = ByteOffsetNode; 1989 return true; 1990 } 1991 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1992 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1993 *SOffset = ByteOffsetNode.getOperand(0); 1994 return true; 1995 } 1996 } 1997 return false; 1998 } 1999 2000 SDLoc SL(ByteOffsetNode); 2001 2002 // GFX9 and GFX10 have signed byte immediate offsets. The immediate 2003 // offset for S_BUFFER instructions is unsigned. 2004 int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue(); 2005 std::optional<int64_t> EncodedOffset = 2006 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, IsBuffer); 2007 if (EncodedOffset && Offset && !Imm32Only) { 2008 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 2009 return true; 2010 } 2011 2012 // SGPR and literal offsets are unsigned. 2013 if (ByteOffset < 0) 2014 return false; 2015 2016 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 2017 if (EncodedOffset && Offset && Imm32Only) { 2018 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 2019 return true; 2020 } 2021 2022 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 2023 return false; 2024 2025 if (SOffset) { 2026 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 2027 *SOffset = SDValue( 2028 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 2029 return true; 2030 } 2031 2032 return false; 2033 } 2034 2035 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 2036 if (Addr.getValueType() != MVT::i32) 2037 return Addr; 2038 2039 // Zero-extend a 32-bit address. 2040 SDLoc SL(Addr); 2041 2042 const MachineFunction &MF = CurDAG->getMachineFunction(); 2043 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2044 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 2045 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 2046 2047 const SDValue Ops[] = { 2048 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 2049 Addr, 2050 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2051 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 2052 0), 2053 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 2054 }; 2055 2056 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 2057 Ops), 0); 2058 } 2059 2060 // Match a base and an immediate (if Offset is not null) or an SGPR (if 2061 // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is 2062 // true, match only 32-bit immediate offsets available on CI. 2063 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase, 2064 SDValue *SOffset, SDValue *Offset, 2065 bool Imm32Only, 2066 bool IsBuffer) const { 2067 if (SOffset && Offset) { 2068 assert(!Imm32Only && !IsBuffer); 2069 SDValue B; 2070 return SelectSMRDBaseOffset(Addr, B, nullptr, Offset) && 2071 SelectSMRDBaseOffset(B, SBase, SOffset, nullptr); 2072 } 2073 2074 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2075 // wraparound, because s_load instructions perform the addition in 64 bits. 2076 if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD && 2077 !Addr->getFlags().hasNoUnsignedWrap()) 2078 return false; 2079 2080 SDValue N0, N1; 2081 // Extract the base and offset if possible. 2082 if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) { 2083 N0 = Addr.getOperand(0); 2084 N1 = Addr.getOperand(1); 2085 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2086 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2087 } 2088 if (!N0 || !N1) 2089 return false; 2090 if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer)) { 2091 SBase = N0; 2092 return true; 2093 } 2094 if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer)) { 2095 SBase = N1; 2096 return true; 2097 } 2098 return false; 2099 } 2100 2101 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2102 SDValue *SOffset, SDValue *Offset, 2103 bool Imm32Only) const { 2104 if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) { 2105 SBase = Expand32BitAddress(SBase); 2106 return true; 2107 } 2108 2109 if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) { 2110 SBase = Expand32BitAddress(Addr); 2111 *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2112 return true; 2113 } 2114 2115 return false; 2116 } 2117 2118 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2119 SDValue &Offset) const { 2120 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset); 2121 } 2122 2123 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2124 SDValue &Offset) const { 2125 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2126 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset, 2127 /* Imm32Only */ true); 2128 } 2129 2130 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2131 SDValue &SOffset) const { 2132 return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr); 2133 } 2134 2135 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase, 2136 SDValue &SOffset, 2137 SDValue &Offset) const { 2138 return SelectSMRD(Addr, SBase, &SOffset, &Offset); 2139 } 2140 2141 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const { 2142 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2143 /* Imm32Only */ false, /* IsBuffer */ true); 2144 } 2145 2146 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N, 2147 SDValue &Offset) const { 2148 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2149 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2150 /* Imm32Only */ true, /* IsBuffer */ true); 2151 } 2152 2153 bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset, 2154 SDValue &Offset) const { 2155 // Match the (soffset + offset) pair as a 32-bit register base and 2156 // an immediate offset. 2157 return N.getValueType() == MVT::i32 && 2158 SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr, 2159 &Offset, /* Imm32Only */ false, 2160 /* IsBuffer */ true); 2161 } 2162 2163 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2164 SDValue &Base, 2165 SDValue &Offset) const { 2166 SDLoc DL(Index); 2167 2168 if (CurDAG->isBaseWithConstantOffset(Index)) { 2169 SDValue N0 = Index.getOperand(0); 2170 SDValue N1 = Index.getOperand(1); 2171 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2172 2173 // (add n0, c0) 2174 // Don't peel off the offset (c0) if doing so could possibly lead 2175 // the base (n0) to be negative. 2176 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2177 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2178 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2179 Base = N0; 2180 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2181 return true; 2182 } 2183 } 2184 2185 if (isa<ConstantSDNode>(Index)) 2186 return false; 2187 2188 Base = Index; 2189 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2190 return true; 2191 } 2192 2193 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, 2194 SDValue Val, uint32_t Offset, 2195 uint32_t Width) { 2196 if (Val->isDivergent()) { 2197 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; 2198 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); 2199 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); 2200 2201 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); 2202 } 2203 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2204 // Transformation function, pack the offset and width of a BFE into 2205 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2206 // source, bits [5:0] contain the offset and bits [22:16] the width. 2207 uint32_t PackedVal = Offset | (Width << 16); 2208 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2209 2210 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2211 } 2212 2213 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2214 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2215 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2216 // Predicate: 0 < b <= c < 32 2217 2218 const SDValue &Shl = N->getOperand(0); 2219 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2220 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2221 2222 if (B && C) { 2223 uint32_t BVal = B->getZExtValue(); 2224 uint32_t CVal = C->getZExtValue(); 2225 2226 if (0 < BVal && BVal <= CVal && CVal < 32) { 2227 bool Signed = N->getOpcode() == ISD::SRA; 2228 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2229 32 - CVal)); 2230 return; 2231 } 2232 } 2233 SelectCode(N); 2234 } 2235 2236 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2237 switch (N->getOpcode()) { 2238 case ISD::AND: 2239 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2240 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2241 // Predicate: isMask(mask) 2242 const SDValue &Srl = N->getOperand(0); 2243 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2244 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2245 2246 if (Shift && Mask) { 2247 uint32_t ShiftVal = Shift->getZExtValue(); 2248 uint32_t MaskVal = Mask->getZExtValue(); 2249 2250 if (isMask_32(MaskVal)) { 2251 uint32_t WidthVal = llvm::popcount(MaskVal); 2252 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, 2253 WidthVal)); 2254 return; 2255 } 2256 } 2257 } 2258 break; 2259 case ISD::SRL: 2260 if (N->getOperand(0).getOpcode() == ISD::AND) { 2261 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2262 // Predicate: isMask(mask >> b) 2263 const SDValue &And = N->getOperand(0); 2264 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2265 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2266 2267 if (Shift && Mask) { 2268 uint32_t ShiftVal = Shift->getZExtValue(); 2269 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2270 2271 if (isMask_32(MaskVal)) { 2272 uint32_t WidthVal = llvm::popcount(MaskVal); 2273 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, 2274 WidthVal)); 2275 return; 2276 } 2277 } 2278 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2279 SelectS_BFEFromShifts(N); 2280 return; 2281 } 2282 break; 2283 case ISD::SRA: 2284 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2285 SelectS_BFEFromShifts(N); 2286 return; 2287 } 2288 break; 2289 2290 case ISD::SIGN_EXTEND_INREG: { 2291 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2292 SDValue Src = N->getOperand(0); 2293 if (Src.getOpcode() != ISD::SRL) 2294 break; 2295 2296 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2297 if (!Amt) 2298 break; 2299 2300 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2301 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), 2302 Amt->getZExtValue(), Width)); 2303 return; 2304 } 2305 } 2306 2307 SelectCode(N); 2308 } 2309 2310 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2311 assert(N->getOpcode() == ISD::BRCOND); 2312 if (!N->hasOneUse()) 2313 return false; 2314 2315 SDValue Cond = N->getOperand(1); 2316 if (Cond.getOpcode() == ISD::CopyToReg) 2317 Cond = Cond.getOperand(2); 2318 2319 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2320 return false; 2321 2322 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2323 if (VT == MVT::i32) 2324 return true; 2325 2326 if (VT == MVT::i64) { 2327 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2328 2329 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2330 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2331 } 2332 2333 return false; 2334 } 2335 2336 static SDValue combineBallotPattern(SDValue VCMP, bool &Negate) { 2337 assert(VCMP->getOpcode() == AMDGPUISD::SETCC); 2338 // Special case for amdgcn.ballot: 2339 // %Cond = i1 (and/or combination of i1 ISD::SETCCs) 2340 // %VCMP = i(WaveSize) AMDGPUISD::SETCC (ext %Cond), 0, setne/seteq 2341 // => 2342 // Use i1 %Cond value instead of i(WaveSize) %VCMP. 2343 // This is possible because divergent ISD::SETCC is selected as V_CMP and 2344 // Cond becomes a i(WaveSize) full mask value. 2345 // Note that ballot doesn't use SETEQ condition but its easy to support it 2346 // here for completeness, so in this case Negate is set true on return. 2347 auto VCMP_CC = cast<CondCodeSDNode>(VCMP.getOperand(2))->get(); 2348 if ((VCMP_CC == ISD::SETEQ || VCMP_CC == ISD::SETNE) && 2349 isNullConstant(VCMP.getOperand(1))) { 2350 2351 auto Cond = VCMP.getOperand(0); 2352 if (ISD::isExtOpcode(Cond->getOpcode())) // Skip extension. 2353 Cond = Cond.getOperand(0); 2354 2355 if (isBoolSGPR(Cond)) { 2356 Negate = VCMP_CC == ISD::SETEQ; 2357 return Cond; 2358 } 2359 } 2360 return SDValue(); 2361 } 2362 2363 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2364 SDValue Cond = N->getOperand(1); 2365 2366 if (Cond.isUndef()) { 2367 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2368 N->getOperand(2), N->getOperand(0)); 2369 return; 2370 } 2371 2372 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2373 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2374 2375 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2376 bool AndExec = !UseSCCBr; 2377 bool Negate = false; 2378 2379 if (Cond.getOpcode() == ISD::SETCC && 2380 Cond->getOperand(0)->getOpcode() == AMDGPUISD::SETCC) { 2381 SDValue VCMP = Cond->getOperand(0); 2382 auto CC = cast<CondCodeSDNode>(Cond->getOperand(2))->get(); 2383 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 2384 isNullConstant(Cond->getOperand(1)) && 2385 // TODO: make condition below an assert after fixing ballot bitwidth. 2386 VCMP.getValueType().getSizeInBits() == ST->getWavefrontSize()) { 2387 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... 2388 // %C = i1 ISD::SETCC %VCMP, 0, setne/seteq 2389 // BRCOND i1 %C, %BB 2390 // => 2391 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... 2392 // VCC = COPY i(WaveSize) %VCMP 2393 // S_CBRANCH_VCCNZ/VCCZ %BB 2394 Negate = CC == ISD::SETEQ; 2395 bool NegatedBallot = false; 2396 if (auto BallotCond = combineBallotPattern(VCMP, NegatedBallot)) { 2397 Cond = BallotCond; 2398 UseSCCBr = !BallotCond->isDivergent(); 2399 Negate = Negate ^ NegatedBallot; 2400 } else { 2401 // TODO: don't use SCC here assuming that AMDGPUISD::SETCC is always 2402 // selected as V_CMP, but this may change for uniform condition. 2403 Cond = VCMP; 2404 UseSCCBr = false; 2405 } 2406 } 2407 // Cond is either V_CMP resulted from AMDGPUISD::SETCC or a combination of 2408 // V_CMPs resulted from ballot or ballot has uniform condition and SCC is 2409 // used. 2410 AndExec = false; 2411 } 2412 2413 unsigned BrOp = 2414 UseSCCBr ? (Negate ? AMDGPU::S_CBRANCH_SCC0 : AMDGPU::S_CBRANCH_SCC1) 2415 : (Negate ? AMDGPU::S_CBRANCH_VCCZ : AMDGPU::S_CBRANCH_VCCNZ); 2416 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2417 SDLoc SL(N); 2418 2419 if (AndExec) { 2420 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2421 // analyzed what generates the vcc value, so we do not know whether vcc 2422 // bits for disabled lanes are 0. Thus we need to mask out bits for 2423 // disabled lanes. 2424 // 2425 // For the case that we select S_CBRANCH_SCC1 and it gets 2426 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2427 // SIInstrInfo::moveToVALU which inserts the S_AND). 2428 // 2429 // We could add an analysis of what generates the vcc value here and omit 2430 // the S_AND when is unnecessary. But it would be better to add a separate 2431 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2432 // catches both cases. 2433 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2434 : AMDGPU::S_AND_B64, 2435 SL, MVT::i1, 2436 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2437 : AMDGPU::EXEC, 2438 MVT::i1), 2439 Cond), 2440 0); 2441 } 2442 2443 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2444 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2445 N->getOperand(2), // Basic Block 2446 VCC.getValue(0)); 2447 } 2448 2449 void AMDGPUDAGToDAGISel::SelectFP_EXTEND(SDNode *N) { 2450 if (Subtarget->hasSALUFloatInsts() && N->getValueType(0) == MVT::f32 && 2451 !N->isDivergent()) { 2452 SDValue Src = N->getOperand(0); 2453 if (Src.getValueType() == MVT::f16) { 2454 if (isExtractHiElt(Src, Src)) { 2455 CurDAG->SelectNodeTo(N, AMDGPU::S_CVT_HI_F32_F16, N->getVTList(), 2456 {Src}); 2457 return; 2458 } 2459 } 2460 } 2461 2462 SelectCode(N); 2463 } 2464 2465 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2466 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2467 // be copied to an SGPR with readfirstlane. 2468 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2469 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2470 2471 SDValue Chain = N->getOperand(0); 2472 SDValue Ptr = N->getOperand(2); 2473 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2474 MachineMemOperand *MMO = M->getMemOperand(); 2475 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2476 2477 SDValue Offset; 2478 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2479 SDValue PtrBase = Ptr.getOperand(0); 2480 SDValue PtrOffset = Ptr.getOperand(1); 2481 2482 const APInt &OffsetVal = PtrOffset->getAsAPIntVal(); 2483 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2484 N = glueCopyToM0(N, PtrBase); 2485 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2486 } 2487 } 2488 2489 if (!Offset) { 2490 N = glueCopyToM0(N, Ptr); 2491 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2492 } 2493 2494 SDValue Ops[] = { 2495 Offset, 2496 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2497 Chain, 2498 N->getOperand(N->getNumOperands() - 1) // New glue 2499 }; 2500 2501 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2502 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2503 } 2504 2505 // We need to handle this here because tablegen doesn't support matching 2506 // instructions with multiple outputs. 2507 void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) { 2508 unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32; 2509 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4), 2510 N->getOperand(5), N->getOperand(0)}; 2511 2512 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2513 MachineMemOperand *MMO = M->getMemOperand(); 2514 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2515 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2516 } 2517 2518 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2519 switch (IntrID) { 2520 case Intrinsic::amdgcn_ds_gws_init: 2521 return AMDGPU::DS_GWS_INIT; 2522 case Intrinsic::amdgcn_ds_gws_barrier: 2523 return AMDGPU::DS_GWS_BARRIER; 2524 case Intrinsic::amdgcn_ds_gws_sema_v: 2525 return AMDGPU::DS_GWS_SEMA_V; 2526 case Intrinsic::amdgcn_ds_gws_sema_br: 2527 return AMDGPU::DS_GWS_SEMA_BR; 2528 case Intrinsic::amdgcn_ds_gws_sema_p: 2529 return AMDGPU::DS_GWS_SEMA_P; 2530 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2531 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2532 default: 2533 llvm_unreachable("not a gws intrinsic"); 2534 } 2535 } 2536 2537 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2538 if (!Subtarget->hasGWS() || 2539 (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2540 !Subtarget->hasGWSSemaReleaseAll())) { 2541 // Let this error. 2542 SelectCode(N); 2543 return; 2544 } 2545 2546 // Chain, intrinsic ID, vsrc, offset 2547 const bool HasVSrc = N->getNumOperands() == 4; 2548 assert(HasVSrc || N->getNumOperands() == 3); 2549 2550 SDLoc SL(N); 2551 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2552 int ImmOffset = 0; 2553 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2554 MachineMemOperand *MMO = M->getMemOperand(); 2555 2556 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2557 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2558 2559 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2560 // offset field) % 64. Some versions of the programming guide omit the m0 2561 // part, or claim it's from offset 0. 2562 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2563 // If we have a constant offset, try to use the 0 in m0 as the base. 2564 // TODO: Look into changing the default m0 initialization value. If the 2565 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2566 // the immediate offset. 2567 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2568 ImmOffset = ConstOffset->getZExtValue(); 2569 } else { 2570 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2571 ImmOffset = BaseOffset.getConstantOperandVal(1); 2572 BaseOffset = BaseOffset.getOperand(0); 2573 } 2574 2575 // Prefer to do the shift in an SGPR since it should be possible to use m0 2576 // as the result directly. If it's already an SGPR, it will be eliminated 2577 // later. 2578 SDNode *SGPROffset 2579 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2580 BaseOffset); 2581 // Shift to offset in m0 2582 SDNode *M0Base 2583 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2584 SDValue(SGPROffset, 0), 2585 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2586 glueCopyToM0(N, SDValue(M0Base, 0)); 2587 } 2588 2589 SDValue Chain = N->getOperand(0); 2590 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2591 2592 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2593 SmallVector<SDValue, 5> Ops; 2594 if (HasVSrc) 2595 Ops.push_back(N->getOperand(2)); 2596 Ops.push_back(OffsetField); 2597 Ops.push_back(Chain); 2598 2599 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2600 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2601 } 2602 2603 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2604 if (Subtarget->getLDSBankCount() != 16) { 2605 // This is a single instruction with a pattern. 2606 SelectCode(N); 2607 return; 2608 } 2609 2610 SDLoc DL(N); 2611 2612 // This requires 2 instructions. It is possible to write a pattern to support 2613 // this, but the generated isel emitter doesn't correctly deal with multiple 2614 // output instructions using the same physical register input. The copy to m0 2615 // is incorrectly placed before the second instruction. 2616 // 2617 // TODO: Match source modifiers. 2618 // 2619 // def : Pat < 2620 // (int_amdgcn_interp_p1_f16 2621 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2622 // (i32 timm:$attrchan), (i32 timm:$attr), 2623 // (i1 timm:$high), M0), 2624 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2625 // timm:$attrchan, 0, 2626 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2627 // let Predicates = [has16BankLDS]; 2628 // } 2629 2630 // 16 bank LDS 2631 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2632 N->getOperand(5), SDValue()); 2633 2634 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2635 2636 SDNode *InterpMov = 2637 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2638 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2639 N->getOperand(3), // Attr 2640 N->getOperand(2), // Attrchan 2641 ToM0.getValue(1) // In glue 2642 }); 2643 2644 SDNode *InterpP1LV = 2645 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2646 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2647 N->getOperand(1), // Src0 2648 N->getOperand(3), // Attr 2649 N->getOperand(2), // Attrchan 2650 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2651 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2652 N->getOperand(4), // high 2653 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2654 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2655 SDValue(InterpMov, 1) 2656 }); 2657 2658 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2659 } 2660 2661 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2662 unsigned IntrID = N->getConstantOperandVal(1); 2663 switch (IntrID) { 2664 case Intrinsic::amdgcn_ds_append: 2665 case Intrinsic::amdgcn_ds_consume: { 2666 if (N->getValueType(0) != MVT::i32) 2667 break; 2668 SelectDSAppendConsume(N, IntrID); 2669 return; 2670 } 2671 case Intrinsic::amdgcn_ds_bvh_stack_rtn: 2672 SelectDSBvhStackIntrinsic(N); 2673 return; 2674 } 2675 2676 SelectCode(N); 2677 } 2678 2679 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2680 unsigned IntrID = N->getConstantOperandVal(0); 2681 unsigned Opcode; 2682 switch (IntrID) { 2683 case Intrinsic::amdgcn_wqm: 2684 Opcode = AMDGPU::WQM; 2685 break; 2686 case Intrinsic::amdgcn_softwqm: 2687 Opcode = AMDGPU::SOFT_WQM; 2688 break; 2689 case Intrinsic::amdgcn_wwm: 2690 case Intrinsic::amdgcn_strict_wwm: 2691 Opcode = AMDGPU::STRICT_WWM; 2692 break; 2693 case Intrinsic::amdgcn_strict_wqm: 2694 Opcode = AMDGPU::STRICT_WQM; 2695 break; 2696 case Intrinsic::amdgcn_interp_p1_f16: 2697 SelectInterpP1F16(N); 2698 return; 2699 case Intrinsic::amdgcn_inverse_ballot: 2700 switch (N->getOperand(1).getValueSizeInBits()) { 2701 case 32: 2702 Opcode = AMDGPU::S_INVERSE_BALLOT_U32; 2703 break; 2704 case 64: 2705 Opcode = AMDGPU::S_INVERSE_BALLOT_U64; 2706 break; 2707 default: 2708 llvm_unreachable("Unsupported size for inverse ballot mask."); 2709 } 2710 break; 2711 default: 2712 SelectCode(N); 2713 return; 2714 } 2715 2716 SDValue Src = N->getOperand(1); 2717 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2718 } 2719 2720 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2721 unsigned IntrID = N->getConstantOperandVal(1); 2722 switch (IntrID) { 2723 case Intrinsic::amdgcn_ds_gws_init: 2724 case Intrinsic::amdgcn_ds_gws_barrier: 2725 case Intrinsic::amdgcn_ds_gws_sema_v: 2726 case Intrinsic::amdgcn_ds_gws_sema_br: 2727 case Intrinsic::amdgcn_ds_gws_sema_p: 2728 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2729 SelectDS_GWS(N, IntrID); 2730 return; 2731 default: 2732 break; 2733 } 2734 2735 SelectCode(N); 2736 } 2737 2738 void AMDGPUDAGToDAGISel::SelectWAVE_ADDRESS(SDNode *N) { 2739 SDValue Log2WaveSize = 2740 CurDAG->getTargetConstant(Subtarget->getWavefrontSizeLog2(), SDLoc(N), MVT::i32); 2741 CurDAG->SelectNodeTo(N, AMDGPU::S_LSHR_B32, N->getVTList(), 2742 {N->getOperand(0), Log2WaveSize}); 2743 } 2744 2745 void AMDGPUDAGToDAGISel::SelectSTACKRESTORE(SDNode *N) { 2746 SDValue SrcVal = N->getOperand(1); 2747 if (SrcVal.getValueType() != MVT::i32) { 2748 SelectCode(N); // Emit default error 2749 return; 2750 } 2751 2752 SDValue CopyVal; 2753 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 2754 SDLoc SL(N); 2755 2756 if (SrcVal.getOpcode() == AMDGPUISD::WAVE_ADDRESS) { 2757 CopyVal = SrcVal.getOperand(0); 2758 } else { 2759 SDValue Log2WaveSize = CurDAG->getTargetConstant( 2760 Subtarget->getWavefrontSizeLog2(), SL, MVT::i32); 2761 2762 if (N->isDivergent()) { 2763 SrcVal = SDValue(CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, 2764 MVT::i32, SrcVal), 2765 0); 2766 } 2767 2768 CopyVal = SDValue(CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2769 {SrcVal, Log2WaveSize}), 2770 0); 2771 } 2772 2773 SDValue CopyToSP = CurDAG->getCopyToReg(N->getOperand(0), SL, SP, CopyVal); 2774 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyToSP); 2775 } 2776 2777 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2778 unsigned &Mods, 2779 bool IsCanonicalizing, 2780 bool AllowAbs) const { 2781 Mods = SISrcMods::NONE; 2782 Src = In; 2783 2784 if (Src.getOpcode() == ISD::FNEG) { 2785 Mods |= SISrcMods::NEG; 2786 Src = Src.getOperand(0); 2787 } else if (Src.getOpcode() == ISD::FSUB && IsCanonicalizing) { 2788 // Fold fsub [+-]0 into fneg. This may not have folded depending on the 2789 // denormal mode, but we're implicitly canonicalizing in a source operand. 2790 auto *LHS = dyn_cast<ConstantFPSDNode>(Src.getOperand(0)); 2791 if (LHS && LHS->isZero()) { 2792 Mods |= SISrcMods::NEG; 2793 Src = Src.getOperand(1); 2794 } 2795 } 2796 2797 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2798 Mods |= SISrcMods::ABS; 2799 Src = Src.getOperand(0); 2800 } 2801 2802 return true; 2803 } 2804 2805 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2806 SDValue &SrcMods) const { 2807 unsigned Mods; 2808 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/true, 2809 /*AllowAbs=*/true)) { 2810 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2811 return true; 2812 } 2813 2814 return false; 2815 } 2816 2817 bool AMDGPUDAGToDAGISel::SelectVOP3ModsNonCanonicalizing( 2818 SDValue In, SDValue &Src, SDValue &SrcMods) const { 2819 unsigned Mods; 2820 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/false, 2821 /*AllowAbs=*/true)) { 2822 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2823 return true; 2824 } 2825 2826 return false; 2827 } 2828 2829 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2830 SDValue &SrcMods) const { 2831 unsigned Mods; 2832 if (SelectVOP3ModsImpl(In, Src, Mods, 2833 /*IsCanonicalizing=*/true, 2834 /*AllowAbs=*/false)) { 2835 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2836 return true; 2837 } 2838 2839 return false; 2840 } 2841 2842 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2843 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2844 return false; 2845 2846 Src = In; 2847 return true; 2848 } 2849 2850 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src, 2851 SDValue &SrcMods, 2852 bool OpSel) const { 2853 unsigned Mods; 2854 if (SelectVOP3ModsImpl(In, Src, Mods, 2855 /*IsCanonicalizing=*/true, 2856 /*AllowAbs=*/false)) { 2857 if (OpSel) 2858 Mods |= SISrcMods::OP_SEL_0; 2859 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2860 return true; 2861 } 2862 2863 return false; 2864 } 2865 2866 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src, 2867 SDValue &SrcMods) const { 2868 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false); 2869 } 2870 2871 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src, 2872 SDValue &SrcMods) const { 2873 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true); 2874 } 2875 2876 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2877 SDValue &SrcMods, SDValue &Clamp, 2878 SDValue &Omod) const { 2879 SDLoc DL(In); 2880 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2881 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2882 2883 return SelectVOP3Mods(In, Src, SrcMods); 2884 } 2885 2886 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2887 SDValue &SrcMods, SDValue &Clamp, 2888 SDValue &Omod) const { 2889 SDLoc DL(In); 2890 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2891 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2892 2893 return SelectVOP3BMods(In, Src, SrcMods); 2894 } 2895 2896 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2897 SDValue &Clamp, SDValue &Omod) const { 2898 Src = In; 2899 2900 SDLoc DL(In); 2901 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2902 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2903 2904 return true; 2905 } 2906 2907 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2908 SDValue &SrcMods, bool IsDOT) const { 2909 unsigned Mods = SISrcMods::NONE; 2910 Src = In; 2911 2912 // TODO: Handle G_FSUB 0 as fneg 2913 if (Src.getOpcode() == ISD::FNEG) { 2914 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2915 Src = Src.getOperand(0); 2916 } 2917 2918 if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 && 2919 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { 2920 unsigned VecMods = Mods; 2921 2922 SDValue Lo = stripBitcast(Src.getOperand(0)); 2923 SDValue Hi = stripBitcast(Src.getOperand(1)); 2924 2925 if (Lo.getOpcode() == ISD::FNEG) { 2926 Lo = stripBitcast(Lo.getOperand(0)); 2927 Mods ^= SISrcMods::NEG; 2928 } 2929 2930 if (Hi.getOpcode() == ISD::FNEG) { 2931 Hi = stripBitcast(Hi.getOperand(0)); 2932 Mods ^= SISrcMods::NEG_HI; 2933 } 2934 2935 if (isExtractHiElt(Lo, Lo)) 2936 Mods |= SISrcMods::OP_SEL_0; 2937 2938 if (isExtractHiElt(Hi, Hi)) 2939 Mods |= SISrcMods::OP_SEL_1; 2940 2941 unsigned VecSize = Src.getValueSizeInBits(); 2942 Lo = stripExtractLoElt(Lo); 2943 Hi = stripExtractLoElt(Hi); 2944 2945 if (Lo.getValueSizeInBits() > VecSize) { 2946 Lo = CurDAG->getTargetExtractSubreg( 2947 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2948 MVT::getIntegerVT(VecSize), Lo); 2949 } 2950 2951 if (Hi.getValueSizeInBits() > VecSize) { 2952 Hi = CurDAG->getTargetExtractSubreg( 2953 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2954 MVT::getIntegerVT(VecSize), Hi); 2955 } 2956 2957 assert(Lo.getValueSizeInBits() <= VecSize && 2958 Hi.getValueSizeInBits() <= VecSize); 2959 2960 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2961 // Really a scalar input. Just select from the low half of the register to 2962 // avoid packing. 2963 2964 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2965 Src = Lo; 2966 } else { 2967 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2968 2969 SDLoc SL(In); 2970 SDValue Undef = SDValue( 2971 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2972 Lo.getValueType()), 0); 2973 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2974 : AMDGPU::SReg_64RegClassID; 2975 const SDValue Ops[] = { 2976 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2977 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2978 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2979 2980 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2981 Src.getValueType(), Ops), 0); 2982 } 2983 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2984 return true; 2985 } 2986 2987 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2988 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2989 .bitcastToAPInt().getZExtValue(); 2990 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2991 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64); 2992 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2993 return true; 2994 } 2995 } 2996 2997 Mods = VecMods; 2998 } 2999 3000 // Packed instructions do not have abs modifiers. 3001 Mods |= SISrcMods::OP_SEL_1; 3002 3003 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3004 return true; 3005 } 3006 3007 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, 3008 SDValue &SrcMods) const { 3009 return SelectVOP3PMods(In, Src, SrcMods, true); 3010 } 3011 3012 bool AMDGPUDAGToDAGISel::SelectDotIUVOP3PMods(SDValue In, SDValue &Src) const { 3013 const ConstantSDNode *C = cast<ConstantSDNode>(In); 3014 // Literal i1 value set in intrinsic, represents SrcMods for the next operand. 3015 // 1 promotes packed values to signed, 0 treats them as unsigned. 3016 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 3017 3018 unsigned Mods = SISrcMods::OP_SEL_1; 3019 unsigned SrcSign = C->getZExtValue(); 3020 if (SrcSign == 1) 3021 Mods ^= SISrcMods::NEG; 3022 3023 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3024 return true; 3025 } 3026 3027 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In, 3028 SDValue &Src) const { 3029 const ConstantSDNode *C = cast<ConstantSDNode>(In); 3030 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 3031 3032 unsigned Mods = SISrcMods::OP_SEL_1; 3033 unsigned SrcVal = C->getZExtValue(); 3034 if (SrcVal == 1) 3035 Mods |= SISrcMods::OP_SEL_0; 3036 3037 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3038 return true; 3039 } 3040 3041 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 3042 SDValue &SrcMods) const { 3043 Src = In; 3044 // FIXME: Handle op_sel 3045 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 3046 return true; 3047 } 3048 3049 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 3050 SDValue &SrcMods) const { 3051 // FIXME: Handle op_sel 3052 return SelectVOP3Mods(In, Src, SrcMods); 3053 } 3054 3055 // The return value is not whether the match is possible (which it always is), 3056 // but whether or not it a conversion is really used. 3057 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 3058 unsigned &Mods) const { 3059 Mods = 0; 3060 SelectVOP3ModsImpl(In, Src, Mods); 3061 3062 if (Src.getOpcode() == ISD::FP_EXTEND) { 3063 Src = Src.getOperand(0); 3064 assert(Src.getValueType() == MVT::f16); 3065 Src = stripBitcast(Src); 3066 3067 // Be careful about folding modifiers if we already have an abs. fneg is 3068 // applied last, so we don't want to apply an earlier fneg. 3069 if ((Mods & SISrcMods::ABS) == 0) { 3070 unsigned ModsTmp; 3071 SelectVOP3ModsImpl(Src, Src, ModsTmp); 3072 3073 if ((ModsTmp & SISrcMods::NEG) != 0) 3074 Mods ^= SISrcMods::NEG; 3075 3076 if ((ModsTmp & SISrcMods::ABS) != 0) 3077 Mods |= SISrcMods::ABS; 3078 } 3079 3080 // op_sel/op_sel_hi decide the source type and source. 3081 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 3082 // If the sources's op_sel is set, it picks the high half of the source 3083 // register. 3084 3085 Mods |= SISrcMods::OP_SEL_1; 3086 if (isExtractHiElt(Src, Src)) { 3087 Mods |= SISrcMods::OP_SEL_0; 3088 3089 // TODO: Should we try to look for neg/abs here? 3090 } 3091 3092 return true; 3093 } 3094 3095 return false; 3096 } 3097 3098 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsExt(SDValue In, SDValue &Src, 3099 SDValue &SrcMods) const { 3100 unsigned Mods = 0; 3101 if (!SelectVOP3PMadMixModsImpl(In, Src, Mods)) 3102 return false; 3103 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3104 return true; 3105 } 3106 3107 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 3108 SDValue &SrcMods) const { 3109 unsigned Mods = 0; 3110 SelectVOP3PMadMixModsImpl(In, Src, Mods); 3111 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3112 return true; 3113 } 3114 3115 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 3116 if (In.isUndef()) 3117 return CurDAG->getUNDEF(MVT::i32); 3118 3119 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 3120 SDLoc SL(In); 3121 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 3122 } 3123 3124 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 3125 SDLoc SL(In); 3126 return CurDAG->getConstant( 3127 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 3128 } 3129 3130 SDValue Src; 3131 if (isExtractHiElt(In, Src)) 3132 return Src; 3133 3134 return SDValue(); 3135 } 3136 3137 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 3138 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 3139 3140 const SIRegisterInfo *SIRI = 3141 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 3142 const SIInstrInfo * SII = 3143 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 3144 3145 unsigned Limit = 0; 3146 bool AllUsesAcceptSReg = true; 3147 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 3148 Limit < 10 && U != E; ++U, ++Limit) { 3149 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 3150 3151 // If the register class is unknown, it could be an unknown 3152 // register class that needs to be an SGPR, e.g. an inline asm 3153 // constraint 3154 if (!RC || SIRI->isSGPRClass(RC)) 3155 return false; 3156 3157 if (RC != &AMDGPU::VS_32RegClass && RC != &AMDGPU::VS_64RegClass) { 3158 AllUsesAcceptSReg = false; 3159 SDNode * User = *U; 3160 if (User->isMachineOpcode()) { 3161 unsigned Opc = User->getMachineOpcode(); 3162 const MCInstrDesc &Desc = SII->get(Opc); 3163 if (Desc.isCommutable()) { 3164 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 3165 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 3166 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 3167 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 3168 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 3169 if (CommutedRC == &AMDGPU::VS_32RegClass || 3170 CommutedRC == &AMDGPU::VS_64RegClass) 3171 AllUsesAcceptSReg = true; 3172 } 3173 } 3174 } 3175 // If "AllUsesAcceptSReg == false" so far we haven't succeeded 3176 // commuting current user. This means have at least one use 3177 // that strictly require VGPR. Thus, we will not attempt to commute 3178 // other user instructions. 3179 if (!AllUsesAcceptSReg) 3180 break; 3181 } 3182 } 3183 return !AllUsesAcceptSReg && (Limit < 10); 3184 } 3185 3186 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 3187 auto Ld = cast<LoadSDNode>(N); 3188 3189 if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(Ld->getMemOperand())) 3190 return false; 3191 3192 return Ld->getAlign() >= Align(4) && 3193 ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3194 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) || 3195 (Subtarget->getScalarizeGlobalBehavior() && 3196 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 3197 Ld->isSimple() && 3198 static_cast<const SITargetLowering *>(getTargetLowering()) 3199 ->isMemOpHasNoClobberedMemOperand(N))); 3200 } 3201 3202 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 3203 const AMDGPUTargetLowering& Lowering = 3204 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 3205 bool IsModified = false; 3206 do { 3207 IsModified = false; 3208 3209 // Go over all selected nodes and try to fold them a bit more 3210 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 3211 while (Position != CurDAG->allnodes_end()) { 3212 SDNode *Node = &*Position++; 3213 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 3214 if (!MachineNode) 3215 continue; 3216 3217 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 3218 if (ResNode != Node) { 3219 if (ResNode) 3220 ReplaceUses(Node, ResNode); 3221 IsModified = true; 3222 } 3223 } 3224 CurDAG->RemoveDeadNodes(); 3225 } while (IsModified); 3226 } 3227 3228 char AMDGPUDAGToDAGISel::ID = 0; 3229